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find that both cold and hot days increase mortality. However, hot days are less deadly in warm 

places while cold days are less deadly in cool places. Incorporating this heterogeneity into end-of-

century climate change assessments reverses the conventional wisdom on climate damage 

incidence: cold places bear more, not less, of the mortality burden. Allowing places to adapt to 

their future climate substantially reduces the estimated mortality effects of climate change.

Garth Heutel

436 Andrew Young School

Department of Economics

Georgia State University

PO Box 3992

Atlanta, GA 30302-3992

and NBER

gheutel@gsu.edu

Nolan H. Miller

College of Business

University of Illinois

4033 BIF

515 East Gregory Drive

Champaign, IL 61820

and NBER

nmiller@illinois.edu

David Molitor

University of Illinois at Urbana-Champaign

340 Wohlers Hall

1206 S. Sixth Street

Champaign, IL 61820

and NBER

dmolitor@illinois.edu



1 Introduction

The prospect of rising global temperatures over the 21st century has focused attention on

understanding how climate change affects human well-being and whether adaptation or mit-

igation strategies can offset its harmful effects (IPCC, 2014). One common approach to

estimating climate change effects is to first estimate economic damages due to weather and

then calculate climate damages using shifts in the future weather distribution predicted by

climate models (Deschênes and Greenstone, 2011). Applications of this approach have gen-

erally assumed that the relationship between weather and mortality is uniform across regions

and is constant over time. For example, Hsiang et al. (2017) estimate that excess mortality

will account for about 70% of end-of-century (2080–2099) climate damages in the United

States and that northern, cooler regions will generally bear lower mortality costs from cli-

mate change than warmer regions. However, both the overall magnitude and geographic

distribution of climate damages could deviate substantially from these predictions if the

mortality effects of weather vary geographically or if places adapt to their future climate.

In this paper, we estimate how the mortality effects of temperature vary across U.S.

climate regions and use these estimates to predict local and national end-of-century climate

change impacts on U.S. elderly mortality. We assess climate change impacts for three cases:

assuming homogeneous effects of temperature across regions, incorporating heterogeneity in

a region’s current temperature-mortality relationship, and allowing for both current hetero-

geneity and future adaptation. Our analysis leverages Medicare administrative data on dates

of death and ZIP codes of residence for all elderly U.S. beneficiaries from 1992–2013, daily

weather monitor readings, and end-of-century climate change predictions from 21 climate

models and two different emissions scenarios.

Our analysis proceeds in two parts. In the first part, we conduct a nonparametric analysis

aimed at establishing the extent to which mortality effects of temperature vary across climate

regions. While both hot and cold days increase mortality, on average, relative to a moderate

day, we find that hot days are much deadlier in cool regions than in warm ones. The reverse

is true for cold days. This heterogeneity implies that, absent future adaptation, a warming

climate will increase mortality more in cool places—and less in warm places—than would be

implied by homogeneous temperature effects. In addition, these results suggest that attempts

to account for adaptation to hot weather under a warming climate must also account for the

potential for regions to simultaneously de-adapt to cold weather.

In the second part, we assess the mortality effects of projected end-of-century climate

change. Informed by our heterogeneity analysis, we first estimate the mortality effects of

temperature as a smooth, semi-parametric function of temperature and local (ZIP code
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level) climate. We then calculate climate damages for each ZIP code by combining tem-

perature effects with projected shifts in the future weather distribution for each ZIP code.

This approach allows us to model both heterogeneity in the current temperature-mortality

relationship based on a region’s historical climate and the potential for the region to adapt

to its future climate.

We find that accounting for heterogeneity and adaptation substantially influences the

sign, magnitude, and geographic distribution of predicted climate damages relative to a

conventional approach that assumes homogeneous current temperature effects and no fu-

ture adaptation. Using the conventional approach, we predict an overall increase in elderly

mortality of 0.76%, with warm regions bearing larger burdens and cool regions benefiting

from mortality reductions, similar to conclusions by Houser et al. (2014) and Hsiang et al.

(2017). However, accounting for heterogeneous current temperature effects implies a much

larger aggregate mortality increase of 2.15% and reverses the distribution of predicted climate

damages: cold places bear more, not less, of the mortality burden.

Further allowing places to adapt to their future climate yields mortality effects of cli-

mate change that are systematically lower than estimates that do not allow for adaptation.

When we account for both current heterogeneity and future adaptation, we estimate an

overall decrease in U.S. elderly mortality of approximately 0.53% by the end of the century,

compared to the overall mortality increase of 2.15% for the case of heterogeneous effects

with no adaptation. This finding is best interpreted as quantifying the potential scope for

adaptation to future climate change using currently available technologies that regions have

found worthwhile to adopt given historical costs and their current climates. Because we

model neither the future cost of adaptation nor the nonmortality effects of climate change

on elderly welfare, our findings do not imply that climate change will necessarily improve

elderly well-being.

Our paper contributes to a growing literature that explores adaptation to climate change.1

Methodologically, the studies most closely related to ours are Butler and Huybers (2013)

and Auffhammer (2017), which use a similar approach to consider regional adaptation in

maize production and in energy use, respectively. In contemporaneous work, Portnykh

(2017) considers weather, adaptation, and mortality using Russian data. Our paper also

contributes to studies of how the mortality effects of temperature vary across climate regions.

For example, Curriero et al. (2002) and Barreca et al. (2016) find that cold days tend to

have larger effects in southern climates, while hot days tend to have larger effects in northern

climates. Barreca et al. (2015) more thoroughly examine how the mortality impacts of hot

1Kahn (2016) and Massetti and Mendelsohn (2018) review the climate adaptation literature. Deschênes
(2014) reviews the empirical literature on temperature, human health, and adaptation.
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days vary across U.S. states according to the frequency at which they occur.

Our work expands on these studies in three primary ways. First, we use more spatially and

temporally granular data spanning the United States to characterize graphically, and in a

statistically precise way, how the entire temperature-mortality relationship varies with local

climate. This is important because climate change can affect the likelihood of both hot and

cold days, varying by region. Second, we combine climate-specific temperature effects with

location-specific climate change projections to predict end-of-century climate damages both

locally and in aggregate. Third, we predict the scope for adaptation to climate change using

cross-sectional heterogeneity in the observed temperature-mortality relationship, simultane-

ously accounting for adaptation to heat and possible de-adaptation to the cold.

The remainder of this paper proceeds as follows. Section 2 describes our data. In sec-

tion 3, we estimate climate-specific temperature-mortality relationships. Section 4 makes

predictions of long-run climate change-induced mortality, with and without climate-based

regional heterogeneity and with and without adaptation. Section 5 concludes.

2 Data

2.1 Data Description

Our analysis leverages a novel combination of three primary data sources: daily weather

monitor readings from the National Oceanic and Atmospheric Administration’s (NOAA)

Global Historical Climate Network (GHCN), elderly mortality and place of residence from

Medicare administrative data, and climate projections from the NASA Earth Exchange

Global Daily Downscaled Projections (NEX-GDDP). We briefly describe the weather and

mortality data and variable construction in this section. Section 4.1 describes the climate

model projections. Appendix section A.1 provides more detailed data descriptions.

The primary geographic units for our analysis are ZIP codes, as defined by the 2010 U.S.

Census Bureau’s ZIP Code Tabulation Areas (ZCTAs). ZCTAs aggregate census blocks to

form real representations of United States Postal Service (USPS) ZIP Code mail delivery

routes. For most areas, the ZCTA code is the same as the USPS ZIP Code.

We obtain daily minimum and maximum temperatures from NOAA’s GHCN database,

which provides climate summaries for weather stations across the 50 U.S. states, the Dis-

trict of Columbia, and Puerto Rico. For each ZIP code, we construct daily high and low

temperatures as the inverse distance-weighted average of all available maximum and min-

imum temperatures, respectively, for monitors within 20 miles of the ZIP code centroid,

following the monitor aggregation method used by Currie and Neidell (2005) and Beatty
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and Shimshack (2014). The daily average temperature is defined as the midpoint of the

daily high and low temperatures.2

We categorize ZIP codes into climate regions based on their cooling degree days (CDD),

derived from NOAA’s 1981–2010 Climate Normals for U.S. weather stations. CDD are based

on daily average temperatures and are designed to reflect the energy needed to cool a building

to a base temperature, typically 65°F. For example, one day with an average temperature

of 75°F represents 10 CDD, while a day with temperatures below the base temperature

represents 0 CDD. A weather station’s CDD Normal is a three-decade average of its annual

CDD, which is the sum of daily CDD values across all days in the year. The CDD Normal for

a ZIP code is the inverse distance-weighted average of CDD Normals at the nearest weather

station and any other stations within a 20-mile radius of the ZIP code centroid.

Finally, we measure mortality using Medicare enrollment files from 1992–2013. These

files provide demographic data on all individuals eligible for Medicare in each year, including

date of birth, date of death, and ZIP code of residence. We restrict our sample to elderly

beneficiaries aged 65–100, who represent over 97% of the U.S. elderly resident population

(appendix figure B.1). We define daily mortality for a ZIP code as those who die within a

given time period (e.g., within three days of the index date) as a fraction of all beneficiaries

residing in the ZIP code who were alive and eligible for Medicare as of the index date.

2.2 Summary Statistics

The primary sample for our analysis contains 32,860 ZIP codes, yielding over 250 million

ZIP-code-day observations over the sample period (1992–2013). Appendix figure B.2 shows

how climate varies across the sample. The Medicare population-weighted average ZIP code

CDD Normal is 1,404. The coolest third of ZIP codes have fewer than 787 CDD, with some

parts of Alaska and Colorado having 0 CDD, as the average temperature never exceeds 65°F.

The warmest third of ZIP codes have at least 1,442 CDD, with some very hot ZIP codes in

Arizona, California, Florida, and Puerto Rico exceeding 4,500 CDD.

Figure 1 summarizes the distribution of realized temperature over the sample across each

of 19 temperature bins ranging in 5°F increments from < 10°F to > 95°F. The gray-shaded

region presents the distribution of daily average temperature for the United States as a

whole, while the blue, gold (dashed), and orange curves present respective distributions for

the coolest, middle, and warmest thirds of U.S. ZIP codes.

2Another source of daily weather data comes from the PRISM Climate Group, which produces spatially
interpolated data at a 4km resolution. Because PRISM data are only available for the conterminous United
States, we use the GHCN weather data for our main analysis. We also construct daily ZIP code weather
based on PRISM data (appendix section A.1) and show in appendix section A.2 that results based on PRISM
weather data are qualitatively similar to those based on GHCN data.
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Appendix tables B.1a–B.1b summarize daily mortality by temperature bin for each of the

three climate terciles and for the United States as a whole, respectively. Average three-day

mortality was 39.4 deaths per 100,000 beneficiaries, corresponding to an annual mortality

rate of 4.8%. However, mortality was systematically lower on warmer ZIP days, with the

lowest three-day mortality rate of 35 deaths per 100,000 occurring after days with average

temperatures above 95°F. A naïve interpretation of this pattern is that replacing cool days

with very hot days reduces mortality. Yet this conclusion could be flawed either because hot

days tend to occur during the summer, confounding the temperature effect with seasonality,

or because the population residing in regions where hot days occur most often differs sys-

tematically from cooler regions. The richness of our data allows us to address these potential

confounders by controlling flexibly for both location and seasonality.

3 Heterogeneous Mortality Effects of Temperature

In this section, we examine the extent to which the mortality effects of temperature vary

across climate regions. For this analysis, we define climate regions as the coolest, middle,

and warmest population-weighted third of ZIP codes based on CDD Normals. We then

nonparametrically estimate the temperature-mortality relationship for each climate tercile.

3.1 Empirical Strategy

We use year-over-year variation in daily temperature to identify the causal effect of tem-

perature on mortality, inspired by the approach of Deschênes and Greenstone (2011). Our

analysis uses daily observations of mortality and temperature at the ZIP code level. Our

primary outcome of interest, mortalityzd, is the number of deaths per 100,000 beneficiaries

in ZIP code z within three days after index day d.3 Our estimating equation is

mortalityzd =
∑

b∈B\{65−70}

βcool
b tempbinb

zd × 1 (ZIP z in coolest third of regions)

+
∑

b∈B\{65−70}

βmid
b tempbinb

zd × 1 (ZIP z in middle third of regions)

+
∑

b∈B\{65−70}

βhot
b tempbinb

zd × 1 (ZIP z in warmest third of regions)

+ZipDayzd + Lzd + StYr zd + εzd.

(1)

3Using a post-event window captures possible lags in mortality effects and near-term mortality displace-
ment (harvesting). Appendix figure B.4 shows results for mortality windows of up to 28 days after the index
day. We do not observe harvesting at either very hot or very cold temperatures when extending the mortality
window beyond three days, and therefore we focus our primary analysis on three-day mortality.
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The primary independent variables of interest in equation 1 are temperature indicators

tempbinb
zd defined by which of the 19 temperature bins b∈B = {< 10, 10−15, . . . , 90−95, >

95} the average temperature in ZIP code z falls in on day d. The temperature bins are then

interacted with indicators for the climate tercile containing the ZIP code. This specification

allows for arbitrary nonlinearities in the relationship between temperature and mortality and

further allows this relationship to vary arbitrarily by climate region.

Because equation 1 includes ZIP code fixed effects, the coefficients on the set of temper-

ature indicators for each climate region are only identified up to a common constant (i.e.,

a vertical shift in the temperature-mortality relationship). This corresponds to arbitrarily

omitting one temperature bin in the regression, which we choose to be the 65°F–70°F bin. As

a result, the coefficients βc
b describe the mortality effect in climate region c of replacing a day

with an average temperature in bin b with a 65°F–70°F day. Identification up to a common

constant also implies that all statements we make about heterogeneous treatment effects

reflect differences in the curvature of the temperature-mortality relationship, not differences

in mortality levels across regions.

We identify the effects of temperature on mortality by isolating year-over-year variation in

temperature and mortality, controlling for both geography and seasonality using fixed effects

ZipDayzd for each ZIP code and day of year combination. This control strategy accounts for

seasonal mortality patterns that may vary by ZIP code, such as elevated winter mortality

and reduced summer mortality. To account for serial correlation in daily temperature and

potentially lagged mortality effects, Lzd includes three fully interacted sets of 5-degree average

temperature bins for the preceding two and six days and the subsequent two days, which

are further allowed to vary by climate tercile. Finally, we include state-by-year fixed effects,

StYr zd, to control for arbitrary annual shocks that may vary by state, such as changes

to Medicare or Medicaid policy. All regressions are weighted by the ZIP code’s Medicare

population. We two-way cluster standard errors at the county and state-date levels to allow

for arbitrary correlations within groups of nearby ZIP codes over time and across all ZIP

codes in the state at a particular point in time.

3.2 Results

Figure 2a depicts results from estimating equation 1 with three-day mortality as the outcome.

Markers with whisker lines plot the nonparametric temperature bin estimates and associ-

ated 95% confidence intervals. Nonparametric estimates are shown only for the coolest and

warmest climate terciles and for binned temperatures that occur with a frequency of at least

one day per decade in the climate region. Solid lines plot estimates from a semi-parametric
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version of equation 1, where temperature bin indicators are replaced by a 5th-degree poly-

nomial in the temperature bin. The semi-parametric and nonparametric estimates agree

closely for temperatures occurring at least one day per decade. Shaded regions, representing

95% confidence intervals on the semi-parametric estimates, are shown for the coolest and

warmest terciles. For comparison, figure 2b shows the results of estimating equation 1 under

the assumption of homogeneous temperature effects.4

Figure 2a reveals substantial heterogeneity in temperature effects by climate tercile. In

the warmest third of ZIP codes, depicted in orange, mortality effects are lowest on days with

average temperatures of 75°F–80°F. For the coolest third of ZIP codes, depicted in blue,

mortality is minimized on days with temperatures of 60°F–65°F. As temperatures increase

above 75°F, the colder regions feature a stark increase in mortality, while warmer regions

exhibit much more modest effects. For example, an 85°F–90°F day increases the mortality

rate in the coldest decile by 1.8 deaths per 100,000 but has nearly no effect (0.15 additional

deaths per 100,000) in the warmest decile. On the other hand, mortality increases 2.6–4.8

times more on days at or below freezing in the warmest region than in the coolest one.

Figure 2a suggests that regions are both relatively good at dealing with temperatures

they experience frequently and are relatively bad at dealing with temperatures they expe-

rience infrequently. Comparing the temperature-mortality relationships in figure 2a with

the temperature frequency plots in figure 1 reveals that for days with temperature greater

than 65°F, which occur with greater frequency relative to a 65°F day in the warmest region

than the coolest, mortality effects are larger in the warmest region than in the coolest. The

opposite is true for days below 65°F. Although the reference category of 65°F is a choice, it

is also true that the curve for the warmest tercile is flatter than the curve for the coolest

tercile for days above 65°F and is steeper for days below 65°F.

Comparing the climate-specific heterogeneous effects in figure 2a with the homogeneous

effects in figure 2b illustrates how properly accounting for temperature effect heterogene-

ity can affect the projected impact of climate change. The homogeneous effects curve lies

between the curves for the warmest and coolest regions, implying that using homogeneous

effects understates the mortality effects of hot days in cool regions and overstates them in

warm ones. The opposite is true for cold days. So while the homogeneous effects estimates

imply that replacing a cold 25°F–30°F day with a hot 85°F–90°F day has little effect on

mortality in any region, this replacement actually increases mortality by 1.49 deaths per

100,000 in the coolest tercile and reduces mortality in the warmest tercile decrease by 0.75

4Appendix tables B.1a and B.1b give numerical values of the nonparametric and semi-parametric estimates
for all temperature bins in figures 2a and 2b, respectively. The tables also report standard errors under our
preferred approach to clustering and for clustering at the county or state level.
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deaths per 100,000. In addition, the homogeneous effects are not a simple average of the

heterogeneous effects but instead lie closer to the cooler regions’ curve for cold temperatures

and closer to the warmer regions’ curve for hot temperatures. Thus, the homogeneous effects

do not reflect the national average effects of temperature.

As further illustration of the importance of allowing for heterogeneous temperature ef-

fects when assessing climate change effects, figure 3 presents predicted mortality impacts

of replacing the climate of each tercile by the climate of one of the other terciles. When

homogeneous effects are assumed (blue bars), warming is always associated with decreased

mortality. However, taking into account current climate-specific heterogeneity (green bars),

a qualitatively different pattern emerges. Under heterogeneous effects, we see that warming

the coolest tercile’s temperature distribution to that of either the middle or warmest tercile,

or warming the middle tercile’s temperature distribution to that of the warmest tercile, in-

creases mortality, the opposite of what occurred in the homogeneous effects case. Further,

for each of the current climate terciles, a change in a region’s temperature increases mor-

tality whether that change involves warming or cooling. Thus the heterogeneity we observe

is not simply due to some regions being better at dealing with all temperatures than other

regions. Rather, whatever factors determine a region’s temperature-mortality curve, they

tend to perform particularly well given the region’s actual climate relative to other climates.

3.3 Regional Heterogeneity as Adaptation

Regional heterogeneity in the temperature-mortality relationship could arise due to regional

adaptation, whether technological, behavioral, and/or biological in nature, or due to regional

differences in characteristics that are correlated with current climate but do not result from

human choices or physiology. This distinction is important for interpretation because if

regional differences are caused by factors that are immutable, then even though Chicago in

the future may face the climate that Dallas does now, we should not expect the Chicago of

the future to be as good at dealing with heat as Dallas currently is. Thus, understanding the

extent to which current heterogeneity is due to adaptation is important for understanding

the extent to which future adaptation may mitigate the impact of climate change.

The nonlinear pattern of temperature effect heterogeneity that we document with respect

to baseline climate is informative of the underlying mechanisms driving this heterogeneity.

For example, the effects of hot days are smaller but the effects of cold days are larger in warm

regions than in cooler ones. This pattern is not readily explained by factors that reduce

sensitivity to both cold and hot days. In particular, the treatment effect heterogeneity

we document seems unlikely to reflect regional differences in wealth or underlying health
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endowments since these differences plausibly reduce sensitivity to both hot and cold weather.

By contrast, this nonlinear pattern is consistent with a wide variety of adaptation behaviors.

There are numerous ways in which people and communities may adapt to their climate,

such as through biological acclimatization, migration to different regions based on health,

infrastructure investments, or architectural design. In appendix section A.4, we provide

evidence that air conditioning (AC) adoption is strongly associated with differences in heat-

related mortality across regions but not with cold-related mortality. Since AC adoption

can be correlated with many other adaptive behaviors that also reduce the mortality effects

of heat (e.g., designing buildings to optimize thermal performance), our estimates should

not be interpreted as identifying the causal effect of AC. Nevertheless, the AC results pro-

vide additional, albeit suggestive, evidence that adaptive behaviors can explain the regional

heterogeneity we document.

Our finding that places seem well-adapted to their current climate suggests it is rea-

sonable to expect that regions could continue to find it worthwhile to adapt to a changing

climate. It is important to note, however, that this statement concerns the observed de-

gree of historical adaptation to the current range of climates given current technology. The

degree to which places continue to adapt to climate change will depend on the future cost

of available adaptation technologies and on the ability of currently hot places to adapt to

climates much hotter than any U.S. regions currently experience.

4 Climate Change-Induced Mortality and Adaptation

In this section, we develop estimates of the end-of-century mortality impact of climate change

accounting for heterogeneity and adaptation. To fix ideas, let mp
z(t) denote the mortality

effect in ZIP code z and period p of a day with average temperature in bin t. We will consider

both the current and future periods by p = current and p = future, respectively. Let gpz(t)

be the number of days per year in which the temperature falls in bin t in period p. Current

annual mortality (CAMz) is therefore

CAM z =
∑

t

mcurrent
z (t)gcurrentz (t).

We are interested in the change in excess mortality due to climate change. Let mfuture
z (t)

denote the future mortality effect of temperature bin t in location z. In this case, the change

in excess mortality would incorporate both the change in the temperature distribution and
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the change in the temperature-mortality relationship:

FAM z − CAM z =
∑

t

mfuture
z (t)gfuturez (t)−

∑

t

mcurrent
z (t)gcurrentz (t). (2)

4.1 Empirical Implementation

Computing the estimated change in excess mortality involves the four functions on the right

hand side of equation 2: current and future temperature distributions and current and future

temperature-mortality relationships. The current temperature distribution is that observed

for the ZIP code in the sample from 1992–2013. Our predictions of future temperature

distributions are based on ZIP-code-specific projected changes in the daily temperature dis-

tribution between the current period (1992–2013) and the end of the century (2080–2099).

We derive projected changes in temperature for each of the 21 climate models for which

daily scenarios are produced and distributed as part of the NEX-GDDP dataset. The NEX-

GDDP data include daily minimum and maximum temperature predictions on a 25km by

25km grid (0.25-degree spatial resolution). We focus on climate model projections made

under the Representative Concentration Pathway (RCP) 8.5 “business as usual” scenario,

where emissions continue to rise throughout the 21st century (Meinshausen et al., 2011).

Finally, we aggregate the gridded model projections to the ZIP code level using inverse

distance weighting of all climate model grid points within 20 miles of the ZIP code centroid.5

To create a consensus projection from the 21 models, we average over all of the models

using the weights employed by the Fourth National Climate Assessment (Sanderson, Knutti

and Caldwell, 2015; Sanderson and Wehner, 2017). These weights, shown in column 1

of appendix table B.2a, positively value model predictive skill but penalize codependency

between models. We refer to the weighted average model as the meta-model and the weighted

average predicted temperature distribution as the meta-distribution.

The meta-model projects that average annual temperatures in the United States will rise

by 8°F by the end of the century under the RCP 8.5 emissions scenario. Appendix figure B.6

maps the projected changes in temperature and CDD. Although predicted warming tends to

be higher in areas that are currently cooler, comparing appendix figures B.2 and B.6 shows

that there is significant variation in predicted warming even among regions that currently

have quite similar climates.6

With sufficient observations for each ZIP code, we could estimate the temperature-

mortality relationship nonparametrically for each ZIP code using equation 1 in the same way

5See Auffhammer et al. (2013) for a discussion of the use of climate models in economic analysis.
6The techniques we use apply equally well to the output of any of the 21 individual climate models. We

show the results of doing this in section 4.4.
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that we estimated it nonparametrically at the climate tercile level. In practice, however, there

are not enough observations for each ZIP code to estimate this relationship precisely. Instead,

we estimate the daily temperature-mortality relationship as a semi-parametric, smooth func-

tion f(t,CDD) that depends on both daily average temperature and climate, as captured

by the ZIP code’s CDD Normal.

The regression equation used to estimate this semi-parametric function of temperature

and climate is identical to equation 1 except the temperature and climate indicators are

replaced by this smooth function f(t,CDD) of temperature and climate, yielding the esti-

mating equation:

mortalityzd = f(tzd,CDDz) + ZipDayzd + Lzd + StYr zd + εzd. (3)

We define f(t,CDD) to be a linear spline in temperature with knot points at 10-degree

increments from 30°F to 90°F, which is then fully interacted with a spline in logCDD with

knot points at the 33rd and 66th percentiles of the current distribution of ZIP-code-level

CDD normals (the same cutoff points used to define the climate terciles). Specifically, if

FCDD is the cumulative distribution function of the current CDD Normal distribution, then

f(t,CDD) = s(t, β) +
2

∑

p=0

max
(

logCDD − logF−1

CDD(0.33p), 0
)

× s(t, βp),

where

s(t, β) = β0t+
9

∑

k=3

βk max(t− 10k, 0).

Since f(t,CDD) is identified up to a constant, we always evaluate it relative to a ref-

erence temperature of 65°F. We compare the parametric estimates from equation 3 to the

nonparametric temperature bin results from equation 1, and we reestimate equation 1 but

with fitted, three-day mortality values ˆmortalityzd = f̂(t,CDD) as the outcome and control-

ling only for temperature bin indicators. As shown in appendix figure B.7, the parametric

estimates broadly align with the nonparametric estimates in each climate tercile.

Appendix figure B.8 further illustrates the parametric estimates from equation 3 by

plotting the fitted temperature-mortality relationship f̂(t,CDD) for two cold ZIP codes

(Fargo, ND, and Minneapolis, MN), one moderate ZIP code (Chicago, IL), and two hot ZIP

codes (Dallas, TX, and Miami, FL), evaluated at each ZIP code’s current CDD Normal. As

with the nonparametric tercile-based regressions presented in figure 2a, cold places suffer

the most from hot days, while hot places suffer the most from cold days. This figure also
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previews how we will model adaptation to future climate. The climate models we use project

Chicago’s end-of-century CDD to be 2,327, which is very close to Dallas’s current climate

with 2,668 CDD. When we consider adaptation, we will use the temperature-mortality curve

for a region with 2,327 CDD—essentially that of current-Dallas—to proxy for future-Chicago,

assuming the region fully adapts to its new climate.

Finally, we can relate the estimate of f(t,CDD) to the mortality effect mp
z(t) of a day

with average temperature t in ZIP code z in period p, introduced in our general framework

above. If M65pz represents mortality on a 65°F day in ZIP code z and period p, then

mp
z(t) = M65pz + f(t,CDDp

z).

4.2 Adaptation Predictions

We estimate the change in mortality between the current period (1992–2013) and the end

of the century (2080–2099) using the meta-predictions of climate change under the RCP 8.5

emissions scenario. To investigate the importance of accounting for regional heterogeneity

and adaptation, we construct these estimates under three different sets of assumptions about

how the mortality effects of temperature vary spatially and over time.

4.2.1 Homogeneous Current Effects with No Future Adaptation

Our first set of predictions relies on two simplifications commonly made when predicting

the mortality effects of climate change. The first simplification is to use a homogeneous

mortality estimate, mperiod(t), rather than region-specific estimates, mperiod
z (t). The second is

to estimate health damages under an assumption of no adaptation (i.e., to define mfuture
z (t) to

be equal to mcurrent
z (t)). We implement this empirically by estimating a version of equation 3

where we drop all terms in f(t,CDD) that depend on CDD to get a single temperature-

mortality relationship m(t)current = M65 + f(t). We then use that relationship for all ZIP

codes in both current and future periods. Note that while we use the same mortality function

f(t) for all regions, each ZIP code’s mortality change is computed with respect to its own

projected future temperature distribution. We call this the case of homogeneous current

effects with no future adaptation.

4.2.2 Current Climate Heterogeneity with No Future Adaptation

Our second set of predictions allows each ZIP code to have its own temperature-mortality

relationship, mcurrent
z (t), by estimating equation 3 where f(t,CDD) is permitted to depend on

the ZIP code’s current CDD Normal. Thus, any two ZIP codes with the same current CDD
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Normals will have the same estimated temperature-mortality curve. Using this mortality

relationship to capture both current and future conditions, we continue to assume there is no

adaptation. We call this the case of current climate heterogeneity with no future adaptation.

4.2.3 Current Climate Heterogeneity with Future Adaptation

In our third set of predictions, we account for both climate-specific heterogeneity in the

temperature-mortality relationship and adaptation over time. We operationalize this by

evaluating the future mortality effects of temperature, f(t,CDD), in ZIP code z under the

projected future climate (CDD) in that ZIP code. Intuitively, this approach assumes that

if Chicago’s climate changes so that its end-of-century CDD is equal to Dallas’s current

CDD, then Chicago’s end-of-century temperature-mortality relationship will be the same as

Dallas’s is today, up to a constant.

Since under our approach to adaptation, the current and future temperature-mortality

relationships are allowed to differ, the constant terms in mcurrent
z (t) and mfuture

z (t), which are

not identified empirically, do not drop out of the calculation of climate change mortality

effects (equation 2). For our computations, we assume that mortality on a 65°F day does

not change over time (i.e., M65currentz = M65futurez ). Our justification for this assumption is

that when the average temperature is near 65°F, individuals typically do not choose to heat

or cool their homes. This assumption is appropriate if regional differences in mortality on

65°F days, after adjusting for seasonal and other fixed effects, reflect baseline differences in

mortality across ZIP codes that are not affected by differences in climate. We call this the

current climate heterogeneity with future adaptation case.

Our approach to modeling adaptation assumes that adaptation is complete in the sense

that if future-Chicago has Dallas’s current climate, future-Chicago will respond to tempera-

ture like Dallas does today. This need not be the case if the cost of adaptation changes or if

some characteristics of current-Chicago are immutable. In addition, our approach assumes

that a region’s past adaptation to its current climate has no long-lasting effects in the sense

that if Chicago has Dallas’s climate in the future, after it adapts it will be no better at

dealing with cold temperatures than Dallas is now, even though Chicago currently has a sig-

nificant advantage over Dallas in this area.7 Finally, this approach ignores the possibility of

technological progress, which may moderate the temperature-mortality relationship beyond

what we capture.

7These concerns could be incorporated into our approach by either basing future-Chicago’s temperature-
mortality relationship on a weighted average of current-Chicago and current-Dallas, with the relative weight
placed on regions that currently have Chicago’s future climate capturing the extent of adaptation, or by
placing separate weights on the two areas for temperatures above and below 65°F.
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4.2.4 Example: Chicago

Figure 4 depicts the relevant pieces of equation 2 for computing the projected end-of-century

change in mortality for Chicago. Chicago’s current and future temperature distributions

are depicted by the blue and orange shaded regions, respectively. To compute the mor-

tality effect with homogeneous effects and no adaptation, we use the dashed homogeneous

temperature-mortality relationship in both the current and future periods. For the current

climate heterogeneity with no future adaptation case, expected mortality is computed us-

ing Chicago’s current temperature-mortality relationship in both periods. Finally, to allow

for current climate heterogeneity and future adaptation, we compute current mortality us-

ing Chicago’s current temperature-mortality curve and its current temperature distribution

(both shown in blue), and we compute future mortality using Chicago’s future curve its

future temperature distribution (both shown in orange).

4.3 End-of-Century Mortality Prediction Results

Figure 5 presents the results from assessing annual mortality effects of end-of-century climate

change as predicted by the meta-model under the RCP 8.5 emissions scenario. Panel A

depicts results under the conventional approach of assuming homogeneous current effects

and no adaptation. Each box and whisker plot summarizes percentage changes in predicted

annual mortality by the end of the century (2080–2099, vertical axis) for ZIP codes whose

current climate falls in the bin depicted on the horizontal axis. Boxes stretch from the 25th

percentile (lower hinge) to the 75th percentile (upper hinge) of mortality effects. The median

is plotted as a line across the box, and whiskers stretch from the 5th–95th percentiles. In this

case, mortality effects increase with CDD up to around 2,000 CDD, which is well into the

warmest climate tercile (which begins at 1,442 CDD), and then flatten out as CDD continue

to increase. These findings are further summarized by column 5 of table 1, who shows the

aggregate percentage mortality change for each of the climate terciles and for the United

States as a whole.8 The average mortality effects increase in magnitude from the coolest to

the warmest third of ZIP codes, with a 0.76% increase in mortality overall. This pattern

agrees with the conventional wisdom that the effects of climate change will be largest in

regions that are currently hot.

The results change markedly once heterogeneity, with respect to current climate, is in-

corporated into the climate assessment. Panel B of figure 5 illustrates the heterogeneous

current climate effects and the no-adaptation case. Here, the pattern is reversed relative

8Appendix tables B.2a–B.2d show the analog of table 1 for the unweighted meta-model and for each of
the individual climate models.
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to the conventional approach, with the mortality effect being flat up to 1,500 CDD (which

includes the coolest and middle ZIP code terciles), and then declining as CDD continue to

rise. The large average increases in mortality in cool and moderate ZIP codes result from

two factors in combination: these regions are currently poorly adapted to very hot days, but

climate models project increased exposure to such days in the future.9

Aggregate results for the case of heterogeneous effects by climate with no future adapta-

tion are presented in column 6 of table 1. Mortality increases are larger in the coolest third

of ZIP codes (2.25%) than in the warmest (1.33%). The mortality increase in the middle

(2.89%) tercile is slightly larger than in the coolest, as these ZIP codes expect, on average,

to experience more very hot days in the future than the coolest ones. Overall, our analysis

predicts an increase in mortality across all U.S. ZIP codes of 2.15%, almost three times

larger than is implied by homogeneous effects (0.76%). To put this number in perspective,

this increase is roughly equivalent to the share of U.S. elderly deaths in 2013 due to chronic

kidney disease (2.1%), accidents (2.4%), or influenza (2.5%) and around 10% of the share of

elderly deaths due to cancer (21.4%).10

Panel C of figure 5 presents results under heterogeneous current climate effects with future

adaptation. Three features emerge. First, net of adaptation, climate change is expected to

be worse in the coolest regions than in the warmest ones. Second, incorporating adaptation

to future climate yields mortality effects of climate change that are systematically lower

than the no-adaptation estimates in panel B. Third, the predicted mortality change under

adaptation is negative for regions with a current climate of 1,000 CDD (e.g., current-Chicago)

and up. Column 7 of table 1 summarizes these findings at a more aggregate level. For each

climate tercile and the United States overall, the mortality effect with future adaptation is

smaller than without (column 6); i.e., adaptation reduces the assessed mortality effects of

climate change. In each case, the magnitude of these differences is large, with the mortality

effect shrinking by over 60% for the coolest third of ZIPs and actually becoming negative

for the two other terciles and for the United States overall.

These findings indicate that climate change could reduce elderly mortality in the United

9As indicated by the height of the box and whisker plots, effects in panel B are also more dispersed than
those in panel A, especially among cooler regions. This difference arises for two reasons. First, ZIP codes
with the same climate today can have different predicted future climates, including different fractions of
very hot days. Second, because cooler regions are particularly bad at dealing with very hot days (i.e., the
temperature-mortality curve is very steep for hot days), as in figure 2a, small variations in the proportion
of very hot days can induce very different mortality predictions.

10Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of
Death 1999-2017 on CDC WONDER Online Database, released December 2018. Data are from the Multiple
Cause of Death Files, 1999–2017, as compiled from data provided by the 57 vital statistics jurisdictions
through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/ucd-icd10.html on
August 5, 2019, 7:41:38 p.m.
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States if places adapt to the future climates the way places are adapted to their current

climates. That currently hot regions appear better adapted to heat than cooler places

suggests that the benefits of adaptation exceed the cost within the domain of current climates.

At the same time, there remains uncertainty about which adaptation technologies will be

available in the future, how much they will cost to use, and how effective they will be at

mitigating the effects of climates that are much hotter than any currently being experienced

in the United States.

One aspect of adaptation where these concerns are particularly salient is migration. If

the adaptation to hot temperatures we currently observe is driven by migration based on

current climates, with individuals who are particularly vulnerable to heat moving to cooler

climates, then their ability to continue to migrate in this way in the future depends on the

continued availability of similarly desirable locations with cool climates in the future.

Even if climate change reduces mortality, it is important to note that this does not

necessarily imply an improvement in elderly welfare. If adaptation to heat involves staying

indoors and running the AC, then a decrease in utility from outdoor activities may offset some

or all of the mortality benefit of adaptation relative to the current situation. In addition,

warmer global temperatures may lead to changes in sea levels, agriculture, vector-borne

disease prevalence, and other factors that may directly reduce human well-being.

4.4 Alternative Climate Projections

Our primary climate assessment results use climate change projections from the weighted

meta-model under the RCP 8.5 emissions scenario. In appendix A.3, we show results for

the RCP 4.5 emissions scenario, a mid-range projection under which emissions peak around

2,040 and then decline. Mortality effects under the RCP 4.5 scenario are qualitatively similar

to, but more muted than, the effects under the RCP 8.5 scenario.

Appendix figures B.9b–B.9w and appendix tables B.2a–B.2d present separate prediction

results for each of the 21 individual climate change models and an unweighted version of

the meta-model. These results are broadly consistent with those of our main projections.

Because the NEX-GDDP dataset contains a single realization of daily temperatures for

each model, we are unable to consider uncertainty within a particular model that could

arise due to uncertainty about appropriate choices of parameter values or realizations of

stochastic quantities. However, the individual models predict end-of-century changes in

average temperature ranging from about 5°F to 11.5°F. Comparing effects for the individual

models provides insight into the range of possible outcomes in models that exhibit a relatively

high or low degree of warming.
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4.5 Geography of the Mortality Effects of Climate Change

Figure 6 maps the estimated mortality impact of end-of-century climate change under the

three cases that we simulate, aggregated by county to facilitate comparison with prior studies.

Panel A, which assumes homogeneous temperature effects, shows that the areas that are

currently the hottest, the Deep South and Desert Southwest, will tend to suffer the largest

mortality increases. Many of the coldest parts of the country, in the Northeast, Upper

Midwest, and Northwest, are predicted to see a decrease in mortality due to the decrease in

very cold days resulting from climate change. This geographic pattern mirrors the all-age

mortality result of Hsiang et al. (2017) (see figure 2 of that paper), which also assumes

homogeneous effects and no future adaptation.

Panel B of figure 6, which maps mortality predictions allowing for current climate hetero-

geneity but not future adaptation, reverses the geographic distribution of climate damages

relative to assuming homogeneous temperature effects. Here, the mortality impacts are the

smallest in the warmest regions of the country. The largest effects are expected to be felt in

a swath across the Midwest and Central Plains, which expect a large increase in hot days

and are currently poorly adapted to dealing with heat.

Panel C of figure 6 maps mortality predictions that incorporate both current heterogene-

ity and future adaptation to climate change. Here we see that adaptation has the potential

to significantly moderate the impact of warming over much of the country, with the yellow

and green areas exhibiting small positive to negative mortality effects. In isolation, these

negative effects do not necessarily imply a benefit due to adaptation itself since some regions

are projected to benefit from climate change even without additional adaptation in the future

(panel B). However, many of the areas that are medium or dark green in panel C are also

dark orange or red in panel B, indicating a large adaptation benefit. These regions would be

expected to have the largest per-capita willingness to pay for adaptation to climate change.

5 Conclusion

This paper demonstrates the importance of accounting for regional heterogeneity and adap-

tation in predicting the impact of climate change on U.S. elderly mortality. Incorporating

heterogeneous mortality effects of temperature into a climate change assessment substan-

tially increases the estimated mortality impact of warming and changes which regions are

likely to suffer the most. Allowing for adaptation yields estimated mortality impacts of

climate change that are much lower than those calculated without adaptation and possibly

even negative. Although we do not consider the future cost of adaptation, our results show
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that regions have chosen to engage in adaptation that significantly reduces elderly mortality

given currently available technologies and current/historical costs, suggesting that there is

significant ability to moderate the mortality impact of future warming even using technolo-

gies that are readily available today. The potential for future technological change to reduce

the costs of adaptation may lower the mortality effect of climate change even further.

Our paper has focused on the mortality effects of climate change among the U.S. elderly.

While the elderly are a relatively vulnerable group, the United States is a wealthy and

geographically diverse country where the opportunity to adapt to climate change may be

particularly high. Effects of climate change could differ for other populations, especially

those in poorer or more geographically constrained countries (e.g., Bangladesh) with less

opportunity to adapt to future climate change. Although we do not consider the non-

elderly, other countries, or nonmortality outcomes, the methods we employ could be applied

to estimating climate-change impacts in these environments as well.

Finally, it is important to recognize that our estimates of heterogeneity and adaptation

are based on current experience and that our climate change assessments extrapolate from

this experience to a future as simulated by climate models. However, the climate of the future

may move outside of our present experience or even beyond what is projected by climate

models. Because of this, there remains significant uncertainty about the future damages from

climate change and the likelihood of large-scale, potentially catastrophic changes that is not

fully incorporated into our model and could not be without quantifying these risks through

additional assumptions. This uncertainty could easily dominate the statistical uncertainty

expressed in the standard errors of our estimates. As Martin Weitzman wrote in this journal

when deriving his “Dismal Theorem” and arguing in favor of a precautionary principle with

respect to climate policy (Weitzman, 2009), “it is not possible to learn enough about the

frequency of extreme tail events from finite samples alone to make [utility-based welfare

calculations] independent of artificially imposed bounds on the extent of possibly ruinous

disasters. ... Climate-change economics generally—and the fatness of climate-sensitivity tails

specifically—are prototype examples of this principle, because we are trying to extrapolate

inductive knowledge far outside the range of limited past experience.”
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Figure 1: U.S. Daily Average Temperature Distribution
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Notes: This figure summarizes the distribution of daily average temperature in the United States from
1992–2013. Distributions are reported separately for the entire United States and for the coolest, middle,
and warmest population-weighted thirds of ZIP codes based on CDD Climate Normals. Daily temperature
data come from the Global Historical Climatology Network land surface station database. Appendix
tables B.1a–B.1b report numerical values of the points in this figure.
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Figure 2: Mortality Effects of Temperature
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(b) Homogeneous Temperature Effects

Notes: This figure plots estimated three-day mortality effects of temperature. In panel A, effects are allowed to differ by the coolest, middle, or
warmest third of ZIP codes as defined in figure 1. In panel B, effects are restricted to be common to all U.S. ZIP codes. Effects reflect excess
mortality on a day with a given average temperature relative to a day with an average temperature of 65°F–70°F. Markers with whisker lines plot
nonparametric temperature bin estimates and associated 95% confidence intervals. Markers are only shown for binned temperatures that occur with
a frequency of at least one day per decade in the climate region. Solid lines and shaded regions plot semi-parametric polynomial estimates and
associated 95% confidence intervals. Confidence intervals are based on two-way clustered standard errors at the county and state×date levels.
Numerical values for all point estimates and standard errors are reported in appendix tables B.1a–B.1b.
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Figure 3: Predicted Mortality Effects of Regional Climate Swaps
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climate region’s current temperature distribution is replaced by the current distribution of one of the other
two climate regions, shown in figure 1.
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Figure 4: Climate Change Assessment for Chicago, IL
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meta-model projection for Chicago under the RCP 8.5 greenhouse gas emissions scenario.
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Figure 5: End-of-Century Climate Change Mortality Effects
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change as
projected by the meta-model, an average of the 21 NEX-GDDP climate models, under the RCP 8.5
emissions scenario. Effects are calculated for each ZIP code based on the ZIP code’s current and future
(projected) climates. Panel A reports climate effects under the assumption of homogeneous temperature
effects. Panel B reports climate effects that allow for heterogeneous temperature effects based on current
climate but do not allow for future adaptation. Panel C reports climate effects that incorporate both
current heterogeneity and future adaptation. Box and whisker plots summarize the distribution of climate
change effects across ZIP codes in each climate range. Boxes stretch from the 25th percentile (lower hinge)
to the 75th percentile (upper hinge). The median is plotted as a line across the box. Whiskers stretch from
the 5th percentile to the 95th percentile.
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Figure 6: Geography of End-of-Century Climate Change Effects
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Notes: The map shows county-level aggregates of the ZIP-code-level climate change impacts on annual
mortality summarized in figure 5. Panel A reports climate effects under the assumption of homogeneous
temperature effects. Panel B reports climate effects that allow for heterogeneous temperature effects based
on current climate but do not allow for future adaptation. Panel C reports climate effects that incorporate
both current heterogeneity and future adaptation.
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Table 1: End-of-Century Climate Change Effects

(1) (2) (3) (4) (5) (6) (7)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD Homogeneous Effects Climate Heterogeneity

Current Future Current Future No Adaptation No Adaptation Future Adaptation

Coolest third of ZIPs 49.4 58.1 525 1,661 −0.03 2.25*** 0.84**
(0.12) (0.50) (0.35)

Middle third of ZIPs 55.2 63.5 1,079 2,491 0.54*** 2.89*** -0.41
(0.16) (0.93) (0.35)

Warmest third of ZIPs 66.5 73.6 2,600 4,397 1.75*** 1.33*** −1.97***
(0.28) (0.31) (0.67)

All U.S. ZIPs 57.1 65.1 1,413 2,864 0.76*** 2.15*** −0.53*
(0.18) (0.47) (0.32)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to climate terciles and to the United States as a whole. Columns
1–4 summarize the current climate of each region as well as the end-of-century (2080–2099) climate projected by the meta-model under the RCP 8.5
greenhouse gas emissions scenario. Columns 5–7 are based on the ZIP-code-level annual mortality effects summarized in figure 5. Column 5 reports
climate effects under the assumption of homogeneous temperature effects. Column 6 reports “business as usual” climate effects that allow for
heterogeneous temperature effects based on current climate but do not allow for future adaptation. Column 7 reports climate effects that
incorporate both current heterogeneity and future adaptation.
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Appendix A: Supplementary Material

A.1 Data Description

A.1.1 Medicare Data

Our baseline sample consists of Medicare beneficiaries age 65–100 and is derived from 100%
Medicare enrollment information files for years 1992–2013.1 These annual files include an
observation for each beneficiary enrolled in Medicare for at least one day in that calendar
year, whether enrolled in Original Medicare (fee-for-service) or Medicare Advantage. The
enrollment files report a variety of demographic and enrollment variables, including unique
beneficiary identifiers that link individuals over time; monthly indicators for Medicare eli-
gibility; state, county, and ZIP code of residence based on the mailing address for official
correspondence; and date of birth, date of death, and gender.

Medicare beneficiaries include the vast majority of elderly living in the United States.
Appendix figure B.1a compares the number of Medicare beneficiaries in the enrollment files
to census estimates of the number of U.S. resident population who are age 65 and over. To aid
comparison, we use census estimates of the resident population on July 1 each year and limit
the Medicare sample to beneficiaries residing in the 50 states and the District of Columbia
and who turned 65 before July 1. Over the period 1992–2013, the census estimates an average
of 36.7 million elderly individuals each year, compared to 35.9 million elderly beneficiaries in
Medicare. Thus, the Medicare sample covers over 97% of elderly living in the United States,
a share that remains roughly constant over the sample period.

The mortality variables used in our analysis are based on dates of death recorded in the
Medicare enrollment files. Medicare’s death data come primarily from the Social Security
Administration but are augmented based on reviews triggered by hospitalization claims in-
dicating patient death. The annual mortality rates in the Medicare data align closely to
mortality rates based on National Vital Statistics death records and census population es-
timates, as shown in appendix figure B.1b. While all recorded deaths in the Medicare data
are validated, some death dates in the data are not validated and are assigned the last date
in the month of death. Because much of our analysis is performed at the daily level, we drop
individuals who die at any point in the year and who do not have a validated death date
flag. This restriction affects fewer than 3% of the deaths in our sample.

A.1.2 Daily Temperature and Climate Normals

GHCN-Daily Our primary source for daily temperature variables is the Global Historical
Climatology Network (GHCN)-Daily database, which provides weather measurements from
land surface stations across the United States, including the 48 adjoining U.S. states, the
District of Columbia, Alaska, Hawaii, and Puerto Rico. We calculate daily high and low
GHCN temperatures for each 2010 Census ZCTA as the inverse distance-weighted average
of all available daily maximum and minimum temperatures, respectively, for GHCN stations
within a 20-mile radius of the ZCTA centroid. The daily average GHCN temperature for a
ZCTA is calculated as the midpoint of the daily high and low GHCN temperatures.

1The Research Data Assistance Center (ResDAC) provides a helpful overview of the Medicare data files
at http://www.resdac.org.
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PRISM We also calculate daily temperature using the PRISM daily dataset. PRISM
data provide interpolated daily temperature values at a 4km resolution and cover only the
conterminous United States (the 48 adjoining U.S. states and the District of Columbia). We
calculate daily high and low PRISM temperatures for each 2010 Census ZCTA as the inverse
distance-weighted average of daily maximum and minimum temperatures, respectively, for
PRISM grid points within a 20-mile radius of the ZCTA centroid. The daily average PRISM
temperature for a ZCTA is calculated as the midpoint of the daily high and low PRISM
temperatures.

Climate Normals We calculate climate summaries for each 2010 Census ZCTA using
NOAA’s 1980–2010 Climate Normals, which are produced for ground monitor stations across
the United States. ZCTA Climate Normals, for a given climate element, are calculated as the
inverse distance-weighted average of Normals at the nearest station and any other stations
within a 20-mile radius of the ZCTA centroid. The primary climate element we use in the
analysis is CDD. For a given year, CDD is calculated as the (non-negative) number of degrees
that a day’s average temperature exceeds 65°F, summed over all days in a year. We also use
average temperature Normals, which we calculate as the midpoint between the maximum
and minimum temperature Normals.

A.1.3 Climate Models Data

We calculate end-of-century climate change predictions using all 21 climate models for which
daily scenarios are produced and distributed as part of the Coupled Model Intercomparison
Project Phase 5 (CMIP5). Daily downscaled projections for each of these models come from
the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset.
The NEX-GDDP data include daily minimum and maximum temperature predictions on a
25km by 25km grid (0.25-degree spatial resolution) for the period 1950–2100 (projections
end in 2099 for some models). Projections for each model are made under two greenhouse
gas emissions scenarios: the Representative Concentration Pathway (RCP) 8.5 “business as
usual” scenario, where emissions continue to rise throughout the 21st century; and the RCP
4.5 scenario, a mid-range projection under which emissions peak around 2,040 and then
decline.

For each of the 21 NEX-GDDP climate models, we construct grid-point-specific projected
distributions of average daily temperature for both the current period (1992–2013) and the
end-of-century period (2080–2099). To do so, we take the projected daily minimum and
maximum temperatures over a given period, construct projected daily average temperature
using the midpoint of daily maximum and minimum temperatures, and then calculate the
fraction of days in which the projected daily average temperature falls into 1°F bins ranging
from −30°F to 120°F.

To summarize the projected temperature distributions of the 21 NEX-GDDP climate
models, we construct two “meta” models that average over each of the 21 component models
as follows. First, for a given grid point, emissions scenario, and time period (current or
end-of-century), we pool the daily projections of all 21 models. We calculate the unweighted
distribution of these pooled daily projections and call this the “unweighted meta-distribution”
of the “unweighted meta-model.” We also compute the weighted distribution of pooled daily
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projections by weighting each daily projection by the model-specific weights employed by
the Fourth National Climate Assessment that positively value model predictive skill but
penalize codependency between models (Sanderson, Knutti and Caldwell, 2015; Sanderson
and Wehner, 2017). We report these model weights in column 1 of appendix table B.2a. We
call this weighted temperature distribution the “weighted meta-distribution” of the “weighted
meta-model.” Since the weighted meta-model is the primary model used in the paper, we
also refer to these more concisely as the “meta-distribution” and the “meta-model.”

A.2 Analysis Using PRISM Data

In this section, we present analogs to our main results where spatially interpolated tempera-
ture data from the PRISM Climate Group are used instead of the GHCN data. Although the
PRISM data use a more sophisticated algorithm to assign temperatures to grid points (and
then to ZIP codes), the algorithm it employs is less transparent than our simple distance
weighting of the GHCN data. To the extent that the two methods differ, these differences
tend to involve extreme temperatures, where the PRISM algorithm tends to assign less ex-
treme values. In addition, while the GHCN data exist for the entire United States, including
Alaska, Hawaii, and Puerto Rico, the PRISM data are limited to the contiguous United
States. Because of the importance of extreme temperatures in our analysis and the fact
that we do not know exactly why the PRISM algorithm moderates these days, we choose
to use the distance-weighted data rather than the PRISM data. However, our results are
qualitatively unchanged if PRISM data are used.

Appendix figure B.5 reproduces the main results of section 3 using PRISM weather data.
Although the heterogeneous effects curves in the left panel are rotated slightly clockwise
through the 60°F–65°F bin relative to the GHCN case (figure B.5a), the mortality results
are qualitatively similar for both cases. The key reason for this is that, for both the GHCN
and PRISM analyses, the homogeneous effects curve lies between the climate-specific ef-
fects curves for the warmest and coolest climate terciles, implying that using homogeneous
effects will tend to overestimate the mortality impact of hot days in hot places and will
underestimate their impact in cold places, with the opposite being true in the case of cold
days. Numerical results corresponding to appendix figures B.5a and B.5b are presented in
appendix tables B.1c and B.1d, respectively.

Appendix figure B.11 is a boxplot analogous to figure 5, using PRISM data instead of
GHCN data. Although effect sizes are smaller, the same general patterns persist. In the
homogeneous effects case (panel A), mortality effects increase as the regions get warmer,
while in the heterogeneous effects case (panel B), mortality effects generally decrease as
CDD increase. One exception is the coldest climates, where the effect of climate change is
nearly zero. This could reflect that when PRISM data are used for estimating mortality
effects, the implied mortality reduction from fewer very cold days is larger than when using
GHCN data, which offsets much of the mortality increase from more very hot days.

Appendix table B.3 shows aggregate results for RCP 8.5 using PRISM data. Comparing
it to the main results in table 1, which are based on GHCN data, the patterns are similar.
Under homogeneous effects (column 5), the largest effects are once again found in the warmest
third of ZIPs, while under heterogeneity with no adaptation (column 6), the effect on the
warmest third of ZIPs is much smaller than in the other two. While the mortality effect
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for the middle third of ZIP codes is larger under PRISM than GHCN, the standard error
grows as well, suggesting that this increase may be driven by small changes in parts of the
temperature distribution where mortality effects are large and imprecisely estimated (i.e.,
very hot days). All three terciles are expected to benefit from warming net of adaptation
(column 7), although the coefficient is not statistically significant for the coolest third of
ZIPs.

A.3 Analysis for the RCP 4.5 Emissions Scenario

As described in Van Vuuren et al. (2011), a Representative Concentration Pathway (RCP)
is a comprehensive climate modeling scenario meant to capture possible climate change
trajectories over the course of the century. The RCP 8.5 scenario we consider in our main
analysis is a “business as usual” scenario where emissions continue to grow throughout the
century. However, the climate models we consider also allow for consideration of the more
moderate RCP 4.5 pathway, where emissions decline over the second half of the century and
carbon dioxide concentrations stabilize around the year 2100.

The first four columns of table B.4 present summary statisics for the RCP 4.5 scenario for
the United States overall and for each of the climate terciles. The RCP 4.5 scenario features
more moderate warming, with an overall increase of 4.1°F, compared to the 8°F under RCP
8.5 reported in table 1. Each of the climate terciles also features an average temperature
increase that is about half as large under RCP 4.5 as it is under RCP 8.5.

Figure B.10 presents a box plot for the RCP 4.5 scenario that can be compared to our
main results for RCP 8.5 in figure 5. The qualitative patterns identified for the RCP 8.5
scenario persist in the RCP 4.5 scenario. Under homogeneous effects, the annual mortality
change is increasing in CDD. As one might expect under a more modest warming scenario,
the peak effect is about half as large as it is under RCP 8.5. The center and leftmost panels
show each show effect sizes that decrease in CDD, again with generally smaller magnitudes
than under RCP 8.5.

Columns 5–7 of table B.4 present aggregate results for the RCP 4.5 scenario analogous
to the corresponding results for RCP 8.5 reported in table 1. The main qualitative result—
that the warmest third of ZIPs experiences the largest mortality impact under homogeneous
effects (column 5) but in the smallest effect under heterogeneous effects (columns 6 and
7)—continues to hold for RCP 4.5, although the magnitudes are muted due to the smaller
amount of overall warming embodied in RCP 4.5.

The mortality results for all U.S. ZIP codes are smaller under RCP 4.5 for the homogenous
effects (0.18%) and heterogeneous effects with no adaptation (0.28%) cases than they were
under RCP 8.5, again consistent with less overall warming. For the heterogeneous effects
with adaptation case, the overall mortality effect is essentially zero (−0.06%) under RCP
4.5, whereas it was negative (−0.53%) under RCP 8.5. This could be driven by the fact that
less adaptation takes place when there is less warming, as is the case under RCP 4.5.

A.4 Regional Heterogneity and Air Conditioning Adoption

There are two possible categories of explanations for regional heterogeneity in the temperature-
mortality relationship. The first is that the heterogeneity is substantially due to changes in
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human physiology and behavior (i.e., adaptation). The second is that the regional differences
we observe are due to characteristics that are correlated with current climate but not the
results of human choices or physiology.

It is beyond the scope of this paper to identify each component of regional adaptation
or to estimate how much regional heterogeneity is explained by each method of adaptation.
However, in this section, we examine more closely one method of adaptation—residential
AC—and the extent to which AC adoption can moderate the relationship between tempera-
ture and mortality. We find that differential AC adoption across climate regions is sufficient
to explain their differences in mortality due to heat, but it cannot explain differential cold-
related mortality. While we do not suggest that this should be interpreted as estimating the
causal effect of AC, it suggests that the temperature-mortality relationship can be moderated
by currently available technologies such as AC adoption.

Because we do not observe AC adoption at the ZIP code level, we impute a value for
the ZIP code penetration rate by fitting a machine learning (LASSO) model of AC adoption
based on housing unit characteristics including housing stock age, geography, and climate
and using data from the Residential Energy Consumption Survey (RECS), the American
Community Survey (ACS), and the 2010 Census. This process requires constructing a set of
comparable housing characteristics in both the RECS and census data.

A.4.1 Data Sources for Air Conditioning Imputation

We begin by describing the housing characteristics we use and how we define them in terms
of original RECS and census variables.

Residential Energy Consumption Survey (RECS) Data. Our data on AC are de-
rived from the RECS, which is administered by the Energy Information Administration
(EIA) and surveys a nationally representative sample of housing units in the United States
across 50 states and the District of Columbia. The RECS collects information on energy con-
sumption and energy-related characteristics of housing units, including AC. We use RECS
data from survey years 1993, 1997, 2001, 2005, and 2009. We model whether a housing unit
in the RECS data has AC as a function of housing-level characteristics including the housing
unit type, the geographic location of the housing unit, and the climate for the location of
the unit. Below we describe the specific variables used in this model and how these variables
are defined in terms of the original RECS variables from each year of the survey.

1. Air conditioning (AC). An indicator variable for whether a household reports to have
AC equipment at home. This corresponds to the RECS variable AIRCOND (“Do
you have air conditioning equipment at home”) in years 1993, 1997, 2001, and 2005.
For year 2009, the AIRCOND survey question changed to whether AC equipment is
“used.” To obtain a consistent measure of AC ownership, for 2009, we instead rely
on the variable DNTAC (“No air-conditioning equipment, or unused air-conditioning
equipment”), which stratifies all households into three groups based on their report of
AC ownership and usage status: (1) have AC equipment but do not use it, (2) have AC
equipment and use it, and (3) do not have any AC equipment. We define a household
unit to have AC equipment if it belongs to group (1) or (2).

A-5



2. Year built. A set of indicator variables (summing up to one for each household) iden-
tifying the decade when the housing unit was built (1939 or earlier, 1940 to 1949, . . . ,
1990 to 1999, 2000, or later). These variables are based on the RECS variable YEAR-
MADE (“Year home built”), which reports the decadal interval when the home is built
(mostly in early year) or the year the home is built. For each year, we group household
units into decade built according to the categorization used by the 2007–2011 five-year
ACS.

3. Number of rooms. A set of indicator variables (summing up to one for each household)
identifying the number of rooms in the housing unit (one room, two rooms, . . . , eight
rooms, and nine or more rooms). For years 1993, 1997, and 2001, we count rooms by
adding up RECS survey variables BEDROOMS (“Number of bedrooms”) and OTH-
ROOMS (“Number of other rooms”). We use the variable TOTROOMS (“Total number
of rooms”), which is available for year 2005 and 2009. We then assign the number of
rooms according to the categorization used by the 2007–2011 five-year ACS.

4. Urban. An indicator variable for whether the housing unit is in an urban area (i.e.,
nonrural area). This is based on the RECS variable UR (or URBRUR in early years).
The RECS urban status information is obtained from interviewer observation (1993),
household report (1997, 2001, 2005), and the Census Bureau’s urban/rural geographic
identifier (2009).

5. Mobile. An indicator variable for whether the housing unit is a mobile home. This
variable is based on the RECS variable TYPEHUQ (“Type of home as report by respon-
dent”). TYPEHUQ reports whether the housing unit is mobile, single-family detached,
single-family attached, apartment in a building with two to four units, or apartment
in a building with more than five units.

6. Own. An indicator variable for whether the housing unit is owned. This is based on
the RECS variable KOWNRENT (“Housing unit owned or rented”). KOWNRENT
reports whether the housing unit is owned by someone in the household, rented, or
occupied without payment.

7. CDD65. A continuous measure of cooling degree days (CDD) of the survey year with
a base temperature of 65°F (i.e., the total number of degrees the daily temperature
exceeds 65°F from January to December of the survey year). We draw this information
from the RECS variable CDD65 (CD65 in earlier years). RECS creates this variable
using temperature monitoring data from the National Climate Data Center’s weather
stations. A housing unit is first matched to the closest weather station, and then CDD
is computed using the station’s daily temperature data from January to December
of the survey year. To mask the household location, a “random error” was added to
the CDD. RECS does not provide further information regarding the structure of the
random error.

8. Census region. A set of categorical variables (summing up to one for each household)
identifying the census region location of the housing unit. This variable corresponds to
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the RECS variable REGIONC (“Census Region”), which includes Northeast, Midwest,
South, and West Census Region.

9. Census division. A set of categorical variables (summing up to one for each household)
identifying the census division location of the housing unit. This variable corresponds
to the RECS variable DIVISION (“Census Division”). For years 1993, 1997, 2001,
and 2005, DIVISION divides housing units into New England (CT, MA, ME, NH, RI,
VT), Middle Atlantic (NJ, NY, PA), East North Central (IL, IN, MI, OH, WI), West
North Central (AR, LA, OK, TX), South Atlantic (DC, DE, FL, GA, MD, NC, SC, VA,
WV), East South Central (AL, KY, MS, TN), West South Central (AR, LA, OK, TX),
Mountain (AZ, CO, ID, MT, NM, NV, UT, WY), and Pacific Census Division (AK,
CA, HI, OR, WA). In 2009, the Mountain Census Region is further divided into the
Mountain North Sub-Division (CO, ID, MT, UT, WY) and the Mountain South Sub-
Division (AZ, NM, NV). We combine the two groups to the single Mountain Division
to keep the division identifier coherent across years.

10. Sampling weights. The sampling weight variable NWEIGHT provided by the RECS.
This variable is the sampling weight for the observation in each survey year, which
is equal approximately to the inverse of the probability of selection into the sample.
RECS applies a couple of adjustments to the weights, including (1) adjustments to
interview nonresponse, (2) post-stratification to match total energy consumption by
fuel types, and (3) benchmarking to ensure that the total RECS weights add up to the
ACS’s total number of occupied housing units.

Census Data. We use ZIP-code-level housing characteristics from the 2007–2011 five-year
ACS and the 2010 Census to construct a set of housing characteristics comparable to that
which was used to predict AC using the LASSO model fit to the RECS data, described
above. We obtain census data provided by the Minnesota Population Center (2016) through
the National Historical Geographic Information System NHGIS16, and the variable names
we refer to below are from the NHGIS.

1. Year built. Eight variables, each measuring the fraction of housing units that were built
in 1939 or earlier, 1940 to 1949, . . . , 1990 to 1999, and 2000 or later. We create these
variables from the ACS variable “Year Structure Built,” which counts total number of
housing units built in each of the decadal intervals listed above. We convert counts to
fractions by dividing the total number of housing units in the ZIP code.

2. Number of rooms. Nine variables, each measuring the fraction of housing units that
have one room, two rooms, . . . , eight rooms, and nine or more rooms. These variables
are based on the ACS variable “Rooms.” We convert counts to fractions by dividing
the total number of housing units in the ZIP code.

3. Urban. Fraction of urban population from 2010 Census data. We divide the urban
population in the ZIP code by the total population.
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4. Mobile. Fraction of housing units that are mobile homes. We base this on the ACS
variable “Units in Structure.” which provides the number of mobile homes in the ZIP
code, and we divide counts by the total number of housing units in the ZIP code.

5. Own. Fraction of occupied housing units that are owned. We draw this information
from the ACS variable “Tenure by Household Size.” We divide the number of owner-
occupied housing units by the total number of occupied housing units in the ZIP code.

6. CDD65. Cooling degree days for the ZIP code, obtained from NOAA Climate Normals
over the period 1980–2010 using inverse distance weighting of all monitors within a
20-mile radius of the ZIP code centroid.

7. Census region. A set of categorical variables (summing up to one for each ZIP code)
identifying the census region of the ZIP code centroid. We use the U.S. Census Bureau’s
standard definition of census regions.

8. Census division. A set of categorical variables (summing up to one for each ZIP code)
identifying the census division of the ZIP code centroid. We use the U.S. Census
Bureau’s standard definition of census divisions.

A.4.2 Air Conditioning Imputation Procedure

We use the housing characteristics from the RECS and 2010 Census described above to
estimate a model of AC as a function of the location and characteristics of housing units.
Specifically, we estimate a housing-unit-level regression of whether the housing unit has AC
equipment as a flexible function of CDD (a fourth-order polynomial) in the housing unit
location, year built, number of rooms, urban location, mobile home status, and ownership
status. We interact each of these housing characteristics with dummies for Census Region
and Census Division. To avoid overfitting, we use LASSO penalized regression and select
the penalty to minimize ten-fold cross-validated mean squared prediction error. We then
apply this model to ZIP-code-level housing characteristics from the 2010 Census to compute
predicted AC penetration for each U.S. ZIP code.

A potential cause of concern is that including local climate to predict local AC penetration
could generate an artificial relationship between the mortality effects of temperature and AC
adoption rates. While this could be an issue, empirically, AC adoption depends strongly on
climate. As a result, omitting climate from the set of AC predictors introduces the possibility
of systematic bias in the imputed AC measure that is correlated with climate. Because of
this, our preferred imputation procedure includes local climate in the set of predictors.
However, we also include results for an alternate imputation procedure that omits local
climate variables.

A.4.3 Air Conditioning Results and Discussion

To estimate how temperature effects vary by AC penetration, we interact the imputed value
of AC penetration (which is continuous between zero and one) with the temperature bins
in equation 1. We also include in this regression Census Region by temperature bin fixed
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effects. Appendix figure B.12a, panel A, presents these regression results for three-day mor-
tality outcomes. The curve represents the regression coefficients on the interaction between
the AC penetration variable and the specified temperature bin. The interaction effects are
significantly negative for temperatures above 70°F. For example, the coefficient on the in-
teraction between AC penetration and the 80°F–85°F temperature bin is around −5, which
implies that each 10 percentage point increase in AC penetration corresponds to 0.5 fewer
deaths per 100,000 individuals on an 80°F–85°F day. At hotter temperatures, the AC effect
is even stronger: for example, the coefficient on the +95°F day bin implies about 1.8 fewer
deaths per 100,000 for each 10 percentage point increase in AC penetration. By contrast,
for temperatures below about 65°F, the interactions between AC and temperature tend to
be quite small, indicating that the mortality effect of cold days is largely independent of the
level of AC penetration.

Using these estimates as a linear estimate of the impact of AC adoption on mortality
within each temperature bin, we calculate how much of the difference in heat sensitivity
across regions can be explained by differences in AC penetration. Over the sample, AC
penetration was 93.2% in the warmest ZIP codes, 82.1% in the middle third of ZIP codes,
and 63.2% in the coolest. Panels B and C of appendix figure B.12a present counterfactual
simulations, where we compute what the mortality curve would have been if the warmest
ZIP codes had the AC penetration rates of the other two terciles, respectively. Thus, Panel
B estimates what the temperature-mortality relationship would be in the warmest third of
ZIP codes if the AC penetration rate in those ZIP codes were 30 percentage points lower
than it actually is, as is the case in the coolest ZIP codes. The counterfactual warmest ZIP
code curve closely tracks, and even rises, above the actual curve for the coolest ZIP codes at
temperatures above 65°F–70°F, suggesting that differences in AC penetration can more than
explain the differences in heat-related mortality between the warmest and coolest regions.2

At the same time, differences in AC penetration exacerbate the differences between the
regions on cold days, consistent with AC as the mechanism driving the regional differences
in heat-related mortality only. Panel C repeats this exercise, this time comparing a counter-
factual where the warmest ZIP codes are adjusted for the approximately 11 percentage point
difference in AC between the warmest and middle terciles. Once again, the counterfactual
warmest tercile aligns closely with, but is slightly larger than, the middle tercile on hot days,
again suggesting that differences in AC penetration account for a substantial portion of the
estimated difference between the regions.3

These results extend the finding from Barreca et al. (2016) that increases in AC adoption
over time can explain a substantial share of the reduction in heat-related mortality in the
United States over the past century.4 Our results show that in addition to explaining the
reduction in heat-related mortality in the time-series, AC adoption can explain much of
the cross-sectional differences in heat-related deaths observed across U.S. climate regions.
These counterfactual exercises provide some support for the idea that the heterogeneity

2If the impact of AC adoption on heat sensitivity is concave, that could explain why our projections using
a linear estimate are too large.

3Appendix figure B.12b reproduces the analysis using the alternative AC imputation procedure that
excludes local climate variables. The results are very similar to those from the primary imputation procedure.

4Additionally, our results complement those of observational studies in the public health literature (e.g.,
Rogot, Sorlie and Backlund (1992)), which show that AC reduces the mortality impact of hot days.

A-9



in temperature effects across climate regions we observe is driven by adaptation, and in
particular AC, rather than by immutable regional characteristics. Thus, we might expect
places to engage in this and other types of adaptive behavior in response to warming.
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Appendix B: Additional Figures and Tables

Figure B.1: Comparison of Medicare and Census Elderly Population and Mortality Rates
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Panel (a): Census population estimates for the 50 United States and the District of Columbia come from
the Compressed Mortality Files (CMF) 1979–1998 and 1999–2016. The population figures shown are April
1 Census counts in 2000 and 2010 and July 1 resident population estimates in other years. Medicare
population counts include all beneficiaries in the annual Medicare enrollment file who were age 65 and over
as of July 1 and had a U.S. ZIP code of residence in the 50 states or the District of Columbia.

Panel (b): National Vital Statistics mortality data come from the CMF described in Panel (a). National
Vital Statistics mortality rates are calculated by dividing total CMF deaths among the 65 and over
population in a given year by the Census population estimates shown in Panel (a). The dashed lines report
annual mortality rates based on death dates recorded in the Medicare annual enrollment files. The figure
reports both the total mortality rate in the Medicare sample (“Medicare: All Deaths”), as well as the
mortality rate among the analytical sample used in the paper (“Medicare: Death Date Validated”), which
excludes individuals who have a validated death that year but do not have a validated death date flag.
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Figure B.2: U.S. Climate Normals: Cooling Degree Days

Notes: The figure shows the 1981–2010 cooling degree days (CDD) Climate Normals for the 2010 Census
ZCTAs (N = 33, 120). CDD Normals are available for 7,501 U.S. stations operated by the National Oceanic
and Atmospheric Administration’s National Weather Service. ZCTA Climate Normals are calculated as the
inverse distance-weighted average of Normals at the nearest station and any other stations within a 20 mile
radius of the ZCTA centroid. Gray regions represent parts of the U.S. that are not covered by a ZCTA.
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Figure B.3: U.S. Daily Temperature Distribution (PRISM)
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Notes: This figure summarizes the distribution of daily average temperature in the United States from
1992–2013. Distributions are reported separately for all U.S. ZIP codes and for the coolest, middle, and
warmest population-weighted thirds of ZIP codes based on cooling degree days (CDD) Climate Normals.
Daily temperature data come from the PRISM daily dataset and cover only the conterminous U.S.
Appendix Tables B.1c–B.1d report numerical values of the points in this figure. For comparison to daily
temperature for the entire U.S. based on GHCN land station monitor data, see Figure 1.
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Figure B.4: Longer-Run Effects of Temperature on Mortality
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Notes: This figure presents coefficients from separate regressions for each of three outcome variables: 3-day,
7-day, and 28-day mortality. For all outcomes, the regression specification is that of Equation 1, but with
temperature leads expanded to included average temperature in the 6 and 27 days following the event day.
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Figure B.5: Effect of Temperature on Mortality (PRISM)
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Notes: This figure is analogous to Figure 2 but plots estimated 3-day mortality effects of temperature as measured by PRISM data. In Panel (a), effects are
allowed to differ by the coolest, middle, or warmest third of ZIP codes as defined in Figure 1. In Panel (b), effects are restricted to be common to all U.S.
ZIP codes. Effects reflect excess mortality on a day with a given average temperature relative to a day with an average temperature of 65°F–70°F. Markers
with whisker lines plot non-parametric temperature bin estimates and associated 95 percent confidence intervals. Markers are only shown for binned
temperatures that occur with a frequency of at least one day per decade in the climate region. Solid lines and shaded regions plot semi-parametric (5th
degree polynomial in the temperature bins) estimates and associated 95 percent confidence intervals. Confidence intervals are based on two-way clustered
standard errors at the county and state×date levels. Numerical values for all point estimates and standard errors are reported Appendix Tables B.1c–B.1d.
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Figure B.6: Predicted Climate Change, 2080–2099 versus current
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(a) Change in Average Temperature
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(b) Change in Annual Cooling Degree Days

Notes: The map shows projected end-of-century (2080–2099) changes in average temperature (panel (a))
and annual cooling degree days based on the meta-model,an average of the 21 NEX-GDDP climate models,
under the RCP8.5emissions scenario. The map is shown at the resolution of the downscaled climate model
output, which is produced on a 25km by 25km grid (0.25 degree spatial resolution).
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Figure B.7: Parametric versus Nonparametric Effects of Temperature
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(c) Warmest Third of Regions

Notes: This figure summarizes how the estimated semi-parametric function of temperature and climate
f(t,CDD) performs relative to the nonparametric estimates of temperature effects by climate tercile
reported in Figure 2a. The “spline” estimates plotted with hollow markers come from re-estimating
Equation (1) but with the fitted mortality values f̂(t,CDD) as the outcome and controlling only for
temperature bin indicators. For comparison, the nonparametric estimates and corresponding 95 percent
confidence intervals are plotted with solid markers and shaded area, respectively.
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Figure B.8: Estimated Temperature Effects for Select ZIP Codes
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Notes: This figure illustrates estimates of the parametric spline f(t,CDD) from Equation 3 by plotting the

fitted temperature-mortality relationship for a selection of ZIP codes. For each ZIP code, f̂(t,CDD) is
evaluated at the ZIP code’s current CDD Normal and at all temperatures in the support of realized
average daily temperatures for the ZIP code in the sample period 1992–2013.
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Figure B.9a: Weighted Meta Model: End-of-Century Climate Change Effects (RCP 8.5)
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No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
weighted-meta-NEX-GDDP model. Observations are at the ZIP code level and are grouped by current
climate (CDD). Box and whisker plots summarize the distribution of climate change effects across ZIP
codes in each climate range. Boxes stretch from the 25th percentile (lower hinge) to the 75th percentile
(upper hinge). The median is plotted as a line across the box. Whiskers stretch from the 5th percentile to
the 95th percentile. Statistics are weighted by the elderly Medicare population in each ZIP code.
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Figure B.9b: Unweighted Meta Model: End-of-Century Climate Change Effects (RCP 8.5)
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
meta-NEX-GDDP model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9c: ACCESS1-0: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
ACCESS1-0 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.
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Figure B.9d: BNU-ESM: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation

–6

–4

–2

0

2

4

6

A
nn

ua
l M

or
ta

lit
y 

Ch
an

ge
 (%

)

0–
50

0
50

0–
10

00
10

00
–1

50
0

15
00

–2
00

0
20

00
–2

50
0

25
00

–3
00

0
30

00
–3

50
0

35
00

–4
00

0
40

00
–4

50
0

45
00

+

Current Climate (CDD)

(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
BNU-ESM model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.

Figure B.9e: CCSM4: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
CCSM4 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.
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Figure B.9f: CESM1-BGC: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
CESM1-BGC model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9g: CNRM-CM5: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
CNRM-CM5 model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9h: CSIRO-Mk3-6-0: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
CSIRO-Mk3-6-0 model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9i: CanESM2: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
CanESM2 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.
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Figure B.9j: GFDL-CM3: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
GFDL-CM3 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.

Figure B.9k: GFDL-ESM2G: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation

–6

–4

–2

0

2

4

A
nn

ua
l M

or
ta

lit
y 

Ch
an

ge
 (%

)

0–
50

0
50

0–
10

00
10

00
–1

50
0

15
00

–2
00

0
20

00
–2

50
0

25
00

–3
00

0
30

00
–3

50
0

35
00

–4
00

0
40

00
–4

50
0

45
00

+

Current Climate (CDD)

(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
GFDL-ESM2G model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9l: GFDL-ESM2M: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
GFDL-ESM2M model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9m: IPSL-CM5A-LR: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
IPSL-CM5A-LR model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9n: IPSL-CM5A-MR: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
IPSL-CM5A-MR model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9o: MIROC-ESM: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MIROC-ESM model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9p: MIROC-ESM-CHEM: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MIROC-ESM-CHEM model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9q: MIROC5: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MIROC5 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.

B-17



Figure B.9r: MPI-ESM-LR: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MPI-ESM-LR model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9s: MPI-ESM-MR: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MPI-ESM-MR model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9t: MRI-CGCM3: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
MRI-CGCM3 model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.

Figure B.9u: NorESM1-M: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
NorESM1-M model. Box and whisker plots summarize ZIP code-level effects by current climate.
Additional notes in Appendix Figure B.9a.
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Figure B.9v: bcc-csm1-1: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
bcc-csm1-1 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.

Figure B.9w: inmcm4: End-of-Century Climate Change Effects (RCP 8.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
inmcm4 model. Box and whisker plots summarize ZIP code-level effects by current climate. Additional
notes in Appendix Figure B.9a.
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Figure B.10: Weighted Meta Model: End-of-Century Climate Change Effects (RCP 4.5)
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(a) Homogeneous Effects,
No Adaptation
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(b) Current Climate Effects,
No Adaptation

–2

0

2

4

A
nn

ua
l M

or
ta

lit
y 

Ch
an

ge
 (%

)

0–
50

0
50

0–
10

00
10

00
–1

50
0

15
00

–2
00

0
20

00
–2

50
0

25
00

–3
00

0
30

00
–3

50
0

35
00

–4
00

0
40

00
–4

50
0

45
00

+

Current Climate (CDD)

(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 4.5 emissions scenario, as predicted by the
weighted-meta-NEX-GDDP model. Observations are at the ZIP code level and are grouped by current
climate (CDD). Box and whisker plots summarize the distribution of climate change effects across ZIP
codes in each climate range. Boxes stretch from the 25th percentile (lower hinge) to the 75th percentile
(upper hinge). The median is plotted as a line across the box. Whiskers stretch from the 5th percentile to
the 95th percentile. Statistics are weighted by the elderly Medicare population in each ZIP code. Appendix
Table B.4 summarizes these climate change impacts, aggregated to climate terciles and to the United
States as a whole.
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Figure B.11: Weighted Meta Model: End-of-Century Climate Change Effects (RCP 8.5,
PRISM)
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(a) Homogeneous Effects,
No Adaptation
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(c) Current Climate Effects,
Future Adaptation

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change
relative to the current period (1992–2013) under the RCP 8.5 emissions scenario, as predicted by the
weighted-meta-NEX-GDDP model. Observations are at the ZIP code level and are grouped by current
climate (CDD). Box and whisker plots summarize the distribution of climate change effects across ZIP
codes in each climate range. Boxes stretch from the 25th percentile (lower hinge) to the 75th percentile
(upper hinge). The median is plotted as a line across the box. Whiskers stretch from the 5th percentile to
the 95th percentile. Statistics are weighted by the elderly Medicare population in each ZIP code. Appendix
Table B.3 summarizes these climate change impacts, aggregated to climate terciles and to the United
States as a whole.
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Figure B.12a: Differential Effects of Temperature by Air Conditioning (AC) Penetration, Primary AC Imputation
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(b) Counterfactual 1
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Counterfactual: Warmest ZIPs with 82.6% AC

(c) Counterfactual 2

Notes: Panel (a) reports estimates of how the mortality effects of temperature vary with regional AC penetration. The estimates come from estimating a
version of Equation 1 where daily average temperature bins are interacted with ZIP code-level AC penetration instead of with climate tercile indicators and
separate temperature controls for each Census Region are added. The shaded region reports 95 percent confidence intervals based on two-way clustered
standard errors at the county and state×date levels. Panels (b) and (c) present the implied counterfactual mortality effects of temperature in the warmest
third of ZIP codes if exposed to the lower AC penetration rates in the coolest and middle third of ZIP codes, respectively.
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Figure B.12b: Differential Effects of Temperature by Air Conditioning (AC) Penetration, Alternate AC Imputation

-30

-25

-20

-15

-10

-5

0

D
ea

th
s p

er
 1

00
,0

00

<10
10

–1
5
15

–2
0
20

–2
5
25

–3
0
30

–3
5
35

–4
0
40

–4
5
45

–5
0
50

–5
5
55

–6
0
60

–6
5
65

–7
0
70

–7
5
75

–8
0
80

–8
5
85

–9
0
90

–9
5
95

+

Daily Average Temperature (°F)

AC Differential Temperature Effects

(a) Estimation

0

2

4

6

D
ea

th
s p

er
 1

00
,0

00

<10
10

–1
5
15

–2
0
20

–2
5
25

–3
0
30

–3
5
35

–4
0
40

–4
5
45

–5
0
50

–5
5
55

–6
0
60

–6
5
65

–7
0
70

–7
5
75

–8
0
80

–8
5
85

–9
0
90

–9
5

95
+

Daily Average Temperature (°F)

Coolest Third of ZIPs (70.3% AC)
Warmest Third of ZIPs (89.7% AC)
Counterfactual: Warmest ZIPs with 70.3% AC

(b) Counterfactual 1
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(c) Counterfactual 2

Notes: This figure shows results from replicating the AC heterogeneity analysis presented in Appendix Figure B.12a except that the AC penetration
imputation procedure described in Appendix section A.4.2 was modified to exclude any climate variables. Panel (a) reports estimates of how the mortality
effect of each temperature bin varies with regional AC penetration. The estimates come from estimating a version of Equation 1 where daily average
temperature bins are interacted with ZIP code-level AC penetration instead of with climate tercile indicators and separate temperature controls for each
Census Region are added. The shaded region reports 95 percent confidence intervals based on two-way clustered standard errors at the county and
state×date levels. Panels (b) and (c) present the implied counterfactual mortality effects of temperature in the warmest third of ZIP codes if exposed to the
lower AC penetration rates in the coolest and middle third of ZIP codes, respectively.
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Table B.1a: Heterogeneous Effects of Temperature on Mortality (GHCN)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Non-parametric temperature bin estimation Semi-parametric polynomial estimation

Freq. (%) 3-day mort. Coef. Std. Err Std. Err Std. Err Coef. Std. Err Std. Err Std. Err

Coolest Third of ZIPs ×

tavg ∈ [−∞, 10) 1.72 44.0 0.43*** 0.11 0.19 0.13 0.43*** 0.10 0.17 0.12
tavg ∈ [10, 15) 1.52 44.2 0.34*** 0.09 0.11 0.11 0.38*** 0.08 0.12 0.10
tavg ∈ [15, 20) 2.53 44.0 0.29*** 0.08 0.11 0.10 0.33*** 0.08 0.10 0.09
tavg ∈ [20, 25) 3.88 43.7 0.26*** 0.08 0.12 0.09 0.30*** 0.07 0.10 0.08
tavg ∈ [25, 30) 5.33 43.3 0.31*** 0.07 0.11 0.08 0.28*** 0.06 0.09 0.07
tavg ∈ [30, 35) 6.96 42.6 0.25*** 0.07 0.09 0.07 0.27*** 0.06 0.08 0.07
tavg ∈ [35, 40) 7.78 41.8 0.23*** 0.06 0.08 0.07 0.25*** 0.05 0.08 0.06
tavg ∈ [40, 45) 8.33 40.9 0.18*** 0.06 0.08 0.06 0.22*** 0.05 0.07 0.05
tavg ∈ [45, 50) 8.85 39.9 0.15*** 0.05 0.07 0.05 0.17*** 0.04 0.06 0.04
tavg ∈ [50, 55) 9.30 38.7 0.07 0.04 0.07 0.05 0.11*** 0.04 0.06 0.04
tavg ∈ [55, 60) 9.83 37.3 0.02 0.04 0.06 0.05 0.05* 0.03 0.04 0.03
tavg ∈ [60, 65) 10.50 36.2 –0.02 0.03 0.03 0.03 0.01 0.02 0.02 0.02
tavg ∈ [65, 70) 10.61 35.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 8.11 36.1 0.10** 0.04 0.05 0.04 0.08*** 0.02 0.03 0.02
tavg ∈ [75, 80) 3.87 36.4 0.20*** 0.05 0.07 0.05 0.29*** 0.04 0.08 0.04
tavg ∈ [80, 85) 0.81 37.0 0.68*** 0.11 0.20 0.11 0.71*** 0.09 0.19 0.10
tavg ∈ [85, 90) 0.06 37.7 1.80*** 0.34 0.64 0.39 1.44*** 0.21 0.38 0.24
tavg ∈ [90, 95) < 0.002 48.8 11.78*** 4.26 4.73 4.42 2.57*** 0.43 0.72 0.49
tavg ∈ [95,∞] < 0.002 43.6 14.08 16.94 18.34 17.40 4.26*** 0.81 1.27 0.92

Middle Third of ZIPs ×

tavg ∈ [−∞, 10) 0.45 46.9 0.58*** 0.16 0.20 0.19 0.62*** 0.15 0.21 0.19
tavg ∈ [10, 15) 0.58 46.4 0.51*** 0.13 0.15 0.15 0.53*** 0.10 0.13 0.12
tavg ∈ [15, 20) 1.18 45.9 0.50*** 0.12 0.13 0.14 0.44*** 0.08 0.10 0.10
tavg ∈ [20, 25) 2.26 45.2 0.19* 0.10 0.10 0.11 0.36*** 0.08 0.09 0.09
tavg ∈ [25, 30) 3.80 44.5 0.26*** 0.09 0.10 0.10 0.30*** 0.08 0.09 0.09
tavg ∈ [30, 35) 5.63 43.9 0.22** 0.08 0.10 0.09 0.25*** 0.08 0.10 0.08
tavg ∈ [35, 40) 7.09 43.1 0.21** 0.07 0.08 0.08 0.21*** 0.08 0.10 0.08
tavg ∈ [40, 45) 7.52 42.2 0.17** 0.07 0.09 0.07 0.19** 0.07 0.10 0.07
tavg ∈ [45, 50) 7.81 41.0 0.12 0.07 0.08 0.08 0.16** 0.06 0.09 0.07
tavg ∈ [50, 55) 8.62 39.9 0.03 0.06 0.05 0.06 0.12** 0.05 0.08 0.06
tavg ∈ [55, 60) 9.40 38.9 –0.01 0.04 0.05 0.05 0.07* 0.04 0.06 0.04
tavg ∈ [60, 65) 9.78 37.7 –0.00 0.03 0.03 0.03 0.03 0.02 0.03 0.02
tavg ∈ [65, 70) 10.70 36.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 11.84 36.0 0.02 0.03 0.05 0.03 0.01 0.02 0.03 0.02
tavg ∈ [75, 80) 9.30 36.1 0.08 0.06 0.09 0.06 0.11** 0.05 0.06 0.05
tavg ∈ [80, 85) 3.45 36.2 0.25*** 0.09 0.12 0.09 0.35*** 0.10 0.11 0.10
tavg ∈ [85, 90) 0.54 36.8 0.71*** 0.18 0.17 0.19 0.80*** 0.22 0.21 0.23
tavg ∈ [90, 95) 0.03 39.7 3.76*** 1.40 1.56 1.41 1.57*** 0.45 0.41 0.46
tavg ∈ [95,∞] < 0.002 41.2 1.03 5.21 4.10 5.12 2.77*** 0.83 0.77 0.86

Warmest Third of ZIPs ×

tavg ∈ [−∞, 10) 0.02 51.7 1.13 0.88 1.27 0.94 1.46** 0.66 0.91 0.71
tavg ∈ [10, 15) 0.04 50.5 1.42** 0.55 0.37 0.58 1.35*** 0.36 0.49 0.39
tavg ∈ [15, 20) 0.11 50.1 1.33*** 0.33 0.43 0.35 1.21*** 0.19 0.26 0.22
tavg ∈ [20, 25) 0.28 49.2 1.14*** 0.17 0.18 0.19 1.05*** 0.12 0.15 0.14
tavg ∈ [25, 30) 0.68 48.0 0.88*** 0.12 0.12 0.14 0.90*** 0.08 0.11 0.10
tavg ∈ [30, 35) 1.45 47.1 0.70*** 0.09 0.10 0.10 0.75*** 0.07 0.10 0.08
tavg ∈ [35, 40) 2.77 46.0 0.63*** 0.07 0.09 0.08 0.61*** 0.06 0.09 0.07
tavg ∈ [40, 45) 4.48 45.0 0.49*** 0.06 0.10 0.07 0.49*** 0.05 0.08 0.06
tavg ∈ [45, 50) 6.00 43.8 0.40*** 0.06 0.07 0.06 0.37*** 0.05 0.07 0.05
tavg ∈ [50, 55) 7.11 42.7 0.27*** 0.05 0.07 0.06 0.26*** 0.04 0.06 0.04
tavg ∈ [55, 60) 8.02 41.6 0.14*** 0.04 0.05 0.04 0.16*** 0.03 0.04 0.03
tavg ∈ [60, 65) 8.74 40.5 0.08** 0.03 0.04 0.03 0.07*** 0.01 0.02 0.01
tavg ∈ [65, 70) 10.04 39.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 12.63 38.0 –0.02 0.03 0.03 0.04 –0.04*** 0.01 0.02 0.01
tavg ∈ [75, 80) 16.19 36.8 –0.04 0.04 0.04 0.05 –0.05 0.03 0.05 0.03
tavg ∈ [80, 85) 15.96 36.4 0.04 0.06 0.07 0.06 0.02 0.05 0.08 0.05
tavg ∈ [85, 90) 4.30 36.2 0.15* 0.08 0.11 0.08 0.18** 0.07 0.11 0.07
tavg ∈ [90, 95) 0.92 35.0 0.46*** 0.10 0.10 0.10 0.46*** 0.09 0.15 0.09
tavg ∈ [95,∞] 0.25 35.0 1.06*** 0.17 0.25 0.18 0.93*** 0.15 0.23 0.15

Dependent variable 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort.
Dep. var. mean 39.40 39.40 39.40 39.40 39.40 39.40 39.40 39.40
Observations 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311
First cluster level county county state county county county state county
Second cluster level state × date state × date state × date state × date
Weather source GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN

Notes: This table provides sample summary statistics and estimated 3-day mortality effects of temperature as measured by GHCN data. An observation is
a ZIP code day. Columns (1) and (2) summarize the sample distributions of realized temperature and 3-day mortality across each of 19 temperature bins.
Columns (3)–(10) report results from estimating Equation 1. Columns (3)–(6) report non-parametric temperature bin estimates and standard errors under
various levels of clustering. Columns (7)–(10) report semi-parametric (5th order polynomial in the temperature bin) estimates and associated standard
errors. Figure 2a plots a selection of these estimates.
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Table B.1b: Homogeneous Effects of Temperature on Mortality (GHCN)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Non-parametric temperature bin estimation Semi-parametric polynomial estimation

Freq. (%) 3-day mort. Coef. Std. Err Std. Err Std. Err Coef. Std. Err Std. Err Std. Err

All U.S. ZIPs
tavg ∈ [−∞, 10) 0.73 44.6 0.65*** 0.09 0.15 0.11 0.66*** 0.08 0.14 0.11
tavg ∈ [10, 15) 0.72 44.9 0.57*** 0.07 0.10 0.09 0.56*** 0.06 0.10 0.08
tavg ∈ [15, 20) 1.28 44.8 0.54*** 0.06 0.09 0.08 0.50*** 0.05 0.08 0.07
tavg ∈ [20, 25) 2.14 44.5 0.41*** 0.06 0.09 0.07 0.46*** 0.05 0.08 0.06
tavg ∈ [25, 30) 3.27 44.1 0.45*** 0.05 0.08 0.06 0.43*** 0.05 0.08 0.05
tavg ∈ [30, 35) 4.68 43.6 0.39*** 0.05 0.07 0.05 0.40*** 0.04 0.07 0.05
tavg ∈ [35, 40) 5.88 43.0 0.36*** 0.04 0.07 0.05 0.35*** 0.04 0.07 0.05
tavg ∈ [40, 45) 6.77 42.2 0.30*** 0.04 0.07 0.04 0.30*** 0.04 0.07 0.04
tavg ∈ [45, 50) 7.55 41.3 0.24*** 0.04 0.06 0.04 0.23*** 0.03 0.06 0.04
tavg ∈ [50, 55) 8.34 40.3 0.14*** 0.03 0.05 0.03 0.16*** 0.03 0.05 0.03
tavg ∈ [55, 60) 9.08 39.1 0.06** 0.03 0.04 0.03 0.09*** 0.02 0.04 0.02
tavg ∈ [60, 65) 9.67 38.0 0.03 0.02 0.03 0.02 0.03*** 0.01 0.02 0.01
tavg ∈ [65, 70) 10.45 37.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 10.86 36.8 0.03* 0.02 0.03 0.02 0.01 0.01 0.03 0.01
tavg ∈ [75, 80) 9.79 36.5 0.07** 0.04 0.06 0.04 0.08*** 0.03 0.06 0.03
tavg ∈ [80, 85) 6.75 36.4 0.23*** 0.05 0.10 0.05 0.24*** 0.05 0.09 0.05
tavg ∈ [85, 90) 1.64 36.3 0.44*** 0.08 0.15 0.08 0.49*** 0.08 0.14 0.08
tavg ∈ [90, 95) 0.32 35.2 1.02*** 0.23 0.29 0.23 0.87*** 0.13 0.21 0.13
tavg ∈ [95,∞] 0.08 35.0 1.59*** 0.27 0.40 0.27 1.41*** 0.22 0.33 0.23

Dependent variable 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort.
Dep. var. mean 39.40 39.40 39.40 39.40 39.40 39.40 39.40 39.40
Observations 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311 250, 247, 311
First cluster level county county state county county county state county
Second cluster level state × date state × date state × date state × date
Weather source GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN GHCN

Notes: This table provides sample summary statistics and estimated 3-day mortality effects of temperature as measured by GHCN data. An observation is
a ZIP code day. Columns (1) and (2) summarize the sample distributions of realized temperature and 3-day mortality across each of 19 temperature bins.
Columns (3)–(10) report results from estimating Equation 1, but with temperature effects constrained to be the same across all regions. Columns (3)–(6)
report non-parametric temperature bin estimates and standard errors under various levels of clustering. Columns (7)–(10) report semi-parametric (5th
order polynomial in the temperature bin) estimates and associated standard errors. Figure 2b plots a selection of these estimates.
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Table B.1c: Heterogeneous Effects of Temperature on Mortality (PRISM)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Non-parametric temperature bin estimation Semi-parametric polynomial estimation

Freq. (%) 3-day mort. Coef. Std. Err Std. Err Std. Err Coef. Std. Err Std. Err Std. Err

Coolest Third of ZIPs ×

tavg ∈ [−∞, 10) 1.91 44.3 1.32*** 0.10 0.14 0.12 1.32*** 0.09 0.15 0.12
tavg ∈ [10, 15) 1.63 44.4 1.12*** 0.09 0.11 0.11 1.22*** 0.08 0.11 0.09
tavg ∈ [15, 20) 2.70 44.2 1.08*** 0.08 0.08 0.09 1.14*** 0.07 0.09 0.08
tavg ∈ [20, 25) 3.96 43.8 1.03*** 0.07 0.08 0.08 1.07*** 0.06 0.08 0.07
tavg ∈ [25, 30) 5.42 43.3 0.98*** 0.06 0.09 0.07 1.00*** 0.06 0.08 0.07
tavg ∈ [30, 35) 7.00 42.6 0.91*** 0.06 0.07 0.07 0.93*** 0.05 0.07 0.06
tavg ∈ [35, 40) 7.86 41.8 0.80*** 0.06 0.06 0.06 0.84*** 0.05 0.06 0.06
tavg ∈ [40, 45) 8.37 40.8 0.67*** 0.05 0.05 0.06 0.73*** 0.04 0.05 0.05
tavg ∈ [45, 50) 8.80 39.8 0.55*** 0.05 0.04 0.05 0.60*** 0.04 0.05 0.04
tavg ∈ [50, 55) 9.20 38.6 0.37*** 0.04 0.04 0.04 0.45*** 0.03 0.04 0.04
tavg ∈ [55, 60) 9.74 37.3 0.24*** 0.04 0.04 0.04 0.28*** 0.02 0.03 0.03
tavg ∈ [60, 65) 10.47 36.2 0.09*** 0.03 0.02 0.03 0.12*** 0.01 0.02 0.01
tavg ∈ [65, 70) 10.40 35.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 8.01 36.0 –0.07* 0.03 0.03 0.04 –0.04** 0.01 0.02 0.02
tavg ∈ [75, 80) 3.72 36.3 –0.05 0.05 0.07 0.05 0.07* 0.04 0.06 0.04
tavg ∈ [80, 85) 0.76 36.9 0.43*** 0.10 0.15 0.11 0.40*** 0.09 0.15 0.10
tavg ∈ [85, 90) 0.06 37.2 1.34*** 0.37 0.55 0.40 1.05*** 0.20 0.34 0.23
tavg ∈ [90, 95) < 0.002 49.8 13.09*** 4.04 4.48 4.66 2.16*** 0.42 0.69 0.49
tavg ∈ [95,∞] < 0.002 109.9 31.48*** 4.16 4.17 4.24 3.85*** 0.80 1.25 0.92

Middle Third of ZIPs ×

tavg ∈ [−∞, 10) 0.53 46.9 1.77*** 0.16 0.15 0.19 1.83*** 0.15 0.16 0.19
tavg ∈ [10, 15) 0.67 46.6 1.73*** 0.12 0.13 0.15 1.61*** 0.09 0.10 0.11
tavg ∈ [15, 20) 1.32 45.8 1.39*** 0.10 0.09 0.12 1.44*** 0.07 0.09 0.09
tavg ∈ [20, 25) 2.41 45.2 1.20*** 0.08 0.08 0.10 1.29*** 0.07 0.08 0.08
tavg ∈ [25, 30) 4.00 44.5 1.15*** 0.07 0.08 0.08 1.17*** 0.06 0.08 0.07
tavg ∈ [30, 35) 5.78 43.9 1.04*** 0.06 0.06 0.07 1.06*** 0.06 0.08 0.07
tavg ∈ [35, 40) 7.15 43.0 0.96*** 0.06 0.08 0.07 0.95*** 0.06 0.08 0.07
tavg ∈ [40, 45) 7.49 42.1 0.85*** 0.06 0.07 0.06 0.83*** 0.06 0.07 0.06
tavg ∈ [45, 50) 7.88 40.9 0.63*** 0.06 0.07 0.06 0.69*** 0.05 0.07 0.06
tavg ∈ [50, 55) 8.61 39.9 0.47*** 0.05 0.04 0.05 0.52*** 0.05 0.06 0.05
tavg ∈ [55, 60) 9.22 38.9 0.28*** 0.04 0.04 0.04 0.34*** 0.03 0.04 0.04
tavg ∈ [60, 65) 9.71 37.6 0.14*** 0.04 0.03 0.04 0.16*** 0.02 0.02 0.02
tavg ∈ [65, 70) 10.61 36.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 11.78 36.0 –0.07** 0.03 0.02 0.03 –0.10*** 0.02 0.02 0.02
tavg ∈ [75, 80) 9.07 36.0 –0.11*** 0.04 0.04 0.04 –0.09*** 0.03 0.03 0.03
tavg ∈ [80, 85) 3.29 36.1 –0.00 0.06 0.06 0.06 0.10 0.08 0.07 0.08
tavg ∈ [85, 90) 0.46 36.8 0.60*** 0.22 0.19 0.22 0.54** 0.21 0.18 0.22
tavg ∈ [90, 95) 0.02 39.5 3.89** 1.84 2.20 1.96 1.36*** 0.47 0.41 0.49
tavg ∈ [95,∞] < 0.002 31.7 –8.76** 5.25 4.53 4.07 2.67*** 0.92 0.81 0.97

Warmest Third of ZIPs ×

tavg ∈ [−∞, 10) 0.03 51.5 2.40*** 0.64 0.95 0.77 2.53*** 0.49 0.69 0.57
tavg ∈ [10, 15) 0.05 50.5 2.00*** 0.36 0.30 0.40 2.22*** 0.26 0.35 0.30
tavg ∈ [15, 20) 0.14 50.0 2.16*** 0.25 0.28 0.27 1.98*** 0.14 0.17 0.17
tavg ∈ [20, 25) 0.35 49.1 1.84*** 0.14 0.13 0.17 1.78*** 0.09 0.10 0.12
tavg ∈ [25, 30) 0.80 48.0 1.55*** 0.10 0.09 0.12 1.60*** 0.07 0.09 0.09
tavg ∈ [30, 35) 1.69 47.1 1.39*** 0.08 0.09 0.10 1.42*** 0.06 0.08 0.08
tavg ∈ [35, 40) 3.13 46.0 1.20*** 0.07 0.09 0.08 1.23*** 0.05 0.07 0.07
tavg ∈ [40, 45) 4.89 44.9 1.02*** 0.06 0.06 0.07 1.03*** 0.05 0.07 0.06
tavg ∈ [45, 50) 6.49 43.8 0.84*** 0.05 0.07 0.06 0.82*** 0.04 0.06 0.05
tavg ∈ [50, 55) 7.52 42.6 0.56*** 0.05 0.06 0.05 0.60*** 0.04 0.05 0.04
tavg ∈ [55, 60) 8.28 41.6 0.38*** 0.04 0.04 0.04 0.38*** 0.03 0.04 0.03
tavg ∈ [60, 65) 9.08 40.5 0.13*** 0.04 0.04 0.04 0.18*** 0.01 0.02 0.01
tavg ∈ [65, 70) 10.20 39.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 11.96 38.3 –0.14*** 0.03 0.05 0.04 –0.14*** 0.01 0.02 0.01
tavg ∈ [75, 80) 14.65 37.4 –0.22*** 0.04 0.06 0.04 –0.22*** 0.03 0.05 0.03
tavg ∈ [80, 85) 15.82 36.5 –0.26*** 0.05 0.06 0.05 –0.23*** 0.04 0.07 0.04
tavg ∈ [85, 90) 3.93 36.3 –0.15** 0.07 0.10 0.07 –0.15** 0.06 0.08 0.06
tavg ∈ [90, 95) 0.80 35.1 0.09 0.12 0.14 0.12 0.02 0.10 0.12 0.11
tavg ∈ [95,∞] 0.19 35.5 0.25 0.23 0.24 0.23 0.31 0.21 0.23 0.21

Dependent variable 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort.
Dep. var. mean 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54
Observations 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198
First cluster level county county state county county county state county
Second cluster level state × date state × date state × date state × date
Weather source PRISM PRISM prism prism prism prism prism prism prism prism

Notes: This table provides sample summary statistics and estimated 3-day mortality effects of temperature as measured by PRISM data. An observation is
a ZIP code day. Columns (1) and (2) summarize the sample distributions of realized temperature and 3-day mortality across each of 19 temperature bins.
Columns (3)–(10) report results from estimating Equation 1. Columns (3)–(6) report non-parametric temperature bin estimates and standard errors under
various levels of clustering. Columns (7)–(10) report semi-parametric (5th order polynomial in the temperature bin) estimates and associated standard
errors. Figure B.5a plots a selection of these estimates.
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Table B.1d: Homogeneous Effects of Temperature on Mortality (PRISM)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Non-parametric temperature bin estimation Semi-parametric polynomial estimation

Freq. (%) 3-day mort. Coef. Std. Err Std. Err Std. Err Coef. Std. Err Std. Err Std. Err

All U.S. ZIPs
tavg ∈ [−∞, 10) 0.83 44.9 1.65*** 0.08 0.12 0.10 1.67*** 0.07 0.12 0.10
tavg ∈ [10, 15) 0.79 45.1 1.49*** 0.07 0.09 0.09 1.49*** 0.05 0.08 0.07
tavg ∈ [15, 20) 1.40 44.9 1.38*** 0.05 0.07 0.07 1.38*** 0.04 0.06 0.06
tavg ∈ [20, 25) 2.25 44.6 1.27*** 0.05 0.06 0.06 1.29*** 0.04 0.06 0.05
tavg ∈ [25, 30) 3.43 44.1 1.21*** 0.04 0.06 0.05 1.21*** 0.04 0.06 0.05
tavg ∈ [30, 35) 4.85 43.7 1.11*** 0.04 0.06 0.05 1.12*** 0.04 0.06 0.04
tavg ∈ [35, 40) 6.07 43.0 0.99*** 0.04 0.06 0.04 1.00*** 0.03 0.06 0.04
tavg ∈ [40, 45) 6.93 42.3 0.86*** 0.03 0.05 0.04 0.86*** 0.03 0.05 0.04
tavg ∈ [45, 50) 7.73 41.3 0.69*** 0.03 0.05 0.04 0.69*** 0.03 0.04 0.03
tavg ∈ [50, 55) 8.45 40.2 0.49*** 0.03 0.03 0.03 0.51*** 0.02 0.04 0.03
tavg ∈ [55, 60) 9.08 39.1 0.31*** 0.02 0.03 0.03 0.32*** 0.02 0.03 0.02
tavg ∈ [60, 65) 9.76 38.0 0.12*** 0.02 0.02 0.02 0.14*** 0.01 0.02 0.01
tavg ∈ [65, 70) 10.40 37.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tavg ∈ [70, 75) 10.57 36.9 –0.09*** 0.02 0.02 0.02 –0.09*** 0.01 0.02 0.01
tavg ∈ [75, 80) 9.11 36.8 –0.13*** 0.03 0.04 0.03 –0.11*** 0.02 0.04 0.02
tavg ∈ [80, 85) 6.56 36.5 –0.07* 0.04 0.06 0.04 –0.04 0.04 0.07 0.04
tavg ∈ [85, 90) 1.46 36.3 0.18** 0.08 0.14 0.09 0.16* 0.08 0.12 0.08
tavg ∈ [90, 95) 0.27 35.3 0.66** 0.26 0.33 0.27 0.49*** 0.16 0.22 0.17
tavg ∈ [95,∞] 0.06 35.5 0.79** 0.33 0.39 0.34 0.98*** 0.31 0.40 0.32

Dependent variable 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort. 3-day mort.
Dep. var. mean 39.54 39.54 39.54 39.54 39.54 39.54 39.54 39.54
Observations 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198 259, 433, 198
First cluster level county county state county county county state county
Second cluster level state × date state × date state × date state × date
Weather source PRISM PRISM prism prism prism prism prism prism prism prism

Notes: This table provides sample summary statistics and estimated 3-day mortality effects of temperature as measured by PRISM data. An observation is
a ZIP code day. Columns (1) and (2) summarize the sample distributions of realized temperature and 3-day mortality across each of 19 temperature bins.
Columns (3)–(10) report results from estimating Equation 1, but with temperature effects constrained to be the same across all regions. Columns (3)–(6)
report non-parametric temperature bin estimates and standard errors under various levels of clustering. Columns (7)–(10) report semi-parametric (5th
order polynomial in the temperature bin) estimates and associated standard errors. Figure B.5b plots a selection of these estimates.
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Table B.2a: End-of-Century Climate Change Effects (RCP 8.5): All U.S. ZIPs

(1) (2) (3) (4) (5) (6) (7) (8)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD
Homogeneous

Effects Climate Heterogeneity

Model
Weight Current Future Current Future

No
Adaptation

No
Adaptation

Future
Adaptation

Average of NEX-GDDP Models

Meta-model, weighted average 57.1 65.1 1413 2864 0.76*** 2.15*** -0.53*
(0.18) (0.47) (0.32)

Meta-model, unweighted average 57.1 65.3 1413 2897 0.79*** 2.12*** -0.57*
(0.18) (0.45) (0.33)

NEX-GDDP Models

ACCESS1-0 1.02 57.1 66.7 1413 3215 1.12*** 4.47*** -0.74*
(0.23) (1.24) (0.45)

BNU-ESM 0.68 57.1 66.2 1413 2979 0.69*** 1.62*** -0.76**
(0.18) (0.27) (0.35)

CCSM4 0.68 57.1 64.1 1413 2707 0.59*** 1.34*** -0.38
(0.15) (0.25) (0.28)

CESM1-BGC 0.64 57.1 64.4 1413 2681 0.55*** 1.25*** -0.44
(0.14) (0.24) (0.27)

CNRM-CM5 1.01 57.1 64.4 1413 2613 0.46*** 0.92*** -0.45*
(0.14) (0.17) (0.25)

CSIRO-Mk3-6-0 0.74 57.1 65.5 1413 2941 0.83*** 2.01*** -0.65*
(0.19) (0.37) (0.34)

CanESM2 0.63 57.1 66.1 1413 3193 1.00*** 2.30*** -0.88**
(0.21) (0.37) (0.44)

GFDL-CM3 0.95 57.1 67.1 1413 3413 1.40*** 4.44*** -1.07**
(0.27) (1.05) (0.53)

GFDL-ESM2G 0.44 57.1 63.7 1413 2599 0.54*** 0.87*** -0.43
(0.14) (0.14) (0.26)

GFDL-ESM2M 0.43 57.1 63.0 1413 2497 0.50*** 0.69*** -0.37
(0.12) (0.12) (0.24)

IPSL-CM5A-LR 0.72 57.1 66.3 1413 3099 1.00*** 3.18*** -0.81**
(0.22) (0.75) (0.39)

IPSL-CM5A-MR 0.82 57.1 66.2 1413 3174 1.21*** 4.86*** -0.70*
(0.24) (1.38) (0.41)

MIROC-ESM 0.15 57.1 67.7 1413 3370 1.20*** 3.14*** -1.28**
(0.26) (0.58) (0.52)

MIROC-ESM-CHEM 0.17 57.1 68.5 1413 3464 1.21*** 2.91*** -1.57***
(0.27) (0.50) (0.55)

MIROC5 1.11 57.1 65.7 1413 2839 0.58*** 1.13*** -0.78**
(0.17) (0.20) (0.32)

MPI-ESM-LR 0.49 57.1 64.9 1413 2925 0.88*** 2.32*** -0.49
(0.18) (0.49) (0.35)

MPI-ESM-MR 0.52 57.1 64.6 1413 2845 0.80*** 1.93*** -0.46
(0.17) (0.38) (0.33)

MRI-CGCM3 0.68 57.1 62.7 1413 2344 0.34*** 0.58*** -0.24
(0.10) (0.11) (0.19)

NorESM1-M 0.88 57.1 65.5 1413 2795 0.56*** 2.21*** -0.55*
(0.16) (0.63) (0.29)

bcc-csm1-1 0.55 57.1 65.2 1413 2881 0.75*** 1.54*** -0.58*
(0.17) (0.24) (0.33)

inmcm4 1.08 57.1 62.3 1413 2255 0.35*** 0.88*** -0.13
(0.10) (0.18) (0.16)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to the United States as a whole, under all
21 NEX-GDDP climate models and two meta-models. The climate model is given by the row label. The results for the
weighted meta-model—the first listed in the table—are the same as those reported for “All U.S. ZIPs” in Table 1.
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Table B.2b: End-of-Century Climate Change Effects (RCP 8.5): Coolest Third of ZIPs

(1) (2) (3) (4) (5) (6) (7) (8)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD
Homogeneous

Effects Climate Heterogeneity

Model
Weight Current Future Current Future

No
Adaptation

No
Adaptation

Future
Adaptation

Average of NEX-GDDP Models

Meta-model, weighted average 49.4 58.1 525 1661 -0.03 2.25*** 0.84**
(0.12) (0.50) (0.35)

Meta-model, unweighted average 49.4 58.2 525 1683 -0.03 2.18*** 0.82**
(0.12) (0.45) (0.35)

NEX-GDDP Models

ACCESS1-0 1.02 49.4 59.9 525 1979 0.17 4.65*** 0.74**
(0.16) (1.37) (0.36)

BNU-ESM 0.68 49.4 59.7 525 1869 -0.05 2.15*** 0.61*
(0.14) (0.34) (0.34)

CCSM4 0.68 49.4 57.0 525 1563 -0.03 1.64*** 0.90**
(0.10) (0.30) (0.36)

CESM1-BGC 0.64 49.4 57.3 525 1513 -0.08 1.52*** 0.82**
(0.10) (0.29) (0.35)

CNRM-CM5 1.01 49.4 57.4 525 1466 -0.16 1.14*** 0.77**
(0.10) (0.19) (0.36)

CSIRO-Mk3-6-0 0.74 49.4 58.6 525 1772 -0.02 2.15*** 0.72**
(0.13) (0.39) (0.35)

CanESM2 0.63 49.4 59.3 525 2036 0.15 2.74*** 0.68*
(0.15) (0.46) (0.37)

GFDL-CM3 0.95 49.4 60.0 525 2136 0.30* 4.32*** 0.70*
(0.17) (1.02) (0.38)

GFDL-ESM2G 0.44 49.4 56.4 525 1342 -0.19** 0.77*** 0.77**
(0.09) (0.14) (0.35)

GFDL-ESM2M 0.43 49.4 55.2 525 1226 -0.16** 0.63*** 0.79**
(0.07) (0.11) (0.33)

IPSL-CM5A-LR 0.72 49.4 59.3 525 1836 -0.02 3.03*** 0.74**
(0.13) (0.74) (0.35)

IPSL-CM5A-MR 0.82 49.4 58.8 525 1878 0.17 4.87*** 0.95***
(0.14) (1.57) (0.36)

MIROC-ESM 0.15 49.4 61.0 525 2057 -0.03 2.53*** 0.41
(0.16) (0.41) (0.35)

MIROC-ESM-CHEM 0.17 49.4 61.8 525 2107 -0.08 2.48*** 0.26
(0.17) (0.40) (0.34)

MIROC5 1.11 49.4 58.7 525 1584 -0.25** 1.07*** 0.58*
(0.11) (0.20) (0.33)

MPI-ESM-LR 0.49 49.4 57.8 525 1736 0.10 2.45*** 0.88**
(0.12) (0.49) (0.35)

MPI-ESM-MR 0.52 49.4 57.3 525 1622 0.03 1.98*** 0.90**
(0.11) (0.36) (0.36)

MRI-CGCM3 0.68 49.4 55.6 525 1198 -0.22*** 0.55*** 0.71**
(0.07) (0.11) (0.33)

NorESM1-M 0.88 49.4 58.6 525 1661 -0.06 2.75*** 0.77**
(0.12) (0.78) (0.34)

bcc-csm1-1 0.55 49.4 58.0 525 1662 -0.07 1.47*** 0.73**
(0.12) (0.22) (0.34)

inmcm4 1.08 49.4 54.8 525 1105 -0.16** 0.81*** 0.83***
(0.06) (0.18) (0.28)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to the coolest U.S. climate tercile, under
all 21 NEX-GDDP climate models and two meta-models. The climate model is given by the row label. The results for the
weighted meta-model—the first listed in the table—are the same as those reported for “Coolest third of ZIPs” in Table 1.
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Table B.2c: End-of-Century Climate Change Effects (RCP 8.5): Middle Third of ZIPs

(1) (2) (3) (4) (5) (6) (7) (8)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD
Homogeneous

Effects Climate Heterogeneity

Model
Weight Current Future Current Future

No
Adaptation

No
Adaptation

Future
Adaptation

Average of NEX-GDDP Models

Meta-model, weighted average 55.2 63.5 1079 2491 0.54*** 2.89*** -0.41
(0.16) (0.93) (0.35)

Meta-model, unweighted average 55.2 63.6 1079 2519 0.55*** 2.82*** -0.45
(0.16) (0.89) (0.36)

NEX-GDDP Models

ACCESS1-0 1.02 55.2 65.1 1079 2887 0.98*** 6.85*** -0.57
(0.22) (2.40) (0.49)

BNU-ESM 0.68 55.2 64.6 1079 2591 0.49*** 1.83*** -0.71*
(0.17) (0.51) (0.37)

CCSM4 0.68 55.2 62.5 1079 2376 0.46*** 1.66*** -0.35
(0.14) (0.46) (0.33)

CESM1-BGC 0.64 55.2 62.7 1079 2337 0.39*** 1.52*** -0.41
(0.13) (0.44) (0.31)

CNRM-CM5 1.01 55.2 62.7 1079 2231 0.26** 1.05*** -0.42
(0.12) (0.32) (0.26)

CSIRO-Mk3-6-0 0.74 55.2 63.8 1079 2544 0.55*** 2.44*** -0.55
(0.16) (0.73) (0.36)

CanESM2 0.63 55.2 64.4 1079 2825 0.77*** 2.66*** -0.75
(0.19) (0.70) (0.48)

GFDL-CM3 0.95 55.2 65.4 1079 3008 1.10*** 6.52*** -0.61
(0.24) (2.18) (0.53)

GFDL-ESM2G 0.44 55.2 61.9 1079 2202 0.27** 0.87*** -0.33
(0.11) (0.25) (0.27)

GFDL-ESM2M 0.43 55.2 61.1 1079 2069 0.22** 0.63*** -0.21
(0.10) (0.19) (0.23)

IPSL-CM5A-LR 0.72 55.2 64.7 1079 2708 0.67*** 4.37*** -0.60
(0.18) (1.51) (0.40)

IPSL-CM5A-MR 0.82 55.2 64.4 1079 2802 0.96*** 7.19*** -0.37
(0.21) (2.59) (0.45)

MIROC-ESM 0.15 55.2 65.9 1079 2948 0.84*** 4.25*** -0.93*
(0.22) (1.28) (0.51)

MIROC-ESM-CHEM 0.17 55.2 66.8 1079 3035 0.79*** 3.61*** -1.18**
(0.23) (1.05) (0.51)

MIROC5 1.11 55.2 64.1 1079 2444 0.25* 1.07*** -0.71**
(0.14) (0.34) (0.34)

MPI-ESM-LR 0.49 55.2 63.2 1079 2588 0.72*** 3.27*** -0.38
(0.17) (1.00) (0.40)

MPI-ESM-MR 0.52 55.2 62.8 1079 2456 0.60*** 2.68*** -0.30
(0.15) (0.81) (0.36)

MRI-CGCM3 0.68 55.2 61.0 1079 1967 0.12 0.56*** -0.19
(0.09) (0.20) (0.20)

NorESM1-M 0.88 55.2 64.0 1079 2455 0.44*** 3.19*** -0.49
(0.16) (1.14) (0.34)

bcc-csm1-1 0.55 55.2 63.7 1079 2563 0.58*** 1.90*** -0.56
(0.16) (0.49) (0.38)

inmcm4 1.08 55.2 60.5 1079 1870 0.15* 1.03*** -0.03
(0.08) (0.36) (0.17)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to the middle U.S. climate tercile, under
all 21 NEX-GDDP climate models and two meta-models. The climate model is given by the row label. The results for the
weighted meta-model—the first listed in the table—are the same as those reported for “Middle third of ZIPs” in Table 1.
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Table B.2d: End-of-Century Climate Change Effects (RCP 8.5): Warmest Third of ZIPs

(1) (2) (3) (4) (5) (6) (7) (8)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD
Homogeneous

Effects Climate Heterogeneity

Model
Weight Current Future Current Future

No
Adaptation

No
Adaptation

Future
Adaptation

Average of NEX-GDDP Models

Meta-model, weighted average 66.5 73.6 2600 4397 1.75*** 1.33*** -1.97***
(0.28) (0.31) (0.67)

Meta-model, unweighted average 66.5 73.8 2600 4443 1.81*** 1.40*** -2.04***
(0.29) (0.32) (0.69)

NEX-GDDP Models

ACCESS1-0 1.02 66.5 74.7 2600 4736 2.18*** 1.99*** -2.35***
(0.34) (0.45) (0.84)

BNU-ESM 0.68 66.5 74.0 2600 4435 1.60*** 0.91*** -2.14***
(0.26) (0.25) (0.69)

CCSM4 0.68 66.5 72.7 2600 4143 1.32*** 0.73*** -1.64***
(0.22) (0.19) (0.56)

CESM1-BGC 0.64 66.5 73.0 2600 4152 1.31*** 0.72*** -1.69***
(0.22) (0.20) (0.57)

CNRM-CM5 1.01 66.5 72.9 2600 4102 1.25*** 0.60*** -1.68***
(0.21) (0.19) (0.55)

CSIRO-Mk3-6-0 0.74 66.5 73.8 2600 4463 1.93*** 1.45*** -2.06***
(0.31) (0.32) (0.73)

CanESM2 0.63 66.5 74.4 2600 4677 2.06*** 1.52*** -2.52***
(0.33) (0.33) (0.81)

GFDL-CM3 0.95 66.5 75.6 2600 5048 2.77*** 2.52*** -3.24***
(0.44) (0.54) (1.04)

GFDL-ESM2G 0.44 66.5 72.7 2600 4208 1.51*** 0.97*** -1.69***
(0.24) (0.22) (0.60)

GFDL-ESM2M 0.43 66.5 72.4 2600 4149 1.40*** 0.80*** -1.67***
(0.22) (0.20) (0.58)

IPSL-CM5A-LR 0.72 66.5 74.9 2600 4708 2.31*** 2.18*** -2.53***
(0.38) (0.48) (0.83)

IPSL-CM5A-MR 0.82 66.5 75.0 2600 4794 2.48*** 2.59*** -2.62***
(0.40) (0.58) (0.87)

MIROC-ESM 0.15 66.5 75.9 2600 5058 2.74*** 2.65*** -3.25***
(0.44) (0.58) (1.04)

MIROC-ESM-CHEM 0.17 66.5 76.6 2600 5200 2.86*** 2.64*** -3.72***
(0.46) (0.58) (1.13)

MIROC5 1.11 66.5 74.0 2600 4445 1.72*** 1.25*** -2.16***
(0.28) (0.30) (0.70)

MPI-ESM-LR 0.49 66.5 73.4 2600 4407 1.77*** 1.27*** -1.94***
(0.28) (0.28) (0.69)

MPI-ESM-MR 0.52 66.5 73.4 2600 4413 1.74*** 1.15*** -1.95***
(0.27) (0.26) (0.70)

MRI-CGCM3 0.68 66.5 71.4 2600 3823 1.09*** 0.62*** -1.22***
(0.18) (0.16) (0.44)

NorESM1-M 0.88 66.5 73.6 2600 4227 1.27*** 0.73*** -1.90***
(0.22) (0.22) (0.58)

bcc-csm1-1 0.55 66.5 73.6 2600 4376 1.71*** 1.25*** -1.86***
(0.27) (0.28) (0.66)

inmcm4 1.08 66.5 71.3 2600 3746 1.05*** 0.79*** -1.15***
(0.18) (0.20) (0.38)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to the warmest U.S. climate tercile, under
all 21 NEX-GDDP climate models and two meta-models. The climate model is given by the row label. The results for the
weighted meta-model—the first listed in the table—are the same as those reported for “Warmest third of ZIPs” in Table 1.
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Table B.3: End-of-Century Climate Change Effects (RCP 8.5, PRISM)

(1) (2) (3) (4) (5) (6) (7)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD Homogeneous Effects Climate Heterogeneity

Current Future Current Future No Adaptation No Adaptation Future Adaptation

Coolest third of ZIPs 49.5 58.1 526 1666 -1.38*** 1.32** -0.48
(0.09) (0.64) (0.36)

Middle third of ZIPs 55.2 63.5 1079 2491 -0.80*** 3.80** -1.47***
(0.15) (1.80) (0.32)

Warmest third of ZIPs 66.0 73.3 2526 4323 0.54 0.38 -3.13***
(0.34) (0.36) (0.67)

All U.S. ZIPs 56.9 64.9 1372 2820 -0.55*** 1.84** -1.69***
(0.18) (0.79) (0.30)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to climate terciles and to the United States as a whole. The table is the
same as Table 1, except that the current distributions of temperature and estimated temperature-mortality relationships for ZIP codes are based off PRISM
data, rather than GHCN data. Columns (1)–(4) summarize the current climate of each region as well as the end-of-century (2080–2099) climate projected by
the meta-model under the RCP 8.5 greenhouse gas emissions scenario. Columns (5)–(7) are based on the ZIP code-level annual mortality effects summarized
in Appendix Figure B.11. Column (5) reports climate effects under the assumption of homogeneous temperature effects. Column (6) reports “business as
usual” climate effects that allow for heterogeneous temperature effects based on current climate but do not allow for future adaptation. Column (7) reports
climate effects that incorporate both current heterogeneity and future adaptation.
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Table B.4: End-of-Century Climate Change Effects (RCP 4.5, GHCN)

(1) (2) (3) (4) (5) (6) (7)

Annual Mortality Change (%)

Avg. Temp. (°F) Annual CDD Homogeneous Effects Climate Heterogeneity

Current Future Current Future No Adaptation No Adaptation Future Adaptation

Coolest third of ZIPs 49.4 53.9 525 1007 -0.16*** 0.36*** 0.68***
(0.05) (0.08) (0.26)

Middle third of ZIPs 55.2 59.4 1079 1708 0.06 0.25** 0.01
(0.06) (0.11) (0.16)

Warmest third of ZIPs 66.5 70.0 2600 3429 0.62*** 0.23** -0.85***
(0.11) (0.09) (0.28)

All U.S. ZIPs 57.1 61.2 1413 2061 0.18** 0.28*** -0.06
(0.07) (0.06) (0.13)

Notes: The table summarizes ZIP code-level climate change impacts, aggregated to climate terciles and to the United States as a whole. Columns (1)–(4)
summarize the current climate of each region as well as the end-of-century (2080–2099) climate projected by the meta-model under the RCP 4.5 greenhouse
gas emissions scenario. Columns (5)–(7) are based on the ZIP code-level annual mortality effects summarized in Appendix Figure B.10. Column (5) reports
climate effects under the assumption of homogeneous temperature effects. Column (6) reports “business as usual” climate effects that allow for heterogeneous
temperature effects based on current climate but do not allow for future adaptation. Column (7) reports climate effects that incorporate both current
heterogeneity and future adaptation.
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