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ABSTRACT We present a structured overview of adaptation algorithms for neural network-based speech
recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neu-
ral network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The
overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data
augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms,
based on relative error rate reductions as reported in the literature.

INDEX TERMS Accent adaptation, data augmentation, domain adaptation, regularization, semi-supervised
learning, speaker adaptation, speaker embeddings, speech recognition, structured linear transforms.

I. INTRODUCTION

The performance of automatic speech recognition (ASR) sys-
tems has improved dramatically in recent years thanks to the
availability of larger training datasets, the development of
neural network based models, and the computational power
to train such models on these datasets [1]–[4]. However, the
performance of ASR systems can still degrade rapidly when
their conditions of use (test conditions) differ from the train-
ing data. There are several causes for this, including speaker
differences, variability in the acoustic environment, and the
domain of use.

Adaptation algorithms attempt to alleviate the mismatch
between the test data and an ASR system’s training data.
Adapting an ASR system is a challenging problem since it
requires the modification of large and complex models, typ-
ically using only a small amount of target data and without
explicit supervision. Speaker adaptation – adapting the system
to a target speaker – is the most common form of adaptation,

but there are other important adaptation targets such as the
domain of use, and the spoken accent. Much of the work
in the area has focused on speaker adaptation: it is the case
that many approaches developed for speaker adaptation do not
explicitly model speaker characteristics, and can be applied to
other adaptation targets. Thus our core treatment of adaptation
algorithms is in the context of speaker adaptation, with a later
discussion of particular approaches for domain adaptation
and accent adaptation. Specifically, domain adaptation in this
paper refers to the task of adapting the models to the target
domain that has either acoustic or content mismatch from the
source domain in which the models were trained.

This overview focuses on the adaptation of neural network
(NN) based speech recognition systems, although we briefly
discuss earlier approaches to speaker adaptation of hidden
Markov model (HMM) based systems. NN-based systems [1],
[5], [6] have revolutionized the field of speech recognition,
and there has been intense activity in the development of
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FIGURE 1. NN architectures used for hybrid NN/HMM and end-to-end (CTC, RNN-T, AED) speech recognition systems: (a) Scheme of NN architecture used
for NN/HMM hybrid systems and for connectionist temporal classification (CTC); (b) architecture for the RNN Transducer (RNN-T); (c) architecture for
attention based encoder-decoder (AED) end-to-end systems. Input acoustic feature vectors are denoted by xt ; hidden layers are denoted by ht , hu and
output labels by yt , yu depending on whether they are indexed by time t (in hybrid and CTC systems) or only by output label u (in parts of RNN-T and AED
systems). In practice, the encoders use a wide temporal context as input, even the whole acoustic sequence in the case of most CTC and AED models.

adaptation algorithms for such systems. Adaptation of NN-
based speech recognition is an exciting research area for at
least two reasons: from a practical point of view, it is im-
portant to be able to adapt state-of-the-art systems; and from
a theoretical point of view the fact that NNs require fewer
constraints on the input than a Gaussian-based system, along
with the gradient-based discriminative training which is at the
heart of most NN-based speech recognition systems, opens a
range of possible adaptation algorithms.

A. NN/HMM HYBRID SYSTEMS

Neural networks were first applied to speech recognition as
so-called NN/HMM hybrid systems, in which the neural net-
work is used to estimate (scaled) likelihoods that act as the
HMM state observation probabilities [5] (Fig. 1(a)). During
the 1990 s both feed-forward networks [5] and recurrent neu-
ral networks (RNNs) [7] were used in such hybrid systems
and close to state-of-the-art results were obtained [8]. These
systems were largely context-independent, although context-
dependent NN-based acoustic models were also explored [9].

The modeling power of neural network systems at that
time was computationally limited, and they were not able
to achieve the precise levels of modeling obtained using
context-dependent GMM-based HMM systems which be-
came the dominant approach. However, increases in com-
putational power enabled deeper neural network models to
be learned along with context-dependent modeling using
the same number of context-dependent HMM tied states

(senones) as GMM-based systems [1], [2]. This led to the de-
velopment of systems surpassing the accuracy of GMM-based
systems. This increase in computational power also enabled
more powerful neural network models to be employed, in
particular time-delay neural networks (TDNNs) [10], [11],
convolutional neural networks (CNNs) [12], [13], long short-
term memory (LSTM) RNNs [14], [15], and bidirectional
LSTMs [16], [17].

B. END-TO-END SYSTEMS

Since 2015, there has been a significant trend in the field
moving from hybrid HMM/NN systems to end-to-end (E2E)
NN modeling [4], [6], [18]–[24] for ASR. E2E systems are
characterized by the use of a single model transforming the
input acoustic feature stream to a target stream of output
tokens, which might be constructed of characters, subwords,
or even words. E2E models are optimized using a single
objective function, rather than comprising multiple compo-
nents (acoustic model, language model, lexicon) that are op-
timized individually. Currently, the most widely used E2E
models are connectionist temporal classification (CTC) [25],
[26], the RNN Transducer (RNN-T) model [21], [27], and the
attention-based encoder-decoder (AED) model [6], [18].

CTC and the RNN-T both map an input speech feature se-
quence to an output label sequence, where the label sequence
(typically characters) is considerably shorter than the input
sequence. Both of these architectures use an additional blank
output token to deal with the sequence length differences, with
an objective function which sums over all possible alignments
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using the forward backward algorithm [28]. CTC is an earlier,
and simpler, method which assumes frame independence and
functions similarly to the acoustic model in hybrid systems
without modeling the linguistic dependency across words; its
architecture is similar to that of the neural network in the
hybrid system (Fig. 1(a)).

An RNN-T (Fig. 1(b)) combines an additional prediction
network with the acoustic encoder. The prediction network is
an RNN modeling linguistic dependencies whose input is the
previously output symbol. It is possible to initialize some of its
layers from an external language model trained on additional
text data. The acoustic encoder and the prediction network are
combined using a feed-forward joint network followed by a
softmax to predict the next output token given the speech input
and the linguistic context.

Together, the RNN-T’s prediction and joint networks may
be regarded as a decoder, and we can view the RNN-T as
a form of encoder-decoder system. The AED architecture
(Fig. 1(c)) enriches the encoder-decoder model with an addi-
tional attention network which interfaces the acoustic encoder
with the decoder. The attention network operates on the entire
sequence of encoder representations for an utterance, offering
the decoder considerably more flexibility. A detailed com-
parison of popular E2E models in both streaming and non-
streaming modes with large scale training data was conducted
by Li et al. [29]. It is worth noting that with the recent success
in machine translation, there is a trend of using the transformer
model [30] to replace LSTM for both the AED [31]–[33] and
RNN-T models [34]–[36].

C. ADAPTATION AND TRANSFER LEARNING IN

RELATED FIELDS

Adaptation and transfer learning have become important and
intensively researched topics in other areas related to machine
learning, most notably computer vision and natural language
processing (NLP). In both these cases the motivation is to train
powerful base models using large amounts of training data,
then to adapt these to specific tasks or domains, for which
considerably less training data is available.

In computer vision, the base model is typically a large
convolutional network trained to perform image classifica-
tion or object recognition using the ImageNet database [37],
[38]. The ImageNet model is then adapted to a lower re-
source task, such as computer-aided detection in medical
imaging [39]. Kornblith et al. [40] have investigated empiri-
cally how well ImageNet models transfer to different tasks and
datasets.

Transfer learning in NLP differs from computer vision,
and from the speech recognition approaches discussed in this
paper, in that the base model is trained in an unsupervised
fashion to perform language modeling or a related task, typ-
ically using web-crawled text data. Base models used for
NLP include the bidirectional LSTM [41] and Transformers
which make use of self-attention [42], [43]. These models are
then trained on specific NLP tasks, with supervised training
data, which is specified in a common format (e.g. text-to-text

transfer [43]), often trained in a multi-task setting. Earlier
adaptation approaches in NLP focused on feature adaptation
(e.g. [44]), but more recently better results have been obtained
using model-based adaptation, for instance “adapter layers”
[43], [45], in which trainable transform layers are inserted into
the pretrained base model.

More broadly there has been extensive work on domain
adaptation and transfer learning in machine learning, reviewed
by Kouw and Loog [46]. This includes work on few-shot
learning [47]–[49] and normalizing flows [50], [51]. Normal-
izing flows which provide a probabilistic framework for fea-
ture transformations, were first developed for speech recogni-
tion as Gaussianization [52], and more recently have been ap-
plied to speech synthesis [53] and voice transformation [54].

D. STRUCTURE OF THIS REVIEW

We begin by considering the issues of identifying suitable data
and target labels to adapt to in Section II. After discussing
speaker adaptation of non NN-based HMM systems in Sec-
tion III, we present a general framework for adaptation of
NN-based speech recognition systems (both hybrid and E2E)
in Section IV, where we organize adaptation algorithms into
three general categories: embedding-based approaches (dis-
cussed in Section V), model-based approaches (discussed in
Secs. VI–VIII), and data augmentation approaches (discussed
in Section IX).

As mentioned above, most of our treatment of adaptation
algorithms is in the context of speaker adaptation. In Secs. X
and XI we discuss specific approaches to accent adaptation
and domain adaptation respectively.

Our primary focus is on the adaptation of acoustic models
and end-to-end models. In Section XII we provide a summary
of work in language model (LM) adaptation, mentioning both
n-gram and neural network language models, and the use of
LM adaptation in E2E systems.

Finally we provide a meta analysis of experimental studies
using the main adaptation algorithms that we have discussed
(Section XIII). The meta-analysis is based on experiments
reported in 47 papers, carried out using 38 datasets, and is
primarily based on the relative error rate reduction arising
from adaptation approaches. In this section we analyze the
performance of the main adaptation algorithms across a vari-
ety of adaptation target types (for instance speaker, domain,
and accent), in supervised and unsupervised settings, in six
different languages, and using six different NN model types
in both hybrid and E2E settings. Raw data, aggregated results
and the corresponding scripts are available at https://github.
com/pswietojanski/ojsp_adaptation_review_2020.

II. IDENTIFYING ADAPTATION TARGETS

Adaptation aims to reduce the mismatch between training and
test conditions. For an adaptation algorithm to be effective,
the distribution of the adaptation data should be close to that
encountered in test conditions. For this reason it is impor-
tant to ensure that the target labels adapted to form coherent
classes. For the task of acoustic adaptation this requirement
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is typically satisfied by forming the adaptation data from one
or more speech segments from known testing conditions (i.e.
the same speaker, accent, domain, or acoustic environment).
While for some tasks labels ascribed to speech segments may
exist, allowing segments to be grouped into larger adaptation
clusters, it is unrealistic to assume the availability of such
metadata in general. However, depending on the application
and the operating regime of the ASR system, it may be possi-
ble to derive reasonable proxies.

Utterance-level adaptation derives adaptation statistics us-
ing a single speech segment [55]. This waives the require-
ment to carry information about speaker identity between
utterances, which may simplify deployment of recognition
systems – in terms of both engineering and privacy – as one
does not need to estimate and store offline speaker-specific
information. On the other hand, owing to the small amounts
of data available for adaptation the gains are usually lower
than one could obtain with speaker-level clusters. While many
approaches use utterances to directly extract corresponding
embeddings to use as an auxiliary input for the acoustic
model [56]–[59], one can also build a fixed inventory of
speakers, domains, or topic codes [60] or embeddings [61],
[62] when learning the acoustic model or acoustic encoder,
and then use the test utterance to select a combination of these
at test stage. The latter approach alleviates the necessity of
estimating an accurate representation from small amounts of
data. It may be possible to relax the utterance-level constraint
by iteratively re-estimating adaptation statistics using a num-
ber of preceding segment(s) [57]. Extra care usually needs
to be taken to handle silence and speech uttered by different
speakers, as failing to do so may deteriorate the overall ASR
performance [62]–[64].

Speaker-level adaptation aggregates statistics across two or
more segments uttered by the same talker, requiring a way to
group adaptation utterances produced by different talkers. In
some cases – for example lecture recordings and telephony
– speaker information may be available. In other cases po-
tentially inaccurate metadata is available, for instance in the
transcription of television or online broadcasts. In many cases
(for instance, anonymous voice search) speaker metadata is
not available. The generic approach to this problem relies on
a speaker diarization system [65], that can identify speakers
and accordingly assign their identities to the corresponding
segments in the recordings. This is often used in the of-
fline transcription of meetings or broadcast media. Alternative
clustering approaches can be used to define the adaptation
classes [66], [67].

Domain-level adaptation broadens the speaker-level cluster
by including speech produced by multiple talkers character-
ized by some common characteristic such as accent, age,
medical condition, topic, etc. . This typically results in more
adaptation material and an easier annotation process (cluster
labels need to be assigned at batch rather than segment level).
As such, domain adaptation can usually leverage adaptation
transforms with greater capacity, and thus offer better adapta-
tion gains.

Depending on whether adaptation transforms are estimated
on held out data, or adaptation is iteratively derived from
test segments, we will refer to these as enrolment or online

modes, respectively. In enrolment mode, the adaptation data
would be ideally labeled with a gold-standard transcription,
to enable supervised learning algorithms to be used for adap-
tation. However, supervised data is rarely available: small
amounts may be available for some domain adaptation tasks
(for example, adapting a system trained on typical speech to
disordered speech [68]). In the usual case, where supervised
adaptation data is not available, supervised training algorithms
can still be used with “pseudo-labels” that are automatically
obtained from a seed model, a process which is a type of semi-

supervised training [69]. Alternatively, unsupervised training
can be applied to learn embeddings for the different adaptation
classes, such as i-vectors [56] or bottleneck features extracted
from an auto-encoder neural network [70]. A two-pass system
is a special case for which the statistics are estimated from test
data using the first pass decoding with a speaker-independent
model in order to obtain adaptation labels, followed by a
second pass with the speaker-adapted model.

For semi-supervised approaches, it is possible to further
filter out regions with low-confidence to avoid the reinforce-
ment of potential errors [71]–[73]. There is some evidence
in the literature that, for some limited-in-capacity transforms
estimated in a semi-supervised manner, the first pass tran-
script quality has a small impact on the adapted accuracy as
long as these are obtained with the corresponding speaker-
independent model [74], [75]. In lattice supervision multiple
possible transcriptions are used in a semi-supervised setting
by generating a lattice, rather than the one-best transcrip-
tion [76]–[79].

III. ADAPTATION ALGORITHMS FOR HMM-BASED ASR

Speaker adaptation of speech recognition systems has been in-
vestigated since the 1960s [80], [81]. In the mid-1990 s, the in-
fluential maximum likelihood linear regression (MLLR) [82]
and maximum a posteriori (MAP) [83] approaches to speaker
adaptation for HMM/GMM systems were introduced. These
methods, described below, stimulated the field leading an in-
tense activity in algorithms for the adaptation of HMM/GMM
systems, reviewed by Woodland [84] and Shinoda [85], as
well as in section 5 of Gales and Young’s broader review
of HMM-based speech recognition [86]. As we later discuss,
some of the algorithms developed for HMM-based systems, in
particular feature transformation approaches have been suc-
cessfully applied to NN-based systems. In this section we
review MAP, MLLR, and related approaches to the adaptation
of HMM/GMM systems, along with earlier approaches to
speaker adaptation.

A. SPEAKER NORMALISATION

Many of these early approaches were designed to normalize
speaker-specific characteristics, such as vocal tract length,
building on linguistic findings relating to speaker normaliza-
tion in speech perception [87], often casting the problem as
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one of spectral normalization. This work included formant-
based frequency warping approaches [80], [81], [88] and the
estimation of linear projections to normalize the spectral rep-
resentation to a speaker-independent form [89], [90].

Vocal tract length normalization (VTLN) was introduced
by Wakita [91] (and again by Andreou [92]) as a form of
frequency warping with the aim to compensate for vocal
tract length differences across speakers. VTLN was exten-
sively investigated for speech recognition in the 1990 s and
2000s [93]–[96], and is discussed further in Section V.

B. MODEL BASED APPROACHES

In model based adaptation, the speech recognition model is
used to drive the adaptation. In work prefiguring subspace
models, Furui [97] showed how speaker specific models could
be estimated from small amounts of target data in a dynamic
time warping setting, learning linear transforms between pre-
existing speaker-dependent phonetic templates, and templates
for a target speaker. Similar techniques were developed in
the 1980 s by adapting the vector quantization (VQ) used in
discrete HMM systems. Shikano, Nakamura, and Abe [98]
showed that mappings between speaker dependent codebooks
could be learned to model a target speaker (a technique widely
used for voice conversion [99]); Feng et al. [100] developed
a VQ-based approach in which speaker-specific mappings
were learned between codewords in a speaker-independent
codebook, in order to maximize the likelihood of the discrete
HMM system. Rigoll [101] introduced a related approach
in which the speaker-specific transform took the form of a
Markov model. A continuous version of this approach, re-
ferred to as probabilistic spectrum fitting, which aimed to
adjust the parameters of a Gaussian phonetic model was in-
troduced by Hunt [102] and further developed by Cox and
Bridle [103].

These probabilistic spectral modeling approaches can be
viewed as precursors to maximum likelihood linear regres-
sion (MLLR) introduced by Leggetter and Woodland [82]
and generalized by Gales [104]. MLLR applies to continuous
probability density HMM systems, composed of Gaussian
probability density functions. In MLLR, linear transforms are
estimated to adapt the mean vectors and – in [104] – covari-
ance matrices of the Gaussian components. If µ and � are the
mean vector and covariance matrix of a particular Gaussian,
then MLLR adapts the parameters as follows:

µ̂s = As µ − bs (1)

�̂s = Hs � H⊺

s . (2)

The speaker-specific parameters bs, As and Hs are estimated
using maximum likelihood. MLLR is a compact adaptation
technique since the transforms are shared across Gaussians:
for instance all Gaussians corresponding to the same mono-
phone might share mean and covariance transforms. Very
often, especially when target data is sparse, a greater degree
of sharing is employed – for instance two shared adaptation

transforms, one for Gaussians in speech models and one for
Gaussians in non-speech models.

Constrained MLLR [104], [105], is an important variant of
MLLR, in which the same transform is used for both the mean
and covariance:

µ̂s = Asµ − bs (3)

�̂s = As � A⊺

s (4)

In this case, the log likelihood for a single Gaussian is given
by

LcMLLR(x; µ̂s, �̂s) = logN (x; Asµ − bs, As � A⊺

s ) (5)

= logN (A−1
s x + A−1

s bs;µ,�) − log |As| (6)

It can be seen that this transform of the model parameters is
equivalent to applying an affine transform to the data – hence
constrained MLLR is often referred to as feature-space MLLR
(fMLLR), although it is not strictly feature-space adaptation
unless a single transform is shared across all Gaussians in
the system, in which case the Jacobian term − log |As| can be
ignored. MLLR and its variants have been used extensively
in the adaptation of Gaussian mixture model (GMM)-based
HMM speech recognition systems [84], [86].

C. BAYESIAN METHODS

The above model-based adaptation approaches have aimed to
estimate transforms between a speaker independent model and
a model adapted to a target speaker. An alternative Bayesian
approach attempts to perform the adaptation by using the
speaker independent model to inform the prior of a speaker-
adapted model. If the set of parameters of a speech recognition
model are denoted by θ , then maximum likelihood estimation
sets θ to maximize the likelihood p(X | θ ). In MAP training,
the estimation procedure maximizes the posterior of the pa-
rameters given the data X = {x1 . . . xT }:

P(θ | X ) ∝ p(X | θ ) p(θ )r , (7)

where p(θ ) is the prior distribution of the parameters, which
can be based on speaker independent models, and r is an em-
pirically determined weighting factor. Gauvain and Lee [83]
presented an approach using MAP estimation as an adaptation
approach for HMM/GMM systems. A convenient choice of
function for p(θ ) is the conjugate to the likelihood – the
function which ensures the posterior has the same form as the
prior. For a GMM, if it is assumed that the mixture weights
ci and the Gaussian parameters (µi, �i) are independent,
then the conjugate prior may take the form of a mixture
model pD(ci )

∏

i pW (µi, �i ), where pD() is a Dirichlet distri-
bution (conjugate to the multinomial) and pW () is the normal-
Wishart density (conjugate to the Gaussian). This results in
the following intuitively understandable parameter estimate
for the adapted mean of a Gaussian µ̂ ∈ R

d :

µ̂ =
τµ0 +

∑

t γ (t )xt

τ +
∑

t γ (t )
, (8)
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where µ0 ∈ R
d is the unadapted (speaker-independent) mean,

xt ∈ R
d is the adaptation vector at time t , γ (t ) ∈ R is the com-

ponent occupation probability (responsibility) for the Gaus-
sian component at time t (estimated by the forward-backward
algorithm), and τ is a positive scalar-valued parameter of the
normal-Wishart density, which is typically set to a constant
empirically (although Gauvain and Lee [83] also discuss an
empirical Bayes estimation approach for this parameter). The
re-estimated means of the Gaussian components take the form
of a weighted interpolation between the speaker independent
mean and data from the target speaker. When there is no
target speaker data for a Gaussian component, the parameters
remain speaker-independent; as the amount of target speaker
data increases, so the Gaussian parameters approach the target
speaker maximum likelihood estimate.

D. SPEAKER ADAPTIVE TRAINING

In the model-based approaches discussed above (MLLR and
MAP), we have implicitly assumed that adaptation takes place
at test time: speaker independent models are trained using
recordings of multiple speakers in the usual way, with only
the test speakers used for adaptation. In contrast to this, it is
possible to employ a model-based adaptive training approach.
In speaker adaptive training [106], a transform is estimated for
each speaker in the training set, as well as for each speaker
in the test set. During training, speaker-specific transforms
and a speaker-independent canonical model are updated in an
iterative fashion.

Speaker space approaches represent a speaker-adapted
model as a weighted sum of a set of individual models
which may represent individual speakers or, more commonly,
speaker clusters. In cluster-adaptive training (CAT) [66], the
mean for a Gaussian component for a specific speaker s is
given by:

µ̂s =
C

∑

c=1

wcµc (9)

where µc ∈ R
d is the mean of the particular Gaussian com-

ponent for speaker cluster c, and wc ∈ R is the cluster weight.
This expresses the speaker-adapted mean vector as a point
in a speaker space. Given a set of canonical speaker cluster
models, CAT is efficient in terms of parameters, since only
the set of cluster weights need to be estimated for a new
speaker. Eigenvoices [107] are alternative way of construct-
ing speaker spaces, with a speaker model again represented
as a weighted sum of canonical models. In the Eigenvoices
technique, principal component analysis of “supervectors”
(concatenated mean vectors from the set of speaker-specific
models) is used to create a basis of the speaker space.

A number of variants of cluster-adaptive training have been
presented, including representing a speaker by combining
MLLR transforms from the canonical models [66], and using
sequence discriminative objective functions such as minimum
phone error (MPE) [108]. Techniques closely related to CAT

have been used for the adaptation of neural network based
systems (Section VI).

In contrast to model-based methods, in feature-based adap-
tation it is usual to adapt or normalize the acoustic features
for each speaker in both the training and test sets– this may
be viewed as a form of speaker adaptive training. For exam-
ple, in the case of cepstral mean and variance normalization
(CMVN), statistics are computed for each speaker and the
features normalized accordingly, during both training and test.
Likewise, VTLN is also carried out for all speakers, trans-
forming the acoustic features to a canonical form, with the
variation from changes in vocal tract length being normalized
away.

IV. ADAPTATION ALGORITHMS FOR NN-BASED ASR

The literature describing methods for adaptation of NNs has
tended to inherit terminology from the algorithms used to
adapt HMM-GMM systems, for which there is an important
distinction between feature space and model space formula-
tions of MLLR-type approaches [104], as discussed in the
previous section. In a 2017 review of NN adaptation, Sim et

al. [109] divide adaptation algorithms into feature normalisa-

tion, feature augmentation and structured parameterization.
(They also use a further category termed constrained adapta-

tion, discussed further below.)
The task of an ASR model is to map a sequence of acous-

tic feature vectors, X = (x1, . . . xt , . . . , xT ), xt ∈ R
d to a se-

quence of words W . Although – as we discuss below – most
techniques described in this paper apply equally to end-to-end
models and hybrid HMM-NN models, we generally treat the
model to be adapted as an acoustic model. That is, we ignore
aspects of adaptation that affect only P(W ), independently of
the acoustics X (LM adaptation is discussed in Section XII).
Further, with only a small loss of generality, in what follows
we will assume that the model operates in a framewise man-
ner, thus we can define the model as:

yt = f (xt ; θ ) (10)

where f (x; θ ) is the NN model with parameters θ and yt is the
output label at frame t . In a hybrid HMM-NN system, for ex-
ample, yt is taken to be a vector of posterior probabilities over
a senone set. In a CTC model, yt would be a vector of posterior
probabilities over the output symbol set, plus blank symbol.
Note that NN models often operate on a wider windowed
set of input features, xt (w) = [xt−c, xt−c+1, . . . , xt+c−1, xt+c]
with the total window size w = 2c + 1. For reasons of no-
tational clarity, we generally ignore the distinction between
xt and xt (w), unless it is specifically relevant to a particular
topic.

In this framework, we can define feature normalisation

approaches as acting to transform the features in a speaker-
dependent manner, on which the speaker-independent model
operates. For each speaker s, a transformation function g :
R

d → R
d ′

computes:

x′
t = g(xt ;φs) (11)
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where φs is a set of speaker-dependent parameters. Commonly
the dimension of the normalised features is the identical to the
original (i.e. d = d ′) but this is not required. This family is
closely related to feature space methods used in GMM sys-
tems described above in Section III, including fMLLR (when
only a single affine transform is used), VTLN, and CMVN.

Structured parameterization approaches, in contrast, in-
troduce a speaker-dependent transformation of the acoustic
model parameters:

θ ′
s = h(θ;ϕs) (12)

In this case, the function h would typically be structured so
as to ensure that the number of speaker-dependent parameters
ϕs is sufficiently smaller than the number of parameters of the
original model. Such methods are closely related to model-
based adaptation of GMMs such as MLLR.

Finally, feature-augmentation approaches extend the fea-
ture vector xt with a speaker-dependent embedding λs, which
we can write as

x′
t =

(

xt

λs

)

(13)

Close variants of this approach use the embedding to augment
the input to higher layers of the network. Note that the in-
corporation of an embedding requires the addition of further
parameters to the acoustic model controlling the manner in
which the embedding acts to adapt the model, which can
be written f (xt ; θ, θE ). The embedding parameters θE are
themselves speaker-independent.

We suggest that the distinctions described above may not
always be helpful when considering NN adaptation specifi-
cally, because all three approaches can be seen to be closely
related or even special cases of each other. As we saw in
Section III this is not the case in HMM-GMM systems, where
the distinction between feature-space and model adaptation
is important (as noted by Gales [104]) because in the former
case, different feature space transformations can be carried
out per senone class if the appropriate scaling by a Jacobian
is performed; whilst in the latter case, it is necessary for the
adapted probability density functions to be re-normalized.

As an example of the equivalence of the close relationship
between the three approaches to NN adaptation, the normali-
sation function g can generally be formulated as shallow NN,
possibly without a non-linearity. If there is a set of “identity
transform” parameters φI such that

g(xt ;φI ) = xt , ∀xt (14)

then we have

yt = f (xt ; θ ) = f (g(xt ;φI ); θ ) = f ′(xt ; θ, φI ) (15)

where f ′ is a new network comprising of a copy of the original
network f with the layers of g prepended. Applying feature
normalization (11) leads to:

yt = f (x′
t ; θ ) = f (g(xt ;φs); θ ) = f ′(xt ; θ, φs) (16)

which we can write as a structured parameter transformation
of f ′, as defined in (12):

θ ′
s = {θ, φs} = h({θ, φI};ϕs) (17)

where the transformation h( · ;ϕs) is simply set to replace
the parameters pertaining to g with the original normalisation
parameters, φs = ϕs, leaving the other parameters unchanged.

Similarly, feature augmentation approaches may be readily
seen to be a further special case of structured adaptation. In
the simple case of input feature augmentation (13), we see
that the output of the first layer, prior to the non-linearity, can
be written as

z = W x′ + b = W

(

x

λs

)

+ b (18)

where W and b are the weight and bias of the first layer respec-

tively. By introducing a decomposition of W , W =
(

U V

)

we write this as

z =
(

U V

)

(

x

λs

)

+ b = Ux + b + V λs (19)

with U ∈ θ and V ∈ θE being weight matrices pertaining to
the input features and speaker embedding, respectively.

This can be expressed as a structured transformation of the
bias:

θ ′
s = {U ′, b′} = h({U, b};ϕs) = {U, b + V λs} (20)

with ϕs = V λs. Similar arguments apply to embeddings used
in other network layers.

Certain types of feature normalisation approaches can be
expressed as feature augmentation. For example, cepstral
mean normalisation given by

x′
t = g(xt ;φs) = xt − µs (21)

can be expressed as

z = W (x − µs) + b =
(

W W

)

(

x

−µs

)

+ b (22)

with augmented features λs = −µs.
As we have seen, approaches to NN adaptation under the

traditional categorization of feature augmentation, structured
parameterization and feature normalization can usually be
seen as special cases of one another. Therefore, in the remain-
der of this paper, we adopt an alternative categorization:
� Embedding-based approaches in which any speaker-

dependent parameters are estimated independently of the
model, with the model f (xt ; θ ) itself being unchanged
between speakers, other than the possible need for addi-
tional embedding parameters θE ;

� Model-based approaches in which the model parameters
θ are directly adapted to data from the target speaker
according to the primary objective function;

� Data augmentation approaches which attempt to syn-
thetically generate additional training data with a close
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match to the target speaker, by transforming the existing
training data.

This distinction is, we believe, particularly important in
speaker adaptation of NNs because in ASR it has become
standard to perform adaptation in a semi-supervised manner,
with no transcribed adaptation data for the target speaker. In
this setting, as we will discuss, standard objective functions
such as cross-entropy, which may be very effective in su-
pervised training or adaptation, are particularly susceptible to
transcription errors in semi-supervised settings.

We describe the model-independent approaches as
embedding-based because any set of speaker-dependent
parameters can be viewed as an embedding. Embedding-
based approaches are discussed in Section V. Well-known
examples of speaker embeddings include i-vectors [56],
[110], and x-vectors [111], but can also include parameter
sets more classically viewed as normalizing transforms
such as CMVN statistics and global fMLLR transforms (see
Section III above). However, for the reasons mentioned above,
we exclude from this category methods where the embedding
is simply a subset of the primary model parameters and
estimated according to the model’s objective function. Note
that methods using a one-hot encoding for each speaker are
also excluded, since it would be impossible to use these with a
speaker-independent model, without each test speaker having
been present in training data; such methods might however
be useful for closely related tasks such as domain adaptation,
discussed in Section XI.

The primary benefit of speaker adaptive approaches over
simply using speaker-dependent models is the prevention of
over-fitting to the adaptation data (and its possibly errorful
transcript). A large number of model-based adaptation tech-
niques have been proposed to achieve this; in this paper, we
sub-divide them into:
� Structured transforms: Methods in which a subset of

the parameters are adapted, with many instances struc-
turing the model so as to permit a reduced number of
speaker-dependent parameters, as in the Learning Hid-
den Unit Contributions (LHUC) scheme [75], [112]. The
can be viewed as an analogy to MLLR transforms for
GMMs. They are discussed in Section VI.

� Regularization: Methods with explicit regularization of
the objective function to prevent over-fitting to the adap-
tation data, examples including the use of L2 loss or
KL divergence terms to penalize the divergence from
the speaker-independent parameters [113], [114]. Such
methods can be viewed as related to the MAP approach
for GMM adaptation. They are discussed in Section VII.

� Variant objective functions: Methods which adopt vari-
ants of the primary objective function to overcome the
problems of noise in the target labels, with examples
including the use of lattice supervision [79] or multi-task
learning [115]. They are discussed in Section VIII.

The second two categories above are collectively termed
constrained adaptation in the review by Sim et al. [109].
Within this, multi-task learning is labeled by Sim et al. as

attribute aware training; however, we do not believe that all
multi-task learning approaches to adaptation can be labeled in
this way.

Data augmentation methods have proved very success-
ful in adaptation to other sources of variability, particularly
those – such as background noise conditions – where the
required model transformations are hard to explicitly estimate,
but where it is easy to generate realistic data. In the case
of speaker adaptation, it is significantly harder to generate
sufficiently good-quality synthetic data for a target speaker,
given only limited data from the speaker in question. How-
ever, there is a growing body of work in this area using, for
example, techniques from the field of speech synthesis [116].
Approaches in this area are discussed in Section IX.

Most works suitable for adapting hybrid acoustic models
can be leveraged to adapt acoustic encoders in E2E mod-
els. Both Kullback-Leibler divergence (KLD) regularization
(Section VII) and multi-task learning (MTL) methods (Sec-
tion VIII) have been used for speaker adaptation for CTC and
AED models [117], [118].

Sim et al. [119] updated the acoustic encoder of RNN-T
models using speaker-specific adaptation data. Furthermore,
by generating text-to-speech (TTS) audio from the target
speaker, more data can be used to adapt the acoustic encoder.
Such data augmentation adaptation (discussed in Section IX)
was shown to be an effective way for the speaker adaptation
of E2E models [120] even with very limited raw data from
the target speaker. Embeddings have also been used to train a
speaker-aware AED model [62], [121], [122].

Because AED and RNN-T also have components corre-
sponding to the language model, there are also techniques spe-
cific to adapting the language modeling aspect of E2E models,
for instance using a text embedding instead of an acoustic
embedding to bias an E2E model in order to produce outputs
relevant to the particular recognition context [123]–[125]. If
the new domain differs from the source domain mainly in
content instead of acoustics, domain adaptation on E2E mod-
els can be performed by either interpolating the E2E model
with an external language model or updating language model
related components inside the E2E model with the text-to-
speech audio generated from the text in the new domain [126],
[127], discussed in Section XII.

V. SPEAKER EMBEDDINGS

Speaker embeddings map speakers to a continuous space.
In this section we consider embeddings that may be ex-
tracted in a manner independent of the model, and which
are also typically unsupervised with respect to the transcript.
They can therefore also be useful in a standalone manner
for other tasks such as speaker recognition. When used with
an acoustic model, the model learns how to incorporate the
embedding information by, in effect, speaker-aware training.
Speaker embeddings may encode speaker-level variations that
are otherwise difficult for the AM to learn from short-term
features [64], and may be included as auxiliary features to the
network. Specifically, let x ∈ R

d denote the acoustic features,
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and λs ∈ R
k a k-dimensional speaker embedding. The speaker

embeddings may be concatenated with the acoustic input fea-
tures, as previously seen in (13):

x′
t =

(

xt

λs

)

(23)

Alternatively they may be concatenated with the activations
of a hidden layer. In either case the result is bias adaptation of
the next hidden layer as discussed in Section VI. As noted by
Delcroix et al. [128] the auxiliary features may equivalently
be added directly to the features using a learned projection
matrix P, with the benefit that the downstream architecture
can remain unchanged:

x′
t = xt + Pλs (24)

There are many other ways to incorporate embeddings into
the AM: for example, they may be used to scale neuron acti-
vations as in LHUC [75]. More generally we may consider
embeddings applied to either biases or activations through
context-adaptive [129] or control networks [130]. It is possible
to limit connectivity from the auxiliary features to the rest
of the network in order to improve robustness at test time
or to better incorporate static features [131]–[133]. We will
further consider transformations of the features as speaker
embeddings, such as with fMLLR [104], [105], and they may
also be used as label targets [134].

A. FEATURE TRANSFORMATIONS

We may consider speaker-level transformations of the acous-
tic features as speaker embeddings. These include methods
traditionally viewed as normalisation, such as CMVN and
fMLLR, which produce affine transformations of the features:

x′
s = Asx + bs (25)

CMVN derives its name from the application to cepstral
features, but corresponds to the standardization of the features
to zero mean and unit variance (z-score):

x′
s =

x − µ
√

σ 2 + ǫ
(26)

where µ ∈ R
d is the cepstral mean, σ 2 ∈ R

d is the cepstral
variance, and ǫ is a small constant for numerical stability.

fMLLR [104] belongs to a family of speaker adaptation
methods originally developed for HMM-GMM models, as
discussed in Section III. The technique has, however, later
been used with success to transform features for hybrid mod-
els as well [135], [136]. While the fMLLR transforms were
traditionally estimated using maximum likelihood and HMM-
GMM models, the transforms may also be estimated using a
neural network trained to estimate fMLLR features [137] (in
Section VI we will further discuss structurally similar trans-
forms estimated using the main objective function). Instead
of transforming the input features, some work has explored
fMLLR features as an additional, auxiliary, feature stream
to the standard features in order to improve robustness to

mismatched transforms [133], or to obtain speaker-adapted
features derived from GMM log-likelihoods [138], otherwise
known as GMM-derived features.

Another technique with a long history is VTLN [91], [92],
[94], [139], which was briefly introduced in Section III. To
control for varying vocal tract lengths between speakers,
VTLN typically uses a piecewise linear warping function to
adjust the filterbank in feature extraction. This requires only
a single warping factor parameter that can be estimated using
any AM with a line search. Alternatively, linear-VTLN (e.g.
[95]) obtains a corresponding affine transform similar to fM-
LLR, but chooses from a fixed set of transforms at test time. A
related idea is that of the exponential transform [140], which
forgoes any notion of vocal tract length, but akin to VTLN
is controlled by a single parameter. More recently, adaptation
of learnable filterbanks, operating as the first layer in a deep
network, has resulted in updates which compensate for vocal
tract length differences between speakers [141].

B. I-VECTORS

Many types of embeddings stem from research in speaker
verification and speaker recognition. One such approach is
identity vectors, or i-vectors [56], [110], [142], which are
estimated using means from GMMs trained on the acoustic
features. Specifically, the extraction of a speaker i-vector, λs ∈
R

k , assumes a linear relationship between the global means
from a background GMM (or universal background model,
UBM), mg ∈ R

m, and the speaker-specific means, ms ∈ R
m

ms = mg + T λs (27)

where T ∈ R
m×k is a matrix that is shared across all speakers

which is sometimes called the total variability matrix from
its relation to joint factor analysis [143]. An i-vector thus
corresponds to coordinates in the column space of T . T is
estimated iteratively using the EM algorithm. It is possible to
replace the GMM means with posteriors or alignments from
the AM [131], [144], [145] although this is no longer indepen-
dent of the AM and requires transcriptions. The i-vectors are
usually concatenated with the acoustic features as discussed
above, but have also been used in more elaborate architectures
to produce a feature mapping of the input features them-
selves [146], [147].

C. NEURAL NETWORK EMBEDDINGS

A number of works proposed to extract low-dimensional em-
beddings from bottleneck layers in neural network models
trained to distinguish between speakers [64], [132] or across
multiple layers followed by dimensionality reduction in a sep-
arate AM (e.g. CNN embeddings [148]). One such approach,
using Bottleneck Speaker Vector (BSV) embeddings [64],
trains a feed-forward network to predict speaker labels (and
silence) from spliced MFCCs (Fig. 2(a)). Tan et al. [132]
proposed to add a second objective to predict monophones in
a multi-task setup. The bottleneck layer dimension is typically
set to values commonly used for i-vectors. In fact, Huang and
Sim [64] note that if the speaker label targets are replaced with
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FIGURE 2. (a) Bottleneck feature extraction that uses a pretrained speaker classifier. (b) Summary network extracting speaker embeddings which is
trained jointly with the acoustic model.

speaker deviations from a UBM, then the bottleneck-features
may be considered frame-level i-vectors. The extracted fea-
tures are averaged across all speech frames of a given speaker
to produce speaker-level i-vectors.

There are several more recent approaches that we may
collectively refer to as ⋆-vectors. Like bottleneck features,
these approaches typically extract embeddings from neural
networks trained to discriminate between speakers, but not
necessarily using a low-dimensional layer. For instance, deep
vectors, or d-vectors [149], [150], extract embeddings from
feed-forward or LSTM networks trained on filterbank fea-
tures to predict speaker labels. The activations from the last
hidden layer are averaged over time. X-vectors [111], [130]
use TDNNs with a pooling layer that collects statistics over
time and the embeddings are extracted following a subsequent
affine layer. A related approach called r-vectors [151] uses the
architecture of x-vectors, but predicts room impulse response
(RIR) labels rather than speaker labels. In contrast to the
above approaches, label embeddings, or l-vectors [134], are
designed to be used as soft output targets for the training of an
AM. Each label embedding represents the output distribution
for a particular senone target. In this way they are, in effect,
uncoupled from the individual data points and can be used for
domain adaptation without a requirement of parallel data. We
will discuss this idea further in Section XI. For completeness
we also mention h-vectors [152] which use a hierarchical
attention mechanism to produce utterance-level embeddings,
but has only been applied to speaker recognition tasks.

X-vector embeddings are not widely used for adaptating
ASR algorithms in practice – especially in comparison to
commonly used i-vectors – as experiments have not shown
consistent improvements in recognition accuracy. One rea-
son for this is related to the speaker identification training

objective for the x-vector network which implicitly factors
out channel information, which might be beneficial for adap-
tation. The optimal objective for speaker embeddings used in
ASR differs from the objective used in speaker verification.

Summary networks [59], [128] produce sequence level
summaries of the input features and are closely related to
⋆-vectors (cf. Fig. 2(b)). Auxiliary features are produced by
a neural network that takes as input the same features as the
AM, and produces embeddings by taking the time-average of
the output. By incorporating the averaging into the graph, the
network can be trained jointly with the AM in an end-to-end
fashion [128]. A related approach is to produce LHUC fea-
ture vectors (Section VI) from an independent network with
embedded averaging [153].

D. EMBEDDINGS FOR E2E SYSTEMS

The embedding method is also helpful to the adaptation of
E2E systems. Fan et al. [121] and Sari et al. [62] generated a
soft embedding vector by combining a set of i-vectors from
multiple speakers with the combination weight calculated
from the attention mechanism. The soft embedding vector is
appended to the acoustic encoder output of the E2E model,
helping the model to normalize speaker variations. While the
soft embedding vectors in [62], [121] are different at each
frame, the speaker i-vectors are concatenated with the speech
utterance as the input of every encoder layer in [122] to form a
persistent memory through the depth of encoder, hence learn-
ing utterance-level speaker knowledge.

In addition to acoustic embedding, E2E models can also
leverage text embedding to improve their modeling accuracy.
For example, E2E models can be optimized to produce outputs
relevant to the particular recognition context, for instance user
contacts or device location. One solution is to add a context
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bias encoder in addition to the original audio encoder into E2E
models [123]–[125]. This bias encoder takes a list of biasing
phrases as the input. The context vector of the biasing list
is generated by using the attention mechanism, and is then
concatenated with the context vector of acoustic encoder and
is fed into the decoder.

VI. STRUCTURED TRANSFORMS

Methods to adapt the parameters θ of a neural network-based
acoustic model f (x; θ ) can be split into two groups. The
first group adapts the whole acoustic model or some of its
layers [113], [114], [154]. The second group employs struc-
tured transformations [109] to transform input features x, hid-
den activations h or outputs y of the acoustic model. Such
transformations include the linear input network (LIN) [155],
linear hidden network (LHN) [156] and the linear output net-
work (LON) [157]. These transforms are parameterized with
a transformation matrix As ∈ R

n×n and a bias bs ∈ R
n. The

transformation matrix As is initialized as an identity matrix
and the bias bs is initialized as a zero vector prior to speaker
adaptation. The adapted hidden activations then become

h′ = Ash + bs. (28)

However, even a single transformation matrix As can contain
many speaker dependent parameters, making adaptation sus-
ceptible to overfitting to the adaptation data. It also limits its
practical usage in real world deployment because of memory
requirements related to storing speaker dependent parameters
for each speaker. Therefore there has been considerable re-
search into how to structure the matrix As and the bias bs to
reduce the number of speaker dependent parameters.

The first set of approaches restricts the adaptation matrix
As to be diagonal. If we denote the diagonal elements as rs =
diag(As), then the adapted hidden activations become

h′ = rs ⊙ h + bs. (29)

There are several methods that belong to this set of adaptation
methods. LHUC [75], [112] adapts only the parameters rs:

h′ = rs ⊙ h. (30)

Speaker Codes [158], [159] prepend an adaptation neural net-
work to an existing SI model in place of the input features. The
adaptation network – which operates somewhat similarly to
control networks, described below – uses the acoustic features
as inputs, as well as an auxiliary low-dimensional speaker
code which essentially adapts speaker dependent biases within
the adaptation network:

h′ = h + bs. (31)

The network and speaker codes are learned by back-
propagating through the frozen SI network with transcribed
training data. At test time the speaker codes are derived
by freezing all but the speaker code parameters and back-
propagating on a small amount of adaptation data.

Similarly, Wang and Wang [160] proposed a method that
adapts both rs and bs as parameters βs ∈ R

n and γs ∈ R
n of

a batch normalization layer, adapting both the scale and the
offset of the hidden layer activations with mean µ ∈ R

n and
variance σ 2 ∈ R

n:

h′ = γs

h − µ
√

σ 2 + ǫ
+ βs. (32)

Mana et al. [161] showed that batch normalization layers can
be also updated by recomputing the statistics µ and σ 2 in
online fashion.

A similar approach with a low-memory footprint adapts the
activation functions instead of the scale rs and offset bs. Zhang
and Woodland [162] proposed the use of parameterised sig-
moid and ReLU activation functions. With the parameterised
sigmoid function, hidden activations h are computed from
hidden pre-activations z as

h = ηs

1

1 + e−γsz+ζs
, (33)

where ηs ∈ R
n, γs ∈ R

n and ζs ∈ R
n are speaker dependent

parameters. |ηs| controls the scale of the hidden activations,
γs controls the slope of the sigmoid function and ζs controls
the midpoint of the sigmoid function. Similarly, parameterised
ReLU activations were defined as

h =

{

αsz if z > 0

βsz if z ≤ 0
, (34)

where αs ∈ R
n and βs ∈ R

n are speaker dependent parame-
ters that correspond to slopes for positive and negative pre-
activations, respectively.

Other approaches factorize the transformation matrix As

into a product of low-rank matrices to obtain a compact set of
speaker dependent parameters. Zhao et al. [163] proposed the
Low-Rank Plus Diagonal (LRPD) method, which reduces the
number of speaker dependent parameters by approximating
the linear transformation matrix As ∈ R

n×n as

As ≈ Ds + PsQs, (35)

where the Ds ∈ R
n×n, Ps ∈ R

n×k and Qs ∈ R
k×n are treated

as speaker dependent matrices (k < n) and Ds is a diagonal
matrix. This approximation was motivated by the assumption
that the adapted hidden activations should not be very differ-
ent from the unadapted hidden activations when only a limited
amount of adaptation data is available; hence the adaptation
linear transformation should be close to a diagonal matrix.
In fact, for k = 0 LRPD reduces to LHUC adaptation. LRPD
adaptation can be implemented by inserting two hidden linear
layers and a skip connection as illustrated in Fig. 3(b).

Zhao et al. [164] later presented an extension to LRPD
called Extended LRPD (eLRPD), which removed the depen-
dency of the number of speaker dependent parameters on the
hidden layer size by performing a different approximation of
the linear transformation matrix As,

As ≈ Ds + PTsQ, (36)

where matrices Ds ∈ R
n×n and Ts ∈ R

k×k are treated as
speaker dependent, and matrices P ∈ R

n×k and Q ∈ R
k×n are
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FIGURE 3. Structured transforms of an adaptation matrix As: (a) Learning Hidden Unit Contributions (LHUC) adapts only diagonal elements of the
transformation matrix rs = diag(As ); (b) Low-Rank Plus Diagonal factorizes the adaptation matrix as As ≈ Ds + PsQs; (c) Extended LRPD factorizes the
adaptation matrix as As ≈ Ds + PTsQ.

treated as speaker independent. Thus the number of speaker
dependent parameters is mostly dependent on k, which can be
chosen arbitrarily.

Instead of factorizing the transformation matrix, a tech-
nique typically known as feature-space discriminative lin-
ear regression (fDLR) [135], [165], [166] imposes a block-
diagonal structure such that each input frame shares the same
linear transform. This is, in effect, a tied variation of LIN with
a reduction in the number of speaker dependent parameters.

Another set of approaches uses the speaker dependent pa-
rameters as mixing coefficients θs = {α0 . . . αk} for a set of
k speaker independent bases {B0 . . . Bk} which factorize the
transformation matrix As. Samarakoon and Sim [167], [168]
proposed to use factorized hidden layers (FHL) that allow
both speaker-independent and speaker dependent modelling.
With this approach, activations of a hidden layer h with an
activation function σ are computed as

h = σ

(

(W +
k

∑

i=0

αiBi )x + bs + b

)

. (37)

Note, that when αs = 0 and bs = 0, the activations correspond
to a standard speaker independent model. If the bases Bi are
rank-1 matrices, Bi = γiψ

T
i , then this allows the reparameter-

ization of (37) as [168]:

h = σ
(

(W + ŴD�T )x + bs + b
)

, (38)

where vectors γi and ψi are i-th columns of matrices Ŵ and
�, respectively, and the mixing coefficients αs correspond to
the diagonal of matrix D. This approach is very similar to
the factorization of hidden layers used for Cluster Adaptive
Training of DNN networks (CAT-DNN) [67] that uses full
rank bases instead of rank-1 bases.

Similarly, Delcroix et al. [129] proposed to adapt the acti-
vations of a hidden layer using a mixture of experts [169]. The
adapted hidden unit activations are then

h′ =
k

∑

i=0

αiBih. (39)

There have also been approaches, that further reduce the
number of speaker dependent parameters by removing the de-
pendency on the hidden layer width by using control networks
that predict the speaker-dependent parameters

θs = c(λs;φ), (40)

In contrast to the adaptation network used in the Speaker
Codes scheme, the control networks themselves are speaker-
independent, taking as input some lower dimensional speaker
embedding λs ∈ R

k . As such, they form a link between
structured transforms and the embedding-based approaches
of Section V. The control networks c(λs, φ) can be imple-
mented as a single linear transformation or as a multi-layer
neural network. These control networks are similar to the
conditional affine transformations referred to as Feature-wise
Linear Modulation (FiLM) [170]. For example, Subspace
LHUC [171] uses a control network to predict LHUC pa-
rameters rs from i-vectors λs, resulting in a 94% memory
footprint reduction compared to standard LHUC adaptation.
Cui et al. [172] used auxiliary features to adapt both the
scale rs and offset bs. Other approaches adapted the scale rs

or the offset bs by leveraging the information extracted with
summary networks instead of auxiliary features [173]–[175].

Finally, the number of speaker dependent parameters in
all the aforementioned linear transformations can be reduced
by applying them to bottleneck layers that have much lower
dimensionality than the standard hidden layers. These bot-
tleneck layers can be obtained directly by training a neural
network with bottleneck-layers or by applying Singular Value
Decomposition (SVD) to the hidden layers [176], [177].

VII. REGULARIZATION METHODS

Even with the small number of speaker dependent parameters
required by structured transformations, speaker adaptation can
still overfit to the adaptation data. One way to prevent this
overfitting is through the use of regularization methods that
prevent the adapted model from diverging too far from the
original model. This can be achieved by using early stopping
and appropriate learning rates, which can be obtained with a
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hyper-parameter grid-search or by meta-learning [178], [179].
Another way to prevent the adapted model from diverging too
far from the original can be achieved by limiting the distance
between the original and the adapted model. Liao [113] pro-
posed to use the L2 regularization loss of the distance between
the original speaker dependent parameters θs and the adapted
speaker dependent parameters θ ′

s

LL2 = |θs − θ ′
s|

2
2. (41)

Yu et al. [114] proposed to use Kullback-Leibler (KL) diver-
gence to measure the distance between the senone distribu-
tions of the adapted model and the original model

LKL = DKL ( f (x; θ ) || f (x; θ ′
s )). (42)

If we consider the overall adaptation loss using cross-entropy:

L = (1 − λ)Lxent + λLKL, (43)

we can show that this loss equals to cross-entropy with the
target distribution for a label y given the input frame xt

(1 − λ)P̂(y | xt ) + λ f (xt ; θ ), (44)

where P̂(y | xt ) is a distribution corresponding to the provided
labels yadapt. Although initially proposed for adapting hybrid
models, the KLD regularization method may also be used for
speaker adaptation of E2E models [117], [118], [180].

Meng et al. [181] noted that KL divergence is not a distance
metric between distributions because it is asymmetric, and
therefore proposed to use adversarial learning which guar-
antees that the local minimum of the regularization term is
reached only if the senone distributions of the speaker inde-
pendent and the speaker dependent models are identical. They
achieve this by adversarially training a discriminator d (x;φ)
whose task is to discriminate between the speaker dependent
deep features h′ and speaker independent deep features h that
are obtained by passing the input adaptation frames through
speaker dependent and speaker independent feature extractor
respectively. This process is illustrated in Fig. 4. The regular-
ization loss of the discriminator is

Ldisc = − log d (h;φ) − log
[

1 − d (h′;φ)
]

, (45)

where h are hidden layer activations of the speaker indepen-
dent model and h′ are hidden layer activations of the adapted
model. The discriminator is trained in a minimax fashion dur-
ing adaptation by minimizing Ldisc with respect to φ and max-
imizing Ldisc with respect to θs. Consequently, the distribution
of activations of the i-th hidden layer of the speaker depen-
dent model will be indistinguishable from the distribution of
activations of the i-th hidden layer of the speaker independent
model, which ought to result in more robust performance of
speaker adaptation.

Other approaches aim to prevent overfitting by leveraging
the uncertainty of the speaker-dependent parameter space.
Huang et al. [182] proposed Maximum A Posteriori (MAP)
adaptation of neural networks, inspired by MAP adaptation
of GMM-HMM models [83] (Section III). MAP adaptation

FIGURE 4. Adversarial speaker adaptation.

estimates speaker dependent parameters as a mode of the
distribution

θ̂s = arg max
θs

P(Y | X, θs)p(θs), (46)

where p(θs) is a prior density of the speaker depen-
dent parameters. In order to obtain this prior density,
Huang et al. [182] employed an empirical Bayes approach
(following Gauvain and Lee [83]) and treated each speaker
in the training data as a data point. They performed speaker
adaptation for each speaker and observed that the speaker pa-
rameters across speakers resemble Gaussians. Therefore they
decided to parameterise the prior density p(θs) as

p(θs) = N (θs;µ,�), (47)

where µ is the mean of adapted speaker dependent parameters
across different speakers, and � is the corresponding diagonal
covariance matrix. With this parameterisation the regulariza-
tion term of the prior density p(θs) is

LMAP =
1

2
(θs − µ)T �−1(θs − µ), (48)

which for the prior density p(θs) = N (θs; 0, I ) degenerates
to the L2 regularization loss. Huang et al. investigated their
proposed MAP approach with LHN structured transforms, but
noted that it may be used in combination with other schemes.

Xie et al. [183] proposed a fully Bayesian way of dealing
with uncertainty inherent in speaker dependent parameters θs,
in the context of estimating the LHUC parameters rs (see
Section VI). In this method, known as BLHUC, the posterior
distribution of the adapted model is approximated as:

P(Y | X,Dadapt) ≈ P(Y | X, E[rs | Dadapt]), (49)

Xie et al. propose to use a distribution q(rs) as a variational
approximation of the posterior distribution of the LHUC pa-
rameters, p(rs|Dadapt). For simplicity, they assume that both
q(rs) and p(rs) are normal, such that q(rs) = N (rs;µs, γs)
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and p(rs) = N (rs;µ0, γ0), which results in the expectation
for the speaker dependent parameters in (49) being given by:

E[rs | Dadapt] = µs. (50)

The parameters are computed using gradient descent with a
Monte Carlo approximation. Similarly to MAP adaptation, the
effect is to force the adaptation to stay close to the speaker
independent model when we perform adaptation with a small
amount of adaptation data.

VIII. VARIANT OBJECTIVE FUNCTIONS

Another challenge in speaker adaptation is overfitting to
targets seen in the adaptation data and to errors in semi-
supervised transcriptions. This issue can be mitigated by an
appropriate choice of objective function.

Gemello et al. [156] proposed Conservative Training,
which modifies the target distribution to ensure that labels
not seen in the adaptation data will not be catastrophically
forgotten. Given a set of labels not seen in the adaptation data
U and the reference label ŷt at a time-step t the adjusted target
distribution P̂ is defined as

P̂(y | xt ) =

⎧

⎪

⎨

⎪

⎩

P(y | xt ) if y ∈ U

1 −
∑

y′∈U P(y′|xt ) if y = ŷt

0 otherwise.

(51)

To mitigate errors in semi-supervised transcriptions we can
replace the transcriptions with a lattice of supervision, which
encodes the uncertainty arising from the first pass decoding.
Lattice supervision has previously been used in work on unsu-
pervised adaptation [76] and training [77] of GMMs, as well
as discriminative [184] and semi-supervised training [78], and
adaptation [79], of neural network models. For instance, lat-
tice supervision can be used with the MMI criterion where for
a single utterance we have:

FMMI (θ ) = log
p(X | M

num; θ )

p(X | Mden; θ )
, (52)

where the M
num
r is a numerator lattice containing multiple hy-

potheses from a first pass decoding and M
den
r is a denominator

lattice containing all possible sequences of words.
Another family of methods prevents overfitting to adap-

tation targets by performing adaptation through the use of
a lower entropy task such as monophone or senone cluster
targets. This has the advantage that the unsupervised targets
might be less noisy and also that the targets have higher
coverage even with small amounts of adaptation data. Price
et al. [185] proposed to append a new output layer predicting
monophone targets on top of the original output layer pre-
dicting senones. The layer can be either full rank or sparse –
leveraging knowledge of relationships between monophones
and senones. Its parameters are trained on the training data
with a fixed speaker independent model. Only the monophone
targets are used for the adaptation of the speaker dependent
parameters.

FIGURE 5. Multi-task learning speaker adaptation.

Huang et al. [115] presented an approach that used multi-
task learning [186] to leverage both senone and mono-
phone/senone clusters targets. It worked by having multi-
ple output layers, each on top of the last hidden layer, that
predicted the corresponding targets. These additional output
layers were also trained after a complete training pass of the
speaker independent model with its parameters fixed. Thus,
the adaptation loss was a weighted sum of individual losses,
for example monophone and senone losses (Fig. 5). Swieto-
janski et al. [187] combined these two approaches and used
multi-task learning for speaker adaptation through a struc-
tured output layer, which predicts both monophone targets and
senone targets. Unlike the approach by Price et al. [185], the
monophone predictions are used for the prediction of senones.

Li et al. [117] and Meng et al. [118] applied multi-task
learning to speaker adaptation of CTC and AED models.
These E2E models typically use subword units, such as word
piece units, as the output target in order to achieve high recog-
nition accuracy. The number of subword units is usually at the
scale of thousands or even more. Given very limited speaker-
specific adaptation data, these units may not be fully covered.
Multi-task learning using both character and subword units
can significantly alleviate such sparseness issues.

IX. DATA AUGMENTATION

Data augmentation has been proven to be an effective way
to decrease the acoustic mismatch between training and test-
ing conditions. Data augmentation approaches supplement the
training data with distorted or synthetic variants of speech
with characteristics resembling the target acoustic environ-
ment, for instance with reverberation or interfering sound
sources. Thanks to realistic room acoustic simulators [188]
one can generate large numbers of room impulse responses
and reuse clean corpora to create multiple copies of the same
sentence under different acoustic conditions [189]–[191].

Similar approaches have been proposed for increasing
robustness in speaker space by augmenting training data
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with, typically label-preserving, speaker-related distortions
or transforms. Examples include creating multiple copies of
clean utterances with perturbed VTL warp factors [192],
[193], augmenting related properties such as volume or speak-
ing rate [11], [194], [195], or voice-conversion [196] inspired
transformations of speech uttered by one speaker into another
speaker using stochastic feature mapping [193], [197], [198].

While voice conversion does not create any new data with
respect to unseen acoustic / linguistic complexity (just replicas
of the utterances with different voices, often from the same
dataset), recent advances in text-to-speech (TTS) allows the
rapid building of new multi-speaker TTS voices [199] from
small amounts of data. TTS may then be used to arbitrarily ex-
pand the adaptation set for a given speaker, possibly to cover
unseen acoustic domains [116], [120]. If TTS is coupled with
a related natural language generation module, it is possible
to generate speech for domain-related texts. In this way, the
speaker adaptation uses more data, not only from the speaker’s
original speech but also from the TTS speech. Because the
transcription used for TTS generation is also used for model
adaptation, this approach also circumvents the obstacle of the
hypothesis error in unsupervised adaptation. Moreover, TTS
generated data can also help to adapt E2E models to a new
domain which has more discrepancy in contents from the
source domain, which will be discussed in Section XII.

Finally, for unbalanced data sets the acoustic models may
under-perform for certain demographics that are not suffi-
ciently represented in training data. There is an ongoing effort
to address this using generative adversarial networks (GANs).
For example, Hosseini-Asl et al. [200] used GANs with a
cycle-consistency constraint [201] to balance the speaker ra-
tios with respect to gender representation in training set.

X. ACCENT ADAPTATION

Although there is significant literature on automatic dialect
identification from speech (e.g. [202]), there has been less
work on accent and dialect adaptive speech recognition sys-
tems. The MGB–3 [203] and MGB–5 [204] evaluation chal-
lenges have used dialectal Arabic test sets, with a modern
standard Arabic (MSA) training set, using broadcast and in-
ternet video data. The best results reported on these challenges
have used a straightforward model-based transfer learning
approach in an lattice-free maximum mutual information (LF-
MMI) framework [205], adapting MSA trained baseline sys-
tems to specific Arabic dialects [206], [207].

Much of the reported work on accent adaptation has taken
approaches for speaker adaptation, and applied them using
an adaptation set of utterances from the target accent. For
instance, Vergyri et al. [208] used MAP adaptation of a
GMM/HMM system. Zheng et al. [209] used both MAP and
MLLR adaptation, together with features selected to be dis-
criminative towards accent, with the accent adaptation con-
trolled using hard decisions made by an accent classifier.

Earlier work on accent adaptation focused on automatic
adaptation of the pronunciation dictionary [210], [211]. These

approaches resemble approaches for acoustic adaptation of
VQ codebooks (discussed in section III), in that they learn
an accent-specific transition matrix between the phonemic
symbols in the dictionary. Selection of utterances for accent
adaptation has been explored, with Nallasamy et al. [212]
proposing an active learning approach.

Approaches to accent adaptation of neural network-based
systems have typically employed accent-dependent output
layers and shared hidden layers [213], [214], based on a
similar approach to the multilingual training of deep neural
networks [215]–[217]. Huang et al. [213] combined this with
KL regularization (Section VII), and Chen et al. [214] used
accent-dependent i-vectors (Section V); Yi et al. [218] used
accent-dependent bottleneck features in place of i-vectors;
and Turan et al. [219] used x-vector accent embeddings in a
semi-supervised setting.

Multi-task learning approaches, where the secondary task is
accent/dialect identification has been explored by a number of
researchers [220]–[224] in the context of both hybrid and end-
to-end models. Improvements with multi-task training were
observed in some instances, but the evidence indicates that it
gives a small adaptation gain. Sun et al. [225] replaced multi-
task learning with domain adversarial learning (Section VIII),
in which the objective function treated accent identification as
an adversarial task, finding that this improved accented speech
recognition over multi-task learning.

More successfully, Li et al. [226] explored learning multi-
dialect sequence-to-sequence models using one-hot dialect
information as input. Grace et al. [227] also used one-hot
dialect codes and also explored a family of cluster adaptive
training and hidden layer factorization approaches. In both
cases using one-hot dialect codes as an input augmentation
(corresponding to bias adaptation) proved to be the best ap-
proach, and cluster-adaptive approaches did not result in a
consistent gain. These approaches were extended by Yoo et

al. [228] and Viglino et al. [224] who both explored the use of
dialect embeddings for multi-accent end-to-end speech recog-
nition. Ghorbani et al. [229] used accent-specific teacher-
student learning, and Jain et al. [230] explored a mixture of
experts (MoE) approach, using mixtures of experts both at the
phonetic and accent levels.

Yoo et al. [228] also applied a method of feature-wise affine
transformations on the hidden layers (FiLM), that are depen-
dent both on the network’s internal state and the dialect/accent
code (discussed in Section VI). This approach, which can
be viewed as a conditioned normalization, differs from the
previous use of one-hot dialect codes and multi-task learning
in that it has the goal of learning a single normalized model
rather than an implicit combination of specialist models. A
related approach is gated accent adaptation [231], although
this focused on a single transformation conditioned on accent.

Winata et al. [232] experimented with a meta-learning ap-
proach for few-shot adaptation to accented speech, where
the meta-learning algorithm learns a good initialization and
hyperparameters for the adaptation.
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XI. DOMAIN ADAPTATION

The performance of automatic speech recognition (ASR) al-
ways drops significantly when the recognition model is eval-
uated in a mismatched new domain. Domain adaptation is
the technology used to adapt the well-trained source domain
model to the new domain. The most straightforward way is
to collect and label data in the new domain to fine-tune the
model. Most adaptation technologies discussed in this paper
can also be applied to domain adaptation [154], [233]–[236].
When the amount of adaptation data is limited, a common
practice is adapting only partial layers of the network [237].
To let the adapted model still perform well on the source
domain, Moriya et al. [238] proposed progressive neural net-
works by adding an additional model column to the original
model for each new domain and only update the new model
column with the new domain data. In the following, we focus
on technologies more specific to domain adaptation.

A. TEACHER-STUDENT LEARNING

While conventional adaptation techniques require large
amounts of labeled data in the target domain, the teacher-
student (T/S) paradigm [239], [240] can better take advantage
of large amounts of unlabeled data and has been widely used
for industrial scale tasks [241], [242].

The most popular T/S learning strategy was proposed in
2014 by Li et al. [239] to minimize the KL divergence be-
tween the output posterior distributions of the teacher network
and the student network. This can also be considered as learn-
ing soft targets generated by a teacher model instead of 1-hot
hard targets

−
T

∑

t=1

N
∑

y=1

PT (y | xt ) log PS (y | xt ), (53)

where PT and PS are posteriors of teacher and student net-
works, xt and yt are the input speech and output senone at
time t , respectively. T is the number of speech frames in an
utterance, and N is the number of senones in the network
output layer.

Later, Hinton et al. [240] proposed knowledge distillation
by introducing a temperature parameter (like chemical distil-
lation) to scale the posteriors. This has been applied to speech
by e.g. Asami et al. [243]. There are also variations such
as learning the interpolation of soft and hard targets [240]
and conditional T/S learning [244]. Although initially pro-
posed for model compression, T/S learning is also widely
used for model adaptation if source and target signals are
frame-synchronized, which can be realized by simulation. The
loss function is [245], [246]

−
T

∑

t=1

N
∑

y=1

PT (y | xt ) log PS (y | x̂t ), (54)

where xt is the source speech signal while x̂t is the frame-
synchronized target signal. It can be further improved with

sequence-level loss function as the speech signal is a sequence
signal [247], [248].

The biggest advantage of T/S learning is that it can leverage
large amounts of unlabeled data by using soft labels PT (yt =
y|xt ). This is particularly useful in industrial setups where
effectively unlimited unlabeled data is available [241], [242].
Furthermore, soft labels produced by the teacher network
carry knowledge learned by the teacher on the difficulty of
classifying each sample, while the hard labels do not contain
such information. Such knowledge helps the student to gener-
alize better, especially when adaptation data size is small.

E2E models tend to memorize the training data well, and
therefore may not generalize well to a new domain. Meng et

al. [249] proposed T/S learning for the domain adaptation of
E2E models. The loss function is

−
L

∑

l=1

N
∑

y=1

PT (y | Y1:u−1, X ) log PS (y | Y1:u−1, X̂ ), (55)

where X and X̂ are the source and target domain speech
sequence, Y is the label sequence of length L which is either
the ground truth in the supervised adaptation setup or the
hypothesis generated by the decoding of the teacher model
with X in the unsupervised adaptation setup. Note that in the
unsupervised case, there are two levels of knowledge transfer:
the teacher’s token posteriors (used as soft labels) and one-
best predictions as decoder guidance.

One constraint to T/S adaptation is that it requires paired
source and target domain data. While the paired data can be
obtained with simulation in most cases, there are scenarios
in which it is hard to simulate the target domain data from
the source domain data. For example, simulation of children’s
speech or accented speech remains challenging. In [134], a
neural label embedding scheme was proposed for domain
adaptation with unpaired data. A label embedding, l-vector,
represents the output distribution of the deep network trained
in the source domain for each output token, e.g. , senone.
To adapt the deep network model to the target domain, the
l-vectors learned from the source domain are used as the soft
targets in the cross entropy criterion.

B. ADVERSARIAL LEARNING

It is usually hard to obtain the transcription in the target do-
main, therefore unsupervised adaptation is critical. Although
the transcription can be generated by decoding the target
domain data using the source domain model, the generated
hypothesis quality is often poor given the domain mismatch.
Recently, adversarial training was applied to the area of un-
supervised domain adaptation in a form of multi-task learn-
ing [250] without the need for transcription in the target do-
main. Unsupervised adaptation is achieved by learning deep
intermediate representations that are both discriminative for
the main task on the source domain and invariant with respect
to mismatch between source and target domains. Domain
invariance is achieved by adversarial training of the domain
classification objective functions using a gradient reversal
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layer (GRL) [250]. This GRL approach has been applied to
acoustic models for unsupervised adaptation in [251]–[253].
Meng et al. [254] further combine adversarial learning and
T/S learning as adversarial T/S learning to improve the ro-
bustness against condition variability during adaptation.

There is also increasing interest in the use of GANs with
cycle consistency constraints for domain adaptation [255]–
[257]. This enables the use of non-parallel data without la-
bels in the target domain by learning to map the acoustic
features into the style of the target domain for training. The
cycle-consistency constraint also provides the possibility of
mapping features from the target to the source style for, in
effect, test-time adaptation or speech enhancement.

Unsupervised domain adaptation is more attractive than
the supervised one because there is usually large amount of
unlabeled data in the new domain while transcribing the new
domain data usually is time consuming with large cost. T/S
learning and adversarial learning both can utilize unlabeled
data well. Specifically, T/S learning has been very successful
in industry-scale tasks. In contrast, adversarial learning was
reported successful in relatively smaller tasks. Therefore, T/S
learning is more promising if the parallel data is available.
However, if there is no prior knowledge about the new do-
main, adversarial learning can be a good choice. There are
also other works on unsupervised domain adaptation. For ex-
ample, Hsu et al. [70] use a variational autoencoder instead
of adversarial learning to obtain a latent representation robust
to domains. However, similar to adversarial learning, such
method is pending examination when large amount of unla-
beled training data is available.

XII. LANGUAGE MODEL ADAPTATION

LM adaptation typically involves updating an LM estimated
from a large general corpus, with data from a target do-
main. Many approaches to LM adaptation were developed
in the context of n-gram models, and are reviewed by Bel-
legarda [258]. Hybrid NN/HMM speech recognition systems
still make use of n-gram language models and a finite state
structure, at least in the first pass; it is difficult to use neu-
ral network LMs (with infinite context) directly in first pass
decoding in such systems. Neural network LMs are typically
used to rescore lattices in hybrid systems, or may be combined
(in a variety of ways) in end-to-end systems.

The main techniques for n-gram language model adapta-
tion include interpolation of multiple language models [259]–
[261], updating the model using a cache of recently observed
(decoded) text [259], [262]–[264], or merging or interpolat-
ing n-gram counts from decoded transcripts [265]. There is
also a large body of work incorporating longer scale context,
for instance modelling the topic and style of the recorded
speech [266]–[269]. LM adaptation approaches making use
of wider context have often built on approaches using unigram
statistics or bag-of-words models, and a number of approaches
for combination with n-gram models have been proposed, for
example dynamic marginals [270].

Neural network language modelling [271] has become
state-of-the-art, in particular recurrent neural network lan-
guage models (RNNLMs) [272]. There has been a range of
work on adaptation of RNNLMs, including the use of topic
or genre information as auxiliary features [273], [274] or
combined as marginal distributions [275], domain specific
embeddings [276], and the use of curriculum learning and
fine-tuning to take account of shifting contexts [277], [278].
Approaches based on acoustic model adaptation, such as
LHUC [278] and LHN [274], have also been explored.

There have a been a number of approaches to apply the
ideas of cache language model adaptation to neural network
language models [275], [279], [280], along with so-called
dynamic evaluation approaches in which the recent context
is used for fine tuning [275], [281].

E2E models are trained with paired speech and text data.
The amount of text data in such a paired setup is much
smaller than the amount of text data used in training a separate
external LM. Therefore, it is popular to adjust E2E models
by fusing the external LM trained with a large amount of
text data. The simplest and most popular approach is shal-
low fusion [282]–[285], in which the external LM is inter-
polated log-linearly with the E2E model at inference time
only.

However, shallow fusion does not have a clear probabilis-
tic interpretation. McDermott et al. [286] proposed a density
ratio approach based on Bayes’ rule. An LM is built on text
transcripts from the training set which has paired speech and
text data, and a second LM is built on the target domain. When
decoding on the target domain, the output of the E2E model is
modified by the ratio of target/training LMs. While it is well
grounded with Bayes’ rule, the density ratio method requires
the training of two separate LMs, from the training and target
data respectively. Variani et al. [287] proposed a hybrid au-
toregressive transducer (HAT) model to improve the RNN-T
model. The HAT model builds a training set LM internally
and the label distribution is derived by normalizing the score
functions across all labels excluding blank. Therefore, it is
mathematically justified to integrate the HAT model with an
external or target LM using the density ratio formulation.

In [126], [127], RNN-T models were adapted to a new
domain with the TTS data generated from the domain-specific
text. Because the prediction network in RNN-T works simi-
larly to a LM, adapting it without updating the acoustic en-
coder is shown to be more effective than interpolating the
RNN-T model with an external LM trained from the domain-
specific text [127].

XIII. META ANALYSIS

In this section we present an aggregated review of pub-
lished results in experiments applying adaptation algorithms
to speech recognition. This differs from typical experimental
reporting that focuses on one-to-one system comparisons typ-
ically using a small fixed set of systems and benchmark tasks
and data. The proposed meta-analysis approach offers insights
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TABLE 1. Adaptation Studies Used in the Meta-Analysis Categorized on the Level They Operate At, and System Architecture

into the performance of adaptation algorithms that are difficult
to capture from individual experiments.

We divide this section into four main parts. The first, Sec-
tion XIII-A, explains the protocol and overall assumptions of
the meta-analysis, followed by a top-level summary of find-
ings in Section XIII-B, with a more detailed analysis in Sec-
tion XIII-C. The final part, Section XIII-D, aims to quantify
the adaptation performance across languages, speaking styles
and datasets.

A. PROTOCOL AND LITERATURE

The meta-analysis is based on 47 peer-reviewed studies se-
lected such that they cover a wide range of systems, archi-
tectures, and adaptation tasks. Each study was required to
compare adaptation results versus a baseline, enabling the
configurations of interest to be compared quantitatively. There
was no fixed target for the total number of papers included,
due to our aim to cover as many different methods as possible.
Note that the meta-analysis spans several model architectures,
languages, and domains; although most studies use word error
rate (WER) as the evaluation metric, some studies used char-
acter error rate (CER) or phone error rate (PER). Since we are
interested in the relative improvement brought by adaptation,
we report Relative Error Rate Reductions (RERR).

The meta-analysis is based on the studies shown in Table 1,
with additional splits into level of operation and top-level sys-
tem architecture. The positions were selected such that they
cover most of the topics mentioned in the review. For an adap-
tation of end-to-end systems we included all peer-reviewed
works we could find (their number is relatively limited). For
the hybrid approach, the studies are shortlisted such that they
enable the quantification of the gains for the categories out-
lined in the preceding theoretical sections. As a generic rule,
when choosing papers for the analysis we first included works
that introduced a specific adaptation method in the context of
neural models, or that offered some additional experiments
allowing the comparison of different areas of interest - such
as the impact of objective functions, the complementarity of
adaptation transforms or that show behavior under different
operating regimes. In the case of certain more commonly-used
techniques, due to the laborious nature of the analysis, it was
not always possible to include an exhaustive set of somewhat
similar papers. In this situation, the papers selected were those
with higher citation counts.

The analysis spans 38 datasets (more than 50 unique
{train, test} pairings), 28 of which are public and 10
are proprietary. These cover different speaking styles,
domains, acoustic conditions, applications and languages
(though the study is strongly biased towards English re-
sources). The public corpora used include the following:
AISHELL2 [298], AMI [299], APASCI [300], Aurora4 [301],
CASIA [302], ChildIt [303], Chime4 [304], CSJ [305],
ETAPE [306], HKUST [307], MGB [308], RASC863 [309],
SWBD [310], TED [311], TED-LIUM [312], TED-
LIUM2 [313], TIMIT [314], WSJ [315], PF-STAR [316],
Librispeech [317], Intel Accented Mandarin Speech Recogni-
tion Corpus [214], UTCRSS-4EnglishAccent [295]. To save
space we do not provide detailed corpora statistics in this pa-
per, but make them available via a corresponding repository1

alongside raw data and scripts used to perform the analysis.
Overall, the meta-analysis is based on ASR systems trained on
datasets with a combined duration of over 30000 hours, while
the baseline acoustic models were estimated from as little as
5 hours to around 10000 hours of speech. Adaptation data
varies from a few seconds per speaker to over 25000 hours
of acoustic material used for domain adaptation.

B. OVERALL FINDINGS

Fig. 6 (Top) presents the average adaptation gains for all con-
sidered systems, adaptation methods, and adaptation classes.
The overall RERR is 9.72%.2 Since grouping data across
attributes of interest may result in unbalanced (or very sparse)
sample sizes, we also report additional statistics such as the
number of samples, datasets and studies the given statistic is
based on. As can be seen in the right part of Fig. 6 (Top), the
results in this review were derived from 356 samples produced
using 38 datasets reported in 47 studies. A single sample is
defined as a 1:1 system comparison for which one can un-
ambiguously state the RERR. Likewise, a dataset refers to a
particular training corpus configuration. Note that there may
be some data-level overlap between different corpora origi-
nating from the same source (e.g. TED talks) and we make a
distinction for the acoustic condition (e.g. AMI close-talking
and distant channels are counted as two different datasets

1[Online]. Available: https://github.com/pswietojanski/ojsp_adaptation_
review_2020.

2We do not report exact numbers in tabular form due to space limitations,
but they are available in the GitHub repository
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FIGURE 6. Aggregated summary of adaptation RERR from all studies (top),
considering single method only (middle) and two or more methods
stacked (bottom). The top graph is annotated to explain the information
presented in each of the boxplot graphs in this section.

when they are used to estimate separate acoustic models). A
study refers to a single peer-reviewed publication.

Depending on which property we want to measure the
analysis set can be split into smaller subsets, as the ones
shown in the lower part of Fig. 6. The majority of analyses
in this review are reported for models adapted using a single
method with some additional groupings used to better capture
further details such as complementarity of adaptation methods
or their performance in different operating regimes.

As mentioned in Section IV, adaptation methods were
historically categorized based on the level they operated
at in the speech processing pipeline. Fig. 7 (top) quanti-
fies the ASR performance along this attribute, showing that
model-based adaptation obtains the best average improve-
ments of 11.8%, followed by embedding and feature levels
at 7.2% and 5.0% RERR, respectively. This is not surprising,
as model level adaptation allows large amounts of adaptation
data to be leveraged by allowing the update of large portions
of the model (including re-training the whole model). In more
data-constrained regimes, such as utterance or speaker-level
adaptation, where only a limited amount of adaptation data
is typically available, differences are less pronounced and
model-based speaker adaptation obtains 8.9% RERR while
adapting to domains gives 15.5% RERR (cf. middle and bot-
tom plots in Fig. 7). Embedding approaches stay at a sim-
ilar level for speaker adaptation, improving to 9.2% RERR
for domain adaptation (although based on only two studies).
Feature-space domain adaptation was used in only one study,
which reported a small deterioration of −0.3% RERR.

Fig. 7 (middle) additionally shows results for speaker-
oriented data augmentation as described in Section IX. These
were found to increase accuracy by 4.6% RERR on av-
erage, or by 3.3%, 3.6% and 8.2% RERR for VTL per-
turbations (VTLP) [192], [193], stochastic feature mapping
(SFM) [193], [197] and when using synthetically generated
TTS utterances [116], respectively. Note that the TTS method

FIGURE 7. Comparison of feature, embedding, and model-level adaptation
approaches. Speaker (middle) and domain (bottom) adaptations are based
on {utterance, speaker} and {accent, child, domain, disordered} clusters,
respectively.

FIGURE 8. Adaptation results for different adaptation clusters.

was used to augment the adaptation set to better estimate
additional adaptation transforms while VTLP and SFM were
used to directly expand the training data, and were found par-
ticularly effective for low-resource training conditions. Data
augmentations are beyond the scope of this meta-analysis and
will not be further investigated in this review.

The results for different adaptation clusters, introduced in
Section II, are shown in Fig. 8. Models benefit more when
adapting to accent, from adult to child speech, to the domain,
and to disordered speech conditions (such as arising from
speech motor disorders), as opposed to speaker or utterance
adaptation. This is expected, since domain adaptation usu-
ally has more adaptation data, and the acoustic mismatch
introduced by unseen domains is greater than the mismatch
caused by unseen speakers – unless these are substantially
mismatched to the training data as is often the case for child
or disordered speech recognition. But in the latter case the
adaptation is typically not carried out at the speaker level, but
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FIGURE 9. Comparison of adaptation results for hybrid and E2E systems.

TABLE 2. Amounts of Data Used to Estimate Hybrid and E2E Models for
Speaker and Domain Adaptation Clusters

at the domain level (i.e. tailoring the acoustic model to better
handle dysarthric speech, not a single dysarthric speaker).

Fig. 9 aggregates the adaptation along the two main neu-
ral network-based ASR approaches - hybrid and E2E. It is
interesting to observe that E2E systems gain more from adap-
tation (12.8% RERR) than hybrid systems (9.2% RERR) in
both the overall and speaker-based regimes. This is somewhat
expected, as hybrid systems benefit from strong inductive
biases – such as access to pronunciation dictionaries and hand
engineered modeling constraints – whereas E2E models must
learn these from data. Given limited amounts of training data
one may expect that E2E may struggle to learn these as well
as hybrid models, as such adaptation may bring greater gains.
This reverses for domain adaptation, with E2E and hybrid
improving by 12.2 and 14.9% RERR, respectively. Note that
for domain adaptation, the hybrid approach was studied more
often for child and disordered speech applications, which
makes adaptation gains bigger (see also Fig. 8). Table 2 further
reports average amounts of training data used to estimate
hybrid and E2E models. It is interesting to notice that E2E
systems on average leverage twice as much acoustic material
when compared to hybrid setups but still seem to substantially
benefit from adaptation. These results suggest that adaptation
for E2E is a promising direction for future investigations, that
remains under-investigated as of now based on the relatively
few works published to date.

Next we compare feed-forward (FF) and recurrent neural
network (RNN) architectures in both hybrid and E2E models.

FIGURE 10. Comparison of adaptation results for FF and RNN
architectures.

FIGURE 11. Comparison of adaptation results for FF and RNN
architectures split by hybrid and E2E systems.

FIGURE 12. Comparison of adaptation results for supervision modes.

Hybrid models can leverage either FF or RNN architectures
while most E2E systems use some form of RNN. (Note,
transformer-based E2E models [30] are built from FF (CNN)
modules, however, due to their relative novelty in ASR there
is only one accent adaptation study included in our meta-
analysis [232]). Fig. 10 reports similar adaptation gains of
9.8% RERR for both FF and RNN architectures. RNNs seem
to benefit more when adapting to speakers (9.2% vs 7.4%
RERR for RNN and FF, respectively), and less when adapting
to domain (10.4% vs 17.0% RERR for RNN and FF, respec-
tively). When controlling for the system paradigm (E2E vs.
Hybrid), RNNs mostly benefit through adapting E2E models
(cf. Fig. 11 6.6% vs 15.7% RERR for Hybrid (RNN) and E2E
(RNN), respectively). We observed a similar trend for speaker
and domain clusters separately (figure not shown).

Fig. 12 compares the RERR for unsupervised and super-
vised modes of adaptation. Overall, deriving the adaptation
transform with manually annotated targets results in an av-
erage 12.8% RERR, whereas unsupervised methods result
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FIGURE 13. Comparison of adaptation results for different adaptation
targets: online adaptation, supervised and unsupervised enrollment, and
two-pass decoding.

FIGURE 14. Comparison of adaptation results for different amount of
adaptation data.

in 8% RERR. Fig. 12 shows results specifically for semi-
supervised adaptation, which are captured by the 2pass and
enrol (Unsup.) conditions. Fig. 13 also shows further analysis
on the modes of deriving adaptation statistics (Section II).
Both online and two-pass adaptation are unsupervised, while
the enrollment mode may be either supervised or unsuper-
vised. The supervised approach offers most accurate adapta-
tion, as expected. Unsupervised enrollment outperforms the
other two unsupervised methods mainly due to the T/S do-
main adaptation study [249] (Section XI) that leverages large
amounts of data. When considering speaker adaptation only,
the two-pass approach obtains 8.2% RERR and is more effec-
tive than enrol (Unsup.) (7.3% RERR) and online adaptation
(6.5% RERR).

Finally, we consider the overall trends for the considered
systems and their operating regions. Fig. 14 reports results
obtained with different amounts of adaptation data . Fig. 16
further shows regression trends when splitting by adaptation
type, hybrid or E2E, and adaptation clusters. These are in line
with the observations so far: i) more adaptation data brings
(on average) larger improvements; ii) model-based adaptation

FIGURE 15. Comparison of adaptation results for acoustic models
estimated from different amounts of training data.

is more powerful and gives better results than embedding or
feature-based approaches; and iii) adaptation is particularly
effective in scenarios with a large mismatch and where ob-
taining matched training data is difficult.

In Fig. 15 we further report adaptability of acoustic models
estimated from different amounts of training material. Inter-
estingly, models trained on small amounts of data (up to 50
hours) benefit from adaptation to a similar degree as models
estimated from several thousands of hours. This is somewhat
an unexpected result - if test sets are kept fixed, increasing the
training material typically results in a less mismatched model,
thus lowering gains from adaptation (and most experiments
evaluating adaptation performance as a function of data are
carried out in this way). However, when training from more
data one should proportionally increase the complexity of the
testing conditions. We hypothesize that this is what implicitly
occurs across different datasets in the meta-analysis - some-
one who has access to a large training set may also sample a
more diverse testing set. Note that the acoustic models in this
work were trained from relatively limited amounts of data (up
to 10 k hours), and adaptation protocols between studies may
not be exactly comparable. However, this does not change the
conclusion that some form of adaptation is beneficial for most
considered systems, regardless of how many hours of acoustic
data was used to train it.

Since this meta-analysis combines results across many dif-
ferent studies with many reference systems, the results should
not necessarily be compared at the sample level, but rather
in an aggregated form to outline dominant trends and typical
data regimes that each category was tried in. Data amounts
for some systems for the purpose of plotting were assumed
approximately to be at a given level: e.g. two-pass systems un-
less shown otherwise assumed 10 minutes per speaker, while
embedding approaches 30 seconds.

C. DETAILED FINDINGS

In this subsection we investigate the effect of the specific
approach to adaptation, beyond the broad categories discussed
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FIGURE 16. Regression analysis for the three major control variables.

FIGURE 17. Comparison of results for different adaptation approaches.

above. Fig. 17 reorganizes the earlier split into feature, embed-
ding, and model-level adaptation (Fig. 7) into embedding (cf.

Section V) and model-based transformations (cf. Section VI).
For the embeddings, we introduce three sub-categories

referred to as GMMEmb, NNEmb and NNTransformEmb.
GMMEmb comprises GMM-related embedding extractors
primarily based on i-vectors [56], [57], [110] but also in-
clude adaptation results for other GMM-derived (GMMD)
features [138]. NNEmb are neural network-based embed-
ding extractors that estimate speaker/utterance statistics
from speaker-independent acoustic features. Examples of
NNEmb approaches include ⋆-vector techniques, such as d-
vectors [149] and x-vectors [111], discussed in Section V,
sentence-level embeddings [59], [128], and other bottle-
neck approaches [130], [132]. NNTransformEmb are trans-
formed embeddings which typically rely on i-vectors as in-
put instead of acoustic features. These have been proposed
to help alleviate issues related to inconsistent DNN adap-
tation performance when using raw i-vectors [57], [58],
[318]. The NNTransformEmb group includes studies do-
ing standard i-vector transformations with NNEmb [74],
[147], [218] but also more recent memory-based approaches
in which an embedding is selected via attention from
a fixed training stage embedding inventory [61], [62].

As shown in Fig. 17 GMMEmb, NNEmb and NNTrans-
formEmb obtain 8.1%, 5.2% and 9.2% average RERR,
respectively.

The second group in Fig. 17 comprises model-based
approaches split into Linear Transform (LT), Activation,
and Finetuning–based methods. LT methods introduce new
speaker dependent affine transformations in the model, either
in the form of new LIN/LHN/LON layers (i.e. [135], [155],
[157], [289]) or transforms estimated using a GMM system
such as fMLLR [56], [112], [135], [319]. Finetune refers to
approaches which assume that the adaptation is carried out
by altering a subset of the existing model parameters. This is
often done in a similar manner to an LT approach by adapt-
ing an input, output and/or one or more hidden layers that
are already present in the model [113], [141], [213], [214].
Finally, activation methods perform adaptation by introduc-
ing speaker-dependent parameters in the activation functions
of the neural network [112], [162], [320]–[322]. Note that,
as outlined in Section VI, some of activation-based methods
can be expressed as constrained LT methods. The results ob-
tained by LT, Activation and Finetune–based methods score
6.7%, 9.0% and 13.9% average RERR, respectively. Fig. 18(a)
shows the regression trends for amounts of adaptation data for
each of the six considered categories.

The use of embeddings implies that the acoustic model is
trained in a speaker adaptive manner, whereas the majority of
model-based techniques are carried out in a test-only manner
– meaning that speaker-level information is not used during
training – though some methods offer SAT variants [167],
[323]. Fig. 19 shows that SAT trained systems offer a small
advantage (8% vs. 7.6% RERR) when adapted with limited
amounts of data (up to around 10 minutes). When looking
at the average performance across all data-points, however,
test-only approaches obtain 10.8% RERR, primarily because
of greater adaptation gains for larger amounts of data. See also
Fig. 18(b) for operating regions of SAT and non-SAT systems.

Fig. 20 quantifies gains for different adaptation objectives
and regularization approaches – results for the online condi-
tion are given only for reference, as in this case adaptation
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FIGURE 18. Regression analysis for adaptation families, speaker-adaptive training and adaptation losses.

FIGURE 19. Comparison of adaptation results for SAT vs Test-only modes.

FIGURE 20. Comparison of results for different adaptation loss functions.

information is obtained via an embedding extractor (which is
usually not updated, although not always [218]). The second
group depicts approaches where the adaptation information is
derived by adapting a GMM in model-space using an MLE
or MAP criterion when extracting speaker-adapted auxiliary
features for NN training [138], [324] or by estimating fMLLR
transforms with MLE under a GMM to obtain speaker adapted
acoustic features [56], [135], [319].

The third group comprises methods which aim to explicitly
match the model’s output distribution to the one found in the
adaptation data. CE is a non-regularized frame-level cross-
entropy baseline obtaining 8.7% average RERR. This can be
improved to 14.8% average RERR by penalizing the adapted

FIGURE 21. Comparison of adaptation results for acoustic models trained
with CE and Sequence-level objectives.

model’s predictions such that they do not deviate too much
from the speaker independent variant by KL regularization
(CE-KL) [114]. KL regularization can be applied to either CE
or sequential objective functions [154], although most models
estimated in a sequential discriminative manner can success-
fully be adapted with a CE (or CE-KL) criterion [75], [168],
[195], [297] (see also Fig. 21). Teacher-student (T/S) [239]
is a special case (see Section XI) where the adaptation is
carried with the targets directly produced by a teacher model,
rather than the ones obtained from first pass decodes (possibly
KL-regularized with the SI model). T/S allows the use of
large amounts of unsupervised data and in this analysis was
found to offer an average 28.2% RERR when adapting to
domains [229], [241], [249].

The final group in Fig. 20 includes objectives that try to
leverage auxiliary information at the objective function level.
Meta-learning [178], [179], [232] estimates the adaptation
hyper-parameters jointly with the adaptation transform while
multi-task learning [115], [118], [187], [295] leverages addi-
tional phonetic priors to circumvent the (potential) sparsity
of senones when adapting with small amounts of data. Meta-
learning and multi-task adaptation obtain 6.8% and 7.6% av-
erage RERR, respectively. See also Fig. 18(c).
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FIGURE 22. Comparison of adaptation results for different architectures.

Fig. 21 further summarizes the adaptability of acoustic
models trained in a frame-based (CE) or a sequential (Seq)
manner. The results indicate that sequential models benefit
more from adaptation when compared to frame-based systems
(11.6% vs. 9.8% average RERR). However, when controlling
for the same dataset and baseline (reference systems were ex-
pected to exist for both CE and Seq) the difference decreases
to around 0.6% RERR in favor of the frame-based systems.

Fig. 22 compares the adaptation gains obtained using var-
ious model architectures. LSTM benefits the most (15.4%
average RERR). The feed-forward TDNN, DNN, and ResNet
architectures all improve by around 10.5% RERR. Smaller
gains were observed for Transformer, CNN and BLSTM, im-
proving by 7.6, 6.5 and 4.9% average RERR, respectively.
This result is somewhat expected as the last three architectures
either normalize some of the variability by design, or have
access to a larger speech context during recognition.

In Fig. 23 we study the complementarity of the different
adaptation techniques. These results are based on 22 samples
and 6 studies for which there were a complete set of baseline
experiments allowing improvements to be quantified when
adapting an SI model with Method1, and then measuring
further gains when adding Method2. Fig. 23 shows that, on av-
erage, stacking adaptation techniques improved the adaptation
performance by an additional 4%, from 8% to 12% RERR.

Finally, in Fig. 24 we report results for all techniques
included in the meta-analysis. These are based on samples
where only a single method was used to adapt the acoustic
model (cf. Fig. 6 (middle)), spanning results for all adaptation
clusters (cf. Fig. 8). These should not be directly compared
owing to differences in operating regions, but they offer an
indication of the performance of the individual methods.

D. SPEECH STYLES, APPLICATIONS, LANGUAGES

In this subsection, we analyze the efficacy of adaptation meth-
ods across acoustic and linguistic dimensions by reporting
adaptation gains for different types of speech styles, applica-
tions (including ones with a large mismatch to the training
conditions), and languages.

FIGURE 23. Complementarity of selected adaptation techniques.

Fig. 25 compares gains as obtained for different speech
styles. At the top we report three special cases spanning disor-
dered, children’s, and accented speech (these are similar to the
adaptation clusters from Fig. 8). As expected, acoustic models
estimated largely from adult speech of healthy individuals per-
form poorly in these highly mismatched domains, especially
for disordered and children’s speech, and domain adaptation
improves ASR by over 50% average RERR.

Performance gains from adapting models with accented
speech are similar to that obtained on other speech tasks. Note
that the presence of non-native speakers in (English) training
corpora is fairly common, so the underlying acoustic models
may learn to better normalize this variability at the training
stage. Interestingly, adaptation brings relatively larger gains
in commercial applications such as VoiceSearch and Dictation
tasks (14% RERR on average). This is also visible in Fig. 26
comparing performance on public and proprietary data. We
hypothesize that commercial data is more likely to contain a
mix of speech from a diverse set of speakers (including non-
native and child speech) and thus benefits more from adapta-
tion. Another explanation could be that the public benchmarks
have been around for some time, and systems built on these
are likely to be more over-fitted in general.

Finally, Fig. 27 summarizes the adaptation performance
for several languages. Note that speaker adaptation was per-
formed on English, French, Japanese, and Mandarin while for
Korean and Italian we only report adaptation gains for disor-
dered and children’s speech recognition. The overall improve-
ments for non-English languages when adapting to speakers
are similar to gains obtained for English when controlling for
the adaptation method (i.e. improvements are between 6 and
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FIGURE 24. Comparison of adaptation results for the standalone techniques.

FIGURE 25. Comparison of adaptation results for different speech styles.

10% average RERR), giving some evidence that adaptation
helps to a similar degree for different languages, and that some
of these primarily English-based findings generalize across
languages.

FIGURE 26. Performance of adaptation techniques as obtained on public
and proprietary datasets.

XIV. SUMMARY AND DISCUSSION

The rapid developments in speech recognition over the past
decade have been driven by deep neural network models of
acoustics, deployed in both hybrid and E2E systems. Com-
pared to the previous state-of-the-art approaches based on
GMMs, neural network-based systems have less constrained
and more flexible models and are open to a richer set of
adaptation algorithms, compared to previous approaches
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FIGURE 27. Adaptation gains for different languages.

based on linear transforms of the model parameters and acous-
tic features.

In this overview article we have surveyed approaches to the
adaptation of neural network-based speech recognition sys-
tems. We structured the field into embedding-based, model-
based, and data augmentation adaptation approaches, arguing
that this organization gives a more coherent understanding
of the field compared with the usual split into feature-based
and model-based approaches. We presented these adaptation
algorithms in the context of speaker adaptation, with a discus-
sion on their application to accent and domain adaptation.

A key aspect of this overview was a meta-analysis of recent
published results for the adaptation of speech recognition sys-
tems. The meta-analysis indicates that adaptation algorithms
apply successfully to both hybrid and E2E systems, across
different corpora and adaptation classes.

E2E modeling is less mature than the hybrid approach, and
much of the research focus on E2E modeling is to improve
the general modeling technology. Therefore, in this overview
paper, many more adaptation methods were introduced in the
context of hybrid systems. However, most adaptation tech-
nologies successfully applied to hybrid models by adapting
acoustic model or language model should also work well
for E2E models because E2E models usually contain sub-
networks corresponding to the acoustic model and language
model in hybrid models; this is supported by findings in our
meta-analysis.

Different from hybrid models in which components are
optimized separately, E2E models are optimized using a single
objective function. Therefore, E2E models tend to memorize
the training data more and hence the generalization or ro-
bustness to unseen data [191] is challenging to E2E models.
Consequently, adaptation to new environment or new domain
is very important to the large scale application of E2E models.
We would expect more research toward this direction as E2E
modeling becomes increasingly mainstream in ASR.

Because the size of E2E models is much smaller than that
of hybrid models, E2E models have clear advantages when
being deployed to device. Therefore, the personalization or
adaptation of E2E models [119], [120], [126], [127] is a
rapidly growing area. While it is possible to adapt every user’s
model in the cloud and then push it back to each device, it is
more reasonable to adapt the model on device, which requires
adjusting the adaptation algorithm to overcome the challenge

of limited memory and computation power [119]. Another
interesting direction for the adaptation of E2E models is how
to leverage unpaired data especially text only data in a new
domain. In [127], several methods have been explored in this
direction, but we are expecting more innovations there.

Adaptation algorithms are often deployed for conditions in
which there is very limited labeled data, or none at all. In this
case unsupervised and semi-supervised learning approaches
are central, and indeed many current adaptation approaches
strongly leverage such algorithms. However there are signifi-
cant open research challenges in this area, particularly relating
to unsupervised and semi-supervised training of E2E sys-
tems, using methods which are able to propagate uncertainty.
Current approaches often do this indirectly (e.g. through T/S
training), but more direct modeling of uncertainty would be
desirable.

Domain adaptation has become central to work in computer
vision and image processing, as discussed in Section I, with
large scale base models (typically trained on ImageNet) being
adapted to specific tasks. The closest analogies to this in
speech recognition are some of the domain recognition ap-
proaches discussed in Section XI and for multilingual speech
recognition. The idea of shared multilingual representations
and language-specific or language-adaptive output layers was
proposed in 2013 [215]–[217] and has become a standard
architectural pattern. More recently several authors have pro-
posed highly multilingual E2E systems, with a shared mul-
tilingual output layer [325]–[328], with the potential to be
adapted to new languages.

State-of-the-art NLP systems are characterized by an unsu-
pervised, large-scale base model [30], [42] which may then
be adapted to specific domains and tasks [43]. An analogous
approach for speech recognition would be based on the unsu-
pervised learning of speech representations, from diverse and
potentially multilingual speech recordings. Initial work in this
direction includes the unsupervised learning from large-scale
multilingual speech data [329], [330]. More generally, deep
probabilistic generative modeling has become a highly active
research area, in particular through approaches such as nor-
malizing flows [50], [51], [53], [54]. Such deep generative
models offer different ways of addressing the problem of
adaptation including powerful approaches to data augmenta-
tion, and the development of rich adaptation algorithms build-
ing on a base model with a joint distribution over acoustics
and symbols. This offers the possibility of finetuning general
encoders to specific acoustic domains, and adapting the de-
coder to specific tasks (such as speech recognition, speaker
identification, language recognition, or emotion recognition),
noting that classic adaptation to speakers can bring further
gains [331], [332].
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