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Adaptation and conservation insights from the 
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The koala, the only extant species of the marsupial family Phascolarctidae, is classified as ‘vulnerable’ due to habitat loss 
and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, 
including centromeres. We reveal that the koala’s ability to detoxify eucalypt foliage may be due to expansions within a cyto-
chrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to 
expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch 
and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial popu-
lation crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundar-
ies and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations 
that require habitat corridors and instituting of translocation programs to aid the koala’s survival in the wild.

T
he koala is an iconic Australian marsupial, instantly recogniz-
able by its round, humanoid face and distinctive body shape. 
Fossil evidence identifies as many as 15–20 species, following 

the divergence of koalas (Phascolarctidae) from terrestrial wombats 

(Vombatidae) 30–40 million years ago1,2 (Supplementary Fig. 1).  
The modern koala, Phascolarctos cinereus, which first appeared 
in the fossil record ~350,000 years ago, is the only extant species 
of the Phascolarctidae. Like other marsupials, koalas give birth to 
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underdeveloped young. Birth occurs after just 35 d of gestation, 
with young lacking immune tissues or organs. Their immune sys-
tem develops while they are in the pouch, meaning survival dur-
ing early life depends on immunological protection provided by  
mothers’ milk.

A specialist arboreal folivore feeding almost exclusively from 
Eucalyptus spp., the koala has a diet that would be toxic or fatal to 
most other mammals3. Due to the low caloric content of this diet, 
the koala rests and sleeps up to 22 h a day4. A detailed understand-
ing of the mechanisms by which koalas detoxify eucalyptus and pro-
tect their young in the pouch has been elusive, as there are no koala 
research colonies and access to milk and tissue samples is opportu-
nistic. The genome enables unprecedented insights into the unique 
biology of the koala, without having to harm or disturb an animal of 
conservation concern.

The genome also enables a holistic, scientifically grounded 
approach to koala conservation. Australia has the highest mam-
mal extinction record of any country during the Anthropocene5, 
and koala numbers have plummeted in northern parts of its range 
since European settlement of the continent6, but increased in south-
ern sections of the range, notably in parts of Victoria and South 
Australia. The uneven response of koala populations throughout its 
range is one of the most difficult issues in its management7. The 
species was heavily exploited by a pelt trade (1870s to late 1920s), 
which harvested millions of animals6,8,9. Today, the threats are 
primarily due to loss and fragmentation of habitat, urbanization, 
climate change and disease. Current estimates put the number of 
koalas in Australia at only 329,000 (range 144,000–605,000), and a 
continuing decline is predicted6. Koalas present a complex conser-
vation conundrum: in the north, causes of decline include ongoing 
habitat fragmentation, urbanization and disease. However, decline 
in the south has followed a different path10, with widespread, often 
sequential, translocations (1920–1990s) from a limited founder 
population, which has resulted in genetically bottlenecked popu-
lations that are overabundant to the point of starvation in some 
areas11. There are marked differences in the degree to which threats 
affect each population, thereby cautioning against one prescription 
for population recovery.

Adding to the complexity of koala conservation is the impact of 
disease, specifically koala retrovirus (KoRV) and Chlamydia. KoRV 
is thought to have arrived in Australia via a putative murine vector 
before cross-species transmission12,13. It is now prevalent in north-
ern koalas and appears to be spreading to southern populations14. 
Some strains appear to be more virulent than others and are puta-
tively associated with an increase in neoplastic disease15. Similarly, 
Chlamydia, which in some individuals causes severe symptoms yet 
in others remains asymptomatic, may have crossed the species bar-
rier from introduced hosts such as domestic sheep and cattle follow-
ing European settlement16. A complete koala genome offers insights 
into the species’ genetic susceptibility to these diseases, provides the 
genomic basis for innovative vaccines, and can underpin new con-
servation management solutions that incorporate the species’ popu-
lation and genetic structure, such as facilitating gene flow via habitat 
connectivity or translocations.

Results
Genome landscape. Koalas have 16 chromosomes, differing from 
the ancestral marsupial 2n =  14 karyotype by a simple fission of 
ancestral chromosome 2 giving rise to koala chromosomes 4 and 717.  
We sequenced the complete genome using 57.3-fold PacBio 
long-read coverage, generating a 3.42 Gb reference assembly.  
The primary contigs from the FALCON assembly (representing  
homozygous regions of the genome) yielded genome version  
phaCin_unsw_v4.1. This comprised 3.19 Gb, including 1,906 con-
tigs with an N50 of 11.6 Mb and the longest at 40.6 Mb. The het-
erozygous regions of the genome (representing the alternate contigs 

from the assembly) totaled 230 Mb, with an N50 of 48.8 kb (Table 1,  
Supplementary Tables 1–3 and Methods). Approximately 30-fold 
coverage of Illumina short reads was used to polish the assembly. 
BioNano optical maps plus additional conserved synteny informa-
tion for marsupials were used for scaffolding18 to assemble long-
read contigs into ‘virtual’ chromosome scaffolds (‘super-contigs’)  
(Supplementary Tables 4 and 5 and Supplementary Note).  
The largest super-contig spanned approximately half of koala  
chromosome 7 (Supplementary Fig. 2).

Our long-read-based sequence presented the opportunity 
to identify and study centromeres, which are multi-megabase 
regions that are challenging to construct in eutherian (for example, 
human and mouse)19 genome assemblies due to intractable higher 
order arrays of satellites. Centromeres are smaller in marsupials 
than in eutherians, and as such are more amenable to analysis20. 
Chromatin immunoprecipitation and sequencing using antibod-
ies to centromeric proteins (CENP-A and CREST)21 enabled the 
identification of scaffolds containing putative centromeric regions 
(Supplementary Fig. 3) and the characterization of known and new 
repeats, including composite elements within koala centromeric 
domains (Supplementary Table 6–10) that lack the previously anno-
tated retroelement, kangaroo endogenous retrovirus (KERV), found 
in some tammar wallaby centromeres22. Koala centromeres span a 
total of 2.6 Mb of the koala haploid genome, equivalent to an average 
of 300 kb of centromeric material per chromosome. Like those of 
other species with small centromeres19,20,23,24, koala centromeres lack 
higher order satellite arrays (Supplementary Tables 7–10). Among 
the newly identified repeats, some are similar to composite elements 
recently described in gibbon centromeres25, where absence of higher 
order satellite arrays accompanied the evolution of new composite 
elements with putative centromere function. The composition of the 
koala centromere therefore supports mounting evidence that trans-
posable elements represent a major, functional component of small 
centromeres when higher order satellite arrays are absent20,24,25.

Interspersed repeats account for approximately 47.5% of the koala 
genome; 44% of these are transposable elements (Supplementary 
Table 11). As in other mammalian genomes, short interspersed 
nuclear elements (SINEs) and long interspersed nuclear elements 
(LINEs) are the most numerous elements (35.2% and 28.9% of total 
number of elements, respectively), with LINEs making up 32.1% of 
the koala genome. The long-read sequence assembly also enabled 
full characterization and annotation of repeat-rich long noncoding 
RNAs, including RSX, which mediates X chromosome inactiva-
tion in female marsupials26. Koala RSX represents the first marsu-
pial RSX to be fully annotated and to have its structure predicted 
(Supplementary Fig. 4 and Supplementary Note). As expected, it 
was expressed in all female tissues, but in no male tissues27.

The assembled koala genome has very high coverage of coding 
regions: we recovered 95.1% of 4,104 mammalian benchmarking 
universal single-copy orthologs (BUSCOs)28, the highest value for 
any published marsupial genome (Supplementary Table 5) and 
comparable with that of the human assembly (GRCh38, which 
scores 94.1% of orthologs). Analysis of gene family evolution 
using a maximum-likelihood framework identified 6,124 protein-
coding genes in 2,118 gene families with at least two members in 
koala. Among these, 1,089 have more gene members in koala than 
in any of the other species (human, mouse, dog, tammar wallaby, 
Tasmanian devil, gray short-tailed opossum, platypus, chicken; 
Supplementary Fig. 5).

Having characterized the genome, we undertook detailed analy-
ses of key genes and gene families to gain insights into the genomic 
basis of the koala’s highly specialized biology. Gene families of par-
ticular interest were those that encode proteins involved in induced 
ovulation, those proteins involved in the complex lactation process, 
those proteins responsible for immunity, and those enzymes that 
enable the koala to subsist on a toxic diet.
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Ability to tolerate a highly toxic diet. The koala’s diet of eucalyptus 
leaves contains high levels of plant secondary metabolites29, phe-
nolic compounds30 and terpenes (for example, ref. 31) that would 
be lethal to most other mammals32. Koalas thus experience little 
competition for food resources. Eucalyptus grandis shows substan-
tial expansion in terpene synthase genes relative to other plant 
genomes33. Eucalypt toxicity is therefore likely to have exerted selec-
tion pressure on the koala’s ability to metabolize such xenobiotics, 
so we searched for genes encoding enzymes with a detoxification 
function and investigated sequence evolution at these loci.

Cytochrome P450 monooxygenase (CYP) genes represent a 
multi-gene superfamily of heme-thiolate enzymes that play a role in 
detoxification through phase 1 oxidative metabolism of a range of 
compounds including xenobiotics34. These genes have been identi-
fied throughout the tree of life, including in plants, animals, fungi, 
bacteria and viruses35. In the koala genome we found two lineage-
specific monophyletic expansions of the cytochrome P450 family 
2 subfamily C (CYP2Cs, 31 members in koala) (Fig. 1a). The func-
tional importance of these CYP2C genes was further demonstrated 
through analysis of expression in 15 koala transcriptomes from two 
koalas, showing particularly high expression in the liver, consistent 
with a role in detoxification (Supplementary Fig. 6).

Comparing CYP2C gene context in mouse versus koala iden-
tified conserved flanking markers strongly suggestive of tan-
dem duplication (Fig. 1b). Further sequence-level analysis of the 
CYP expansions indicated that most conserved regions are under 
strong purifying selection (Fig. 1c). However, there is evidence 
that individual CYP codons have experienced episodic diversify-
ing selection while purifying selection shapes the rest of the gene 
(Fig. 1c–h, Supplementary Note and Supplementary Tables 12 and 
13). Adaptive expansion of CYP2C and maintenance of duplicates 
appear to have worked in concert, resulting in higher enzyme levels 
for detoxification while the interplay between purifying and diver-
sifying selection resulted in neofunctionalization within the CYPs. 
Such adaptations enable koalas to detoxify their highly specialized 
diet rich in plant secondary metabolites.

The characterization of koala CYP2Cs has significant therapeutic 
potential. The high expression levels of CYP2C genes in the liver 
helps to explain why meloxicam, a nonsteroidal anti-inflammatory 
drug (NSAID) known to be metabolized by the protein product of 
CYP2C in humans36,37 and frequently used for pain relief in veteri-
nary care, is so rapidly metabolized in the koala and a handful of 
other eucalypt-eating marsupials (common brushtail possum and 
eastern ringtail possum) compared with eutherian species37,38. It is 
expected that other NSAIDs are also rapidly metabolized in koalas 
and have little efficacy at suggested doses39. Anti-chlamydia anti-
biotics such as chloramphenicol are degraded rapidly by koalas; 

treatment with a single dose applicable to humans is insufficient in 
koalas, which require a daily dose for up to 30 to 45 d. This discov-
ery of CYP2C gene expression levels will inform new research into 
the pharmacokinetics of medicines in koalas.

Taste, smell and food choice. Like many specialist folivores, koalas 
are notoriously selective feeders, making food choices both to target 
nutrients and to avoid plant secondary metabolites40. Koalas have 
been observed to sniff leaves before tasting them41, and their acute 
discrimination has been correlated with the complexity and con-
centration of plant secondary metabolites42. This suggests an impor-
tant role for olfaction and vomerolfaction, as well as taste. While 
most herbivores circumvent plant chemical defenses by detoxifying 
one or a few compounds43, the complexity of eucalyptus plant sec-
ondary metabolites, in combination with the terpene expansion in 
eucalypts, led us to hypothesize that the koala requires enhanced 
capabilities both in specialist detection and in plant secondary 
metabolite detoxification. We therefore investigated the genomic 
basis of the koala’s taste and smell senses, finding multiple gene fam-
ily expansions that could enhance its ability to make food choices.

We report an expansion of one lineage of vomeronasal recep-
tor type 1 (V1R) genes associated with the detection of nonvolatile 
odorants (Supplementary Note). There are six such genes in koala, 
compared with only one in the Tasmanian devil and gray short-
tailed opossum, and none found in tammar wallaby, human, mouse, 
dog, platypus or chicken. The expansion of one lineage of V1R genes 
is consistent with the koala’s ability to discriminate among diverse 
plant secondary metabolites.

Surprisingly, given the degree of its dietary specialization, the 
olfactory receptor genes (n =  1,169) characterized in koala had a 
gene repertoire that was slightly smaller than that of gray short-
tailed opossum (1,431 genes), tammar wallaby (1,660 genes) and 
Tasmanian devil (1,279 genes) (Supplementary Note). This may be 
understood in the context of relaxed selection on olfactory recep-
tors among dietary specialists44.

We also report genomic evidence of expansions within the taste 
receptor families that would enable the koala to optimize ingestion 
of leaves with a higher moisture and nutrient content in concert with 
the concentration of toxic plant secondary metabolites in their food 
plants. The koala’s ability to ‘taste water’ is potentially enhanced 
by an apparent functional duplication of the aquaporin 5 gene45–47 
(Supplementary Table 14 and Supplementary Note).

The TAS2R family has a role in ‘bitter’ taste, enabling recogni-
tion of structural toxins such as terpenes, phenols and glycosides. 
These are found in various levels in eucalypts as plant secondary 
metabolites3,30,31,48. In marsupials, the TAS2R family includes the 
orthologous repertoires from eutherians, as well as three specific 

Table 1 | Comparison of assembly quality between koala genome assembly phaCin_unsw_v4.1 and published marsupial and 
monotreme genomes

Species Genome size 
(Gb)

G+ C content 
(%)

No. sca�olds Sca�old N50 (kb) Reference

Koala phaCin_unsw_v4.1 (female 
Bilbo)

3.42 39.0 1,906a 
5,525b (contigs)

11,589 (contig) This study

Platypus (Ornithorhynchus anatinus) 2.3 45.5 200,283 959 Warren et al. 200882

Gray short-tailed opossum 
(Monodelphis domestica)

3.48 37.7 5,223 59,810 Mikkelsen et al. 
200783

Tammar wallaby (Notamacropus 
eugenii)

2.7 38.8 277,711 37 Renfree et al. 201184

Tasmanian devil (Sarcophilus harrisii) 3.17 36.4 35,974 1,847 Murchison et al. 
201285

aHomozygous. bHeterozygous.
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expansions in the last common ancestor shared by all marsupials49,50 
(Fig. 2). Large koala-specific duplications in four marsupial orthol-
ogous groups have produced a large koala TAS2R repertoire of 24 
genes (Fig. 2). The koala has more TAS2Rs than any other Australian 

marsupial, and among the most of all mammal species49,50, including 
paralogs of human and mouse receptors whose agonists are toxic 
glycosides (Supplementary Table 15 and Supplementary Note). The 
TAS1R gene families, responsible for sweet taste and umami amino 
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Fig. 1 | Analysis of cytochrome P450 family 2 subfamily C gene family. a, Phylogenetic tree of CYP2 gene family in koala (Pcin; 31 CYP2 members), 

compared with marsupials: tammar wallaby (Meug), Tasmanian devil (Shar), gray short-tailed opossum (Mdom); eutherian mammals: human (Hsap), 

rat (Rnor), mouse (Mmus), dog (Cfam); monotreme: platypus (Oana); and outgroup chicken (Ggal). Two independent monophyletic expansions are seen 

in koala in the CYP2C subfamily (highlighted by red arcs). b, CYP synteny map showing expansion of CYP2C genes in koala as compared to eutherians 

(human, dog, rat, mouse) and another marsupial (opossum). c–h, Selection analysis of CYP gene expansion. c, Normalized dN-dS (SLAC (single-likelihood 
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sequence depth). Points indicate statistically significant (threshold α  =  0.1) evidence for codons under selection. Four sites show positive selection across 
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tree (identified in c). e, Comparison of mean episodic selection among koala CYP genes (n =  70). Points indicate mean empirical Bayes factor (EBF) for 

sites under selection for each sequence; error bars, 95% confidence interval. f–h, Mean EBF (natural log transformed, EBF values of 0 excluded) for koala 
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Fig. 2 | Taste receptor analysis in koalas and other mammals identifies three marsupial-specific expansions and further koala-specific duplications. 

TAS2R genes are responsible for bitter taste perception. a, Maximum-likelihood tree of TAS2Rs (including pseudogenes) in the four marsupials, where 

the sequences contained 250 amino acids. 28 representative TAS2Rs of orthologous gene groups (OGGs) in eutherians (red circles) and 7 platypus 

TAS2Rs (gray circles) were also used. There were 27 distinct marsupial OGGs (supported by ≥ 99% bootstrap values), where the nodes of OGG clades 

are indicated by white open circles. Bootstrap values of ≥ 70% in the nodes connecting OGG clades are indicated by asterisks. There are three marsupial-

specific clusters (I, II and III) where massive expansion events occurred in the common ancestor of marsupials after their split from eutherian ancestors. 

b–e, Reconstructed maximum-likelihood trees of TAS2R orthologs in which there are more than two duplicates of koala TAS2Rs: b, TAS2R41; c, TAS2R705; 

d, TAS2R710; and e, TAS2R720. Genomic structures of the umami and sweet taste receptor TAS1Rs were also analyzed and found to be functional in koala 

(see Supplementary Note).
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acid perception, have previously been reported as pseudogenized in 
eutherians with highly specialized diets, such as the giant panda51. 
In the koala, however, we found that all TAS1R genes are putatively 
functional (Supplementary Fig. 7).

Genomics of an induced ovulator. Koala reproduction is 
of particular interest because the koala is an induced ovula-
tor52, with key genes controlling female ovulation (LHB, FSHB, 
ERR1, ERR2), as well as prostaglandin synthesis genes impor-
tant in parturition and ejaculation (PTGS1, PTGS2, PTGS3) 
(Supplementary Note). We identified genes putatively involved in 
the induction of ovulation in the female by male seminal plasma 
(NGF), and in coagulation of seminal fluid (ODC1, SAT1, SAT2, 
SMOX, SRM, SMS) (Supplementary Note), which may function 
to prevent sperm leakage from the female reproductive tract in 
this arboreal species.

Genomic characterization of koala milk. A koala young is about 
the size of a kidney bean and weighs <  0.5 g. It crawls into the 
mother’s posteriorly opening pouch and attaches to a teat, where 
it remains for 6–7 months. It continues to suck after it has left the 
pouch until about a year old.

Analysis of the genome, in conjunction with a mammary 
transcriptome and a milk proteome, enabled us to character-
ize the main components of koala milk (Supplementary Fig. 8, 
Supplementary Table 16, Supplementary Note and ref. 53). The 
high-quality assembly of the genome allowed both the identifi-
cation of marsupial-specific genes and determination of their 
evolutionary origins based on their genomic locations. For 
instance, we found that there are four Late Lactation Protein 
(LLP) genes tightly linked to both trichosurin and β -lactoglobulin 
(Supplementary Fig. 8), potentially allowing marsupials to fine-
tune milk protein composition across the stages of lactation to 
meet the changing needs of their young. Additionally, the koala 
marsupial milk 1 (MM1) gene, a novel marsupial gene, is located 
close to the gene encoding very early lactation protein (VELP), an 
ortholog of Glycam1 (or PP3) that encodes a eutherian antimicro-
bial protein53 (Supplementary Fig. 8). In eutherians, this region 
contains an array of short glycoproteins that have antimicrobial 
properties and are found in secretions such as milk, tears and 
sweat. We propose that MM1 has an antimicrobial role in marsu-
pial milk, along with three other short novel genes located in the 
same region. We also detected expansions in another antimicro-
bial gene family, the cathelicidins.

Koala immunome and disease. At the time of European settlement, 
koalas were widespread in eastern mainland Australia, from north 
Queensland to the southeastern corner of South Australia. Today 
they are mainly confined to the east coast and are listed as ‘vul-
nerable’ under Australia’s Environment Protection and Biodiversity 
Conservation Act 199954. There is strong evidence to suggest that 
some fragmented populations of koalas are already facing extinc-
tion, particularly in formerly densely populated koala territories 
in southeast Queensland and northern New South Wales. A major 
challenge for the conservation of these declining koala populations 
is the high prevalence of disease, especially that caused by the obli-
gate intracellular bacterial pathogen Chlamydia pecorum, which 
is found across the geographic range, with the exception of some  
offshore islands55. A main challenge for managing these populations 
has been the lack of knowledge about the koala immune response to 
disease. Recent modeling suggests the best way to stabilize heavily 
affected koala populations is to target disease56.

The long-read-based genome enabled the de novo assembly of 
complex, highly duplicated immune gene families and compre-
hensive annotation of immune gene clusters53,57,58. These include 
the major histocompatibility complex (MHC)59, as well as T cell 

receptors (TCR), immunoglobulin (IG) (Supplementary Fig. 9, 
Supplementary Tables 17 and 18, and Supplementary Note), natu-
ral killer cell (NK) receptor58 and defensin60 gene clusters. Together 
these findings provide a starting point for new disease research and 
allow us to interrogate the immune response to the most significant 
pathogen of the koala, C. pecorum.

Of the more than 1,000 koalas arriving annually at wildlife 
hospitals in Queensland and New South Wales, 40% have late-
stage chlamydial disease and cannot be rehabilitated. Annotation 
of koala immune genes enabled us to study variation within 
candidate genes known to play a role in resistance and suscep-
tibility to chlamydia infection in other species (Supplementary 
Tables 18–20). Preliminary case/control association tests for five 
koalas involved in a chlamydia vaccination trial showed that the 
MHCII DMA and DMB genes, as well as the CD8-a gene, may 
be involved in differential immune responses to chlamydia vac-
cine (Supplementary Table 21 and Supplementary Note). We also 
conducted differential expression analysis of RNA sequencing 
(RNA-seq) data from conjunctival tissue collected from koalas 
at necropsy, both with and without signs of ocular chlamydiosis, 
showing that in diseased animals, 1,508 of the 26,558 annotated 
genes (5.7%) were twofold upregulated, while 685 (2.6%) were 
downregulated by greater than twofold when compared with 
healthy animals (Supplementary Fig. 9 and Supplementary Note). 
In diseased animals, upregulated genes were associated with Gene 
Ontology (GO) terms for a range of immunological processes, 
including signatures of leukocyte infiltration (Supplementary 
Fig. 9). Immune responses in the affected conjunctivas were 
directed at TH1 rather than TH2 responses. Proinflammatory 
mediators such as CCL20, IL1α, IL1β, IL6 and SSA1 were also 
upregulated. As in human trachoma, this cascade of proinflam-
matory products may help to clear the infection but may also 
lead to tissue damage in the host61. Furthermore, resolution of 
human trachoma infection is thought to require a IFN-γ  driven 
TH1 response62, and in diseased koalas we found that IFN-γ  was 
upregulated 4.7-fold in the conjunctival tissue. These annotated 
koala immune genes will now help us to define features of protec-
tive versus pathogenic immunological responses to the disease 
and may be invaluable for effective vaccine design.

Koala genomes are undergoing genomic invasion by koala ret-
rovirus (KoRV)63, which is spreading from the north of the country 
to the south. Both endogenous (germline transmission) and exog-
enous (infectious ‘horizontal’ transmission) forms are extant64. 
Our results provide a comprehensive view of KoRV insertions in 
the koala genome. We found a total of 73 insertions in the phaCin_
unsw_4.1 assembly (Supplementary Table 22). It is likely that most 
of these 73 loci are endogenous, consistent with our observation 
of integration breakpoint sequences that are shared with one or 
both of the other koala genomes reported (Supplementary Tables 
23 and 24).

We investigated the sites of KoRV insertion to define their prox-
imity to protein-coding genes and explore possible disruptions. 
This analysis identified insertions into 24 protein-coding genes 
(Supplementary Table 25). However, none is likely to disrupt pro-
tein-coding capacity, since 22 insertions are in introns and the other 
two are in 3′  untranslated regions. Transcription proceeding from 
the proviral long terminal repeat (LTR) could possibly affect the 
transcription of the host genes.

Understanding the genetics of host resistance to chlamydia and 
the etiology of the retrovirus will help inform the development of 
vaccines against both diseases, as well as translocation strategies.

Genome-informed conservation. Broad-scale population manage-
ment of koalas is critical to conservation efforts. This is challenging 
because distribution models are not easily generalized across biore-
gions, and further complicated by the unique regional conservation 
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issues described above. Since it is not possible to generalize manage-
ment, it is imperative that decisions are informed by empirical data 
relevant to each bioregion.

Analysis of the koala genome provided the unique opportunity to 
combine historical evolutionary data with high-resolution contem-
porary population genomic markers to address these management 
challenges. To infer the ancient demographic history of the species, 
we analyzed the long-read reference genome and short-read data 
from two other koalas, using the pairwise sequentially Markovian 
coalescent (PSMC) method65 (Fig. 3a, Supplementary Fig. 10 and 

Methods). The data show that the modern koala, which appeared in 
the fossil record 350,000 years ago2, underwent an initial increase in 
population, followed by a rapid and widespread decrease in popula-
tion size ~30,000–40,000 years ago. This is consistent with fossil evi-
dence of rapid declines in multiple Australian species, including the 
extinct megafauna, 40,000–50,000 years ago66 and 30,000–40,000 
years ago67. The koala was thus one of a number of species affected 
by decline during this time that did not ultimately become extinct67.

Distinct PSMC profiles of the koalas from two geographic areas 
and their failure to coalesce suggests some regional differences in 
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genetically similar southern koalas reflects a recent history of widespread translocation8. c, Average inbreeding coefficient (F) (calculated by TrioML80,81) 

of 49 wild koalas. Qld, Queensland; SE, southeast; NSW, New South Wales. P values arising from linear modeling represent significant differences in mean 

F between regions (***P <  0.001; **P <  0.01). There is a high correlation between geographic distance and genetic distance (Mantel test: r2 =  0.4898), 

indicating that genetic rescue between populations is feasible. Center lines, median; box limits, upper and lower quartiles. Upper whisker =  min(max(x), 

Q_3 +  1.5 ×  IQR), lower whisker =  max(min(x), Q_1 – 1.5 ×  IQR); i.e., upper whisker =  upper quartile +  1.5 ×  box length, lower whisker =  lower quartile – 

1.5 ×  box length; circles, outliers. Linear modeling indicated that mean F differed significantly between several regions (Mid-coast NSW–Southern Australia, 

P =  0.000524; Qld–Southern NSW, P =  0.00237; Qld–Southern Australia, P =  0.00000107; SE Qld–Southern Australia, P =  0.006596).
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koala populations, including impediments to gene flow (Fig. 3a). 
Regional differentiation was also detected in analyses of mtDNA68,69, 
although over a shorter time scale.

We analyzed populations of recent koala samples using 1,200 
SNPs derived from targeted capture libraries mapped to the koala 
genome (Supplementary Note). We found notable levels of genetic 
diversity with limited fine-scale differentiation consistent with 
long-term connectivity across regions. We found evidence of low 
genetic diversity in southern koalas, consistent with a recent history 
of sequential translocations8,68,70,71 (Fig. 3b,c). At a continental scale, 
we show biogeographic barriers to gene flow associated with the 
Brisbane Valley and Clarence River, as identified by mtDNA stud-
ies68,72, and find a barrier associated with the Hunter Valley, which 
was not previously known in koalas (Fig. 3b). Levels of inbreeding 
varied across regions (Fig. 3c), but the northern populations most 
under threat in New South Wales and Queensland show high levels 
of genetic diversity.

The information generated here provides a foundation for a 
conservation management strategy to maintain gene flow region-
ally while incorporating the genetic legacy of biogeographic barri-
ers. Furthermore, the contrast in genome-wide levels of diversity 
between southern and northern populations highlights the det-
rimental consequences of the unmonitored use of small isolated 
populations as founders for reestablishing and/or rescuing of 
populations on genome-wide levels of genetic diversity. Low lev-
els of genetic diversity in southern koalas have been associated 
with genetic abnormalities consistent with inbreeding depression, 
including testicular abnormalities73.

Now that we understand the consequences of past transloca-
tions, and the existing genetic structure, it is clear that maintain-
ing and facilitating gene flow via habitat connectivity will be the 
most effective means of ensuring genetically healthy koala popula-
tions over the long term. However, where more intensive measures 
such as translocation are required to rescue genetically depauper-
ate southern populations, these tools and data provide the basis for 
decisions that maximize benefits while minimizing risks74,75. Future 
utility of these SNPs will also include tracking of individual pedi-
grees in captive koala populations and in those wild populations 
being intensively monitored.

The koala genome offers insights into historic and contemporary 
population dynamics, providing evolutionary and genetic context 
for a species that is the focus of considerable management actions 
and resources. By providing a deeper understanding of disease 
dynamics and population genetic processes, including the main-
tenance and monitoring of gene flow, this genomic information 
will enable the development of strategies necessary to preserve the 
species, from the preservation of habitat corridors through to the 
genetic rescue of isolated populations. As members of government 
advisory committees, some of the authors have initiated inclusion 
of genomic information into the New South Wales Koala Strategy. 
This will be used to inform koala management in the state with the 
goal of securing koalas in the wild for the future.

Discussion
The koala genome provides the highest quality marsupial genome 
to date. This assembly has enabled insights into the colonization 
of the koala genome by an exogenous retrovirus and revealed the 
architecture of the immune system, necessary to study and treat 
emerging diseases that threaten koala populations. A greater 
understanding of genetic diversity across the species will guide 
the selection of individuals from genetically healthy northern 
populations to augment genetically restricted populations in the 
south, bearing in mind that chlamydia has not been detected on 
some offshore islands, so risk assessment should be carried out 
before embarking on translocations. Sequencing the genome has 
advanced our understanding of the unique biology of the koala, 

including detoxification pathways and innovations in taste and 
smell to enable food choices in an obligate folivore. Long-term 
survival of the species depends on understanding the impacts of 
disease and management of genetic diversity, as well as the koala’s 
ability to source moisture and select suitable foraging trees. This is 
particularly important given the koala’s narrow food range, which 
makes it especially vulnerable to a changing climate. The genome 
provides a springboard for conservation of this biologically unique 
and iconic Australian species.

URLs. FALCON assembly algorithm, https://github.com/
PacificBiosciences/FALCON-integrate/; FALCON (v 0.3.0), 
http://falconframework.org/; RepeatMasker (v 4.0.3), http://www.
repeatmasker.org/; RepeatModeler, http://www.repeatmasker.org/
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org/repbase/; MAKER, http://www.yandell-lab.org/software/
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trinityrnaseq/; SNAP, http://archive.broadinstitute.org/mpg/snap/; 
GeneMark, http://opal.biology.gatech.edu/GeneMark/; Augustus, 
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edu/genetics/; featureCounts, http://bioinf.wehi.edu.au/feature-
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GATK (v 3.3-0-g37228af), https://software.broadinstitute.org/
gatk/; KAT comp, https://github.com/TGAC/KAT/; BUSCO 
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org/web/packages/gplots/index.html; bedtools (v 2.25.0), http://
bedtools.readthedocs.io/en/latest/; kSamples (v 1.2-4), https://
cran.r-project.org/web/packages/kSamples/index.html; ggbiplot  
(v 0.55), https://github.com/vqv/ggbiplot/; Tandem Repeats Finder, 
https://tandem.bu.edu/trf/trf.html; seqLogo, https://bioconductor.
org/packages/release/bioc/html/seqLogo.html; RNAfold, http://rna.
tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi; UniProt/Swiss-
Prot, http://www.uniprot.org/; dammit!, https://dammit.readthed-
ocs.io/en/refactor-1.0/; Transfuse, https://github.com/cboursnell/
transfuse/; GMAP, http://research-pub.gene.com/gmap/; Trim 
Galore!, https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/; Kallisto, https://pachterlab.github.io/kallisto/; Sleuth, 
https://pachterlab.github.io/sleuth_walkthroughs/trapnell/analy-
sis.html; All-vsl-all BLASTP (version 2.2.30+  ), https://blast.ncbi.
nlm.nih.gov/Blast.cgi; MUSCLE (v 3.8.31), https://www.drive5.
com/muscle/; HMMER suit (v 3.1b1 May 2013), http://hmmer.org/; 
FASTASEARCH (v 36.8.8), https://www.ebi.ac.uk/Tools/sss/fasta/; 
Integrative Genomics Viewer (IGV) (v 2.3.97), https://github.com/
ssadedin/IGV-CRAM/; MEGA (v 7.0.18), https://www.megasoft-
ware.net/; RAxML (v 8.2.11), https://sco.h-its.org/exelixis/web/soft-
ware/raxml/index.html; Burrows-Wheeler aligner (v 0.7.15), http://
bio-bwa.sourceforge.net/; Samtools (v 1.3), http://www.htslib.org/;  
Geneious (v 10.2.3), https://www.geneious.com/; Coancestry, 
https://www.zsl.org/science/software/coancestry/; PLINK (v 1.07), 
http://zzz.bwh.harvard.edu/plink/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0153-5.
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Methods
General methods. A full description of the Methods can be found in the 
Supplementary Note. No statistical methods were used to predetermine  
sample size.

Genome sequencing and assembly of the koala reference genome. Sequencing. 
Samples were obtained as part of veterinary care at the Port Macquarie Koala 
Hospital and Australia Zoo Wildlife Hospital, and from the Australian Museum 
Tissue Collection. Sample collection was performed in accordance with methods 
approved by the Australian Museum Animal Ethics Committee (permit numbers 
11–03 and 15–05). “Paci�c Chocolate” (Australian Museum registration M.45022), 
a female from Port Macquarie in northeast New South Wales, was sampled 
immediately a�er euthanasia by veterinary sta� at the Port Macquarie Koala 
Hospital (27 June 2012), following unsuccessful treatment of severe chlamydiosis. 
Two koalas from southeast Queensland—a female, “Bilbo” (Australian Museum 
registration M.47724), from Upper Brook�eld, and a male, “Birke”, from Birkdale—
were sampled following euthanasia due to severe chlamydiosis (20 August 
2015) and severe injuries (26 August 2012), respectively. High molecular weight 
(HMW) DNA was extracted from heart tissue for Paci�c Chocolate and kidney 
tissue for Birke using the DNeasy Blood and Tissue kit (Qiagen), with RNaseA 
(Qiagen) treatment. HMW DNA from Bilbo was extracted for PacBio sequencing 
from spleen tissue using Genomic-Tip 100/G columns (Qiagen), DNA Bu�er 
set (Qiagen) and RNaseA (Qiagen) treatment. Fi�een SMRTbell libraries were 
prepared (RCG) as per the PacBio 20-kb template preparation protocol, with an 
additional damage repair step performed a�er size selection. A minimum size 
cuto� of 15 or 20 kb was used in the size selection stage using the Sage Science 
BluePippin system. �e libraries were sequenced on the Paci�c Biosciences RS II 
platform (Paci�c Biosciences) employing P6 C4 chemistry with either 240 min 
or 360 min movie lengths. A total of 272 SMRT Cells were sequenced to give an 
estimated overall coverage of 57.3 ×  based on a genome size of 3.5 Gbp. A TruSeq 
DNA PCR free library was constructed with a mean library insert size of 450 bp. 
400,473,997 paired-end reads were generated yielding a minimum coverage 
of 34 ×  . HMW gDNA was sequenced on an Illumina 150bpPE HiSeq X Ten 
sequencing run (Illumina)

Assembly. An overlapping layout consensus assembly algorithm, FALCON (v 0.3.0)  
(see URLs), was used to generate the draft genome using PacBio reads. Total 
genome coverage before assembly was estimated by total bases from reads divided 
by 3.5 Gbp genome size. The estimated total coverage is 57.3 ×  . FALCON leverages 
error-corrected long seed reads to generate an overlapping layout consensus 
representation of the genome. Approximately 23 ×  of long reads are required by 
FALCON as seed reads, and the rest are used for error correction. The seed read 
length of the reads at the 60% percentile was calculated as 10,889 bp. The FALCON 
assembly was run on Amazon Web Service Tokyo region using r3.8xlarge spot 
instances as compute node, with the number of instances varying from 12 to 20 
depending on availability.

After filtering low-quality and duplicate reads, approximately 57.3-fold long-
read coverage was used for assembly. The primary contigs from the FALCON  
v 0.3.0 assembly (representing homozygous regions of the genome) yielded genome 
version phaCin_unsw_v4.1. This comprised 3.19 Gb, including 1,906 contigs with 
an N50 of 11.6 Mb and sizes ranging up to 40.6 Mb. The heterozygous regions of 
the genome (representing the alternative contigs from the assembly) were a total of 
230 Mb, with an N50 of 48.8 Kb (Supplementary Table 2). Approximately 30-fold 
coverage of Illumina short reads was used to polish the assembly with Pilon86.

BUSCO analysis on the draft assembly was run against the mammalian 
ortholog database with the –long parameter on all genomes under comparison. 
This initial analysis showed the assembly only reached about 60% of genome 
completeness, suggesting a high number of indels in the draft genome. The genome 
polishing tool Pilon86 was employed to improve draft assembly from FALCON. 
About 30 ×  of 150 bp paired-end Illumina X Ten short reads from Bilbo was used as 
an input for this polishing process, which was run on a compute cluster provided 
by Intersect Australia Limited.

We implemented the method of Deakin et al.18 for super-scaffolding. Briefly, 
tables of homologous genes were generated using the physical order of genes on the 
chromosomes of gray short-tailed opossum and tammar wallaby as references and 
koala phaCin_unsw_v4.1 (Bilbo) as target (Supplementary Table 4).

Analysis of centromeric regions and repeat structure. Repeat content was  
called using RepeatMasker with combined RepBase libraries (v 2015-08-07)  
and RepeatModeller calls generated from the genome assemblies. The 
resulting calls were then filtered using custom Python scripts to remove short 
fragments (see “Code availability”) and combine tandem or overlapping 
repeat calls. To characterize the centromeric regions of the genome, chromatin 
immunoprecipitation (ChIP) was performed using the Invitrogen MAGnify 
Chromatin Immunoprecipitation System (Revision 6). Repeat content of the 
centromeric regions was determined using RepBase annotated marsupial repeats 
and output from RepeatModeller analysis of koala. RepeatMasker was used 
to locate repeats. Candidate centromeric segments were identified using two 
sliding window analyses, with window sizes of 200 kb and 20 kb and step sizes 

of 100 kb and 10 kb, respectively. Small tandem repeats were discovered in koala 
RSX sequence using the Tandem Repeat Finder program87, using + 2, –3, and 
–7 as scores for match, mismatch and gap opening, respectively. Alignments of 
consensus repeat units with the RSX sequence were processed to obtain nucleotide 
frequency at each position.

Genome annotation and gene family analysis. Annotations were generated using 
the automated genome annotation pipeline MAKER88,89]. We masked repeats in the 
assembly by providing MAKER with a koala-specific repeat library generated with 
RepeatModeler90, against which RepeatMasker (v 4.0.3)91 queried genomic contigs. 
Gene annotations were made using a protein database combining the UniProt/
Swiss-Prot92 protein database, all sequences for human (Homo sapiens), gray short-
tailed opossum (Monodelphis domestica), Tasmanian devil (Sarcophilus harrisii) 
and tammar wallaby (Notamacropus eugenii) from the NCBI protein database93, 
and a curated set of marsupial and monotreme immune genes94. We downloaded 
all published koala mRNAseq reads from SRA (PRJNA230900, PRJNA327021) 
and reassembled de novo male, female and mammary transcriptomes using the 
default parameters of Trinity v 2.3.295. Each assembly was filtered such that contigs 
accounting for 90% of mapped reads were passed to MAKER as homologous 
transcript evidence. Ab initio gene predictions were made using the programs 
SNAP96, Genemark97 and Augustus98. Three iterative runs of MAKER were used to 
produce the final gene set.

Gene families were called using NCBI Blast (2.3.0) OrthoMCL (2.0.9)99. The 
protein sequences of genes belonging to orthogroups identified by OrthoMCL were 
aligned using MAFFT (7.2.71)100 and the gene tree was inferred using TreeBeST 
(1.9.2)101 providing a species tree to guide the phylogenetic reconstruction. Custom 
scripts (see “Code availability”) were applied to identify families with expansion 
within the koala, Diprotodontia, Australidelphia and marsupial lineages.

Sequence evolution. Sequence evolution on specific gene families was conducted 
on the cytochrome P450 (CYP), vomeronasal receptor (V1R), olfactory receptor 
(OR), aquaporin and taste receptor genes (Supplementary Note). Genes involved 
in koala development and reproduction and lactation were also characterized 
(Supplementary Note). Koala MHC, TCR and IGG genes were annotated and 
analyzed for expression between diseased and healthy animals (Supplementary 
Note). Evidence of selection across CYP and V1R genes was evaluated 
(Supplementary Note) using multispecies alignments (N =  152 and 8 sequences, 
respectively) in HyPhy102, hosted by the Datamonkey webserver103.

RNA-seq analysis of koala conjunctival tissue samples. Conjunctival tissue 
samples were collected from 26 koalas euthanized due to injury or disease by 
veterinarians at Australia Zoo Wildlife Hospital, Currumbin Wildlife Hospital and 
Moggill Koala Hospital. The collection protocol was approved by the University of 
the Sunshine Coast Animal Ethics Committee (AN/S/15/36). Health assessments 
of the eye were performed by an experienced veterinarian and classified as either 
‘healthy’ (N =  13) or ‘diseased’ (N =  13) based on evidence of gross pathology 
consistent with ocular chlamydiosis55. Conjunctival tissue samples from each 
animal were placed directly in RNALater (Qiagen, Germany) buffer overnight at 
4 °C before storing at –80 °C for later use. RNA was extracted using an RNeasy 
Mini Kit (Qiagen, Germany) according to the manufacturer’s instructions, with 
an on-column DNase treatment to eliminate contaminating DNA from the 
sample. The concentration and quality of the isolated RNA was determined using 
a NanoDrop ND-1000 160 Spectrophotometer and Agilent BioAnalyzer (Agilent, 
USA). Library construction and sequencing were performed by the Ramaciotti 
Centre (UNSW, Kensington, NSW) with TruSeq stranded mRNA chemistry on 
a NextSeq500 (Illumina, USA). Reads were mapped to the phCin_unsw_v4.1 
assembly using the default parameters of STAR104 and counts summed over features 
using featureCounts105. Differentially expressed genes were called using DESeq2106 
as implemented in the SARTools package107.

Koala retrovirus (KoRV). We searched for KoRV sequences within the scaffolds 
of the phaCin_unsw v4.1 assembly of the Bilbo genome sequence, and also within 
alternative contig sequences before their correction by Pilon (since we noticed 
that in a few cases KoRV sequences were removed in the course of the sequence 
polishing process). KoRV sequences were found by using the program blastn108 
to search with KoRV genome reference sequences (GenBank AF151794 and 
AB721500). Search results were converted to BED format and the KoRV and 
recKoRV components of each read were merged with the program mergeBed. 
KoRV insertions within genes were identified using the program intersectBed109. 
Pre-integration allelic sequences were found by using blastn108 to search the 
phaCin_unsw v4.1 genome sequence assembly with sequences flanking KoRV/
recKoRV integrations as queries. In two cases the expected allelic sequence was not 
present in the Bilbo genome, but was found by searching the genome of another 
koala (Pacific Chocolate). To check the expected relationship between pairs of 
allelic sequences, we inspected dot plot alignments of representative sequences (not 
shown) created with the program dotter110.

Koala population genomics: historical population size. Demographic history 
was inferred from the diploid sequence of each of the three koalas, using a 
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pairwise sequential Markovian coalescent (PSMC) method65. We conducted a 
range of preliminary analyses and found that PSMC plots were not sensitive to 
the values chosen for the maximum number of iterations (N), the number of 
free atomic time intervals (p), the maximum time to the most recent common 
ancestor (t), and the initial value of ρ. Based on these investigations, our final 
PSMC analyses of the three genome sequences used values of N =  25, t =  5, ρ =  1 
and p =  4 +  25 ×  2 +  4 +  6. The number of atomic time intervals is similar to that 
recommended for analyses of modern human genomes65, which are similar in 
size to the koala genomes. We determined the variance in estimates of Ne using 
100 bootstrap replicates. Replicate analyses in which we varied the values of p, t 
and ρ produced PSMC plots that were broadly similar to those using our chosen 
‘optimal’ settings (Supplementary Fig. 10).

The plots of demographic history were scaled using a generation length of  
7 years, corresponding to the midpoint of the range of 6 to 8 years estimated for the 
koala111 and the midpoints of the estimates of the human mutation rate (1.45 ×  10−8 
mutations per site per generation; summarized by ref. 112) and mouse mutation rate 
(5.4 ×  10−9 mutations per site per generation113) were applied in the absence of a 
mutation rate estimate for koala (Supplementary Fig. 10). The koala mutation rate 
is likely to be closer to that of humans, based on greater similarity in genome size, 
life history, and effective population size, relative to mouse112.

Koala population genomics: contemporary population analysis. Forty-nine 
koalas were sampled throughout the distribution using a hierarchical approach 
to allow examination of genetic relationships at a range of scales, from familial 
to range-wide. All individuals were sequenced using a target capture approach 
described in ref. 114, with a kit targeting 2,167 marsupial exon sequences. Illumina 
sequence reads were quality-filtered and trimmed (see ref. 114 for details) and 
mapped to the koala genome (Bowtie2, v2.2.4115). A panel of 4,257 SNP sites was 
identified (using GATK version 3.3-0-g37228af116) that showed expected levels of 
relatedness and differentiation among the sampled individuals. A panel of 1,200 
SNPs (obtained by mapping to targets, filtering, and selecting one SNP per target) 
showed fine-scale regional differentiation consistent with evolutionary history and 
recent population management (Fig. 3).

Statistics and reproducibility. In Fig. 1e, points shown indicate the mean 
empirical Bayes factor (EBF) for sites under selection; error bars, 95% confidence 
interval. In Fig. 1f–h, 95% confidence intervals are calculated as 1.96 ×  s.e.m. 
(sample size is sequence depth, as indicated by red bars in Fig. 1c).

In Fig. 3c, center lines indicate median and box limits indicate upper 
and lower quartiles. Upper whisker =  min(max(x), Q_3 +  1.5 ×  IQR), lower 
whisker =  max(min(x), Q_1 – 1.5 ×  IQR); i.e., upper whisker =  upper 
quartile +  1.5 ×  box length, lower whisker =  lower quartile – 1.5 ×  box length. 
Circles indicate outliers. Linear modeling indicated that mean F differed 
significantly between several regions (Midcoast New South Wales–Southern 
Australia, P =  0.000524; Queensland–Southern New South Wales, P =  0.00237; 
Queensland–Southern Australia, P =  0.00000107; Southeast Queensland–Southern 
Australia, P =  0.006596).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. (1) Custom scripts to identify gene families with expansion 
within the koala, Diprotodontia, Australidelphia and marsupial lineages; (2) 
custom scripts to identify refined repeat calls; and (3) code used to generate SNP 
genotypes from exon capture data are available at https://github.com/DrRebeccaJ/
KoalaGenome.

Data availability. The Phascolarctos cinereus BioSamples are as follows: 
Bilbo 61053, SAMN06198159; Pacific Chocolate, SAMEA91939168; Birke. 
SAMEA103910665. Koala Genome Consortium Projects for the Koala Whole 
Genome Shotgun project and genome assembly are registered under the umbrella 
BioProject PRJEB19389 (union of PRJEB5196 and PRJNA359763).

Transcriptome data are submitted under PRJNA230900 (adrenal, brain, heart, 
lung, kidney, uterus, liver and spleen) and PRJNA327021 (milk and mammary 
gland). Illumina short-read data for Birke is submitted under PRJEB19982.

The Bilbo 61053 assembly described in this paper is version MSTS01000000 
and consists of sequences MSTS01000001–MSTS01001906. For the Bilbo assembly 
Illumina X Ten reads are submitted under PRJEB19457 and PacBio reads under 
PRJEB19889.

ChIP-seq data have been deposited under BioProject PRJNA415832 and  
GEO GSE111153.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 

science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 

items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 

policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 

For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design

1.   Sample size

Describe how sample size was determined. Samples of three koalas for genome sequencing were obtained by opportunistic collection 

and under appropriate animal ethics permits during routine veterinary care. Permits and 

protocols are detailed in Methods section, page 36, paragraph 1. Samples for population 

genomic aspect of analysis were chosen to cover the geographic distribution of koalas in 

Australia. 

2.   Data exclusions

Describe any data exclusions. No data were excluded from analysis.

3.   Replication

Describe the measures taken to verify the reproducibility 

of the experimental findings.

Replication is not used in this study. However there are a number of quality control measures 

presented in the paper (such as BUSCO analysis) that have been used to infer assembly and 

annotation quality in the koala genome presented in this work. See Supplementary file 

section 1.3 and supplementary Table 4. The PSMC analysis (figure 3) 

4.   Randomization

Describe how samples/organisms/participants were 

allocated into experimental groups.

Randomization was not relevant to this study. The work here presents a de novo genome 

assembly, annotation and associated analysis highlighting significant biological findings for 

the koala. The analysis was largely conducted on the genome of a single individual (however 

there are three animals sequenced in total, reported in Supplementary file section 1.2). 

5.   Blinding

Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

Blinding was not relevant to this study. which reports whole genome sequencing of three 

koala samples and associated analyses (which are focused on the single female koala 'Bilbo'. 

The population genomic analysis presented in this work included individually labeled samples 

during data collection but these did not influence the population genomic analysis. 

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 

Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 

study. 

All software (including commercially available programs) and parameters used in this work 

are detailed in the supplementary file and methods section of the main manuscript. 

Custom scripts are all publicly available at  github (https://github.com/DrRebeccaJ/

KoalaGenome)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a third party.

No unique materials were used. Koala samples used in the genome sequences presented in 

this work can be obtained from the Australian Museum frozen tissue collection and 

University of Sunshine Coast researchers. 

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

This is described in Supplementary Data section 2.2 paragraph 1. Centromeric antibodies 

(CENP-A and CREST) were used on koala (species Phascolarctos cinereus)

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 

mycoplasma contamination.

No eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used
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    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide all relevant details on animals and/or 

animal-derived materials used in the study.

Samples were opportunistically obtained during routine veterinary care. See Methods section 

page 36 and Supplementary data section 1.1 (paragraphs 1-2) for statement and animal care 

and ethics approval numbers

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

This study did not involve human research participants.
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ChIP-seq Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data deposition

1.  For all ChIP-seq data:

a.  Confirm that both raw and final processed data have been deposited in a public database such as GEO.

b.  Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

2.   Provide all relevant data deposition access links. 

The entry may remain private before publication.
Bioproject: PRJNA415832 (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA415832) 

And GEO submission: GSE111153 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE111153)

3.  Provide a list of all files available in the database 

submission.

CENPA_R1.fastq.gz 

CENPA_R2.fastq.gz 

CREST_R1.fastq.gz 

CREST_R2.fastq.gz 

INPUT_R1.fastq.gz 

INPUT_R2.fastq.gz 

CENPA_bt2_vs_phaCin_unsw_v4.1_kd2_peaks.broadPeak.bed 

CREST_bt2_vs_phaCin_unsw_v4.1_kd2_peaks.broadPeak.bed 

md5sums.txt 

Geo_Submission_Koala.xlsx

4.   Provide a link to an anonymized genome browser 

session (e.g. UCSC), if available.

N/A (genome not on UCSC)

    Methodological details

5.   Describe the experimental replicates. Two ChIP-seq experiments: 1 IP with CENP-A and 1 IP with CREST, each compared 

to input (replicates are antibodies, only limited quantity of 1 sample available)

6.   Describe the sequencing depth for each 

experiment.

CENP-A paired end reads (2X75) 21,957,887; 98.51% mapped 

CREST paired end reads (2X75) 33,421,909; 98.54% mapped 

Input paired end reads (2X75) 39,171,541; 98.88% mapped

7.   Describe the antibodies used for the ChIP-seq 

experiments.

CENP-A: Macropus eugenii anti-CenpA (rabbit) (derived by Biosynthesis), lot: 

AB1035-1 

CREST: human anti-centromere protein IgG (Antibodies incorporated), cat# 15-235, 

lot: 441.20BK.82

8.   Describe the peak calling parameters. Reads were adapter clipped and trimmed with Trimmomatic 0.36 PE. Surviving 

paired reads were mapped to the koala genome (phaCin_unsw_v4.1) with bowtie 

2 using the “very sensitive, paired end” parameters.  Peaks were called by MACS2 

(version 2.0.10.20131216) using the following parameters: –broad –keep-dup 2 –B 

–q 0.01 

9.   Describe the methods used to ensure data quality. To identify candidate centromeric segments, two sliding window analyses were 

performed with a window size of 200kb and 20kb and a step size of 100kb and 

10kb respectively. These regions were clustered using the heatmap.2 function in R 

(v3.2.5) package gplots (v3.0.1) with a high density of ChIP-seq peaks from CENP-A 

and CREST were identified through a manual curation of clusters of regions with 

similar peak densities. The repeats of these identified candidate regions were 

analyzed for biases between regions of interest and the remainder of the genome 

at the species, family and class level using the RepeatMasker reported metrics: 
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divergence from the model, total fraction of the bases in regions, frequency of 

repeat in regions and completeness of repeat (see below).

10. Describe the software used to collect and analyze 

the ChIP-seq data.

Surviving paired read files were converted to fasta files. The fasta files were broken 

up into smaller files of 1 million reads each. A single 1 million read fasta file from 

each pair was repeat masked with RepeatMasker 4.0.3 using the marsupial 

database as well as a koala denovo database. Repeat class and type was 

summarized using the buildSummary.pl script in the RepeatMasker utility script 

folder. The number of reads for each repeat in the RepeatMasker output file was 

normalized to the total number of repeats detected by RepeatMasker to obtain a 

frequency of detection for each repeat type.  

Repeat content of the centromeric regions in phaCin_unsw_v4.1 was determined 

using RepBase annotated marsupial repeats and output from RepeatModeller 

analysis of phaCin_unsw_v4.1. The genome was masked using RepeatMasker to 

identify the location of repeats. To identify candidate centromeric segments, two 

sliding window analyses were performed with a window size of 200kb and 20kb 

and a step size of 100kb and 10kb respectively. These regions were clustered using 

the heatmap.2 function in R (v3.2.5) package gplots (v3.0.1) with a high density of 

ChIP-seq peaks from CENP-A and CREST were identified through a manual curation 

of clusters of regions with similar peak densities. The repeats of these identified 

candidate regions were analyzed for biases between regions of interest and the 

remainder of the genome at the species, family and class level using the 

RepeatMasker reported metrics: divergence from the model, total fraction of the 

bases in regions, frequency of repeat in regions and completeness of repeat. The 

RepeatMasker output file was converted into a bed file for use with bedtools 

(v2.25.0) and each candidate region was compared against the remaining 

candidates and the full genome as the background to identify the region with 

centromeric characteristic repeats compared to the background regions. To 

compare the candidate regions against the background regions, the Kolmogorov–

Smirnov test (as implemented using ks.test from R) and Anderson-Darling test (as 

implemented in the kSamples package v1.2-4 from R) were used on each of the 

reported RepeatMasker metrics to identify which repeats were significantly 

different between the foreground and background regions. Using the average 

divergence from the repeat models and number of bases belonging to each repeat, 

the similarity of candidate region was visualized using multidimensional scaling and 

clustered using heatmaps using ggbiplot (v0.55) and gplots (v3.0.1) respectively. 
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