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Abstract

This work deals with the topic of information processing over graphs.
The presentation is largely self-contained and covers results that re-
late to the analysis and design of multi-agent networks for the dis-
tributed solution of optimization, adaptation, and learning problems
from streaming data through localized interactions among agents. The
results derived in this work are useful in comparing network topologies
against each other, and in comparing networked solutions against cen-
tralized or batch implementations. There are many good reasons for the
peaked interest in distributed implementations, especially in this day
and age when the word “network” has become commonplace whether
one is referring to social networks, power networks, transportation net-
works, biological networks, or other types of networks. Some of these
reasons have to do with the benefits of cooperation in terms of im-
proved performance and improved resilience to failure. Other reasons
deal with privacy and secrecy considerations where agents may not be
comfortable sharing their data with remote fusion centers. In other sit-
uations, the data may already be available in dispersed locations, as
happens with cloud computing. One may also be interested in learning
through data mining from big data sets. Motivated by these consid-
erations, this work examines the limits of performance of distributed
stochastic-gradient solutions and discusses procedures that help bring
forth their potential more fully. The presentation adopts a useful sta-
tistical framework and derives performance results that elucidate the
mean-square stability, convergence, and steady-state behavior of the
learning networks. The work also illustrates how distributed processing
over graphs gives rise to some revealing phenomena due to the coupling
effect among the agents. These phenomena are discussed in the context
of adaptive networks, along with examples from a variety of areas in-
cluding distributed sensing, intrusion detection, distributed estimation,
online adaptation, network system theory, and machine learning.

A. H. Sayed. Adaptation, Learning, and Optimization over Networks. Foundations
and Trends R© in Machine Learning, vol. 7, no. 4-5, pp. 311–801, 2014.
DOI: 10.1561/2200000051.



1
Motivation and Notation

1.1 Introduction

Network science is a fascinating field that is evolving rapidly across
many domains [15, 19, 92, 121, 155, 179, 208]. As remarked in [208], and
for long, classical system and learning theories have focused on opti-
mizing stand-alone systems or learners with great success. Nevertheless,
progress in recent decades in the biological sciences [16, 50, 131, 147],
animal behavior studies [7, 50, 79, 90, 188, 220], and the neuroscience
of the brain [20, 49, 226], has revealed remarkable patterns of organiza-
tion and structured complexity in the behavior of biological networks,
animal groups, and in the dynamics of brain connectivity. These studies
have brought forward notable examples of complex systems that derive
their sophistication from coordination among simpler units and from
the aggregation and processing of decentralized pieces of information.
While each unit in these systems is not capable of sophisticated behav-
ior on its own, it is the interaction among the constituents that leads
to systems that are resilient to failure and that are capable of adjusting
their behavior in response to changes in their environment.

These discoveries have motivated diligent efforts towards a deeper
understanding of information processing, adaptation, and learning over

2
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complex networks in several disciplines including machine learning, op-
timization, control, economics, biological sciences, information sciences,
and the social sciences. A common goal in these investigations has been
to develop theory and tools that enable the design of networks with
sophisticated learning and processing abilities, such as networks that
are able to solve important inference and optimization tasks in a dis-
tributed manner by relying on agents that interact locally and do not
rely on fusion centers to collect and process their information.

1.2 Biological Networks

Examples abound for the viability of such designs in the realm of bi-
ological networks. Nature is laden with examples of networks exhibit-
ing sophisticated behavior that arises from interactions among agents
of limited abilities. For example, fish schools are unusually skilled at
navigating their environment with remarkable discipline and at config-
uring the topology of their school in the face of danger from predators
[79, 188]; when a predator is sighted or sensed, the entire school of fish
adjusts its configuration to let the predator through and then coalesces
again to continue its schooling behavior. It is reasonable to assume that
this complex behavior is the result of sensing information spreading
fast across the school of fish through local interactions among adjacent
members of the school. Likewise, in bee swarms, it is observed that only
a small fraction of the agents (about 5%) are informed and this small
fraction of agents is still capable of guiding an entire swarm of bees to
their new hive [12, 22, 125, 220]. It is a remarkable property of biolog-
ical networks and animal groups that sophisticated behavior is able to
arise from simple interactions among limited agents [119, 200, 229].

1.3 Distributed Processing

Motivated by these observations, this work deals with the topic of in-
formation processing over graphs and how collaboration among agents
in a network can lead to superior adaptation and learning performance.
The presentation covers results and tools that relate to the analysis and
design of networks that are able to solve optimization, adaptation, and
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learning problems in an efficient and distributed manner from stream-
ing data through localized interactions among their agents.

The treatment extends the presentation from [208] in several di-
rections1 and covers three intertwined topics: (a) how to perform dis-
tributed optimization over networks; (b) how to perform distributed
adaptation over networks; and (c) how to perform distributed learn-
ing over networks. In these three domains, we examine and compare
the advantages and limitations of non-cooperative, centralized, and dis-
tributed stochastic-gradient solutions. In the non-cooperative mode of
operation, agents act independently of each other in their pursuit of
their desired objective. In the centralized mode of operation, agents
transmit their (collected or processed) data to a fusion center, which is
capable of processing the data centrally. The fusion center then shares
the results of the analysis back with the distributed agents. While cen-
tralized solutions can be powerful, they still suffer from some limita-
tions. First, in real-time applications where agents collect data contin-
uously, the repeated exchange of information back and forth between
the agents and the fusion center can be costly especially when these ex-
changes occur over wireless links or require nontrivial routing resources.
Second, in some sensitive applications, agents may be reluctant to share
their data with remote centers for various reasons including privacy and
secrecy considerations. More importantly perhaps, centralized solutions
have a critical point of failure: if the central processor fails, then this
solution method collapses altogether.

Distributed implementations, on the other hand, pursue the desired
objective through localized interactions among the agents. In the dis-
tributed mode of operation, agents are connected by a topology and
they are permitted to share information only with their immediate
neighbors. There are many good reasons for the peaked interest in
such distributed solutions, especially in this day and age when the
word “network” has become commonplace whether one is referring to
social networks, power networks, transportation networks, biological
networks, or other types of networks. Some of these reasons have to do

1The author is grateful to IEEE for allowing reproduction of material from [208]
in this work.
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with the benefits of cooperation in terms of improved performance and
improved robustness and resilience to failure. Other reasons deal with
privacy and secrecy considerations where agents may not be comfort-
able sharing their data with remote fusion centers. In other situations,
the data may already be available in dispersed locations, as happens
with cloud computing. One may also be interested in learning and
extracting information through data mining from large data sets. De-
centralized learning procedures offer an attractive approach to dealing
with such large data sets. Decentralized mechanisms can also serve as
important enablers for the design of robotic swarms, which can assist
in the exploration of disaster areas.

For these various reasons, we devote some good effort in this work
towards quantifying the limits of performance of distributed solutions
and towards discussing design procedures that can bring forth their po-
tential more fully. Our emphasis is on solutions that are able to learn
from streaming data. In particular, we shall study three families of dis-
tributed strategies: (a) incremental strategies, (b) consensus strategies,
and (c) diffusion strategies — see Chapter 7. We shall derive expres-
sions that quantify the behavior of the distributed algorithms and use
the expressions to compare their performance and to illustrate under
what conditions network cooperation is beneficial to the learning and
adaptation process. While the social benefit, defined as the average per-
formance across the network, generally improves through cooperation,
it is not necessarily the case that the individual agents will always ben-
efit from cooperation: some agents may see their performance degrade
relative to the non-cooperative mode of operation [215, 277]. This ob-
servation will motivate us to seek optimized combination policies that
enable all agents in a network to enhance their performance through
cooperation.

1.4 Adaptive Networks

We shall study distributed solutions in the context of adaptive networks
[208, 209, 215], which consist of a collection of agents with adaptation
and learning abilities. The agents are linked together through a topol-
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ogy and they interact with each other through localized in-network
processing to solve inference and optimization problems in a fully dis-
tributed and online manner. The continuous sharing and diffusion of
information across the network enables the agents to respond in real-
time to drifts in the data and to changes in the network topology. Such
networks are scalable, robust to node and link failures, and are par-
ticularly suitable for learning from big data sets by tapping into the
power of collaboration among distributed agents. The networks are also
endowed with cognitive abilities [108, 208] due to the sensing abilities
of their agents, their interactions with their neighbors, and an embed-
ded feedback mechanism for acquiring and refining information. Each
agent is not only capable of experiencing the environment directly, but
it also receives information through interactions with its neighbors and
processes this information to drive its learning process.

Adaptive networks are well-suited to perform decentralized infor-
mation processing tasks. They are also well-suited to model several
forms of complex behavior exhibited by biological [16, 50, 131, 147]
and social networks [15, 77, 92, 121, 230] such as fish schooling [188],
prey-predator maneuvers [105, 171], bird formations [110, 119], bee
swarming [12, 22, 125, 220], bacteria motility [25, 189, 258], and so-
cial and economic interactions [98, 103]. Examples of references that
discuss applications of the diffusion distributed algorithms studied in
this work to problems involving biological and social networks in-
clude [56, 65, 156, 213, 215, 246, 247, 250, 276]. Examples of refer-
ences that discuss applications of consensus implementations include
[2, 18, 64, 80, 118, 122, 123, 181, 184, 185, 199, 200, 255]. We do not
discuss biological networks in this work and refer the reader instead
to the above references; the survey article [215] provides some further
motivation.

1.5 Organization

This work is largely self-contained. It provides an extended treatment
of topics presented in condensed form in the survey [208], and of sev-
eral other additional topics. For maximal benefit, readers may review
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first the background material in Appendices A through G on complex
gradient vectors and Hessian matrices, convex functions, mean-value
theorems, Lipschitz conditions, matrix theory, and logistic regression.

In preparation for the study of multi-agent networks, Chapters 2–
4 review some fundamental results on optimization, adaptation, and
learning by single stand-alone agents. The emphasis is on stochastic-
gradient constructions. The presentation in these chapters provides in-
sights that will be useful in our subsequent study of adaptation and
learning by a collection of networked agents. This latter study is more
demanding due to the coupling among interacting agents, and due to
the fact that networks are generally sparsely connected. The results
in this work will help clarify the effect of network topology on perfor-
mance and will develop tools that enable designers to compare various
strategies against each other and against the centralized solution.

1.6 Notation and Symbols

All vectors are column vectors, with the exception of the regression
vector (denoted by the letters u or u), which will be taken to be a row
vector for convenience of presentation. Table 1.1 lists the main conven-
tions used in our exposition. In particular, note that we use boldface
letters to refer to random quantities and normal font to refer to their
realizations or deterministic quantities. We also use T for matrix or
vector transposition and ∗ for complex-conjugate transposition.

Moreover, for generality, we treat the case in which the variables of
interest are generally complex-valued; when necessary, we show how the
results simplify in the real case. Some subtle differences in the analy-
sis arise when dealing with complex data. These differences would be
masked if we focus exclusively on real-valued data. Moreover, studying
design problems with complex data is relevant for many fields, espe-
cially in the domain of signal processing and communications problems.
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Table 1.1: List of notation and symbols used in the text and appendices.

R Field of real numbers.
C Field of complex numbers.
1 Column vector with all its entries equal to one.

IM Identity matrix of size M × M .
d Boldface notation denotes random variables.
d Normal font denotes realizations of random variables.
A Capital letters denote matrices.
a Small letters denote vectors or scalars.
α Greek letters denote scalars.

d(i) Small letters with parenthesis denote scalars.
di Small letters with subscripts denote vectors.
T Matrix transposition.
∗ Complex-conjugate transposition.

Re(z) Real part of complex number z.
Im(z) Imaginary part of complex number z.

col{a, b} Column vector with entries a and b.
diag{a, b} Diagonal matrix with entries a and b.
vec{A} Vector obtained by stacking the columns of A.

bvec{A} Vector obtained by vectorizing and stacking blocks of A.
‖x‖ Euclidean norm of its vector argument.
‖x‖2Σ Weighted square value x∗Σx.
‖A‖ Two-induced norm of matrix A, also equal to σmax(A).
‖A‖1 Maximum absolute column sum of matrix A.
‖A‖∞ Maximum absolute row sum of matrix A.
A ≥ 0 Matrix A is non-negative definite.
A > 0 Matrix A is positive-definite.
ρ(A) Spectral radius of matrix A.

λmax(A) Maximum eigenvalue of the Hermitian matrix A.
λmin(A) Minimum eigenvalue of the Hermitian matrix A.
σmax(A) Maximum singular value of A.
A ⊗ B Kronecker product of A and B.
A ⊗b B Block Kronecker product of block matrices A and B.
a � b Element-wise comparison of the entries of vectors a and b.
δk,� Kronecker delta sequence: 1 when k = � and 0 when k �= �.

α = O(μ) Signifies that |α| ≤ c|μ| for some constant c > 0.
α = o(μ) Signifies that α/μ → 0 as μ → 0.

α(μ) .= β(μ) Signifies that α(μ) and β(μ) agree to first order in μ.
lim sup

n→∞
a(n) Limit superior of the sequence a(n).

lim inf
n→∞ a(n) Limit inferior of the sequence a(n).
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