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Abstract

The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically re-

organized in order to adapt to neuronal challenges in aging. This study employed structural

MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI),

and examined the functional and structural reorganization of the PFC in aging using a Chi-

nese sample of 173 subjects aged from 21 years and above. We found age-related in-

creases in the structural connectivity between the PFC and posterior brain regions. Such

findings were partially mediated by age-related increases in the structural connectivity of

the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC

reorganization in aging could be partly due to the adaptation to age-related changes in the

structural reorganization of the posterior brain. This thus supports the idea derived from

task-based fMRI that the PFC reorganization in aging may be adapted to the need of com-

pensation for resolving less distinctive stimulus information from the posterior brain regions.

In addition, we found that the structural connectivity of the PFC with the temporal lobe was

fully mediated by the temporal cortical thickness, suggesting that the brain morphology

plays an important role in the functional and structural reorganization with aging.

Introduction

Converging evidence from task-based functional magnetic resonance imaging (fMRI) studies

suggests pronounced aging effects on functional activities in the prefrontal cortex (PFC). Older

adults exhibit more PFC activity ipsilaterally or bilaterally as compared to their younger coun-

terparts in various tasks [1–3]. The age-related increase in bilateral frontal activation seemed to

suggest that older adults were working harder and engaging in more distributed brain regions.

Moreover, frontal processing in older adults appeared to be less specialized through a tendency

to engage additional frontal regions, while frontal processing in young adults only involved
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specific PFC regions across multiple cognitive tasks, such as working memory [3, 4], episodic

memory [1, 2], attentional and perceptual tasks [5, 6], and semantic tasks [7].

In contrast, posterior regions of the brain often show age-related reduction in functional re-

sponses and dedifferentiation to stimuli [2, 8–14]. Particularly, the ventral visual cortex became

less functionally distinct in the sense that it became less selective to visual inputs in older adults

[15, 16]. In young adults, the fusiform and lateral occipital regions are specialized for facial and

object recognition, while the parahippocampal and lingual regions are specialized for encoding

new perceptual information about the appearance and layout of scenes [15]. However, in older

adults, these brain regions tend to lose these functional specificities. This decrease in neural

specificity was also thought of as dedifferentiation such that a given region that responds selec-

tively in young adults will respond to a wider array of inputs in older adults.

Interestingly, age-related dedifferentiation of functional processes in the ventral visual path-

way could be compensated by an age-related increase in PFC functional activation [15–21].

Additional recruitment of the PFC corresponds to an attempt to compensate for reduced func-

tional specificities of posterior regions in older adults [22]. Functional connectivity studies

based on memory tasks suggested that stronger functional connectivity among the posterior

brain regions is shown in young adults but stronger connectivity between the posterior regions

and PFC is shown in older adults [10, 14, 17]. Davis et al. [9] further confirmed this shift from

posterior brain activations to anterior activations, and suggested that the increased frontal acti-

vation with age is in response to deficient ventral visual and sensory activations. Overall, there

is growing evidence that the additional work of the frontal sites may be a broad response to de-

creased efficiency of neural processes in perceptual areas of the brain [23]. In other words,

dedifferentiation in the posterior brain may play as an impetus for the PFC compensation in

normal aging.

Though the aforementioned findings have been constructive in aging studies, controversial

results were also found. For instance, Lidaka et al. revealed that young adults showed bilateral

PFC activity while older adults showed unilateral PFC activity during associative learning of

the concrete-unrelated or abstract pictures [24]. Duveme et al. showed that additional frontal

activity was revealed only in low-performing older adults [25]. These inconsistent results may

be partly due to confounding factors, such as task difficulty and subject’s incompliancy associ-

ated with task-based fMRI [26, 27].

In recent years, resting-state fMRI (rs-fMRI) has become influential, as it requires a minimal

cognitive burden on participants and relatively little time in the scanner compared to task-

based fMRI. Unlike task-based fMRI, rs-fMRI cannot be used to reveal functional activations

in response to sequential external stimuli during cognitive tasks. However, rs-fMRI enables a

summarization of complex patterns of brain functional organization [28–30]. It has been well

used to explore age-related changes in default-mode network (DMN) [30–38]. However, there

are limited investigations into whether aged-related changes in the PFC and posterior regions

of the brain observed using task-based fMRI can be replicated at the level of functional connec-

tions examined using rs-fMRI.

Likewise, little is known if aforementioned changes can be observed using structural MRI

and diffusion tensor imaging (DTI) techniques. Though examination of structural brain net-

work in conjunction with functional brain network could provide complementary findings on

how the brain adapted to age-related changes, a large body of aging research on structural net-

works focused on differentiation of pathological aging from normal aging as well as age-related

changes in white matter integrity [39]. Only recently, Gong et al. employed DTI and structural

network analysis and revealed that the frontal and temporal lobes showed an age-related in-

crease in regional efficiency in terms of information transfer, while the parietal and occipital

lobes showed an age-related decrease in regional efficiency [40]. However, this study did not
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examine age effects on structural connectivity between the PFC and posterior regions of the

brain in order to link structural network findings with the aforementioned age-related changes

in functional activations of PFC and posterior regions in the aging brain.

In the present study, we hypothesize that functional networks examined using rs-fMRI and

structural networks accessed using high angular resolution diffusion imaging (HARDI) can

demonstrate age-related compensatory changes in the PFC and posterior regions of the brain

at the level of their connections. In particular, we hypothesize that the functional and structural

connectivity of the PFC with the posterior regions of the brain increases as age increases. Such

age effects could be mediated by the functional and structural connectivity among the posterior

regions of the brain. Given well-known knowledge on age-related brain atrophy, we also hy-

pothesize that the above age effects may also partially be mediated by brain atrophy. Hence, we

employed rs-fMRI, high angular resolution diffusion imaging (HARDI), and graph analysis

techniques to examine i) age effects on structural and functional connectivity of the PFC with

posterior regions of the brain; ii) mediation effects of structural and functional connectivity

among the posterior regions of the brain on age-related changes in structural and functional

connectivity of the PFC; iii) mediation effects of brain atrophy on age-related changes in struc-

tural and functional connectivity of the PFC. Unlike previous studies where analyses were re-

stricted to comparing two age groups (young versus old) [9, 30, 32, 33, 36] or with a small

number of subjects across a wide age range [37, 41], we examine age-related connectivity based

on 173 subjects aged from 21 to 80 years old (evenly distributed across this age range) to estab-

lish a more comprehensive understanding of brain network changes. Moreover, we apply

HARDI to examine structural networks to overcome the well-known limitation of DTI, where

only one dominant fiber orientation at each location is revealed. Between one and two thirds of

the voxels in the human brain white matter are thought to contain multiple fiber bundles cross-

ing each other [42]. It has been shown that accurate fiber estimates can be obtained from

HARDI data, further validating its usage in brain studies [43]. In addition, we use cortical

thickness as an indicator of brain morphological measures in our functional and structural net-

work analysis. This is to control for the possible confound of age-related reduction in cortical

thickness [44, 45], which has not been accounted for in most of imaging aging studies so far.

Methods

Subjects

This study was approved by the National University of Singapore Institutional Review Board

and all participants provided written informed consent prior to participation.

Two hundred and fourteen healthy Singaporean Chinese volunteers aged 21 to 80 years old

were recruited (males: 93; females: 121) for this study. Volunteers with the following conditions

were excluded: (1) major illnesses/surgery (heart, brain, kidney, lung surgery); (2) neurological

or psychiatric disorders; (3) learning disability or attention deficit; (4) head injury with loss of

consciousness; (5) non-removable metal objects on/in the body such as cardiac pacemaker; (8)

diabetes or obesity; (9) a Mini-Mental State Examination (MMSE) score of less than 24 [46].

This study only included 173 subjects who were right handed and completed both functional

and structural scans. Subjects’ characteristics are reported in Table 1.

Data acquisition

MRI scans were acquired in a 3T Siemens Magnetom Trio Tim scanner using a 32-channel

head coil at the Clinical Imaging Research Centre of the National University of Singapore. The

image protocols were (i) high-resolution isotropic T1-weighted Magnetization Prepared Rapid

Gradient Recalled Echo (MPRAGE; 192 slices, 1mm thickness, sagittal acquisition, field of
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view 256 x 256 mm, matrix = 256 x 256, repetition time = 2300ms, echo time = 1.90ms, inver-

sion time = 900ms, flip angle = 9°); (ii) isotropic axial resting-state functional MRI imaging

protocol (single-shot echo-planar imaging; 48 slices with 3 mm slice thickness, no inter-slice

gaps, matrix = 64 × 64, field of view = 192 x 192 mm, repetition time = 2300ms, echo

time = 25ms, flip angle = 90°, scanning time = 6 min); (iii) High angular resolution diffusion

imaging protocol (HARDI, single-shot double-echo EPI sequence; 48 slices with 3 mm slice

thickness, no inter-slice gaps, matrix = 84 × 84, field of view = 256 x 256 mm, repetition

time = 6800ms, echo time = 85ms, flip angle = 90°, 11 images without diffusion weighting, 91

diffusion weighted images with b-value = 1150s/mm2, scanning time = 12 min). During the rs-

fMRI scan, the subjects were asked to close their eyes.

Data preprocessing and brain network construction

FreeSurfer was employed to parcellate the cortex in the subject’s native brain space based on

surface-based registration and anatomical prior [47]. These labels were propagated to the vol-

ume, which was used in subsequent fMRI analysis. In contrast, labeling the cortex based on Au-

tomated Anatomical Labeling (AAL) atlas requires relatively accurate mapping of cortical

regions between AAL atlas and the subject’s images, which has been shown less superior to sur-

face-based mapping [48].

Structural data. For the T1-weighted image, FreeSurfer was used to segment the cortical

and subcortical regions, compute the cortical thickness and the cortical parcellation. Briefly, a

Markov random field (MRF) model was used to label each voxel in the T1-weighted image as

gray matter (GM), or white matter (WM), or CSF [49]. The T1-weighted images were fully au-

tomatically analyzed with manual quality check and propoer modification based on the in-

struction given on https://surfer.nmr.mgh.harvard.edu/fswiki. The most frequent modification

included removal of the brain skull. Cortical inner surface was constructed at the boundary be-

tween GM andWM and then propagated to its outer surface at the boundary between GM and

CSF. The cortical thickness was measured as the distance between the corresponding vertices

on the inner and outer surfaces [50] and represented on the inner surface. The cortical surface

of each hemisphere was parcellated in 36 anatomical regions (Table 2 and Fig 1A) in the rs-

fMRI and HARDI analyses below.

Rs-fMRI. We employed SPM8 to preprocess the rs-fMRI data with slice timing, motion

correction, skull stripping, band-pass filtering (0.01–0.08Hz) and grand mean scaling of the

data (to whole brain modal value of 100). To quantify the quality of rs-fMRI data in terms of

head motion, displacement due to motion averaged over the image volume was calculated for

individual subjects. Its mean and standard deviation were respectively 0.05 mm and 0.04 mm

among all the subjects used in this study. The head motion was independent of age (p>0.05).

Then, the rs-fMRI signals due to effects of nuisance variables, including six parameters ob-

tained by motion correction, ventricular and white matter signals after band-pass filtering and

grand-mean scaling were removed [51–54]. Subsequently, the fMRI data were transferred to

Table 1. Subject characteristic.

Age 20s mean (SD) 30s mean (SD) 40s mean (SD) 50s mean (SD) 60s above mean (SD)

N 32 24 27 42 48

Age 25.6(2.22) 34(2.54) 44.8(2.68) 54.8(3.11) 67.4(4.83)

Female, % 56 50 63 60 71

SD-standard deviation.

doi:10.1371/journal.pone.0123462.t001
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the corresponding T1-weighted image. For functional network analysis, time series in each ROI

defined using the T1-weighted data mentioned above (Fig 1A and Table 2) were first computed

by averaging the signal of all voxels within individual ROIs. The functional connectivity of

each subject was characterized using an 72 x 72 symmetric weighted matrixWij Wi j and the

weight was computed using Pearson correlation analysis on the time series of regions i and j.

The data processing of the rs-fMRI is summarized in Fig 2.

HARDI. For each subject, DWIs were first corrected for motion and eddy current distor-

tions using affine transformation to the image. We followed the procedure detailed in Huang

et al. (2008) to correct for the geometric distortion using the T2-weighted image as the anatom-

ical reference. The deformation that relates the baseline b0 image without diffusion weighting

to the T2-weighted image characterized the geometric distortion. Hence, intra-subject registra-

tion was first performed using FSL’s linear transformations (rotations and translations) be-

tween DWI and T2-weighted image. We then employed the brain warping method, large

deformation diffeomorphic metric mapping (LDDMM) [48], to find the optimal nonlinear

transformation that deformed the baseline image without the diffusion weighting to the

T2-weighted image. This diffeomorphic transformation was then applied to DWIs in order to

correct the nonlinear geometric distortion. To estimate the structural connectivity strength

among cortical regions, Bayesian probabilistic tractography algorithm [55] was applied to all

the seed voxels by sampling 1000 streamlines per voxel. Seed voxels were selected for the prob-

abilistic tractography as the border voxels between cortical regions and the white matter. Fibers

shorter than 10mm or looping fibers (fibers that return to the same region) were excluded

from the analysis.

For each subject, whole-brain undirected weighted networks were created as follows: The

connection weight (Aij) from the region i to another region j was defined by the following equa-

tion,

Aij ¼
2Fcountij

Ci þ Vj

Where Fcountij is the number of fibers passing through the region j from the seed region i, Ci is

the total number of fibers sampled from i (the multiplication of the number of voxels in region

i with 1000 fibers per voxel based on Bayesian probabilistic tractography) and Vj is the total

volume of region j. This resultant connectivity matrix is asymmetric. Thus, we used the average

Table 2. The grouping of anatomical structures.

Anatomical Structure Groups

Prefrontal Motor and Sensory Cortex Occipital Lateral Temporal Medial Temporal Parietal

superior frontal precentral lateral occipital superior temporal parahippocampus superior parietal

caudal middle frontal paracentral lingual gyrus transverse temporal temporal pole supramarginal

rostral middle frontal postcentral gyrus cuneus middle temporal entorhinal inferior parietal

pars opercularis insular banks of superior temporal hippocampus pericalcarine

pars triangularis fusiform amygdala precuneus

pars orbitalis inferior temporal posterior cingulate

lateral orbitofrontal

medial orbitofrontal

frontal pole

anterior cingulate

doi:10.1371/journal.pone.0123462.t002
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of Aij and Aji to make the final matrixWij Wi j symmetric (Fig 2). This is similar to the ap-

proach in [56].

Network metrics

Neural connectivity, one of the imperative determinants of processing efficiency, has been sug-

gested to be a potential principal mechanism underlying the concept of neural changes in brain

network organization [23]. To test our hypotheses, we selected unthresholded connectivity

strength network metric to examine age-related changes in anterior-posterior connectivity.

Connectivity strength between two cortical regions i and j is defined as the edge weight between

i and j, i.e. wij. Higher connectivity strength indicates stronger interconnectivity between the

given regions. To streamline the number of statistical analysis needed to investigate aforemen-

tioned hypothesis, we grouped the anatomical regions of our network into a coarser level of

anatomical lobes (Fig 1B and Table 2) using references in grouping [57, 58]. Additionally, as

there is distinctive age-related effect on medial temporal lobe [59–61], we had further grouped

Fig 1. Brain parcellation. Panel (A) shows the cortical parcellation of the brain. Individual structures are coded in different color. Panel (B) shows the
grouping of anatomical structures into the prefrontal cortex (red), motor and sensory cortex (cyan), parietal cortex (yellow), lateral temporal cortex (magenta),
medial temporal lobe (purple), occipital cortex (green), and striatum-thalamic region (blue).

doi:10.1371/journal.pone.0123462.g001
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the temporal sub-regions into lateral and medial temporal lobes respectively. Therefore in ex-

amining age-related changes in connectivity at level of lobes, connectivity strength between two

lobes is defined as the average weight of connections between the regions of the corresponding

lobes. And in examining age-related specific changes between individual PFC and posterior

lobes, connectivity strength is defined by average weight between the PFC region and the re-

gions of the posterior lobe.

Fig 2. A schematic diagram of the functional and structural network analysis.

doi:10.1371/journal.pone.0123462.g002
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Statistical analysis

Linear regression analysis was performed to investigate age effects on the connectivity strength

between the PFC and posterior brain regions and among the posterior brain regions at the level

of lobes as well as that between individual PFC structures and the posterior brain regions. In

the full regression model, the linear and quadratic terms of age were entered as the main factors

and connectivity strength was as the dependent variables (connectivity strength ~ β0 + β1Age +

β2Age
2 +β3Gender + �). In the reduced regression model, only linear term of age was entered as

main factor (connectivity strength ~ β0 + β1Age + β2Gender + �). Gender was considered as co-

variate in all the analyses. Bonferroni correction was carried out to correct for multiple

comparisons.

To further examine whether age-related changes in the PFC connectivity strength are medi-

ated through age-related changed in the posterior connectivity strength, the posterior connec-

tivity strength was entered into the aforementioned regression model. Lastly, in examining

whether brain atrophy would account for age-related alterations in the connectivity strength,

cortical thickness was also entered into the above regression model. The Sobel-Goodman test

was further used to test whether a mediator (the posterior connectivity strength or cortical

thickness) carries the influence of age to the PFC connectivity strength. All analysis was per-

formed using SPSS 18 for Windows 7.

Results

Age effects on brain functional connectivity

Our analysis did not reveal age effects on the functional connectivity of the PFC with the rest-

ing brain regions at the level of brain lobes, including the lateral and medial temporal lobes, pa-

rietal lobe, motor and sensory cortex, as well as occipital lobe (the second column in Table 3;

Fig 3A). However, our analysis did reveal age effects on the functional connectivity of individu-

al PFC structures with the rest brain regions. There was an age-related decrease in the function-

al connectivity between the rostral middle frontal and parietal cortex (ß = -0.238, p = 0.002).

After controlling for the cortical thickness for these regions, the functional connectivity be-

tween the rostral middle frontal and parietal cortex was no longer influenced by age.

When examining the functional connectivity of the occipital cortex with the rest of posterior

brain cortices, our analysis revealed age-related linear increase in the functional connectivity

strength between the occipital and lateral temporal cortices, suggesting greater functional

Table 3. Linear age effects on functional and structural connectivity strength between the prefrontal
cortex (PFC) and other brain regions.

Prefrontal and posterior regions
connectivity at lobes level

Functional Network ß-
value (p-value)

Structural Network ß-
value (p-value)

PFC-Lateral Temporal -0.144 (0.061) 0.287 (<0.001)*T

PFC-Medial Temporal -0.103 (0.180) 0.281 (<0.001)*

PFC-Parietal -0.198 (0.010) 0.102 (0.176)

PFC-Occipital 0.114 (0.144) 0.113 (0.137)

PFC-Motor & Sensory -0.119 (0.124) 0.229 (<0.001)*

Standardized ß-values and their corresponding p-values are listed.

*p < 0.01 (Bonferroni corrected threshold).
T denotes the significant relationship between age and PFC connectivity strength even after controlling for

cortical thickness of the corresponding regions.

doi:10.1371/journal.pone.0123462.t003
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connectivity strength between the two posterior regions in older adults (the second column in

Table 4). There were no age effects on the functional connectivity of the occipital cortex with

the other posterior brain regions (medial temporal and parietal cortices) (the second column in

Table 4).

Age effects on structural network connectivity

We first examined the structural connectivity of the PFC with the rest of the brain.

Our analysis revealed negative quadratic effects of age (inverted U-shaped) on the structural

connectivity between the PFC and the parietal cortex (ß = -1.516, p = 0.003), suggesting an

age-related increase in structural connectivity during early stage of adulthood and decrease

Fig 3. Age effects on functional (panel A) and structural connectivity (panel B) of the prefrontal cortex with other brain regions.Note. * denotes
significant age effects on the connectivity strength between the two regions that the line connects. T denotes the significant age-related relationship even
after controlling for cortical thickness.

doi:10.1371/journal.pone.0123462.g003

Table 4. Linear age effects on the functional and structural connectivity strength between the occipi-
tal cortex and the rest of the posterior brain cortices.

Occipital and posterior regions
connectivity at lobes level

Functional Network ß-
value (p-value)

Structural Network ß-
value (p-value)

Occipital-Lateral Temporal 0.161 (0.036)* 0.421 (<0.001)*T

Occipital-Medial Temporal 0.017 (0.822) 0.142 (0.065)

Occipital-Parietal 0.147 (0.057) 0.214 (0.002)* T

Standardized ß-values and their corresponding p-values are reported below.

*p < 0.01.
T denotes the significant relationships between age and posterior regions connectivity even after controlling

for cortical thickness of the corresponding regions.

doi:10.1371/journal.pone.0123462.t004
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structural connectivity in later life. Our results also revealed an age-related linear increase in

the structural connectivity strength of the PFC with the lateral and medial temporal cortex as

well as motor and sensory cortex, suggesting greater structural connectivity strength among

these regions in the older adults (the third column in Table 3; Fig 3B). As the cortical thickness

of the PFC and other brain regions decreases with age (p<0.001; S1 Table, the cortical thick-

ness was further entered in the regression analysis. The structural connectivity of the PFC with

the medial temporal cortex and motor and sensory cortex was no longer influenced by age

after controlling for the thickness of the corresponding regions. This suggested that the cortical

morphology in the medial temporal lobe and motor and sensory lobe mediates the age effects

on their structural connectivities with the PFC. However, the result of the age effects on the

structural connectivity between the PFC and lateral temporal cortex remained significant even

after controlling for the cortical thickness of the corresponding brain regions. Lastly, like the

results drawn from the functional network analysis reported above, the structural network

analysis did not reveal any age effect on the structural connectivity strength between the PFC

and the occipital and parietal cortices (the third column in Table 3; Fig 3B).

In examining the structural connectivity of the occipital cortex with the rest of the posterior

brain cortices, there were age-related increases in the structural connectivity strength of the oc-

cipital cortex with the lateral temporal and parietal cortices, suggesting greater structural con-

nectivity strength of the occipital cortex with the parietal and lateral temporal cortex in older

adults (the third column in Table 4). These findings remained significant after controlling for

the cortical thickness of the corresponding regions. The correlation of structural connectivity

between the PFC and posterior regions with the cortical thickness was presented in S2 Table.

Sobel-Goodman tests further revealed that the age-related increases in the structural con-

nectivities of the PFC with the lateral temporal cortex were partially mediated by the age-relat-

ed increase in the structural connectivity of the occipital cortex with the lateral temporal cortex

(z = 2.717, p = 0.006).

In the further investigation of age effects on the structural connectivity of the individual

PFC structures with the temporal and parietal cortices, our results revealed negative quadratic

effects of age on the structural connectivity of the ACC with the parietal cortex (ß = -1.650,

p<0.001). There was also a linear age-related increase in the structural connectivity of the later-

al temporal cortex with the lateral orbitofrontal (ß = 0.208, p = 0.004), medial orbitofrontal

(ß = 0.235, p = 0.002), superior frontal (ß = 0.291, p<0.001), rostral middle frontal (ß = 0.229,

p = 0.003) and anterior cingulate cortices (ß = 0.248, p = 0.001); the medial orbitofrontal cortex

(ß = 0.321, p<0.001) with the medial temporal cortex. After controlling for the cortical thick-

ness of these regions, the structural connectivities of the medial orbitofrontal, superior frontal

and rostral middle frontal cortex with the lateral temporal cortex and between the medial orbi-

tofrontal and the medial temporal cortex were no longer influenced by age. This again sug-

gested that the cortical morphology in these regions, particularly the temporal cortices,

mediates the age effects on the structural connection with the individual PFC regions.

Discussion

The results from our study revealed age-related alterations in the functional and/or structural

connectivity of the PFC with the posterior regions of the brain, suggesting that the brain is

functionally and/or structurally well equipped to adapt to neural challenges in aging. Second,

we found age-related increases in the functional and/or structural connectivity of the occipital

lobe with the posterior regions of the brain, possibly suggesting reduced selectivity in neural re-

sponses within specific posterior regions with aging. Third, the age-related PFC findings were

partially mediated by age-related increases in the structural connectivity of the occipital lobe
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within the posterior regions of the brain, suggesting that the reorganization of the PFC struc-

tural connectivity with aging could be partly due to the adaptation to age-related changes in

the reorganization of the posterior regions of the brain. This thus supports the idea derived

from task-based fMRI that the PFC reorganization in aging may be adapted to the need of

compensations for resolving less distinctive stimulus information from the posterior brain re-

gions. Finally, our results suggested that the structural connectivity of the PFC with the lateral

temporal lobe was fully mediated by the morphology of the temporal lobe.

The structural network analyses in our study showed complementary findings supporting

the idea that the reorganization of the PFC structural connectivity is adapted to neuronal chal-

lenges in aging. Our study showed age-related increases in structural connectivity of the PFC

with the sensorimotor and temporal using HARDI, which is in the conjunction with the recent

finding obtained using DTI, that is, an age-related increase in the frontal regional efficiency

[40]. Moreover, an age-related increase in the structural connectivity between the PFC and the

temporal lobe is largely consistent with task-based fMRI findings. Daselaar et al. and Dennis

et al. showed that older adults had increased functional connectivity between the frontal and

temporal regions during memory processing compared to young adults [8, 9]. Frey and Pet-

rides revealed that the orbitofrontal-medial temporal lobe connection is needed for memoriza-

tion of information [62]. Depending on task difficulty, various frontal areas could be engaged

thus denoting an increase in the recruitment of brain regions for successful performance [63,

64]. Our finding on the structural connectivity may suggest that older adults could depend on

connections between the PFC and the temporal cortex in order to successfully perform cogni-

tive processes as compared to young adults.

Surprisingly, our study revealed age-related increases in the functional and structural con-

nectivity of the occipital cortex with the other posterior regions. This was not observed in exist-

ing task-based fMRI studies that showed an age-related shift from stronger functional

connectivity among the posterior brain regions in young adults to stronger connectivity be-

tween the posterior regions and the PFC regions in older adults [10, 14, 17]. However, Meunier

et al [65] used rs-fMRI and modularity analysis and demonstrated that the number of connec-

tions of the occipital region with the parietal and temporal regions was increased in older

adults. The diverse connections of the occipital lobe with the parietal and temporal lobes could

be a possible reason that interprets dedifferentiation of stimuli in the posterior region of the

brain in older adults [2, 8, 9, 11–13].

Interestingly, our findings supported partial mediation effects of the connectivity between

the occipital lobe and the lateral temporal lobe on the connectivity between the PFC and the

posterior regions of the brain. This suggested that the reorganization of the PFC structural con-

nectivity with aging could be partly due to the adaptation to age-related changes in the struc-

tural reorganization of the posterior regions of the brain [22]. These patterns appear to be

consistent with the Scaffolding Theory of Aging and Cognition (STAC) model of aging and

neural adaption, which was proposed by Park and Reuter-Lorenz [22]. STAC emphasizes a

process that results in changes in the brain function through strengthening of existing connec-

tions, formation of new connections, and disuse of connections that have become weak or

faulty. The PFC is thought of as a locus for scaffolding and functions as a facilitative role

through compensating for reduced functional specificities of the posterior brain in older adults.

This has been demonstrated mostly in task-based fMRI studies [22, 66, 67]. Older adults pro-

cessed stimuli in a dedifferentiated manner in the sense that functional activity of the occipital

cortex extended to the other posterior regions as well as to other modalities, such as auditory

modality [68]. This phenomenon was coupled with the recruitment of additional frontal pro-

cessing in older adults in order to process less distinctive stimulus information [22, 66, 67, 69].
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Lastly, it has been well known that age-related cortical thinning is widespread across the pri-

mary and association cortex [70]. Nevertheless, it is rarely studied how brain atrophy in aging

would account for the aforementioned age-related changes in structural and functional con-

nectivity. Our results revealed that the morphology of individual structures, especially those in

the temporal lobe, fully mediated age effects on their structural network connectivity with the

PFC. Structural imaging studies have consistently revealed age-related vulnerability and vol-

ume reduction in the medial temporal lobe (MTL) structures [71]. Taken together, age effects

on the structural connectivity between the PFC and the temporal lobe is not beyond those on

temporal lobe atrophy, suggesting that the structural recruitment of compensatory mechanism

is offset by regional brain atrophy. This also highlights the importance of taking morphological

measures into consideration when examining the brain networks as a function of age.

Even though the functional network examined using resting-state fMRI reflects direct and

indirect anatomical connections, there is lack of direct one-to–one mapping between function-

al and structural brain networks [72–74]. Hence, we do expect that age could have independent

effects on structural and functional networks. Moreover, [75] further suggested that age-related

increases in functional connectivities for functional compensation or reconfiguration in aging

may be achieved through intact underlying anatomical infrastructure.

In summary, our study employed advanced multi-modal MRI techniques, including struc-

tural MRI, rs-fMRI, and HARDI, and attested to the value of a novel multimodal combination

of cortical thickness, functional and structural connectivity in aging research. The findings in

our study implicated that rs-fMRI and HARDI graph analyses can replicate the task-based

fMRI findings of age-related increases in PFC functional activations and age-related dediffer-

entiation of stimuli in the posterior regions of the brain at the level of functional and structural

connectivity. Brain morphology also plays an important role in functional and structural reor-

ganization of the brain with aging.
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