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1. Adaptation of cases for case-based 
forecasting with neural network support 

 

1.1 Introduction 

 
This chapter describes the application of a hybrid artificial intelligence approach to 

prediction in the domain of oceanography. A hybrid artificial intelligence strategy for 

forecasting the thermal structure of the water ahead of a moving vessel is presented. 

This approach combines the ability of a case-based reasoning system for identifying 

previously encountered similar situations and the generalising ability of an artificial 

neural network to guide the adaptation stage of the case-based reasoning mechanism. 

The system has been successfully tested in real time in the Atlantic Ocean; the results 

obtained are presented and compared with those derived from other forecasting 

methods. 

Research into artificial intelligence (AI) has produced various hybrid problem-solving 

methods, which may be applied to give more powerful computer based problem solving 

capabilities than may be obtained using purely algorithmic methods. The reason for the 

application of an AI approach is very often precisely because the nature of the problem 

to be addressed is such that no appropriate algorithm is either known or is applicable. 

For example, if the knowledge about a problem is incomplete or fuzzy, it may be difficult 

to select or to develop an algorithm or even an AI approach to solve it. It is in such 

situations where hybrid AI systems may be effective. 

Case-based reasoning systems have proved to be successful in situations where prior 

experience of solving similar problems is available. But the nature of a complex problem 

solving situation may be such that there are different aspects of the problem that may 

best be addressed through the application of several distinct problem solving 

methodologies. This paper focuses on the combination of case-based reasoning (CBR) 
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and artificial neural networks (ANN) as complementary methods to solve a forecasting 

problem.  

 The application of artificial intelligence methods to the problem of describing the ocean 

environment offers potential advantages over conventional algorithmic data processing 

methods; an AI approach is, in general, better able to deal with uncertain, incomplete and 

even inconsistent data. Neural network, case-based and statistical forecasting techniques 

could be used separately in situations where the characteristics of the system are 

relatively stable (Lees et al., 1992). However, time series forecasting, based on neural 

network or statistical analysis, may not provide sufficiently accurate forecasting 

capability in chaotic areas such as are found near a front (i.e. an area where two or more 

large water masses with different characteristics converge). This paper presents a 

universal forecasting strategy, in which the term universal is taken to mean a forecasting 

tool which is able to operate effectively in any location, of any ocean.  

 This chapter shows how a hybrid system can solve the problem of forecasting the 

surface temperature of the ocean at certain distances ahead of a moving vessel. The case-

based reasoning system is used to select a number of stored cases relevant to the current 

forecasting situation. The neural network retrains itself in real time, using a number of 

closely matching cases selected by the CBR retrieval mechanism, in order to produce the 

required forecasted values. 

 The structure of the chapter is as follows. First the integration of CBR and ANN 

problem solving methods is introduced; a brief outline of work elsewhere on the 

integration of CBR and neural network methods is given. The application of a hybrid 

neural network case-based approach for real-time oceanographic forecasting is 

presented. Finally, a summary of the experimental results obtained to date are presented, 

which indicate that the approach performs favourably in comparison with the use of 

statistical and neural network forecasting methods in isolation. 

2. Hybrid Systems 

The term hybrid refers to systems that consist of one or more integrated subsystems, 

each of which can have a different representation language and inference technique. The 

subsystems are assumed to be tied together semantically and influence each other in 

some way. The goal of hybrid system research includes the development of techniques 

to increase the efficiency and reasoning power of intelligent systems. For example, some 

of the work developed with the aim of increasing efficiency makes use of specialised 

reasoners strategically called by control or supervisor modules that decide which 

reasoning method to use at different times (Medsker, 1995). Hybrid systems are capable 

of addressing some practical problems that have been addressed with traditional artificial 

intelligence approaches. From a fundamental perspective, hybrid systems may also give 

further insight into cognitive mechanisms and models (Medsker, 1995). 
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 Many researchers are investigating the integration of different AI approaches (Sun, 

1996; Lees  et al., 1999). The issues under study range from fundamental questions about 

the nature of cognition and theories of computation to practical problems related to 

implementation techniques. There are many different directions in this research and 

several models for integration have been identified. 

 The three main models of integration of AI techniques that characterise the trends in 

the research in this area are: the Computational intelligent classification Bezdek (1994), 

the IRIS Classification Soucek (1991) and the classification of Medsker and Bailey (1992). 

1.2.1 The Computational intelligent classification  

Bezdek (1994) proposes a framework for thinking about the real goals of research and 

development in intelligent systems. This model focuses on different levels of integrated 

activities, systems, and AI technologies. Bezdek defines three levels of increasing 

complexity, from computational to artificial tasks and then to biological activities. In this 

model the artificial intelligent components are built on symbolic modules that add 

relatively small pieces of knowledge to computational processes and data, in order to get 

closer to biological intelligence. This model does not consider computational and artificial 

intelligence systems “intelligent” by themselves and for Bezdek words such as learning 

must be very carefully used when applied to low levels of complexity. This is a general 

classification in which hybrid systems are seen as ways to extend the low level 

computational intelligence techniques through the artificial intelligence level toward the 

goal of modelling biological intelligence. 

1.2.2 IRIS Classification  

Soucek (1991) developed the Integration of Reasoning, Informing and Serving (IRIS) 

model. This is an architecture that facilitates the combination of software, hardware and 

system levels present in any intelligent system. The aim of this methodology is to 

facilitate the design of systems using more efficient technologies, products and services 

to meet business needs. For Soucek, the development of a hybrid system requires the 

integration of different scientific disciplines including biology, cognitive psychology, 

linguistics, epistemology, and computer science.  

 The IRIS model identifies the need for ten ingredients of integration: 

• mixing of technologies (ANN, CBR, Knowledge-based systems, etc.), 

• paradigms for integration, 

• standard software modules, 

• special languages, 

• software development tools and environments, 

• automated discovery such as interactive intelligent databases and 

interfaces, 

• standard control and automation modules, 

• case studies of working applications, 
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• concurrency - tools for developing and monitoring, 

• signal to symbol transformations and pattern to category mappings.  

 This is not just a classification that describes mechanisms of interaction between AI 

models. It shows how AI models can be integrated within other computer technologies to 

create successful knowledge-based systems. 

1.2.3 The classification of Medsker and Bailey  

Medsker and Bailey (1992) have defined five models of integration from a practical point 

of view: stand-alone models, transformational, loose coupling, tight coupling and full 

integration. This classification presents several ways of combining connectionist and 

symbolic models. The integration between models can be done depending on the 

problem to be solved and the data and knowledge available.  

Stand -Alone model 

This model combines intelligent system applications consisting of independent 

software components. Since the components do not interact in any way, the stand-

alone model cannot be considered a real form of integration; it is only used to compare 

different AI models in order to learn more about them and about the problems to be 

solved.  

Transformational model 

This model is similar to the previous one. The difference is that in the transformational 

model, the system begins as one type and ends up as the other. For example an artificial 

neural network can be used to identify trends and relationships among data sets and 

the results obtained with it could be used to develop a knowledge-based system.  

Loose coupling model 

This is the first true form of integrating artificial intelligent systems. The application is 

composed of separate intelligent systems that communicate via data files. This model 

allows the interaction between systems with very different characteristics. Typical 

cases of this type are: 

• Pre-processors: In this case an ANN could serve as a front-end that processes 

data prior to passing it on to a knowledge-based system. Following the principles 

of this model an ANN can be used to perform data fusion, to remove errors, to 

identify objects and to recognise patterns. Then the knowledge-based system can 

play the main role. 

• Post-processors: In this case for example, a knowledge-based system can produce 

an output that is passed via a data file to an ANN. The knowledge-based system 

can perform data preparation and manipulation, classify inputs, etc. and the ANN 

can then perform functions such as forecasting, data analysis, monitoring, etc.  

• Co-processors: This type of integration involves data passing in both directions, 

allowing interacting and co-operative behaviour between the ANN and the 

knowledge-based system. Although not very often used, this approach has the 
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potential for solving difficult problems such as incremental data refinement, 

iterative problem solving and dual decision-making. 

• User interfaces : An ANN can be used, for example, for pattern recognition to 

increase the flexibility of user interactions with knowledge-based systems.  

Tight coupling model 

This model is similar to the previous one; however here the information is passed via 

memory resident data structures rather than external data files. This improves the 

interactive capabilities of tightly coupled models in addition to enhancing their 

performance. The sub-models of this approach are the four mentioned in the previous 

subsection: pre-processors, post-processors, co-processors and user interfaces. In this 

type of situation the implementation is more complex and the operation time is smaller 

than in the previous case.  

Fully integrated models 

Fully integrated models share data structures and knowledge representations. 

Communication between different components is accomplished via the dual nature of 

structures (symbolic and connectionist). Reasoning is accomplished either co-

operatively or through a component designated as a controller. Several variations of 

fully integrated systems exist, for example connectionist knowledge-based systems are 

one of the most common varieties of this model. They rely on local knowledge 

representation, as opposed to the distributed representation of most ANN, and reason 

through spreading activation. Connectionist knowledge-based systems represent 

relationships between pieces of knowledge, with weighted links between symbolic 

nodes.  

Each of the three classifications here presented considers the hybridisation process from 

different points of view. The Computational Intelligence Classification considers the 

hybridisation of AI models as a way to obtain AI systems that are capable of simulating 

aspects of Biological Intelligence. The IRIS classification shows how AI systems should 

be integrated with other computational systems and with the environment and finally the 

classification proposed by Medsker and Bailey defines five different ways of combining 

connectionist and symbolic AI systems from a practical point of view. 

1.3 Combining CBR systems and Neural Networks 

CBR systems have been successfully used in several domains: diagnosis, prediction, 

control and planning (López de Mántaras et al., 1997). Although there are many 

successful applications based on just CBR technology, from an analysis of this type of 

system it appears that CBR systems can be successfully improved, combined or 

augmented (Hunt et al., 1994) by other technologies. A hybrid CBR system may have a 

clearly identifiable reasoning process. This added reasoning proces s could be embedded 

in any of the stages that compose the CBR Cycle. For example the most common 

approaches to construct hybrid based CBR systems are:  
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• the CBR may work in parallel with a co-reasoner and a control module activates one 

or the other, i.e.: ROUTER (Goel, 1991), 

• a co-reasoner may be used as a pre-processor for the CBR system as happens in 

the PANDA system (Roderman, 1993); and finally,  

• a CBR may use the co-reasoner to augment one of its own reasoning processes 

(Corchado et al., 1998). 

 The last approach is used in the majority of CBR hybrid systems. Hunt and Miles 

(1994) have investigated areas where Artificial Intelligence (AI) approaches (used as co-

reasoners by this type of hybrid CBR based systems) are applied. Most early work in this 

area combined CBR systems with rule-based reasoning systems, but the number of 

applications in which other AI techniques are combined with case-based reasoning 

systems is increasing continually and quickly as has been reported by Medsker (1995), 

Sun and Alexandre (1997), and Lees (1999).  

 CBR systems are flexible systems capable of using the beneficial properties of other 

technologies to their advantage; in particular, the interest here is in the advantages of 

combining CBR and Artificial Neural Networks (ANN). During the last decade an 

increasing number of scientists have been researching into the hybridisation of CBR 

systems and ANNs. Before reviewing this area it is necessary to clearly define when and 

where ANN can be used in this context.  

 ANNs are not especially appropriate for stepwise expert reasoning and their 

explanation abilities are extremely weak. Nevertheless their learning and generalisation 

capabilities can be useful in many problems. Therefore they can only be used as part of 

CBR systems in those areas that do not involve knowledge explanation and reasoning. In 

particular, they can be used in areas involving knowledge generalisation. Learning is a 

powerful feature of most ANNs, and learning forms an intrinsic part of many stages of the 

CBR cycle, so ANNs can be used to learn to retrieve the closest case to a particular 

situation, or in other words to learn to identify the closest matching case. For an ANN it 

is reasonably easy in most situations to learn new cases and to learn how to generalise 

(adapt) a case from a pool of cases. 

 CBR systems and ANNs are complementary techniques, ANNs deal easily (and 

normally) with numeric data sets whereas CBR systems deal normally with symbolic 

knowledge. Even when symbolic knowledge can be transformed into numeric knowledge 

and numeric into symbolic, by doing this there is always the risk of losing accuracy and 

resolution in the data and hence obtaining misleading results. Therefore a combination of 

CBR systems and ANNs may avoid transforming data and therefore gain precision. As 

mentioned before, generalisation is a useful ability of most ANNs, but in many cases it is 

necessary to hold information about special cases, and this is a natural ability of CBR 

systems. 

 When CBR systems and ANN are used together, the most common approach 

(Reategui, 1996) is to hold the cases as an integral part of the ANN because CBR systems 

can successfully use them in the indexing and retrieval stages. For example, in the hybrid 

system created by Myllymaki and Tirri (1993), cases are identified as neurons of an ANN. 

The CBR system uses Bayesian probabilistic reasoning and is implemented as a 
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connectionist network (also called a belief network), which uses probability propagation 

to provide the theoretical explanation for the case matching process. Cases are 

represented as neurons in the middle layer of the ANN in this particular model.  

 Becker and Jazayeri (1989) have developed a hybrid system focused on design 

problems, in which cases are represented as neurons in the middle layer of an ANN and 

case-retrieval is done with a hybrid structure. Thrift (1989) uses an ANN with a back 

propagation learning algorithm for case filtering; the ANN selects the most relevant cases 

from the case base depending on some constrains (input to the ANN). GAL (Alpaydin, 

1991) is based on a similar architecture, the difference being that GAL uses the prototype-

based incremental principle, in which every class of objects is represented by the 

accumulation of relevant samples of the class and the modification of other class 

representations. Similar to a nearest-neighbour algorithm, this ANN grows when it learns 

and shrinks when it forgets because only representative cases are kept. 

 INSIDE (Lim et al, 1991) and ARN2 (Azcarraga et al, 1991) are very similar to GAL. In 

these systems, the neurons of the input layer of the ANN represents attributes, the 

nodes or neurons of the second layer correspond to prototypes (which are represented 

b y  n-dimensional vectors) and the neurons or nodes of the output layer repres ent 

classes. Each n-dimensional vector has an area of influence of a determined dimension. 

During learning the dimension of the areas of influence of the activated vector 

(prototype) is reduced if the ANN answer is wrong. Although INSIDE and ARN2 are very 

similar they differ in the methods that they use for learning the prototypes and adjusting 

their areas of influence.  

 The Prototype-Based Indexing System (PBIS) (Malek, 1995) was developed with the 

aim of improving the performance of the ARN2 model by keeping both prototypical and 

non-prototypical cases. PIBS has the memory divided to two levels. The first level is the 

middle layer of the ARN2 ANN and contains prototypical cases. The second level is a flat 

memory in which similar cases are grouped together in regions. Each region with similar 

cases is connected to the closest prototype of the same class.  

 PBIS also contains a region to store boundary cases that fall into uncertain areas. 

When a new case is presented to the ANN the prototype with the highest output is 

selected, if only one class is activated. When several classes are activated, the memory 

zones associated with the activated prototypes are selected and the most similar case is 

retrieved from these memory zones. If none of the prototypes are activated the system 

searches for similar cases in the atypical memory area. 

 Quan et al. (1994) have developed an algorithm for neural network based analogical 

case retrieval. This algorithm has been applied to industrial steam turbine design. Main et 

al. (1996) have investigated the use of fuzzy feature vectors and neural networks as a 

means of improving the indexing and retrieval steps in case-based reasoning systems. 

 PATDEX/2 (Richter et al , 1991) is a CBR-ANN hybrid system in which the 

relationship between the CBR and the ANN is different from the previous models. 

PATDEX/2 is a fault diagnosis system based on case-based reasoning technology. 

Cases are symptom vectors together with their associated diagnoses. In PATDEX/2, an 

ANN using a competitive learning algorithm is the core of the retrieval algorithm. The 
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similarity measure is based on a matrix that associates the relevance of every symptom to 

every possible diagnosis. The weights of this matrix are learned and modified by the 

ANN: after each diagnosis, the weights of the matrix are updated depending on the 

success of the diagnosis.  

 Garcia Lorenzo and Bello Perez (1996) use an ANN as a basis for calculating a measure 

of similarity between a new problem case and each stored candidate case. The ANN 

provides a mechanism to retrieve cases using information that in other models would 

require a parallel architecture. The connection between both case-based and rule-based 

reasoning mechanisms, and high-level connectionist models has been investigated by 

Sun (1996) in the process of exploring the use of such models for approximate common-

sense reasoning. 

 Agre and Koprinska (1996) propose a different type of relationship between the CBR 

and the ANN in their hybrid model, which combines a CBR system and a knowledge-

based ANN. The CBR is applied only for the correction of the knowledge-based ANN 

solutions that seems to be wrong. Potential corrections are carried out by matching the 

current situation against the cases that constitute the knowledge-based ANN training 

data set. Agree and Koprinska have shown that the performance of knowledge-based 

ANN (which are concerned with the use of domain knowledge to determine the initial 

structure of an ANN) can be considerably improved with the use of CBR systems. 

 Reategui et al. (1995, 1996) have been working on several hybrid ANN-CBR models 

and on general classifications of this type of system. Basically their hybrids are 

composed of two separate modules: a CBR system and an ANN. Both modules work 

independently; the reasoning process is interleaved between them and both co-operate 

via a central control unit. In one of Reategui’s experiments, while the ANN learns general 

patterns of use and misuse of credit cards, the CBR system keeps track of credit card 

transactions carried out for a particular card (thus different sets of cases are used by the 

neural network and the CBR system). The central control mediates answers given by the 

two separate mechanisms. 

 In the domain of medical diagnosis, Reategui et al. (1996) have used an integrated 

CBR-ANN approach. The task of the neural network is to generate hypotheses and to 

guide the CBR mechanism in the search for a similar previous case that supports one of 

the hypotheses. The model has been used in developing a system for the diagnosis of 

congenital heart diseases. The hybrid system is capable of solving problems that cannot 

be solved by the ANN alone with a sufficient level of accuracy.  

 Liu and Yan (1997) have explored the use of a fuzzy logic-based ANN in a case-based 

system for diagnosing symptoms in electronic systems. The aim of the hybrid system is 

to overcome the problems related to the descriptions of uncertain and ambiguous 

symptoms.  

 Corchado et al. (1998) have also investigated the combination of CBR systems and 

supervised ANN. They have proposed an agent architecture for oceanographic 

forecasting in which the CBR agents and the ANN agents complement each other at 

different stages of the forecast. They have also developed a CBR model in which an ANN 
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automates the adaptation of cases, to solve a forecasting problem with high syntactical 

(numerical) connotations. 

 Following the work of Medsker and Bailey (1992) and inspecting the type of 

hybridisation used by the previously introduced authors, it may be appreciated that the 

two dominant models are full integration, in the form of a symbolic artificial neural 

network, and a model in which both components of the hybrid system are totally or 

partially coupled. In the latter case, most of the hybrid systems use an artificial neural 

network in the retrieval stage of the CBR cycle. In some systems both coprocessors are 

controlled by a meta-system and in other cases both coprocessors simply work in parallel 

doing independent tasks. The developers of the previously mentioned systems critically 

analyse the advantages and disadvantages of their models; in all cases the beneficial 

properties of the hybrids overcome their disadvantages. Studying this classification it is 

clear that there is a huge scope for investigating the combination of artificial neural 

networks with case-based reasoning systems. For example, different types of ANN can 

be used at different stages of the CBR life cycle to solve different problems.  

 ANNs have been used in the retrieval stage of a CBR system in situations in which 

there was no prior knowledge from constructing a KNN (k-nearest neighbour) algorithm 

or a Rule Based System (RBS). Although the use of ANN for retrieving cases has been 

shown to be successful (Mao et al., 1994; Main et al., 1996), it is not considered good 

practice if there is knowledge sufficient to build a KNN or a RBS. Also the real time 

constraints imposed by the nature of some problems must be taken into consideration to 

define whether or not it is possible to afford the time overhead for the training of the 

ANN. 

 Although the creation of neuro-symbolic models requires the existence of 

prototypical cases and a certain amount of knowledge, almost any CBR system can be 

represented as a neuro-symbolic system in which the neurons are prototypical cases or 

rule based systems. The connections between neurons could be defined also by rules. 

The following sections show how with a neuro-symbolic approach has been used to 

solve a complex oceanographic forecasting problem . 

1.4 The Forecasting Problem 

Oceans are dynamic habitats in which circulation is mainly driven by three external 

influences: (i) wind stress, (ii) heating and cooling, and (iii) evaporation and precipitation 

- all of which are, in turn, driven by radiation from the sun (Palmen et al., 1969). The ocean 

circulation is what determines the mixture of water masses with different properties (such 

as temperature) and the variation of these properties with time in a particular geographical 

location. A water mass (or province) can be defined as  a body of water with a common 

formation history. Oceans are in a continual state of flux (Tomczak et al., 1994). Taken 

together, this bio-physical partitioning provides the descriptors of regional ecosystems 

or biogeochemical provinces, each with discrete boundaries and each having distinct 
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flora and fauna. In each of these provinces, the water properties are moderately 

homogenous and its variability can be described relatively easily. Our present knowledge 

of the ocean structure is still too weak to create a full model of its behaviour. Oceans are 

dynamic systems, in which the water masses are influenced by so many factors that it is 

extremely difficult to create even a partial model of the ocean. Therefore to develop a 

universal system for forecasting the temperature of the water ahead of an ongoing vessel 

is complicated.   

 Forecasting the structure of the water in such conditions is a difficult task due to the 

nature and behaviour of the ocean waters, the movement of which causes the water 

temperature to change in a complex manner (Tomczak et al., 1994).  

 The forecasting task in such a complex environment requires the use of both 

historical data and the most recent real-time data available, thus enabling the forecasting 

mechanism to learn from past experiences in order to be able to predict, with sufficient 

confidence and accuracy, the values of desired parameters at some future point or points 

in time or distance. 

 Over the last few years researchers at the Plymouth Marine Laboratory (PML) and the 

University of Paisley have applied artificial intelligence methods to the problem of 

oceanographic forecasting. Several approaches have been investigated, both, supervised 

ANN (Corchado et al., 1997) and unsupervised ANN (Corchado et al., 1998) techniques 

have been investigated, as well as CBR and statistical techniques (Corchado et al., 1998) 

with the aim of determining the most effective forecasting method. The results of these 

investigations suggest that, to obtain accurate forecasts in an environment in which the 

parameters are continually changing both temporally and spatially, an approach is 

required which is able to incorporate the strengths and abilities of several AI methods. 

 The problem of forecasting, which is currently being addressed, may be simply stated 

as follows: 

Given: a sequence of data values (which may be obtained either in real-time, 

or from stored records) relating to some physical parameter 

Predict: the value of that parameter at some future point(s) or time(s). 

 The raw data (on sea temperature, salinity, density and other physical characteristics 

of the ocean) which are measured in real time by sensors located on the vessel, consist of 

a number of discrete sampled values of a parameter in a time series. These data values are 

supplemented by additional data derived from satellite images, which are received weekly. 

In the present work the parameter used is the temperature of the water mass at a fixed 

depth. Values are sampled along a single horizontal dimension, thus forming a set of data 

points. 
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1.5 Hybrid CBR - Neural Network System 

This section presents the hybrid system developed in this investigation. The hybrid 

system is composed of a case-based reasoning  system and a radial basis function 

artificial neural network . It is a universal forecasting model. Universal in this context 

means the ability to produce accurate results anywhere in any ocean at any time. The 

system is capable of adapting itself in real-time to different oceanographic water masses. 

 To facilitate the understanding of the model this section focuses on the forecasting of 

the temperature of the water up to 5 km ahead. The concepts here presented are valid for 

longer distances; the metrics, dimensions of the vectors and some algorithms have been 

adapted for such longer distances as will be shown in following sections.  

 Figure 1 shows the top-level relationships between the processes comprising the 

hybrid CBR system. The cycle of operation is a derivation from the CBR cycle of Aamodt 

and Plaza (1994), and of Watson and Marir (1994). In Figure 1, shadowed boxes (together 

with the dotted arrows) represent the four steps of a typical CBR cycle; the arrows 

represent data coming in or out of the Case Base (situated in the centre of the diagram) 

and the text boxes represent the result obtained after each of the four stages of the cycle. 

Solid lines indicate data flow and dotted lines show the order in which the processes that 

take part in the life cycle are executed.  

 In the operational environment, oceanographic data (e.g. sea-surface temperature) is 

recorded in real time by sensors in the vessels; also, satellite pictures are received on a 

weekly basis. The satellite pictures are stored in a centralised database. A problem case is 

generated every 2 km using the temperatures recorded by the vessel during the last 40 km 

and consists of a vector of 40 temperature values, recorded at 1 km intervals. The problem 

case is used to retrieve the k  most closely matching cases from the Case Base. 

Experiments carried out with data sets recorded in the Atlantic Ocean (cruise AMT 4) 

have shown that 40 data values at 1 km intervals was appropriate for the problem case 

(Rees et al., 1997).  

 Each of the cases stored in the Case Base is defined by an Input Vector  

(I1, I2 ,…,I40) of  water temperature values, a Forecast Value F (representing the value of 

the temperature of the water 5 km ahead of the point at which I40 was recorded) and 

several parameters defining its importance (how many times it has been retrieved, etc.) 

(refer to section 6.3). Both F and Ik must be recorded by a vessel following a straight line.  

 The k retrieved cases are adapted by a neural network during the reuse phase to 

obtain an initial (proposed) forecast. Through the revision process, the proposed 

solution is adjusted to generate the final forecast using error limits, which are calculated 

taking into account the accuracy of previous predictions. Learning (retaining) is achieved 

by storing the proposed forecast, modifying some parameters of the cases (as will be 

shown in following sections) and storing knowledge (ANN weights and centres) 

acquired by the ANN after the training and case adaptation. 

 Whilst Figure 1 presents the basic concepts of CBR as a cycle of operations, Figure 2 

shows the detailed information flow throughout the CBR cycle and in particular how the 
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ANN has been integrated with the CBR operation to form a hybrid forecasting system. 

Data acquisition (top of Figure 2) is through sensors on board the vessel (in real time) 

and from satellite pictures (which are received weekly). The data is indexed so it can be 

transformed into cases and stored in the Case Base as required.  

To obtain an accurate forecast in the vast and complex ocean it is imperative to use 

up-to-date satellite data. Fortunately, current technology now enables detailed satellite 

images of the oceans to be obtained on a weekly basis. The relevant data from these 

images is appropriately indexed for fast retrieval in a centralised database. Data is also 

acquired in real time as a vessel moves across the ocean; average sea surface 

temperatures are recorded every kilometre. Satellite images are used in this particular 

context because from them can be obtained the temperature of the water of the ocean in 

the form of thermal vectors. These thermal data vectors can be transformed into cases 

and stored in the case base (refer to Sections 1.5.1 and 1.5.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1:  CBR skeleton. 

 

 During the retrieval phase, the k cases that most closely match the problem case are 

selected from the case base using k-Nearest Neighbour matching algorithms. These k  

cases are then used to compute the forecast value of the temperature of the ocean a 

constant distance ahead of the vessel. The set of k retrieved cases is used in the reuse 

phase of the CBR life cycle to train an ANN, the output of which is the Proposed 

Forecast (see Figure 2). The radial basis function ANN is retrained in real time to produce 
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the forecast; during this step the weights and the centres of the ANN, used in the 

previous prediction, are retrieved from the knowledge base and adapted, based on the 

new training set. The goal of the ANN is to extract a generalised solution from the k cases 

(refer to Section 1.5.5).  

 In the revise phase the Final Forecast is obtained by modifying the Proposed 

Forecast taking into account the accuracy of the previous predictions. Each case has an 

associated average error which is a measure of the average error in the previous 

predictions for which this case was used to train the ANN. The error limits are calculated 

by averaging the average error of each of the k cases used to train the ANN to produce 

the current forecast. 
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Figure 2: Hybrid system control flow. 

 Learning is achieved in two different ways: 

1. after retraining the ANN, by saving the internal structure of the ANN: i.e. the 

weights and centres. The ANN is continuously retrained and its internal 

structure is saved after each forecast is made, 

2. by modifying some of the constituent parameters of the cases (as will be 

shown later).  

 A database records all the forecasts done during the last 5 km and all the cases used 

to train the ANN to obtain these forecasts. These forecasts are eventually compared with 

their corresponding real values of the temperature of the water (there is a 5 km lag 

between the point at which the forecast is made and the point for which the forecast is 

made). The forecasting errors are then used to modify relevant features of the cases, to 

prune the case base and to determine error limits, etc.  

1.5.1 Case representation  

 A case represents specific knowledge about a particular situation. A case is created 

to represent the ‘shape’ of a set of temperature values (a vector of values) and the most 

representative characteristics of this vector. Each case is composed of the fields listed in 

Table 1. 

 A 40 km profile has been empirically found to give sufficient resolution (using 

representative data sets) to characterise the problem case (and the Input Vector Ik). The 

parametric features of the different water masses that comprise the various oceans vary 

substantially, not only geographically, but also seasonally. Because of these variations it 

is therefore inappropriate to attempt to maintain a case base with cases from all the water 

masses of the ocean. Furthermore:  

• there is also no need to refer to cases representative of all the possible orientations 

that a vessel can take in a given water mass. Vessels normally proceed in a given 

predefined direction. So only cases corresponding to that particular orientation are 

normally required at any one time, 

• recall also that the aim is to create a forecasting system which is able to adapt to the 

changes in the ocean environment, in time and space.  

 With the above considerations, the strategy adopted was to maintain a centralised 

data base in which all the thermal data tracks and satellite pictures, available for all the 
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water masses in the world, could be stored, in a condensed form; and then only retrieve 

from it (transformed into cases and stored in the case base) the data relevant to a 

particular geographical location. 

 Plymouth Marine Laboratory (PML) maintains a database composed of thousands of 

data profiles recorded during the last decade, together with satellite images. The database 

is updated weekly. For the purpose of the current research a new database has been 

constructed for a region of the Atlantic Ocean between the UK and the Falkland Islands 

(between latitudes: 50 to -52 and longitude: 0 to -60). This database is a subset of the 

main PML database.  

 

Identification Description 

Identification • Unique identification: positive integer number (between 0 and 

64000). 

Input Vector Ik • A 40 km temperature input profile (I1,I2, ..,Ik, where k = 40)  

representing the temperature of the water between the present 

position of the vessel and its position 40 km back. 

Output Value: F 

 

• a temperature value representing the water temperature 5km 

ahead of the present position of the vessel.  

Source • Data source from which the case was obtained (satellite image or 

data track). Its acquisition date, time and geographical co-

ordinates identify each source. 

 e.g.:  SAT1501981030500-4910 

i.e. a satellite picture taken on 15th January 1998, at 10:30 the top 

left corner having latitude 50.00º and longitude -49.10º. 

Time 

 

• Time when recorded. Although giving some redundancy of 

information, this field helps to ensure fast retrieval. 

Date • Date when the data was recorded (incorporated for the same 

reasons as for the previous field). 

Geographical 

position 

• The geographical co-ordinates of the location where the value I40 

(of the Input vector) was recorded. 

Retrieval • The number of times the case has been retrieved to train the ANN 

(a non-negative integer). 

Orientation 

 

• An integer x (1 ≤ x ≤12) corresponding to the approximate 

direction of the data track, as indicated in Figure 6.3. 

Retrieval time  • Time when the case was last retrieved. 

Retrieval date • Date when the case was last retrieved. 

Retrieval location • Geographical co-ordinates of the location in which the case was 

last retrieved. 

Average error • The average error in all forecasts for which the case has been 

used to train the ANN. 

 
Table 1: Case attributes. 



 16 

1.5.2 Case indexing mechanism  

Time is a very important factor in real time forecasting. Therefore the indexing mechanism 

used to retrieve both the data stored in the database and the cases in the case base must 

be fast and reliable. Also the selection mechanism for the creation of cases from data 

stored in the database must be accurate. Research has also shown in the INRECA project 

(Wilke et al., 1996) that very large case bases have poor performance results. Therefore 

only representative cases must be created and stored. This fact, together with the need 

for creating them within a small period of time, makes a good indexing algorithm essential. 

 

 

     
 

 (a)             (b) 

 

 
Figure 4: Satellite Image and a track obtained from a satellite image.  

 

 

 There are several approaches for organising the information held by a case base. 

Commonly used approaches are: 

• flat memory system, that requires a large memory when the case base become large,  

• shared-features network, that has a hierarchical case organisation (Kolodner, 1993), 

that requires a rigid network structure, hard to modify once the case base is in use 

and cases are added into the case base. 

 

 The complexity and the quantity of the data with which this system is dealing requires 

a simple but rigid indexing mechanism in order to minimise the retrieval time of the cases. 

 The relevant cases to be retrieved are those geographically close to the position of 

the vessel. The cases stored in the case base at any one time are always geographically 

close to the position of the vessel. This is enforced by the algorithms in charge of 
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retrieving data from the database and storing it into the case base. These algorithms also 

give priority to the retrieval of the most recent cases.  

 Because more refined spatial and temporal selection is required a simple indexing 

structure has been implemented which groups cases, taking into account their 

geographical proximity and secondly their temporal proximity. Cases within the same 

geographical region defined by a square of side 0.1 degrees (10 km) are stored together. 

This group is divided again into smaller units, each of which has been recorded in the 

same week.   

1.5.3 Transformation of data into cases  

Cases are constructed from the data held in the database and stored in the case base, 

according to the rules defined in Table 2. 

 

Classification Description 

1 Cases within an area delimited by a circle of radius P km centred on the 

present position of the vessel. 

                                  i.e.  P = X+(X*0.25). 

Where  

• X is the distance between the present position of the vessel and the 

geographical position of the case with a retrieval field equal to 4 

and in which the averaged error is smaller than 0.05 and which has 

been retrieved within the last 20 km or 24 hours. If there is no case 

with a retrieval field equal to 4, the one having a value closest to 4 

will be chosen. These threshold values have been empirically 

obtained in experiments carried out with data sets obtained in AMT 

(Atlantic Meridional Transect) cruises.  

• 25 ≤ P ≤ 200 

2 Cases with the same orientation as the present cruise track.  

3 Cases from data recorded during the same month as the cases that are 

stored in the case base in which the forecasting error is less than 0.05 and 

which have been used during the last 24 hours or 50 km. Cases are also 

constructed from data recorded in the previous month under the same 

conditions. 

4 Cases are constructed from data recorded in the last two weeks. 

 
Table 2: Rules for case construction. 

 

 The classification of cases presented in Table 2 have been empirically obtained as a 

result of much experimentation (Corchado, 1999). The following section shows how cases 

are selected during the CBR operation to create the final output, how they are deleted 

from the Case Base and how they can be reused. 
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1.5.4 Case retrieval  

From the data recorded in real time, the input profile, I, of the problem case is created. A 

search is made in the case base to retrieve all cases having similar profiles. Five metrics 

are used to determine the similarity between the problem case and each of the retrieved 

cases.  

 At this stage the aim is to retrieve all the cases that are similar to the problem case. 

The cases stored in the case base have been extracted from satellite images or data 

tracks. Therefore it is required to recover as many cases similar to the problem case as 

possible so that in the following stage a forecasting model based on all the recovered 

cases may be created. 

 The metrics used in the retrieval process give priority to cases based on 

complementary criteria. They enable cases to be retrieved whose input profiles are similar 

to the problem case with respect to their temperature profiles (Metric 1 and Metric 2), 

general trend in temperature (Metric 3), similarity in terms of the frequency of oscillation 

of the Sobel filter of the profile (Metric 4), and similarity with respect to the average sea 

temperature over the distance represented by the case (Average Temperature Metric). 

Metric 1 

This metric calculates the difference between I40 and eight other values of the 

Input Profile (of the Problem Case), spread along the input profile at 5 km intervals 

(starting with I1). This is repeated for all the cases stored in the Case Base. The value 

of the gradients are weighted, giving a higher value to the ones closer to I40. The 

weighted gradient of each case (retrieved from the Case Base) is compared with the 

value of the weighted gradients of the Input Profile of the Problem Case, and the 

absolute value of the differences are added up. The value of Gradient 1 used to 

retrieve the cases is given by: 
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where the vector Ij, (j = 1, 2 … 40) represents the input profile  of the problem case 

and IAj, (j= 1, 2 …40) represents the input profile of the case being considered from 

the case base. The closer that the profiles being compared match, the smaller will be 

the value of Metric 1 . This metric provides a general idea of the degree of similarity 

between the problem case and all the cases of the memory of the CBR. 

Metric 2 

This metric is similar to the previous one, the difference is that the input profile is 

first smoothed using a window of four values. This metric uses the difference 

between I40 and each of thirteen other values of the input profile  of the problem case 

relating to points at 3 km intervals (starting at I1). The values obtained are weighted 

and summed as in the calculation of Metric 1. This is repeated for all the cases stored 

in the case base. This metric gives a more general indication of the similarity between 

the present case and the retrieved cases than Metric 1. This metric provides a 

stronger degree of similarity than the previous one due to its higher level of 
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granularity and the fact that by smoothing the case vector, irrelevant features (such 

as noise) are eliminated. The smaller the value of the metric, the more similar is the 

retrieved case to the Present Input Profile. 

Metric 3 

The output of this metric is the absolute value of the difference between the 

gradient of the Problem Input Profile and each of the cases of the case base. The 

gradient is calculated using the average value from the first and last 20% of each 

Input Profile. A percentage of 20 has been empirically found to be an adequate value 

to calculate a gradient that defines, in general terms, whether the temperature is 

increasing or decreasing. 
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This metric compares the general trend of the problem case with the general trend 

of the retrieved cases, so for example, it can be identified cases which show a similar 

general increment or decrement in the temperature.  

Metric 4 

The Sobel filter (Gonzalez and Wintz, 1987) value is calculated for the present 

case and all the input profiles of the retrieved cases. The output of the metric 4 is the 

absolute value of the difference between the number of oscillations of the Sobel filter 

of the input profile of the retrieved cases and Problem case.  

The value of the Sobel Filter for a case is calculated as follows: 
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This metric gives priority to the cases, which Sobel filter is similar to the Sobel 

filter of the input vector of the problem case. This metric helps to identify cases from 

water masses of similar characteristics because case vectors extracted from similar 

water masses have similar Sobel filters (Corchado et al., 1996).      

Average Temperature Metric 

The Average Temperature Metric compares the average temperature, over the 

distance represented by each retrieved case, with that of the problem case. This case 

is used to identify cases that have been extracted from the sea in similar seasons of 

the year and similar water masses because cases extracted from the same areas of the 

ocean and extracted during the same season have similar average temperatures.  

After applying the above metrics to all the cases in the Case Base, the best matches 

to the problem case are used to obtain the final forecast. The best matches of each metric 

will be used to train a Radial Basis Function ANN in the adaptation stage of the Reuse 

phase. The number of best matches selected from the outcome of each metric is 

determined as follows: 
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1. For each metric, the value of the outcome is expressed on absolute scale between 0 

and 1. Thus the cases, which are more similar to the problem case, will have a value 

closer to 0 and the more distant cases will have a value closer to 1. 

2. For each metric, the two hundred best matches are used in the adaptation phase of 

the CBR cycle to train the ANN. If the value of the metric associated with any of  

these 200 cases is bigger than 3 times the value of the best match, this case is not 

used in the training of the ANN.  

A reasonable number k  of cases is required to train the ANN; empirically it has been 

observed that a value of between 500 and 1000 produces satisfactory results. If k is 

greater than 1000 it becomes impossible to train the ANN in the time available, whilst a 

value smaller than 500 may restrict the ANN’s generalisation ability. The same cases may 

be selected using different metrics, and will have a higher influence during the adaptation 

step of the reuse phase.   

 The metrics presented above are only applied to the cases which have a date field 

equal to or within 2 weeks of the date field of any of the cases used to train the ANN in 

the most recent forecast, or for which the geographical position differs by less than 10 km 

to the geographical position of any of the cases used to train the ANN in the most recent 

forecast. 

1.5.5 Case reuse (adaptation)  

 Several hybrid systems have been developed in which CBR components co-operate 

with one or more reasoning elements (Hunt et al., 1994). In particular, there are a number 

of CBR systems that use Constraint Satisfaction, Numeric Constraint Satisfaction, Model 

Based Reasoning, etc., for case adaptation.  

 Case adaptation is one of the most problematic aspects of the CBR cycle. Most 

adaptation techniques are based on generalisation and refinement heuristics. This 

section proposes a novel approach based on ANNs and their ability to generalise. The 

ANN acts as a function that obtains the most representative solution from a number of 

cases. This ANN does not require any type of human intervention and has only a small 

number of rules that supervise the training of the ANN.  

 In the context of the present problem, instance-based reasoning (Aha et al., 1991) is 

required to compensate for the lack of guidance from specific and accurate background 

knowledge about the propagation of the temperature of the water of the oceans, with a 

relatively large number of instances. This is a highly syntactic CBR-approach, in the 

sense that a simple feature vector (refer to Section 1.5.1) is only needed to represent each 

instance and no user is required in the CBR life cycle.  

 Each of the cases or instances retrieved from the CBR represents a particular problem 

and its solution (feature vector). The aim of the CBR operation is to determine which of 

the cases stored in the CBR case base characterises better the present situation so that it 

may be reused. The determination of an algorithm to automate this process and retrieve 

the best case at any point is difficult because of the complexity of the environment, its 

dynamism and its heterogeneity.  
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  The method adopted is to use a mechanism able to absorb the knowledge of all the 

cases that are representative of one particular problem and extrapolate from them a 

solution. To this end, experiments were carried out with nearest neighbour algorithms 

(which find the case among the retrieved cases that is most similar to the present 

problem), averaging techniques and artificial neural networks. A Radial Basis Function 

ANN has been found to be able to absorb the underlying model represented by the 

retrieved cases and generalise a solution from them, better than any other technique 

(Corchado et al., 1997). This ANN is retrained before any forecast is made using the 

retrieved cases and the internal knowledge (weights and centres) of the Radial Basis 

Function ANN. Every time that the ANN is retrained, its internal architecture is adapted 

to the new problem and the cases are adapted to produce the solution, which is a 

generalisation of those cases.  

 Radial Basis Function ANNs are adequate in this problem because they can be 

trained fast, they have very good generalising abilities (though being better at 

interpolating than at extrapolating) (Corchado, 1999), and they learn without forgetting by 

adapting their internal structure (adding new centres) (Fritzke, 1994). This last property is 

particularly interesting in the present situation because since the ANN is continuously 

being retrained, it can learn new features within one particular water mass without 

forgetting a number of the others previously learned (for a variable number of training 

iterations).  

 Although this increases the training time, it improves the generalisation since at any 

time the forecast is not only based on the last k cases used to retrain the ANN, but also 

on those cases used in the more recent past which also influence the forecast; this 

contributes to the generation of a continuous, coherent and accurate forecast.   

 In the RBF network that has been built, cases are coded in order to create the input 

and output vectors used to train the ANN. The ANN uses 9 input neurons, between 20 

and 35 neurons in the hidden layer and 1 neuron in the output layer. The input data is the 

difference between the last temperature (of the Input Profile) and the temperature values 

of the input profile taken every 4 km. Only one neuron is used in the output layer to 

forecast up to 5 km. The output is the difference between the temperature at the present 

point and the temperature 5 km ahead. 

1.5.5.1 Centre and weight adaptation  

Initially, 20 vectors are randomly chosen from the first training data set (composed of the 

retrieved cases), and are used as centres in the middle layer of the ANN. This number 

changes with training and the training data set determines it. The topology of the ANN 

(i.e.: number of neurones in each layer) have been empirically chosen after many tests 

with data sets extracted in the AMT cruises (Corchado et al., 1996). The number of initial 

centres has been chosen taking into considerat ion the number of neurons in the input 

and the output layer. 
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 All the centres are associated with a Gaussian function the width of which, for all the 

functions, is set to the mean value of the Euclidean distance between the two centres that 

are separated the most from each other. 

 The closest centre to each particular input vector is moved toward the input vector by 

a percentage α of the present distance between them. By using this technique the centres 

are positioned close to the highest densities of the input vector data set. The aim of this 

adaptation is to force the centres to be as close as possible to as many vectors from the 

input space as possible. An adaptation of this type is particularly important because of 

the high-dimensionallity of the input layer. α is initialised to 20 every time that the ANN 

is retrained, and its value is linearly decreased with the number of iterations until α 

becomes 0; then the ANN is trained for a number of iterations (between 10 and 30 

iterations for the whole training data set, depending on the time left for the training) in 

order to obtain the best possible weights for the final value of the centres. The 

thresholds that determine the centres and weights adaptation have been empirically 

determined).  

 The delta rule (Bishop, 1995) is used to adapt the weighted connections from the 

centres to the output neurons. In particular, for each presented pair of input and desired 

output vectors, one adaptation step, according to the delta rule, is made.  

1.5.5.2 Insertion of new units  

A new centre is inserted into the network when the average error in the training data set 

does not fall more than 10% after 10 iterations (of the whole training set). In order to 

determine the most distant centre C, the Euclidean distance between each centre and 

each input vector is calculated and the centre whose distance from the input data vectors 

is largest is chosen. A new centre is inserted between C and the centre closest to it. 

Centres are also eliminated when they do not contribute much to the output of the ANN. 

Thus, a neuron is eliminated if the absolute value of the weight associated with a neuron 

is smaller than 20% of the average value of the absolute value, of the 5 smallest weights. 

The number of neurons in the middle layer is maintained above 20. This is a simple and 

efficient way of reducing the size of the ANN without dramatically decreasing its memory.  

1.5.5.3 Termination of training  

The ANN is trained for a maximum time of 2 minutes. In the real time operation the ANNs 

must produce a forecast every 2 km (6 minutes for a speed of 12 knots, which is the 

maximum speed that the vessel can attain). After that time the new set of training cases is 

retrieved and the ANNs are retrained. Therefore, even if the error is high the ANNs 

should produce a forecast. It has been found empirically, that these training times are 

sufficient to train the network and obtain a forecast with small errors (Corchado, 1999). At 

any point if the average error in the training data set is smaller or equal to 0.05 the training 

is stopped to prevent the ANN from memorising the training vectors. This threshold has 
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been chosen empirically. It has been shown that the ANN around this point stops the 

generalisation process and starts to learn and to memorise the training vectors. 

1.5.6 Case revision  

After case adaptation a crisp value is obtained for the forecasted temperature 5 km ahead 

of the vessel. This value is rarely 100% accurate, therefore revision is required to obtain a 

more realistic output.  

 Since this is a real-time problem it is not possible to evaluate the outcome of the 

system before it is used. The solution to this problem is to define error limits, which will 

substitute the crisp output with a band or error interval around the output of the ANN. If 

the error limits are too wide the forecast will be meaningless; therefore a trade off is made 

between a broad error limit (that will guarantee that the real solution is always within its 

bands) and the crisp solution.  

 The expected accuracy of a prediction depends on two elements: the water mass in 

which the forecast is required and the relevance of the cases stored in the case base for 

that particular prediction. 

 Each water mass has been assigned a default error limit CL0, which has been 

empirically obtained. Every time a cruise crosses a water mass, a new error limit CLz 

(where 0<z<6) is calculated by averaging the error in all the predictions made. If, for a 

certain water mass, z is equal to 5, and a vessel crosses it again, the older CL is 

substituted by a new one. Therefore there are at most 5 error limits associated to a water 

mass. This number is not critical, a smaller value can also guarantee stability in such error 

limits, and a larger number does not provide a better result. The CLz error limits are used 

in collaboration with the average error of the cases used to train the ANN for a given 

forecast. The error limit determines the interval centred in the crisp temperature value, 

obtained by the ANN, for which there is a high probability that the forecast is within this 

interval. The value of the probability varies deepening on the distance of the forecast, 

but must be higher than 90%. Then, if the output of the ANN is F, the average value of 

the accumulated errors of the cases taking part in a given fo recast is AE and ACL is the 

average value of the CLz error limits, the error interval is defined by 

[ F - ((AE*0.65)+(ACL*0.35)), F + ((AE*0.65)+(ACL*0.35))] 

 The values used in this formula have been empirically obtained using a sufficient 

amount of data from all the water masses of the Atlantic Ocean. However, these values 

may not be appropriate for water masses from different oceans.   

1.5.7 Case retention and learning  

Incorporating into the case base what has been learned from the new prediction is the 

last stage of the CBR life cycle. Learning is achieved in different ways in the system. 

When the ship has travelled a distance of 5 km (on a straight course) after making a 



 24 

forecast, it is possible to determine the accuracy of that forecast, since the actual value of 

the parameter for which the forecast was made is then known. This forecasting error is 

used to update the average error attribute of the cases used in that particular forecast. 

The cumulative error field of the cases used to train the neural network is continuously 

being updated and contributes to the learning strategy of the system. Accurate error 

limits are obtained only if the average error attribute of the cases is modified in this way. 

 Pruning the case base also contributes to the learning; cases in which average error 

attribute is very high are removed. The maximum permissible average error needs to be 

defined. Empirically it has been found that for cases in which the average error attains a 

value 0.12, the average error never subsequently reduces to a value smaller than 0.05. 

Therefore a threshold of 0.1 in the average  error was chosen to determine which cases 

must be deleted. If the average error of a case is equal to or higher than 0.1, the case is 

removed from the case base. Furthermore, cases which have not been used during the 

previous 48 hours are deleted; so also are cases which have not been used in the 

previous 100 km. 

 It is necessary to determine when the case base must be updated with additional 

cases from the database. This is done when the database receives new satellite images 

(once per week). If the forecasting error is higher than 0.2 for more than 20 predictions, 

additional cases are created from data stored in the database. This is a measure used to 

include fresh cases in the case base; this helps to reduce the forecasting error. 

  If, over a period of operation in a particular water mass, it is found that most of the 

cases selected from the case base are clustered around some point a distance x, say, 

either ahead or behind the vessel, this suggests that the whole water mass has moved 

this distance x since the data, from which the cases were created, were obtained. In such 

a situation, the operational strategy is then to utilise cases relating to this indicated area, 

which is centred on a position a distance x from the current position. 

 The modification and storage of the internal structure of the ANN contribute 

substantially to the learning of the system. The weights and centres of the network, and 

also the width of the Gaussian functions associated with the centres, are modified during 

the adaptation process and stored in the network knowledge base.  

 Learning is a continuous process in which the neural network acts as a mechanism 

that generalises from the input data profiles and learns to identify new patterns without 

forgetting previously learned ones. The case base may be considered as a long term 

memory since it is able to maintain a huge number of cases that characterise previously 

encountered situations. 

 In contrast, the network knowledge base may be considered to behave as a short term 

memory that has the ability to recognise recently learned patterns (i.e. the knowledge 

stored in the internal architecture of the neural network) that enable it to adapt the system 

to cope with localised situations. 

1.6 Results and Discussion 
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This chapter has described the hybrid system developed to forecast in real-time the 

temperature of the water ahead of an ongoing vessel. The hybrid system is composed of 

a case-based reasoning system and an artificial neural network. The ANN assists the 

CBR system during the adaptation of cases and also contributes to the learning of the 

system.   

 The hybrid system holds in its memory a huge amount data relating to forecasting 

events and selects from it those that are the most similar to the new forecasting situation. 

The ANN uses the retrieved cases to create a model, in real time, for a particular water 

mass. This reasoning model makes use of the most up-to-date data to generate a solution 

in real-time in order to overcome the difficulties of predicting the evolution of a dynamic 

system in real time. Although the present chapter has focused on the prediction of the 

temperature 5 km ahead, the same strategy has been used to forecast up to 20 km. A 

complete analysis of the results obtained with this system may be found in Corchado 

(1999). 

 The approach presented here combines the advantages of both connectionist and 

symbolic AI. The hybrid system has been tested in the Atlantic Ocean in September 1997 

on a research cruise from the UK to the Falkland Islands. The cruise crossed several 

water masses and oceanographic fronts. The obtained results were very encouraging and 

indicate that the hybrid system is able to produce a more accurate forecast than any of 

the other technique used in this experiment. 

 Although the experiment has been carried out with a limited data set (over a distance 

of 11000 km between the latitudes 50º North and 50º South), eleven water masses with 

different characteristics were traversed, six of them containing fronts; the Falkland Front, 

in particular, is one of the most chaotic oceanographic areas in the world. It is believed 

that these results are sufficiently significant to be extrapolated to the whole Atlantic 

Ocean.  

 

Prediction Distance 

(km) 

Hybrid system 
Average error (ºC) 

Hybrid system: % of 
inadmissible predictions 

5  0.020 2.6 

10  0.048 6.2 

15  0.132 8.1 

20  0.260 7.5 

 
Table 3: Average error and percentage of inadmissible predictions with the hybrid system.  

 

Table 3 shows the results obtained with the hybrid system when forecasting the water 

temperature at different distances. The table also show that the percentage of 

inadmissible predictions (those that show that the temperature of the water is raising 

when it is decreasing and vice versa) is always smaller than 10%. This percentage is 

above this limit when forecasting further ahead than 20 km. 
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 The forecasting ability of the system is highest in areas with small instabilities and 

where there are many data profiles from which to choose in the retrieval stage of the CBR 

cycle. The forecast is less accurate in areas with large changes and many instabilities. 

The system is not able to forecast if there are no data profiles in the region where the 

forecast is made.  

 Experiments have also been carried out to evaluate the performance of the hybrid 

forecasting approach in comparison with several separate neural networks and statistical 

forecasting methods (Corchado et al., 1998): a Finite Impulse Response (FIR) model, an 

RBF network alone (trained with the data recorded during the 160 km previous to the 

forecast point), a linear regression model, an Auto-Regressive Integrated Moving 

Average (ARIMA) model and a CBR system alone (using the cases generated during the 

160 km preceding the forecast point). Table 4 shows the average error in the forecast 

using these methods. 

 

Forecasting Method 

Prediction 
Distance 

(km) 

FIR4*4 

(ºC) 

FIR8*5 

(ºC) 

RBF 

(ºC) 

Linear 

regressio

n (ºC) 

ARIMA 

(ºC) 

Specialise

d RBF (ºC) 

CBR 

(ºC) 

5 0.099 0.096 0.114 0.174 0.129 0.034 0.12 

10 0.206 0.192 0.226 0.275 0.231 0.076 - 

15 0.343 0.324 0.351 0.429 0.372 0.144 - 

20 0.468 0.435 0.469 0.529 0.471 0.223 - 

 

Table 4: Average forecasting error with different methods. 

 

 The success of the system in generating effective forecasts may be attributed to the 

combination of an extensive database of past cases, supported by the neural adaptation 

mechanism which, each time around the forecasting cycle, enables the forecasting 

process to learn from all the selected closely matching cases. 

 

 The experimental results obtained to date indicate that the neural network supported 

case-based reasoning approach is effective in the task of predicting the future 

oceanographic parameter values. Extrapolating beyond these results, it is believed that 

the approach may be applicable to the problem of parametric forecasting in other complex 

domains using sampled time series data. 
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