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Adaptation and mitigation of climate change in vegetable

cultivation: a review
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and P. Arun Kumar
ABSTRACT
Climate change is an unavoidable phenomenon of natural and anthropogenic origin against which

mitigation and adaptation are required to reduce the magnitude of impact and vulnerability, to avoid

risk in vegetable farming and to ensure sustainable livelihoods of the agricultural community. Genetic

improvement of vegetable crops is an appropriate adaptation strategy to cope with climate change

adversities. A combination study of genomics and phenomics provides a clear understanding of the

environment’s effect on the transformation of a genotype into phenotype. Grafting of a susceptible

scion cultivar onto a resistant rootstock is another way of utilising plant biodiversity against climate

change. Agronomic practices such as resource conservation technologies, mulching, organic

farming, carbon sequestration by cropping systems and agroforestry provide a suite of possible

strategies for addressing the impacts of climate change on vegetable production. Protected

cultivation and post-harvest technology can be significant practices in facing the challenges of

climate change. Weather forecasting models and growth simulation models can be used to predict

the possible impact of climate change on vegetable crop production and they also help in framing

necessary adaptation measures.
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INTRODUCTION
It is crystal clear that our climate is changing on

either regional or global scales, and its effects are evident.

Cultivation is playing a dual role. On the one hand, being a

climate-dependent activity, it is adversely affected by the

consequences of climate change and, on the other hand, it

is an important contributor to climate change (Ahmad et al.

; Koundinya et al. ). The fourth assessment report

of the Intergovernmental Panel on Climate Change (IPCC)

discussed the causes due to agriculture and the necessary

adaptation and mitigation practices in farming. Farming is

contributing to climate change in many ways, through

tillage, use of chemical fertilisers, pesticides, fungicides and

herbicides, and methane emissions from paddy fields and
livestock. Annual green house gas (GHG) emissions from

agricultural production in 2000–10 are estimated globally as

5.0–5.8 Gt CO2-equivalent/yr (IPCC ). In India, agricul-

ture, including livestock, is one of the largest contributors

of GHGs with a share of 17.6% of contributions next

to energy and industry, whose share is 57.8% and 21.77%,

respectively (INCCA ; Planning Commission ).

Figures 1 and 2 explain the GHG emissions from different

sectors and activities of agriculture in India in 2007.

The per cent global share of the five major CO2 emitting

countries and the European Union in 2015 is presented in

Figure 3 (Olivier et al. ). China (29%) is the largest

CO2 emitting country followed by the USA (14%). India
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Figure 2 | GHG emissions (Mt CO2-equivalent) from different activities of agriculture in

India for the year 2007 (source of data: INCCA 2010).

Figure 1 | GHG emissions (Mt CO2-equivalent) from different sectors in India for the year

2007.

Figure 3 | Per cent share of the five major CO2 emitting countries and the European

Union in 2015 (source of data: Olivier et al. 2016).
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stands in fourth position (7%) after the European Union

(10%). The Indian GHG emissions are projected to increase

by three times with respect to the 1990 (988 million tonnes)

emissions in 2020 (3,000 million tonnes) as per Sharma

et al. (). Assuming that there is no further increase in

CO2 emissions rate, it is predicted that India’s CO2 emis-

sions will increase from below 2 GtCO2 in 2010 to almost

8 GtCO2 in 2050 (Gambhir et al. ). The mean annual

temperature of India is projected to increase between

2.9�C and 4.3�C from the 1961–90 baseline by the end of

2080 (Mallet ).

Farming is the source of methane, nitrous oxide and

carbon dioxide. It includes the use of chemical fertilisers,

pesticides and herbicides produced by burning of fossil

fuels. India’s average consumption of fertilisers increased

from 69.84 kg/ha in 1991–92 to 128.8 kg/ha in 2014–15

(Anonymous ). Fertilised soils release more than two

billion tonnes of CO2 equivalent GHGs every year world-

wide (Smith et al. ). When nitrogenous fertilisers are

applied, it is expected that, in general, 1–2% of all the

applied nitrogen is emitted as N2O (Muller ; Niggli

et al. ; Sartaj et al. ). The consumption of nitrogen-

ous fertilisers in India for the year 2014–15 was 16.9

million tonne (Anonymous ), so, for that year, at 2%

rate, 0.33 million tonne N2O would have been released

into the atmosphere. Tillage accelerates the oxidation of

soil organic carbon, thereby releasing high amounts of

CO2 into the air (Prior et al. ; La Scala et al. ).

The opening of soil crust through tillage further makes

the soil prone to soil erosion. Annually, in India, 5.3 billion

tonnes of soil gets eroded, and annual soil loss is about

16.4 t/ha (Anonymous ). Mislay of organic carbon

either through oxidation or erosion leads to a reduction

in fertility of soils, depletion of microbial activity and

lower fertiliser use efficiency (FUE), which further necessi-

tates a requirement for more fertiliser.

Burning of crop residue in the field itself is a common

practice in several Indian states such as Uttar Pradesh,

Punjab and Haryana and leads to the production of CO,

CH4, NO, N2O, SO2 and many other gases. The emitted

CH4 and N2O from burning crop residue in India in 2007

were estimated as 0.23 and 0.006 Mt, respectively (INCCA

; Planning Commission ). As well, farm mechanis-

ation contributes to the atmospheric CO2 in significant
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quantities. Agriculture consumes 20.95% of total electricity

consumption in the country (Anonymous ) while power

generation is contributing 37.8% to the total GHG produced

in the country (INCCA ; Planning Commission ).
ADAPTATION AND MITIGATION

Adaptation and mitigation are two essential components of

addressing climate change. Adaptation is defined as ‘Adjust-

ment in natural or human systems in response to actual or

expected climatic stimuli or their effects, which moderates

harm or exploit beneficial opportunities’ whereas mitigation

is defined as ‘An anthropogenic intervention to reduce the

sources or enhance the sinks of greenhouse gases’ (IPCC

). Although there are differences between adaptation

and mitigation (IPCC ; Muller ; Locatelli )

(Table 1), they are complementary in nature. If mitigation

strategies are effective, the lesser will be the impact to

adapt and vice versa (Anonymous ).

In agriculture, mitigation is necessary as it is contribut-

ing to climate change and adaptation is also required

because even with strong mitigation efforts the climate
Table 1 | Differences between climate change adaptation and mitigation

S. no. Adaptation

1 Adjustment or preparedness to changing climatic conditions

2 Includes strategies that aim at coping with climate change and
reducing the vulnerability to it

3 Adaptation takes the advantage of positive impacts and reduces
the negative impacts

4 Adaptation entered the agenda more prominently only recently

5 Acts locally

6 Does not consider the causes of climate change

7 Strategies provide short-term benefits and must be updated with
changing climatic conditions

8 Benefits can be visible immediately

9 Different adaptation practices cannot be valued in a single
metric unit

10 In agriculture, the examples of adaptation are the genetic
alteration of crop plants to tolerate adverse climatic
conditions, and water and soil moisture conservation
technologies
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would continue changing in the coming years. Moreover,

adaptation will not be able to eliminate all negative impacts

(Locatelli ), and it eventually leads to a magnitude of cli-

mate change to which effective adaptation is possible only at

very high social, environmental and economic costs

(Anonymous ). Therefore, both adaptation and mitiga-

tion are crucial to face future changes in the climate.

It is a well-known fact that the reduction in GHG emis-

sions requires a decrease in a country’s gross domestic

product (GDP), with the decrease being greater in the case

of developed countries. In India, it is estimated that the pur-

suit of low carbon strategies will decrease the per capita

CO2 emissions in India, in 2030, to 2.6 t/head at the cost of

average GDP growth rate decline by 0.15% (Planning Com-

mission ).
STRATEGIES TO COMBAT CLIMATE CHANGE
IN VEGETABLE GROWING

In the developing countries of the world, nearly 70% of

people live in rural areas where agriculture is the largest sup-

porter of livelihoods (Easterling et al. ). The majority of
Mitigation

Preventing or limiting the climate change (reducing GHG
emissions)

Includes strategies that reduce the climate change

Mitigation reduces both the positive and negative impacts

Mitigation has been a topic for a long time

Acts globally

Deals with causes of climate change, i.e., sources of greenhouse
gases

Strategies provide long-term benefits and are almost permanent

Benefits take a long time to become visible

Various mitigation efforts can be assessed in a single unit (CO2

equivalent), and their cost-effectiveness can be determined

In agriculture, the examples of mitigation are carbon
sequestration through increasing carbon sinks, avoiding fossil
fuel-based fertilisers and chemicals, and zero tillage
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India’s population is in the countryside and its livelihood is

agriculture. The service sector’s contribution to the Indian

GDP has overtaken that of agriculture, but the number of

families that depends on farming for survival remains

almost the same. Hence, one can say that climate change

poses a grave threat to the livelihoods of the rural farming

community. In this perspective, the adaptation and mitiga-

tion strategies should be planned in such a way that they

reduce the risk and uncertainty in Indian agriculture and

ensure sustainable livelihoods in rural communities.

UNFCCC () also stated that ‘risk management and

reduction strategies and economic diversification to build

resilience are also important aspects of adaptation to cli-

mate change’. In this paper, attempts have been made to

discuss necessary adaptation and mitigation strategies

(Figure 4) in vegetable crops to combat climate change.
GENETIC IMPROVEMENT OF VEGETABLE CROPS

Genetic improvement of crops mainly forms an adaptation

strategy as it is a preparation for crop plants to adapt to

future predicted climate. Genetic improvement of crop
Figure 4 | Different adaptation and mitigation practices to address climate change.

om http://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf

022
plants to make them able to withstand the adverse effects

of climate change is an important means for their sustain-

able production and for food security. The complexity

arises due to the polygenic nature of abiotic stress tolerance,

lack of selection criteria and inadequate knowledge about

the genetics of stress tolerance, making breeding for abiotic

stress tolerance difficult (Ong ).

Characterisation is known as the description of qualities

or peculiarities. It helps not only in the identification of

useful traits present but also in the estimation of inbuilt vari-

ation and diversity among the available germplasm. This

information further helps in the possible utilisation of such

germplasm in crop improvement programmes. Genetic

improvement mainly depends on the amount of genetic

variability present in the population. The first and foremost

prerequisite for effective selection to occur is genetic varia-

bility. In any crop, for any trait, the germplasm serves as

an invaluable source of base population and offers a primary

source of genetic variability (Koundinya et al. a; Sidhya

et al. ). Selection of resistant plants from the existing

populations and further development of varieties from

their progeny is a primitive and fruitful method of breeding

of crop plants.
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Genetic diversity delineation helps in the grouping of

available germplasm into distinct clusters. It helps in identi-

fication of diverse parents for hybridisation. The greater the

diversity between the parents the greater will be the hetero-

sis and gain of superior recombinants in segregating

generations (Koundinya et al. a, ). Hybridisation

or heterosis breeding helps in the transfer of abiotic stress

tolerant genes from the tolerant cultivars to agronomically

superior cultivars.

With the changing climatic conditions, crop durations

are becoming small and the favourable environment is avail-

able for a limited period. In this perception, breeding for

short duration and early varieties is gaining importance as

a measure to adapt to climate change. Germplasm for maxi-

mum nutrient use efficiency is also being screened and

identified in all vegetable crops. These traits result in

decreased use of chemical fertilisers. At NBPGR, out of 45

accessions of Brassica juncea evaluated, ten accessions,

namely, IC267693, IC275106, IC277700, IC296501,

IC3396605, IC339671, IC338494, IC571625, IC571654

and IC538719 were found with high nitrogen use efficiency
Table 2 | Vegetable varieties with various stress tolerance released in India for cultivation

Crop Variety

Tomato Pusa Sheetal
Pusa Hybrid 1
Pusa Sadabahar
Sabour Suphala
Arka Vikas

Eggplant SM-1, SM-19 and SM-30
Pragati and Pusa Bindu

Okra Pusa Sawani

Musk melon Jobner 96-2

Spinach beet Jobner Green

Cucumber Pusa Barkha
Pusa Uday

Bottlegourd Pusa Santusthi

Onion Hisar-2

Carrot Pusa Kesar

Radish Pusa Himani

Sweet potato Sree Nandini

Potato Kufri Surya
Kufri Sheetman, Kufri Dewa

Cassava H-97, Sree Sahya

://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
(NBPGR ). ICAR-CTCRI identified and released a cas-

sava variety Sree Pavithra, which is tolerant to low

potassium (K) content in the soil (CTCRI ).

Heat tolerant hybrids in Chinese cabbage and breeding

lines in tomato (CL5915) were developed at the Asian Veg-

etable Research and Development Centre, Taiwan (Pena &

Hughes ). In India, heat and drought tolerant tomato

cultivars were developed at the Indian Agricultural

Research Institute, New Delhi and Indian Institute of Horti-

cultural Research, Bangalore. Frost, heat and drought

tolerant potato cultivars were developed at the Central

Potato Research Institute, Shimla. Table 2 shows a list of

such cultivars released for cultivation in India in various

vegetable crops. In tomato, gene Pat-2 governs parthenocar-

pic fruit development at high temperatures. This trait will be

helpful in increasing fruit set in tomato at high temperatures

where normal fruit set is impaired (George et al. ).

There are many genes from wild relatives that can be

used to modify vegetable crops to become more resilient

to harsh environmental conditions. These genes can be

transferred to the cultivated types either by conventional
Abiotic stress tolerance

Fruit set up to 8�C (low) night temperature
Fruit set up to 28�C (high) night temperature
Fruit set at both low (6�C) and high (30�C) night temperature
Salt tolerant at seed germination stage
Tolerant to moisture stress

Drought
Salt tolerance

Tolerant to salinity

High soil pH

High soil pH (up to 10.5) tolerant

Tolerant to high temperature
Suitable for throughout the year

Hot and cold set variety

Tolerant to salinity

Tolerant to high temperature

Grown throughout the year

Drought tolerant

Heat tolerant up to 25�C night temperature
Frost tolerant

Drought tolerant
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breeding or with the aid of biotechnological tools or biotech-

nology alone (Koundinya et al. b). The transfer of

beneficial traits from wild varieties to cultivated types has

been practised. In India, wild genes have already been suc-

cessfully introgressed into the cultivated types in vegetable

crops like tomato and okra for disease resistance and qual-

ity. Wild relatives’ utility was recognised in breeding

programmes of major crops in the 1940s and 1950s

(Plucknett et al. ), and wild gene use in crop improve-

ment gained prominence by the 1970s and 1980s with

their use being investigated in a broad range of crops

(Hoyt ). Several workers have extensively studied and

identified various desirable attributes such as resistance to

biotic and abiotic stresses present in different wild species.

However, only a few of them have been successfully trans-

ferred to cultivated species. A few wild relatives of tomato

are tolerant to environmental stresses. Solanum cheesmani

is tolerant to salt (Epstein et al. ) and S. pimpinellifo-

lium is tolerant to heat (Coons ). S. chilence is

tolerant to drought due to a longer primary root and an

extensive secondary root system; S. pennellii is tolerant to

drought due to the thick cuticle, waxy leaves which allow

conserving leaf water in dry soils (O’Connell et al. ).

S. lycopersicon var. cerasiformae cultivar Nagarkarlan from

the Philippines is tolerant to waterlogging (Rebigan et al.

). Phaseolous filiformis, a wild relative of common

bean has tolerance to salinity (Jimenez et al. ) and

extreme temperatures (Buhrow ). P. acutifolius is toler-

ant to heat (Lin & Markhart ), drought (Mikla et al.

) and salinity (Jimenez et al. ). Eggplant wild rela-

tives Solanum linneaeanum and S. macrocarpon are

tolerant to salinity and drought, respectively, as reviewed

by Collonnier et al. ().

Biotechnology also offers scope for the improvement of

vegetables to make them suitable for altering climatic situ-

ations. Biotechnological tools like tissue culture and

genetic engineering of crop plants are useful to screen and

develop resistant varieties that can cope with stress factors.

Embryo rescue helps in preventing embryo abortion, a post-

fertilisation barrier in distant crosses (Koundinya et al. ),

whereas somatic hybridisation by fusing of protoplasts of

two different species helps in elimination of pre-fertilisation

barriers in distant hybridisation (Collonnier et al. ;

Koundinya et al. ). Low-temperature tolerance is
om http://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
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transferred successfully to Phaseolus vulgaris (French

bean) from P. retensis by hybridisation followed by embryo

rescue as mentioned by Jakhar & Sastry (). Smillie

et al. () found that chilling resistance of tomatoþ
potato somatic hybrids was intermediate between the chil-

ling resistances of tomato and potato. They proposed that

these somatic hybrids might be useful for transferring

genes for chilling resistance into the domestic tomato. Gen-

eration of heritable variation during tissue culture is known

as a somaclonal variation (SCV). Variations can be created

for stress tolerance, disease tolerance and herbicide toler-

ance (Rai & Rai ). A salt-resistant SCV line in eggplant

was obtained from cell culture in a medium containing 1%

sodium chloride by Jain et al. (). Genetic engineering or

recombinant DNA technology involves moving of genes

beyond the species and genus barriers. Cisgenics and trans-

genics are capable of introducing new genes into the target

species from closely related to even completely unrelated

organisms. Frost tolerance gene AFP 1 (anti-freezing protein)

was introduced into a tomato cultivar from winter flounder

fish (Hightower et al. ). A heat shock protein gene

(HSP17.7), which confers high-temperature tolerance, was

isolated from carrot (Malik ). This gene can be trans-

ferred to other vegetable crops for improvement against

high temperature. AVP1 (Park et al. ) and AtNHX1

(Zhang & Blumwald ) genes, which govern drought

and salt tolerance, respectively, were transferred to tomato

from Arabidopsis thaliana. Collonnier et al. () reported

that increased tolerance to salt (200 mMNaCl) and polyethy-

lene glycol (PEG)-mediated drought tolerance have been

obtained in eggplant genotypes by the introduction of the

bacterial mannitol-1-phosphodehydrogenase (mtlD) gene

responsible for the synthesis of mannitol.

Genomic studies help in identifying alleles of candidate

genes and further facilitate isolation of molecular markers

followed by a screening of populations with the aid of mol-

ecular markers (Ishitani et al. ). Expressed sequence

tags (ESTs) can be used for the identification of cell type-

specific or tissue-specific genes, characterisation of a

genome of an organism, discovery of novel genes or the

regulatory networks of metabolic pathways. High through-

put DNA microarrays help in studying gene expression

profiles, i.e., up-regulation or down-regulation under particu-

lar stress condition or the ‘switching on’ and ‘turning off’, of
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a vast number of genes under stress, simultaneously, in a

single experiment (Ong ).

Identification of quantitative trait loci (QTL) for toler-

ance to various abiotic stresses helps in pyramiding them

into one cultivar. Foolad & Jones () identified five

QTL for salinity tolerance in an F2 population in tomato

from a cross between S. lycopersicum x S. pennellii, while

Villalta et al. () identified 13 and 20 QTL for fruit

yield under saline conditions in S. pimpinellifolium and

S. cheesmani, respectively. Twenty-three QTL were ident-

ified for recovery after drought stress in potato

(Anithakumari et al. ). Dumont et al. () observed

colocalisation of two raffinose sugar QTL and one

RUBISCO activity QTL with resistance to frost damage in

pea. AFLP markers were used for mapping of ten QTL

associated with drought tolerance at seedling stage and

maturity in cowpea by Muchero et al. (). Thirteen

QTL were detected for taproot length and the ability to

extract water from deep in the soil profile in lettuce (Lactuca

sativa) and the wild L. serriola (Johnson et al. ) by using

AFLP markers.

Marker-assisted selection (MAS) assists conventional

breeding by reducing the time involved in long generation

screening and accurate confirmation of the presence or

absence of particular gene(s) as they are not affected by

the external environmental conditions unlike morphological

markers (Collard & Mackill ; Vogel ). They facili-

tate efficient introgression of superior alleles from wild

species into the breeding programmes and enable the pyra-

miding of resistant genes controlling quantitative traits (Pena

& Hughes ). MAS by using various DNA and isozyme

markers, offers an excellent opportunity for effective screen-

ing and selection of suitable plants with desirable allelic

combinations that can perform well under varying climatic

situations. MAS is extensively used in crop improvement

in disease resistance (e.g., bacterial blight resistance in

rice) followed by nutrition and quality (provitamin A in

sweet potato and cassava) (Vogel ). Both disease resist-

ance and nutritional quality are important as diseases are

aggravated and the quality of vegetables is affected badly

by climate change (Koundinya et al. ). In vegetables,

MAS is utilised in developing high yield cultivars (AB2

tomato in Israel), but its use in improving polygenic traits

like abiotic stress tolerance in vegetables is still in progress
://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
(Pena & Hughes ; Vogel ). In the words of Jannink

et al. (, p. 166), ‘MAS has failed significantly to improve

polygenic traits’. MAS ignores genes with small effects in

selection for a quantitative trait. Genomic selection effec-

tively facilitates selection for these characters, which uses

all genome-wide markers data and their phenotypic data

to calculate genome estimated breeding values (Jannink

et al. ), which are used to select candidate parents

(Okogbenin et al. ). Whole-genome models predict all

marker effects in all loci across the entire genome and cap-

ture the small effects of QTL (Desta & Ortiz ). Genome-

wide selection is superior to MAS and phenotypic selection

regarding gain per unit cost and time (Wong & Bernardo

).

Tropical tuber crops like cassava can withstand moisture

stress and recover easily after drought. Efforts can be made

towards identifying and characterising drought tolerant

genes in these crops. Genetic markers, namely, 3,000 restric-

tion fragment length polymorphism (RFLP), 800 simple

sequence repeat (SSR), 120 random amplified polymorphic

DNA (RAPD) and nine isozyme markers were identified for

drought tolerance in cassava (Okogbenin et al. ).

Expression profiling studies revealed that four genes

(MeALDH, MeZFP, MeMSD and MeRD28) were exclusively

up-regulated in the drought tolerant genotype of cassava to

comparable levels. These were identified as candidate cas-

sava drought tolerance genes by Turyagyenda et al. ().

Phenomics study helps in the complete phenotypic

characterisation of germplasm under controlled environ-

mental conditions. It facilitates more precise and accurate

observations of the phenotypic expression of a gene or

whole genome under a given set of environmental con-

ditions, which may be a single stress or combination of

stresses. It uses large-scale approaches like conveyor sys-

tems, image capturing systems and robotic and computing

systems to measure and analyse various plant growth, devel-

opment, morphological and physiological observations

accurately without destructive sampling. High throughput

phenomics facilitates the recording of ultramicroscopic

observations like stomata closure under stress conditions.

These observations help in the selection of plants that per-

form well under different stress conditions such as

drought, high temperature, salinity and elevated atmos-

pheric CO2. Phenomics are expected to bridge the gap
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between physiology and plant breeding. The study of geno-

mics in conjunction with phenomics quantifies the

environment-driven dynamics in the phenotypic expression

of a genotype. Figure 5 illustrates a model breeding

scheme that combines both genomics and phenomics for

drought tolerance in cassava. This model is applicable for

other vegetable crops and/or other stresses with modifi-

cations. As tolerance to drought is a polygenic character, a

heterogeneous population approach is suggested instead of

the pure stand as it is difficult to pyramid all the genes/

alleles into a single cultivar.
Figure 5 | Model breeding scheme for drought tolerance scheme in cassava.
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GRAFTING

Grafting of a susceptible scion cultivar onto a resistant root-

stock is another way of utilisation of plant biodiversity to

adapt to climate change (Koundinya et al. b). It offers

an opportunity to overcome several biotic and abiotic stres-

ses (Koundinya & Kumar ), which are a major setback

to vegetable production and are becoming intensified by cli-

mate change. High and low temperature tolerance in tomato

was achieved by grafting onto Solanum melongena EG203

(Burleigh et al. ) and Solanum habrochaites LA1777
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rootstocks (Venema et al. ), respectively. Watermelon

plants were made drought tolerant by grafting onto ash

gourd plants (Sakata et al. ). Grafting onto Solanum

melongena rootstock helped in bacterial wilt and flooding

tolerance in tomato (Palada & Wu ). Rootstocks from

Cucurbita species were more tolerant to salt than rootstocks

from Lagenaria siceraria (Matsubara ). Interspecific

rootstocks like Solanum lycopersicum x S. habrochaites pro-

vided low soil temperature (10 to 13�C) tolerance to their

grafted tomato scions and S. integrifolium x S. melongena

rootstocks provided low soil temperature (18 to 21�C) toler-

ance to eggplant scions, respectively (Okimura et al. ).
AGRONOMIC PRACTICES

Agronomic practices like resource conservation technol-

ogies (RCT), mulching and carbon sequestration by

agroforestry and cropping systems may decrease GHGs by

increasing their intake and their storage of C in biomass,

wood and soil. Agronomic practices globally can mitigate

0.39 t CO2 equivalent/ha/year under a dry climate, and

0.98 t CO2 equivalent/ha/year under a moist climate

(Smith et al. ; Milder et al. ). The main strategies

to sequester carbon and to reduce GHG emissions through

agricultural practices are enriching soil carbon, minimising

the use of inorganic fertilisers, restoring degraded lands

and preventing deforestation (Chatterjee ). Multiple

cropping systems, such as crop rotation, intercropping,

cover cropping (Wang et al. ) and agroforestry systems

(Roy et al. ) play a critical role in optimising carbon

sequestration in agriculture by influencing optimal yield,

and increasing carbon sequestered with biomass and in

the soil. Moreover, it further helps restore degraded soils,

enhancing land productivity, improving soil biodiversity

and protecting the environment by reducing the enrichment

of atmospheric CO2, which in turn, mitigates climate change

(Wang et al. ).

Resource conservation technologies

Resource conservation practices in cultivation could

decrease the net emission of carbon dioxide in many areas

(Uri & Bloodworth ). It can help to mitigate
://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
atmospheric GHG by reducing the existing emission sources

and sequestering carbon through minimal soil disturbance

by combining no-till, permanent organic soil cover and

crop rotation (BIAC ; Chatterjee ). These techniques

result in healthier soil, enhanced carbon sequestration,

decreased erosion as well as reduced use of water, energy

and labour (Chatterjee ).

Zero tillage and reduced tillage help in reduction of oxi-

dation of organic carbon. Jethro Tull, father of tillage,

envisaged the importance of tillage in agriculture as it loos-

ens the soil, breaks the soil crust and pebbles and exposes

the soil-borne pest and fungal spores to the sun (Reddy &

Reddi ). However, the present day slogan is ‘do not till

or little till’ in the light of increasing cost of fuels, labour

and climate change problems. Zero tillage prevents the oxi-

dation and escape of soil organic carbon as CO2 into the

atmosphere while cover crops or organic soil cover add

carbon to the soil. Moreover, conservation tillage minimises

the use of machinery required for tillage, and hence reduces

burning of fossil fuels. Conservation tillage and residue man-

agement, globally, can reduce emissions by as much as 0.35 t

CO2 equivalent/ha/year under warm dry climate and 0.72 t

CO2 equivalent/ha/year under warm moist climate (Smith

et al. ; Milder et al. ). Conversion of all croplands

to conservation tillage globally could sequester 25 Gt

carbon over the next 50 years (Baker et al. ). Conserva-

tion tillage facilitates much slower decomposition of plant

residue than conventional tillage (Drury et al. ). This

reduction in decomposition will result in reduced CO2 emis-

sion. Lifeng et al. () found lower daily soil carbon

dioxide emissions from no tillage when compared to con-

ventional tillage and rotary tillage.

Precision farming, another RCT, includes site-specific

nutrient management through the judicious application of

fertilisers as per the soil nutrient status, thereby reducing

the excess use of fertilisers. In this type of farming, the

amount of irrigation water required by the crop is deter-

mined based upon the soil moisture status and crop

requirement for water at that stage of growth in a site-

specific manner. It also makes use of protected structures

to safeguard the plants from harsh external environmental

conditions (Mondal et al. ). Also, RCT can play a

major role in reducing the cultivation cost, improving soil

carbon build-up and reducing the water runoff and soil
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erosion besides improving irrigation water efficiency, input

use efficiency, resource base and environment (Yadav ).

Organic farming

Organic farming integrates both adaptation and mitigation

of climate change (IFOAM ; Muller ; Niggli et al.

). Mitigation of climate change through organic farming

is possible due to the avoidance of chemical fertilisers, her-

bicides and pesticides, soil carbon build-up, and crop

rotations with legumes (IAASTD ; IFOAM ;

Muller ). Green and green leaf manuring, animal

manure, legume crop rotations are major components of

nutrient management in organic agriculture. They add suffi-

cient nitrogen (N) to the soil, and they release N slowly

compared to chemical fertilisers, leading to significant

reduction in the loss of N from agriculture fields. Organic

matter also diversifies soil food webs and helps in cycling

more N from biological sources within the soil (Pimentel

). Organic farming uses 60–70% less N than chemical

agriculture. Therefore, organic farming is estimated to

reduce emission of N2O at the rate of 1.2–1.6 Gt CO2 equiv-

alent annually (IFOAM ). Reduced N2O emission is due

to lower N inputs (Ho & Ching ; Muller ), less N

from organic manure, higher C/N ratios of organic

manure and efficient uptake of mobile N in soils by using

cover crops (Ho & Ching ). It is clear that CO2 emission

in organic farming is lower compared to conventional agri-

culture as it does not disturb the soil structure, reduces

soil erosion and increases plant cover, and also there is mini-

mal use of fertilisers and pesticides produced from fossil

fuels (Muller ; Sartaj et al. ). Restoration of organic

soils can globally mitigate all GHGs emissions from 33.51 t

CO2-equivalent/ha/yr in a cool climate to 70.18 t CO2-

equivalent/ha/yr in a warm climate (Smith et al. ).

Organic farming facilitates soil carbon sequestration

through organic manures, green manures, intercropping,

and tree and hedge planting (IFOAM ; Muller ).

Total (100%) conversion of all agricultural lands worldwide

to organic agriculture globally could sequester 2.4 Gt CO2/

annum for organic farming with good organic practices

and up to 15.50 Gt CO2/annum for organic farming with

high standards of soil fertility build-up and conservation

practices (IFOAM ).
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Organic farming of crops helps in climate change

adaptation through preventing and reversing soil erosion,

restoring degraded land, improved drought and flooding

resilience, increased water use efficiency (WUE), water

conservation practices and agro-genetic biodiversity

(IAASTD ; IFOAM ). The addition of organic

manures, less tillage and crop rotation improves soil struc-

ture, soil organic matter and soil fertility build-up (IFOAM

; Sartaj et al. ). Organic farming produces 20%

higher soil carbon than conventional farming, and it

could offset 11% of global GHGs for at least the next 20

years (Wright ). Organic matter improves water infil-

tration and thus reduces soil erosion and prevents loss of

nutrients through runoff (Pimentel ). Conservation

of soil moisture through mulching and cover crops in

organic farming facilitates drought resilience of the

crops. Moreover, soils under organic farming have better

water-holding capacity than conventional farming;

hence, organic agriculture is more resistant to moisture

stress or drought (Muller ; Sartaj et al. ). Organic

farming of crops eliminates the risk and decreases the vul-

nerability of the farmers to climate change as it is low

input and less risky farming (Muller ; Sartaj et al.

). The produce obtained through growing crops organi-

cally is highly remunerative and fetches a higher price for

the farmer. Hence, organic farming is a better alternative

for the agricultural community under a climate change

situation (Sartaj et al. ).

At the Central Tuber Crops Research Institute, Thiruva-

nanthapuram, an experiment was conducted on organic

farming in elephant foot yam for five years by Suja et al.

(). They found a 20% yield increase and net profit was

estimated as 28% higher compared to chemical farming.

Organic farming, besides, improved the root quality and

physical and chemical properties of the soil. Significantly

higher pH and 19% higher organic C, higher exchangeable

Mg, available Cu, Mn and Fe contents and 28.4% increased

water-holding capacity were observed in the case of organic

farming.

Integrated cropping systems

Integrated cropping systems in association with cropping

practices have the ability to sequester atmospheric carbon,
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thereby helping in the formulation of mitigation choices of

climate change (Wang et al. ). Intercropping, mixed

cropping, relay cropping and strip cropping helps in increas-

ing the yield and productivity of crops. Under changing

climatic situations, crop failures, reduced yields, reduction

in crop quality and increasing pest and disease problems

are common, and they render vegetable cultivation unprofi-

table (Koundinya et al. ). Under such circumstances,

multiple cropping systems are more beneficial than mono-

cropping as the loss due to the failure of one crop can be

compensated by the yield from another crop. Cropping sys-

tems also aim at increasing the farm income by crop

diversification, thereby reducing the risk and uncertainty

as a result of climate change. Intercropping of vegetables

can be a possible and reliable measure to cope with these

problems as it is a more productive system and a less risky

technology (Kamanga et al. ). It is productive through

judicious utilisation of resources, namely, light, space,

water and nutrients in stress-prone areas, especially in

South Asia and Africa where environmental stresses are

common (Machado ). The growing space, as well as

the residual moisture after harvesting of a short duration

crop, might be utilised by a long duration crop during the

reproductive phase, when it normally experiences moisture

stress after withdrawal of monsoon rains. Hence, intercrop-

ping could be an option to address the detrimental effects of

climate change and reduce the vulnerability of crops to cli-

mate change. There are few examples of intercropping of

vegetables in which the yield of the component crops is

higher than the individual crop. Legumes have been the

common intercrops in any intercropping system owing to

their short duration and N-fixing ability. Intercropping

with legumes has been becoming more stable and depend-

able than sole cropping systems in vegetable cultivation

(Patel et al. ). Although the nonleguminous and no-N-

fixing vegetables require longer duration than the legumes,

they are also suitable as intercrops because of their high

profitability and higher yields. Intercropping of baby corn

with cowpea, okra, brinjal and chilli during summer

(Adhikary et al. a) and with tomato, brinjal, chilli and

pea during autumn–winter (Adhikary et al. b) is a

much more profitable and productive system than sole crop-

ping. Research work in rainfed areas has shown that

intercropping with specific planting geometry and selection
://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
of compatible crops is a cost-effective practice to make use

of available soil moisture and nutrients more efficiently

and thus improve the productivity of dryland crops (Gos-

wami et al. ). Tree-based intercropping (TBI) systems

are believed to be effective in mitigating GHGs. Research

done at the University of Guelph Agroforestry Research

Station (GARS) in Canada indicated that TBI systems are

capable of lowering N2O emissions by 1.2 kg/ha/yr, as

assessed by Evers et al. (). Annual cereals, grain crops

and vegetables can also be grown as intercrops in between

the rows of perennial tree vegetables such as drumstick

and thereby help farmers to gain more income per unit

area. The farmers in Tamil Nadu, an Indian state, grow sor-

ghum and other dry land Poaceae crops as intercrops in

drumstick fields (de Saint Sauveur ). Moreover, inter-

cropping prevents the spread of vector-borne diseases,

which are becoming aggravated due to climate change

(Koundinya et al. ). Adhikary et al. (a) found that

intercropping of okra plants with baby corn reduces the

spreading of yellow vein mosaic virus in okra as the baby

corn plants act as a barrier to whitefly, the vector for this

virus.

Crop rotation with legumes helps in fixing atmospheric

N, thereby, reducing the burning of fossil fuels for the pro-

duction of chemical fertilisers as reported by Wang et al.

(). Growing cover crops is an effective approach to

improve carbon sequestration and soil organic carbon sto-

rage (Chatterjee ). Moreover, cover crops assist in

moisture conservation in soil by preventing the loss of moist-

ure through evaporation, thereby cover cropping forms an

important adaptation strategy against drought or moisture

stress.

Mulching

Mulching helps to conserve soil moisture, prevents soil

degradation and protects vegetables from torrential rains,

high temperatures and flooding (Pena & Hughes ).

Both organic and inorganic mulches are being used in the

cultivation of vegetable crops like okra, brinjal, round

melon, ridge gourd, bottle gourd and sponge gourd, under

stress conditions. Mulching reduces soil moisture evapor-

ation, moderates soil temperature, restricts weed growth

and reduces soil runoff and erosion. Moreover, organic
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mulches like rice straw, fenugreek, cluster bean and grasses

help in improving the soil fertility and add organic carbon to

the soil as they are allowed to degrade after their use. Mulch-

ing with rice straw in summer season benefited tomato

production in Taiwan (AVRDC ; Pena & Hughes

). Rice straw mulching in a tomato crop exhibited maxi-

mum B:C ratio due to higher fruit yield and lower initial

input requirement during summer (Pandey & Mishra ).

Inorganic or plastic mulches do not add organic matter to

the soil, but conserve soil moisture and reduce weed

growth. Some coloured plastic mulches also help in control-

ling pests and diseases (Table 3), which are being provoked

by the climate change.

Irrigation and fertiliser management

Irrigation water management is a critical adaptation strategy

under varying climatic conditions. Water is one of the most

important requisites for crop production, a vital component

in all biological systems, and climate change directly hits its

sources and reduces its availability. Climate change affects

and delays the monsoons and often causes crop failure.

The delay or failure of the monsoons results in water short-

age and below average crop yields (Koundinya et al. ).

Timely irrigation and conservation of soil moisture are criti-

cal components of irrigation water management under

climate change (Pena & Hughes ). The role of mulching

and cover cropping and how precision farming helps in con-

serving soil moisture have already been discussed above.
Table 3 | Benefits of coloured mulches (adapted from Chandra 2009)

Mulch colour Observed benefits

Transparent Greater soil warming

Black Suppress weed growth, reduce soil water loss, increases so
vegetable yield

Silver Increases yield, repels certain aphid species and whiteflie
incidence of aphid-borne viruses, reduction in soil temp

Red Warming the soil, controlling weeds, conserving moisture
incidence of early blight, and suppression of nematodes

Blue The colour attracts thrips

Green IRT Weed control, moderate soil warming

Yellow Attracts certain insects, such as whitefly, cucumber beetle
to prevent damage to the main planting
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Micro irrigation systems such as sprinkler and drip irrigation

are already proven technologies of water conservation and

increasing WUE, FUE and crop yield. Their performance

in the climate change context has been discussed previously

by several authors. The maximum WUE in cabbage is found

under drip irrigation over furrow irrigation by Kumar et al.

(). In Florida, when need-based irrigation is given to

tomato crops by recognising soil moisture content through

sensors, it saves 15–51% irrigation water over conventional

drip irrigation (Zotarelli et al. ). It also takes part in the

mitigation strategy as micro irrigation avoids soil disturb-

ance and reduces the soil surface runoff, which are

common problems with surface irrigation methods.

Fertiliser management, another input management

approach in crop production under climate change, mainly

forms the mitigation strategy. Integrated nutrient manage-

ment (INM) makes use of organic manures, inorganic and

biofertilisers and thereby reduces the dependence on chemi-

cal fertilisers (BIAC ). Nutrient management has global

GHG emissions mitigating potential up to 0.33 t CO2-equiv-

alent/ha/yr in a moist climate and 0.62 t CO2-equivalent/

ha/yr in a warm climate (Smith et al. ). Complex

(NPK) and customised fertilisers, fortified micro-nutrient

fertilisers, bio-fertilisers (phosphate solubilising bacteria;

Azospirillum, Azotobacter, Rhizobium and potash mobilis-

ing biofertilisers) can supplement up to 20–25% of

chemical fertilisers usage in the country (Anonymous

). Fertigation helps in the judicious application of nutri-

ents, reduces wastage and increases FUE of crops. Planting
Crops

Crop raising in colder
regions/seasons

il temperature, and can improve

s and reduces or delays the
erature

Pepper

, increasing the yield, reducing the Tomato

Cucumbers, summer squash

Cantaloupe

, some aphids and serves as a trap
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fast-growing trees in degraded areas, converting them to bio-

char and subsequent addition to the soil as a source of

nutrients provides a way for carbon sequestration

(Chatterjee ). Application of silicate amendments helps

in the conversion of CO2 into bicarbonates besides reversing

the acidification of soils (BIAC ; Chatterjee ).

Farming with perennials

Perennials improve soil health as they maintain the ground

cover, soil structure and biota. They also have a deeper root

system than annuals which helps in binding soil particles

together and supports microbial and fungal processes that

increase water stable aggregates and soil organic matter.

Moreover, perennial roots contain more carbon than

annuals (FAO ; USDA ). Growing of perennials

also prevents soil erosion (USDA ) by binding soil par-

ticles together, and their management practices do not

disturb the soil much. Moreover, during drier years and in

whole drought situations, the deep root system of trees can

exploit a large volume of water and nutrients, thereby help-

ing the plants to survive under diminishing soil moisture

conditions to some extent (Roy et al. ). Moreover, grow-

ing of perennials with multiple uses of food, fodder and fuel

will diversify the income source (FAO ). The majority of

vegetables are grown as annuals. However, some tree peren-

nial vegetables, such as drumstick, help farmers in gaining

more income per unit area. Drumstick (Moringa oleifera)

is drought tolerant and grows well in arid regions. The farm-

ers in the drought-prone district Ahmednagar of Maharastra

of India are cultivating drumstick with a benefit cost ratio of

3:1 (CCKN-IA ).

Agroforestry

The adoption of agroforestry practices like windbreaks and

riparian forest buffers, which incorporate trees and shrubs

into ongoing farm operations, represents a potentially

significant sink of greenhouse gases. Agroforestry signifi-

cantly stores carbon in plant biomass (Smith et al. ;

Chatterjee ). Use of some legume and nitrogen-fixing

trees in agroforestry systems supports the fixing of atmos-

pheric nitrogen in the soil (Chatterjee ), which reduces

the need for application of nitrogenous fertilisers to the
://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
intercropped crops in case of silvi–pastorial, horti–pastorial

systems. Agroforestry globally can mitigate 0.3 t CO2-equiv-

alent/ha/year under warm dry climate and 0.7 t CO2-

equivalent/ha/year under warm moist climate (Smith et al.

; Milder et al. ). Verchot et al. () mentioned

that carbon sequestration by agroforestry will be 600 Mt by

the year 2040. Agroforestry systems avoid long-term vulner-

ability as trees act as an insurance against drought, insect

pest outbreaks and other threats (Rathore ). In addition,

they provide socio-economic benefits to the farming commu-

nity, thus helping to minimise the risk and uncertainty in

agriculture under a climate change situation.
PROTECTED CULTIVATION

Protection of crops from unfavourable environmental con-

ditions is an age-old agronomic practice. Under varying

weather, cultivation of crops under protected structures is

becoming compulsory to protect them from high and low

temperatures, drought and flooding situations and soil pH

stresses. The climate inside the greenhouse can be regulated

by using various devices such as heating and cooling sys-

tems, CO2 emission and absorbing systems, automated

need-based irrigation and nutrient supplying systems

(Jensen & Malter ). Soilless cultivation (hydroponics

and aeroponics) avoids the problems associated with soil

cultivation like weeds, salinity, alkalinity, acidity and soil-

borne pests and diseases (Eng ). Several researchers

and authors have described the role of protected cultivation

in protecting crops from extreme environmental conditions

such as high and low temperatures. In addition, the har-

vested produce will fetch a good price in the market

(Singh & Sirohi ).
POST-HARVEST TECHNOLOGY

Cotty & Jamie-Garcia () and Costello et al. () dis-

cussed the effect of climate change on post-harvest quality

of produce. Climate change is adversely affecting agricultural

productivity. Moreover, an ever-increasing population

coupled with decreasing land under cultivation enhances

the demand for food for human consumption. In this context,
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minimising post-harvest losses and increasing the shelf life of

the harvested produce are required to meet the ever-increas-

ing food requirement. About 2% of horticultural produce is

processed in India, and the post-harvest losses of fruits and

vegetables in India are 50%; this compares to developed

countries whose losses are 2–25% (Sudheer & Indira ).

These losses could be minimised to a great extent through

appropriate commodity and location-specific post-harvest

technology, preferably in the production catchment. The

food processing industry is growing rapidly in India due to

its low base, the increased availability of surpluses, changing

lifestyles, tastes and higher disposable income of consumers.

For the year 2014–15, in India, the growth rate of the food

processing industry was 4.7%, outperforming the manufactur-

ing sector whose growth rate was 2.3% (Anonymous ).

Furthermore, investment in technologies that minimise

wastage of food, food storage and safe transport, and in devel-

oping small-scale industries like low-cost drying, packing,

bottling and canning is clearly needed (BIAC ). Such pri-

mary processing industries enhance byproduct utilisation and

quality of food products, facilitate employment and income

generation for rural youth, and guarantee sustainable liveli-

hoods in the countryside.

Preservation through processing is followed only in some

vegetables like tomato, onion, potato and tropical tuber crops

in India. The Central Tuber Crops Research Institute, Thiruva-

nanthapuram, Kerala, India has developed several types of

starch-based value-added products: gluten-free spaghetti from

sweet potato, noodles from cassava and sweet potato, and

pickles from yam and elephant foot yam (CTCRI ). Tropi-

cal tuber crops’ capacity to thrive, to some extent, under

adverse climatic conditions and the potential for the prep-

aration of various value-added products from them have

made them themost suitable for changingweather conditions.
FORECASTING

Technology to improve the quality and accessibility of data

on crop production under climate change has been devel-

oped. Forecasting is the prediction of future value based

on past data. Weather forecasting models (WFM) provide

the advantage of daily forecasting of weather information

through remote sensing, validation of different land-use
om http://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
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products and dissemination of information (Vermeulen

et al. ). The crop growth simulating models (GSM)

(Table 4) predict crop growth and yield under future climatic

conditions using various parameters which include future

weather scenarios predicted by weather forecasting or

global circulating models. These can be used to predict the

possible impact of climate change on crop production and

also help in framing necessary adaptation measures. Differ-

ent pest and disease forecasting models have also been

developed to predict the appearance of pest and diseases

in advance to allow preventive actions to be taken. Luck

et al. () used three global climate models (EH5OM,

HadCM3Q and CCAM-Mark 3.5) and two regional climate

models (RegCM3 and PRECIS) for prediction of potato

yields in India, Bangladesh and Australia. They also used

the Hyre model, Smith model, Wallin model, Blitecast, Fry

model, Hartil and Young models for the prediction of late

blight disease incidence in potato under changing climatic

conditions.

Another way of assessing the possible impact of climate

change on crop production is by conducting the experiment

in a modified environment condition (Table 4) that includes

high temperature, and high CO2 and other GHG concen-

trations. For example, growing crops in a CO2 enriched

environment helps attain a better understanding of crop

growth and yield under elevated CO2 conditions. These

types of environments can be created in a closed environ-

ment like greenhouses and growth chambers or an open

environment like FACE, FATE. Most of such studies are per-

formed in closed environments, but the experiments

conducted in an open environment are more representative

of field conditions as a closed environment misses several

other factors such as plant competition.

From the huge amount of literature on crop production

under the influence of climate change, it is understood that

climate change threatens crop production and its impacts

will continue in the future, causing global food security to

worsen. It necessitates the framing up of needs-based sus-

tainable adaptation and mitigation strategies that can

effectively combat climate change, avoid risk and uncer-

tainty in agriculture, and also ensure sustainable

livelihood. The review suggests that cropping systems, con-

servation tillage, fertiliser management and agroforestry

form important mitigation strategies whereas genetic



Table 4 | Examples of crop growth simulation models and experiments under modified environment

S. no. Crop growth simulation models Application Case study examples

1 DSSAT: Decision Support
System For Agrotechnology
Transfer

A software application that includes crop
simulation models for 42 crops

Potato DSSAT-SUBSTOR
(Raymundo et al. )

2 WOFOST; World Food
Studies

A mechanistic model which explains crop growth
based on the underlying physiological processes,
such as photosynthesis, respiration and the
influence of environmental conditions on these
processes

Potato SWAP-WOFOST (Yan )

3 INFOCROP A generic crop model that simulates the effects on
crop growth, yield, soil carbon, nitrogen and
water, and greenhouse gas emissions by weather,
soils, agronomic practices (crop husbandry) and
major pests

INFOCROPPOTATO (Singh et al. )

4 APSIM: Agricultural
Production Systems
Simulator

A simulation of systems which deals with a range of
plant, animal, soil, climate and management
interactions

APSIM-Potato (Brown et al. ; Lisson &
Cotching )

5 CropSyst: Cropping Systems
Simulation Model

An analytical tool to study the influence of climate,
soils, and crop management on cropping systems
productivity and the environment

Greater yam, CROPSYSTVB-yam, (Marcos
et al. ); CROPSYSTVB-CSPOTATO
(Alva et al. )

6 Madhuram A sweet potato specific model to predict crop
phenology based on vegetative developmental
days and reproductive developmental days

Sweet potato (Somasundaram & Santhosh
Mithra )

Experiments under modified environment

1 MLT: Multi Location Trial To find out the genotypes or varieties with high
adaptability to different locations

2 FACE: Free Atmospheric
Carbon dioxide
Enrichment

To study the crop growth and yield in response to
high atmospheric CO2

Chinese yam (Thinh et al. ); Potato
(Miglietta et al. )

3 FATE: Free Atmospheric
Temperature Elevation

To study the crop growth and yield in response to
high atmospheric temperatures

4 T-FACE: Temperatureþ
FACE

A combination of FACE and FATE

5 OTC: Open Top Chamber To study the effects of elevated CO2 and other
atmospheric gases on vegetation

Potato (Finnan et al. )
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improvement, grafting, irrigation management, protected

cultivation, post-harvest technology and forecasting models

are the adaptation strategies. Organic farming acts as an

adaptation and mitigation strategy. A holistic approach

based on all these strategies is required to combat climate

change. Questions remain such as is organic farming effi-

cient enough to feed sufficiently? How is protected

cultivation possible for a small or marginal farmer with lim-

ited capital and resources? These questions need to be taken

into serious consideration while framing strategies. The time

has come to initiate intensive research on climate change
://iwaponline.com/jwcc/article-pdf/9/1/17/200663/jwc0090017.pdf
specific to agriculture at national and international levels.

Establishment of a strong cooperation between public

sector institutions and private NGOs, which are working

on climate change, is much needed. Financial incentives

that encourage farmers to take up efficient carbon storage

and improved WUE and FUE practices are needed. Affores-

tation and reforestation under clean development

mechanisms can be taken up at farmer level. A well-organ-

ised extension system should be developed to help farmers

become aware and to keep them well informed regarding cli-

mate change and its effects on crop production, to prepare
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them to face uncertainty, and to provide information about

new regulatory structures and government priorities and

policies. Training programmes should be conducted to

motivate and to train farmers to follow mitigation and adap-

tation practices.
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