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Rejection continues to be an important cause of graft loss in solid organ transplantation,
but deep exploration of intragraft alloimmunity has been limited by the scarcity of clinical
biopsy specimens. Emerging single cell immunoprofiling technologies have shown
promise in discerning mechanisms of autoimmunity and cancer immunobiology. Within
these applications, Imaging Mass Cytometry (IMC) has been shown to enable highly
multiplexed, single cell analysis of immune phenotypes within fixed tissue specimens. In
this study, an IMC panel of 10 validated markers was developed to explore the feasibility of
IMC in characterizing the immune landscape of chronic rejection (CR) in clinical tissue
samples obtained from liver transplant recipients. IMC staining was highly specific and
comparable to traditional immunohistochemistry. A single cell segmentation analysis
pipeline was developed that enabled detailed visualization and quantification of 109,245
discrete cells, including 30,646 immune cells. Dimensionality reduction identified 11
unique immune subpopulations in CR specimens. Most immune subpopulations were
increased and spatially related in CR, including two populations of CD45+/CD3+/CD8+
cytotoxic T-cells and a discrete CD68+macrophage population, which were not observed
in liver with no rejection (NR). Modeling via principal component analysis and logistic
regression revealed that single cell data can be utilized to construct statistical models with
high consistency (Wilcoxon Rank Sum test, p=0.000036). This study highlights the power
org March 2022 | Volume 13 | Article 8311031

https://www.frontiersin.org/articles/10.3389/fimmu.2022.831103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.831103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.831103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.831103/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Juliet.emamaullee@med.usc.edu
https://doi.org/10.3389/fimmu.2022.831103
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.831103
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.831103&domain=pdf&date_stamp=2022-03-31


Ung et al. Immune Landscape of Rejection

Frontiers in Immunology | www.frontiersin.
of IMC to investigate the alloimmune microenvironment at a single cell resolution during
clinical rejection episodes. Further validation of IMC has the potential to detect new
biomarkers, identify therapeutic targets, and generate patient-specific predictive models
of clinical outcomes in solid organ transplantation.
Keywords: single cell analysis, imaging mass cytometry (IMC), CyTOF mass cytometry, allograft rejection,
clinical transplantation
INTRODUCTION

Excellent long-term outcomes can be achieved in solid organ
transplantation, in large measure secondary to availability of
immunosuppressive drugs that have revolutionized the field (1).
However, they are not without side effects, namely renal
dysfunction, metabolic syndrome, neurotoxicity, infections, or
rarely more serious conditions such as post-transplant
lymphoproliferative disease or malignancies, often requiring
dose adjustment or even drug discontinuation. In the setting of
liver transplantation, (LT), T-cell mediated acute cellular
rejection (TCMR) has been reported in up to 30% of LT
recipients in the first two years post-transplant, with rates
approaching 60% among pediatric LT recipients (1–3).
Typically, these rejection episodes can be managed with steroid
pulse or lymphocyte depleting strategies, but the long-term
effects of these early rejection episodes are not well understood.
Approximately 10% of these patients will develop steroid
resistant rejection and be at risk for chronic rejection (CR) and
late graft loss (4).

The diagnosis of rejection in LT is driven by clinical suspicion
based on changes in liver blood tests that prompt an invasive
liver biopsy to identify evidence of inflammation and immune
infiltrates. TCMR in liver biopsies is assigned a Rejection Activity
index (RAI) based on portal inflammation, bile duct
inflammation/damage, and venous endothelial inflammation.
Histological features which can be seen in chronic rejection
include bile duct loss (ductopenia), loss of hepatic arterioles,
sinusoidal foam cell accumulation, and cholestasis (5). Despite a
long-standing recognition that there is poor correlation between
elevation of liver blood tests and active rejection, monitoring
these values continues to be the main strategy a clinician can use
to suspect a rejection episode after ruling out other causes (6, 7).
Indeed, our own recent review of >800 post-LT biopsies,
including >150 surveillance biopsies, showed weak correlation
between liver biochemistries and rejection (8). Prior studies have
attempted to identify new biomarkers of rejection in clinical LT,
but these have not been able to deeply examine alloimmunity at
the single cell level within the liver, due to technical limitations in
working with tiny core biopsy samples [reviewed in (9)]. Recent
attempts to identify biomarkers of rejection in post-LT biopsies
have used whole genome microarray techniques (10, 11). Some
hepatocyte injury related transcription profiles correlated with
rejection, but these approaches did not identify specific immune
populations to monitor or target therapeutically. These studies
highlight the need for single cell analysis of immune-mediated,
graft specific processes in LT recipients, using techniques that
org 2
can overcome limitations of sampling error from biopsy samples
and uncover heterogeneous and rare cellular phenotypes that are
concealed by population-based measurements (12).

New techniques to characterize immune responses at the
single cell level have been developed in recent years. Mass
cytometry, or ‘Cytometry by Time-of-Flight’ (CyTOF), utilizes
antibodies that are labeled with heavy metal ion tags, with analysis
via time-of-flight mass spectrometry. The key difference when
compared to flow cytometry is that a greater combination of
antibody specificities can be analyzed in a single sample (>50),
without significant spillover between channels, allowing for deep
dissection of complex cellular profiles and relationships (13). The
power of CyTOF has recently been expanded to include
applications for tissue sections, a process called Imaging Mass
Cytometry (IMC) (14). This technique involves labeling a single
fixed tissue section with multiple heavy metal ion tagged
antibodies (>30) and can overcome nearly all the current
limitations of traditional immunohistochemistry, as multiple
markers can be studied simultaneously with approximately
1000nm resolution with no requirement for compensation due
to autofluorescence. Over the past five years, IMC has been used
to deeply analyze the tumor microenvironment, hepatitis B,
autoimmune diabetes, and multiple sclerosis in clinical
specimens (15–21).

Herein, the potential for IMC to explore alloimmunity in
existing clinical FFPE tissue sections from solid organ transplant
recipients was explored. An IMC panel was built using validated
immune markers, and an analysis pipeline was developed that
enabled single cell characterization of histologic relationships
between immune subpopulations in clinical LT rejection. Over
100,000 single cells, including >30,000 intrahepatic immune
subpopulations, were quantified from clinical specimens to
define the immune composition and spatial relationships of
alloimmunity in LT and correlated with clinical outcomes.
METHODS

This study was approved by the Health Science Campus
Institutional Review Board of the University of Southern
California (HS-18-00708) and Children’s Hospital-Los Angeles
(CHLA-19-00177).

Clinical Data and Demographics
Subjects were identified from a prospective institutional
transplant database. Patients were included if they had
undergone LT alone between 1/2000-12/2018 and then
March 2022 | Volume 13 | Article 831103
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required re-transplant for CR, which was confirmed on explant
pathology. All CR tissue used in this study was from the
explanted liver. As this was a retrospective study of existing
clinical samples, no corresponding serum, frozen tissue, or
lymphocytes samples were available for analysis using
complementary techniques. A reference population of liver
samples with no rejection (NR) was identified by reviewing LT
cases for implantation biopsies taken from the donor liver, prior
to cross-clamp. Patients were excluded if they had active
recurrent viral hepatitis, competing histologic findings (i.e.
cholangitis), any evidence of bridging fibrosis, or if there was
no clinical tissue block available. A clinical pathologist reviewed
each case and identified regions of interest (ROI) that
represented relevant diagnostic areas consistent with diagnostic
criteria for chronic rejection in liver transplantation (22).
Depending on the amount of tissue in the section, the
pathologist selected 1-2 1 mm2 ROI/patient. Charts were
reviewed independently by two members of the research team.
Demographics reviewed included age, sex, race, ethnicity,
biometrics, primary diagnosis, transplant type, pathology
reports, and how rejection episodes were treated (Table S1).
The population of 18 CR and 5 NR patients resulted in 32 ROI
(24 CR/8 NR) used for the analysis.

Sequential Immunohistochemistry
Formalin fixed, paraffin embedded tissue (FFPE) blocks were
pulled from storage at room temperature and cut at 4mm
thickness onto Superfrost™ Plus positively charged slides
(Thermo Scientific, Kalamazoo, MI), air-dried overnight, and
then baked at 70°C for 30 minutes. Slides were loaded onto the
Bond Rx Autostainer (Leica Biosystems, Inc, Buffalo Grove, IL)
for serial staining with the antibodies (Table S2). Antigen
retrieval was performed on the Bond Max Rx using either ER1
or ER2 ready to use (RTU) retrieval solution (Leica Biosystems
Inc, Buffalo Grove, IL). Antibodies were run using standard Bond
Rx protocols with a primary incubation a time of up to 30
minutes. Bound antibodies were stained using Fast Red
chromogen (both Leica Biosystems Inc, Buffalo Grove, IL).
Between each antibody run, the slides were cover slipped and
scanned at 20x using the Leica Aperio™ AT2 (Leica Biosystems
Inc) slide scanner. Cover slips were removed using xylene and
then alcohol at 100%, 95%, and 75%, sequentially and then de-
stained using acid alcohol and acetone sequentially until
chromogen disappeared.

Image Mass Cytometry
The SC2 Core Facility at Children’s Hospital-Los Angeles has
developed an immuno-oncology IMC panel for use in
neuroblastoma tissue. As this panel includes cancer and
immune markers, the subset of validated immune markers
available in this panel were used to design our 11-marker IMC
panel that would be relevant for liver transplantation (Table S2).
Collagen and the nuclear intercalator dye were included to
provide morphometric data and facilitate single cell
segmentation. FFPE sections (4mm thickness) were stained
with isotope-conjugated antibodies (Table S2) for imaging
according to the protocol offered by Fluidigm (PN 400322 A3)
Frontiers in Immunology | www.frontiersin.org 3
with minor modifications. In brief, sections were baked at 60°C
for 2 hours, dewaxed in xylene for 20 minutes, hydrated with
alcohol, and washed in 18.2MΩ water for 5 minutes. They were
then incubated in preheated antigen retrieval solution (Dako,
S2367) for 30 minutes at 100°C. Following incubation, the
antigen retrieval solution was allowed to sit at room
temperature for 10 minutes, and then slides were washed with
18.2MΩ water followed by a wash in Maxpar phosphate buffered
saline (PBS, Fluidigm, 201058). Tissue sections were then
blocked for 45 minutes with 3% bovine serum albumin and
incubated overnight with the IMC antibody panel. Next, slides
were washed with Maxpar PBS, 0.1% Triton X-100 (Thermo
Scientific, 85111). Samples were then incubated with 1:800
intercalator-Ir (Fluidigm, 201192A) in Maxpar PBS for 45
minutes followed by a 4-minute wash with Maxpar PBS.
Finally, sections were stained with 0.0005% RuO4 (Electron
Microscopy Sciences) solution for 3 minutes, washed with
18.2MΩ water for 10 seconds, and allowed to dry. ROI as
indicated by the clinical pathologist were selected. Stained
tissue slides were ablated using the Hyperion Imaging System
(Fluidigm) at a laser frequency of 200Hz with a power range of
3.5-4.5. The ablation procedure produced.txt and.mcd files
which were used in analysis (23).

Data Transformation, Processing,
and Segmentation
All IMC data are based on raw measurements and were not
transformed. Utilizing the ‘ImcSegmentationPipeline’ repository
on Github created by the Bodenmiller Lab as a guide, high
quality image segmentation was performed on ROI from each
tissue section (24). Supplying the open-source pipeline with
zipped folders of raw IMC data in the.mcd and.txt formats, the
data was converted into the ome.tiff format in order to generate
two analysis stacks of.tiff format images: the ‘Full’ stack, of all
channels of interest and the ‘Ilastik’ stack, which only includes
channels necessary for cell structure segmentation. In
CellProfiler Ver. 3.1.8, the pipeline ‘1_ilastik_preprocessing’
was used to prepare the images within the stack by removing
outlier pixels to reduce noise, scaling the image 2x, and cropping
random sections to be used in model training (16). Image crops
were then loaded into Ilastik Ver. 1.3.2 to manually train the
pixel classifier to distinguish three classes of pixels: nuclear,
cytoplasmic/membrane, and background. The ‘Batch
processing’ function was used to convert the Ilastik stacks into
probability maps (25). In CellProfiler, the probability map stack
is used to segment nuclei and single cell masks using pipeline
‘2_segment_ilastik’ while rescaling the image to the original 1x
resolution. These masks and the ‘Full’ stack were loaded into
CellProfiler pipeline ‘3_measure_mask’ to generate intensity and
single-cell data. Raw and single cell segmentation data were
visualized in HistoCAT v.1.76 or R (23).

IMC Data Visualization
IMC.mcd files were loaded into HistoCAT v.1.76 for
visualization. Raw data were examined directly and
pseudocolored to identify individual markers. Immune meta-
clusters were verified on individual ROI by selecting specific
March 2022 | Volume 13 | Article 831103
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cluster IDs from Phenograph analysis and pseudocolored to
identify specific cells on each tissue section using Histocat
v1.76, and R using the ggplot2 package v3.3.2 (26, 27).

Barnes-Hut tSNE and
Phenograph Clustering
Unsupervised clustering and aggregation of single cell data from
the entire study population was completed using t-distributed
stochastic neighbor embedding (tSNE) transformation, a non-
linear dimensionality reduction useful for high-dimensional
data, and the Phenograph function in Histocat v1.76. Outputs
of Phenograph, a graph-based algorithm, were exported and
analyzed further in R. Default tSNE parameters (initial
dimensions: 110, perplexity, 30, theta, 0.5) and Phenograph
(nearest neighbors of 75) within Histocat were used (23).
Specific meta-clusters were visualized by overlaying tSNE plots
with Phenograph outputs in Histocat. Meta-clusters were plotted
against standardized individual immune markers using a
heatmap to establish an identity for each meta-cluster based on
marker expression and established association with specific
immune subsets.

Neighborhood Analysis
Spatial, single cell pairwise neighbor interactions (relative
proximity and avoidance) between Phenograph meta-clusters
were examined using the validated neighborhood analysis
function in Histocat v1.76. In this initial Histocat-based
analysis, a neighboring cell was defined as a cell located within
4 pixels (99 permutations, p<0.05) of a specific Phenograph
meta-cluster of interest. This analysis measures pairwise
interactions between and within cellular phenotypes via
comparison to random cellular distribution using two
individual one-tailed permutation tests, which then allows for
calculation of a p-value indicating either significant interaction
or spatial avoidance. For more in-depth analysis of immune
cluster interactions, neighbouRhood v0.3.0 was used in R. Single
cell and object relationship data was used from Cell Profiler and
combined with the marker information from Histocat output,
and the following analysis settings were applied: 5000
permutations, 4-pixel radius, and p-value of <0.01. The
neighborhood analysis was executed in and visualized in R
using the neighbouRhood v0.3.0 and ggplots v3.1.0 packages to
identify interactions between immune subpopulations.

Statistical Analysis
Average marker signal intensity was calculated as the median
signal across all cells for a given marker per ROI; differences
between study populations were tested using the Wilcoxon
Rank-Sum test. Immune meta-cluster proportions were
calculated, excluding non-immune cells, as the total number of
cells of a given subpopulation divided by the total number of
immune cells per ROI; differences between study populations
were tested using the Wilcoxon Rank-Sum test. Additionally, the
number of cells in each meta-cluster were counted per ROI and
standardized within meta-cluster to be visualized across all ROIs.
Principal Component Analysis (PCA) was performed in a
downstream analysis on the median marker signal and
Frontiers in Immunology | www.frontiersin.org 4
immune meta-cluster cell count per ROI; whereas tSNE is a
stochastic technique, PCA is deterministic and therefore easily
replicated. Once decomposed, leading Principal Components
(PCs) were extracted to determine variance explained, compare
CR and NR along PC paths, as well as identify marker
composition. Finally, the leading PC was put into a Logistic
Regression model predicting Chronic Rejection. A correlation
network across IMC panel markers was also created to visually
assess interactions (Figure S1). A p<0.05 was considered
significant, and all statistics were performed in R. All non-
histologic figures were created in R.
RESULTS

Patient Characteristics
Patients with a history of LT that underwent re-transplantation
at our center for CR over a period of 20 years were selected.
Given the history of re-transplantation, the entire liver allograft
was explanted, and as a result, multiple tissue blocks and
multiple ROI per slide were available from the same liver
explant for technical optimization of the IMC technique and
downstream analysis. Cases were included following review if the
primary explant diagnosis was CR with ductopenia, with no
evidence of confounding diagnoses (i.e. cholangitis) or any
bridging fibrosis. A total of 18 patients met inclusion criteria
(Table 1). The population was predominantly Caucasian (94.4%)
and Hispanic (55.5%), and 61.1% were male. Most patients
received steroid induction for the first transplant, and all
patients had at least one episode of biopsy-proven TCMR and/
or CR prior to re-transplant (range 1-7; Table S1). All patients
had developed CR despite being treated with pulse steroids at
least once prior to re-transplant, and only one patient had
documented donor-specific alloantibody, with no evidence of
antibody mediated rejection. The median time interval between
the first LT and re-transplant for CR was 2 years (IQR: 0.6-11.4).
To generate a NR control group, LT cases were reviewed to
identify wedge liver biopsies taken prior to cross-clamp, and
pathology reports were reviewed to confirm normal histologic
appearance. Five NR liver specimens were identified, and
demographics are outlined in Table 1.

IMC Panel Creation and Validation in
Clinical Liver Specimens
At the outset of this study, our CyTOF core facility had
independently optimized and validated 22 unique isotope-
tagged antibodies for use in IMC on human tissue, composed
primarily of oncology and immune markers. From this panel, 8
immune markers potentially relevant to rejection were selected:
CD20 (B-cells), CD68 (macrophages), CD66a (neutrophils),
CD45 (pan-leukocyte marker), CD45RA (naïve T-cells), CD3
(T-cell receptor), CD8 [Cytotoxic T-cells (CTL)] and HLA-DR.
Collagen-1 was selected as a non-immune marker to enhance
visualization of tissue architecture, as collagen, which is typically
detected using Masson’s Trichrome staining in clinical liver
biopsies, is expressed in the portal triads of healthy liver and
increases during fibrosis (28). A nuclear intercalator dye
March 2022 | Volume 13 | Article 831103
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(Iridium) was included to facilitate identification of individual
cells and segmentation in the analysis pipeline. Thus, there were
9 IMC antibodies and one nuclear stain for simultaneous
visualization on each tissue section.

First, each IMC marker was validated independently by
comparing to traditional immunohistochemistry staining, though
previous studies have clearly established the comparability and
reproducibility of IMC (15, 17, 23). One of the major strengths of
the IMC technique is the opportunity to stain many markers
simultaneously on a single section. As a corollary, sequential
immunohistochemistry has been developed to allow for repeated
single antibody staining on a single tissue section, with
commercially available automated devices for use in clinical
labs. To compare the integrity and distribution of IMC
markers with traditional immunohistochemistry, sequential
sections from the same block were stained with each technique,
for each marker using a similar strategy to a recent diabetes
study (17). Representative images from both IMC and
immunohistochemistry from a single tissue block are shown in
Figure 1B. Traditional immunohistochemistry identified each
marker, but sequential staining resulted in a progressive increase
in background staining. Each marker in our IMC panel stained
appropriately, and very specifically, in a similar pattern to sequential
immunohistochemistry without any background.
Frontiers in Immunology | www.frontiersin.org 5
Comparison of CD20 staining, for example, reveals residual
CD3 staining with sequential immunohistochemistry, whereas
IMC resulted in highly specific CD20 staining with no
background. The median signal per marker, per ROI, was
calculated and compared between NR and CR (Figure S2).
This analysis was not based on single cell resolution and
highlights that IMC staining intensity for each marker is
quantitative rather than qualitative and highly discrete, but
some heavy metal ion tagged antibodies result in more signal
intensity than others. Representative pseudocolored images of
IMC staining on three unique patients from the NR and CR
cohorts are shown in Figure 2. As an example, CD20+ B-cells
were both rare and stained with less brightness than CD8 for
both NR and CR, resulting in less median signal (white arrows
indicate CD20+ cells; Figure 2). Importantly, the tissue blocks
included in this study had been stored in the clinical pathology
lab, at room temperature, for 0.5-20 years, with no apparent
degradation in quality of staining using IMC.

Single Cell Analysis Enables
Identification of 11 Unique Immune
Subpopulations Involved in CR
To quantify each marker, we developed an IMC segmentation
and analysis pipeline based on the ‘IMC Segmentation Pipeline’
repository created by the Bodenmiller group (23, 24, 29). Ilastik
and CellProfiler were used to prepare the images for
segmentation based on an overlay of all markers to identify
cytoplasm/membrane, nuclei (iridium), and non-cellular space.
This step is independent of signal intensity for markers, as it
captures overall cellular morphometry. One of the strengths of
single cell segmentation of liver tissue, when compared to cancer
tissue, is the relatively uniformity of cell morphology, which
resulted in high-quality and reproducible segmentation. These
data were subsequently loaded into HistoCAT for quantification
and downstream analysis of single cell populations. Once IMC
outputs have been segmented into a single-cell dataset,
differentiation of immune subpopulations can be completed
using a similar strategy to flow cytometry. Following
segmentation, 109,245 individual cells were identified from NR
(16,454 cells) and CR (92,791 cells). Dimensionality reduction
using the tSNE algorithm allowed for visualization of the highly
multiplexed, single cell dataset in two dimensions. tSNE was
selected as it has been most widely used for clustering of IMC
data, rather than other techniques such as UMAP (15, 23, 30).
Comparison of CR and NR via tSNE highlighted global
differences in the distribution and grouping of single cell data
(Figure 3A). Next, Phenograph analysis, which is a nearest
neighbor graph based method, was applied to the entire
dataset using IMC markers to identify distinct subpopulations
based on marker distribution, signal intensity, and cellular
morphology (31). This identified 29 distinct meta-clusters,
among which 11 (30,646 cells) were associated with at least
one of the 8 immune markers in the IMC panel (Figure 3B: NR,
Figure 3C: CR). The remaining 18 non-immune meta-clusters
were identified based on nuclear staining, collagen, and
morphology and combined into one category ‘not immune
TABLE 1 | Patient characteristics.

Patients with chronic rejection Total patients: 18

Age at re-transplant, years, median [IQR] 34.5 [23,50.8]
Interval between 1st and 2nd liver transplant, years
(median [IQR])

2 [0.6,11.4]

Sex, no. male (%) 11 (61.1)
Race
Caucasian, N (%) 17 (94.4)
Asian, N (%) 1 (5.5)
Black, N (%) 0

Ethnicity
Hispanic, N (%) 10 (55.5)

Primary Etiology of Liver Disease requiring LT
Viral hepatitis, N (%) 6 (33.3)
Alcohol use disorder, N (%) 2 (11.1)
Acute liver failure, N (%) 4 (22.2)
Biliary atresia, N (%) 2 (11.1)
Autoimmune hepatitis, N (%) 1 (5.5)
Metabolic Disorder, N (%) 2 (11.1)
Wilson’s Disease, N %) 1 (5.5)

Induction immunotherapy (First transplant)
Steroids, N (%) 15 (83.3)
Steroids + Anti-CD25, N (%) 2 (11.1)
Anti-CD25, N (%) 1 (5.5)

Rejection episodes prior to re-transplantation,
number (median [IQR])

2 [1,3]
Range 1-7

Patients with no rejection Total patients: 5
Age, years, median [IQR] 53 [51,55]
Sex, no. male (%) 2 (40.0)
Race
Caucasian, N (%) 4 (80.0)
Asian, N (%) 1 (20.0)
Black, N (%) 0 (0)

Ethnicity
Hispanic, N (%) 2 (40.0)
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A

B

FIGURE 1 | Highly dimensional, single-cell immune phenotyping of human liver tissue with IMC. (A) Schematic of IMC data acquisition and analysis pipeline developed
for this study. (B) Individual immune markers in FFPE clinical liver samples were examined using sequential immunohistochemistry (top panels; representative patient and
subset of markers shown) and IMC (lower panels, adjacent tissue section from the same patient is shown to maintain morphological features).
FIGURE 2 | Representative pseudocolored images of IMC markers in liver with no rejection versus chronic rejection post-transplant. Antigens targeted by the isotope-
conjugated antibodies of the 10 marker IMC panel that was used to stain liver tissue with no rejection and liver transplant recipients with chronic rejection. These are
representative IMC images from the analyzed cohorts generated by IMC. A DNA intercalator dye (iridium) was used to identify nuclei. White arrows indicate rare CD20+ cells.
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cell’. A heatmap plot visualizing relative signal intensity per cell
by individual marker enabled phenotypic classification of the 11
immune-related meta-clusters (Figure 3D). Of note, one of the
caveats to performing IMC is that the baseline signal intensity for
a specific marker is still dependent on the quality of the antibody
and its overall performance in immunohistochemistry, whereas
antibody signal intensity in flow cytometry or CyTOF is
generally proportional to antigen density and can be compared
across antibodies. That being said, within an antibody marker,
IMC is still semi-quantitative. Thus, if a panel of slides is stained
using IMC for a discrete marker, the intensity of that marker
across cells in an individual section and across different ROI
obtained from that same type of tissue, stained using the same
method, can be measured and compared. The same cannot
necessarily be inferred when comparing two or more different
markers. Thus we do not call our cells ‘CD3hi’ or ‘CD3low’ but
rather classify them based on the Phenograph clustering
algorithm as simply CD3+ or CD3- and label unique
Phenograph clusters with similar markers but different
clustering properties as ‘population-1’, ‘population-2’ etc.
Frontiers in Immunology | www.frontiersin.org 7
Using this approach, we confirmed that Phenograph meta-
cluster marker outputs were associated with appropriate
distributions of immune markers (i.e. no CD3 expression on
CD68+ macrophages). Interestingly, not all T- or B-cell
populations were strongly CD45+, which has been observed by
other groups using the IMC technique (15, 19–21). Immune
meta-clusters based on solitary markers included B-cells
(CD20+), HLADR+ cells, Naïve T-cells (CD45RA+), Other
Leukocytes (CD45+), and Neutrophils (CD66a+). Phenograph
clustering also identified unique immune subpopulations with
the same markers but different clustering based on signal
intensity and cellular morphology, i.e. two distinct CD45+
CD3+CD8+ CTL meta-clusters (CTL-1 and CTL-2), two
distinct CD68+ macrophage populations (Macrophage-1 and
Macrophage-2), and two unspecified CD45+CD3+ T-cell
populations (Other T-cell-1 and Other T-Cell-2). The 11
immune subpopulations identified with this approach were
visualized on tSNE plots for NR (Figure 3E) and CR
(Figure 3F), confirming the unique identity and localization of
each immune meta-cluster.
A B C

D E F

FIGURE 3 | Identification of individual immune subpopulations present in high-dimension histopathological analysis of clinical liver transplant rejection. (A) T-
distributed stochastic neighbor embedding (tSNE) plots of 109,245 individual cells identified using IMC of liver with no rejection (purple, 16,454 cells) and chronic
rejection (yellow, 92,791 cells) were created to compare the two patient cohorts, revealing global differences in cellular meta-clusters. Next, Phenograph plots were
created for cells identified in liver tissue to identify immune meta-clusters. Among 29 total cellular meta-clusters identified through the combined dataset of liver with
no rejection (B) versus chronic rejection (C), 11 had at least one immune marker present. Immune meta-clusters were then applied back to tSNE plots for no
rejection (E) and chronic rejection (F) to visualize density and distribution of immune subpopulations of interest. To further characterize these immune
subpopulations, a heatmap of column-standardized median marker intensity for each immune meta-cluster was created to associate individual markers with cellular
phenotypes (panel D, color scale represents z-scores for each marker).
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Another unique aspect of IMC is the ability to create masks
on a per cell basis based on Phenograph meta-clusters. Typically,
for multiplexed immunofluorescence, fluorochromes are selected
such that co-localization of individual markers results in a
combined color, i.e. red and green fluorescence overlay to
produce a yellow signal. With the dimensionality of IMC data,
specific Phenograph clusters can be labeled discretely and
localized on tissue sections in Histocat. The 11 immune
subpopulations identified were visualized on individual ROI
from both NR and CR (Figure 4). Clinically, a diagnostic
criterion for CR is the presence of inflammation, which is
identified on tissue sections as areas with immune infiltrates.
By visualizing specific immune meta-clusters on tissue sections,
the IMC technique reveals the identity of these cells, which
involve a heterogenous conglomeration of macrophages, T-cells,
and rare B-cells (Figure 4).

Quantitative and Spatial Analysis
Highlights Significant Interactions
Between Immune Subpopulations
Associated With CR
Single cell segmentation of IMC data also allows for both
quantitative measurements of differences between patient
cohorts and statistical analysis of spatial relationships,
including interactions and avoidances among various
Phenograph meta-clusters on tissue sections (16, 23). Among
the 11 immune subpopulations (30,646 cells) identified, 91.1%
(27,908 cells) were present in CR and only 16.6% (2,738 cells)
were present in NR. To account for the different number of
samples and total immune cells between CR and NR, comparison
of each immune subpopulation was examined by standardization
with a z-score, where the zero-point is the average cell frequency
within that subpopulation, to compare the frequency of each
immune meta-cluster across individual patients (Figure 4B). We
also examined the relative proportion of total immune cells in
each patient cohort (Figure 4C). When compared to NR, liver
sections with CR had increased proportions of Macrophage-2
(p<0.01), CTL-2 (p<0.01), other T-cell-1 (p<0.05), and other T-
cell-2 (p<0.05) populations (Figure 4C). Indeed, Macrophage-2
was essentially absent in NR. On the other hand, CD66+
neutrophils (p<0.01) and Other Leukocytes (CD45+, p<0.01)
represented a greater proportion of immune cells in NR when
compared to CR.

The ‘neighborhood analysis’ feature of Histocat examines
spatial pairwise interactions and avoidances between Phenograph
meta-clusters (15, 23). We first used the Bodenmiller/Histocat
approach to perform a qualitative examination of interactions
across all 29 Phenograph meta-clusters, including 18 ‘non-
immune cell’ clusters (23). This approach highlights significant
interactions in red and avoidances in blue (p<0.05). Individual
patients with CR demonstrated multiple significant interactions
(burgundy boxes in Histocat Clusterogram plot, 99
permutations, p<0.05, Figure 5A), generally among immune
meta-clusters (cluster ID in Table S3), with rare avoidances,
particularly among non-immune clusters (blue boxes, right side
of panel A). A more detailed and quantitative neighborhood
Frontiers in Immunology | www.frontiersin.org 8
analysis was conducted specifically focusing on immune
subpopulations using the NeighbouRhood package in R (5000
permutations, p<0.01), and the percent of significant immune
cell interactions was quantified and visualized on a heatmap
(Figure 5B). A significant interaction was given a positive value,
and an avoidance was given a negative value, such that a single
positive and negative interaction would cancel each other, based
on p<0.01. Significant interactions or avoidances were rare in NR
(5/121 possibilities; 4.1%), which is consistent with imaging
findings of sparse and isolated immune subpopulations
(Figures 4A and 5B). Conversely, 78 strong interactions were
observed in patients with CR, and the strongest were noted
among CTL-1 and CTL-2, Macrophage-1 and CTL-2,
Macrophage-2 and CTL-2, and Other T-cell-1, Other T-cell-2,
and B-cells (Figure 5B). These immune cell interactions
correlate well with the observed upregulated populations
observed in CR in Figure 4C. Pairwise significant interactions
were visualized on tissue sections by selecting Phenograph meta-
clusters, and representative tissue sections are shown in panel 5C,
confirming that immune populations that have significant
interaction are often touching one another. Collectively, these
data suggest a coordinated, complex immune response during
chronic allograft rejection.

Modeling IMC Data Enables Correlation
With Clinical Transplant Outcomes
Another of the major advantages of using highly dimensional
single cell datasets involves the ability to use these data to create
predictive algorithms of clinical outcomes. Indeed, blood-based
CyTOF and single cell IMC data have been applied to complex
modeling algorithms to predict clinical outcomes in other
disease processes, including gestational age in pregnancy (15,
32, 33). For this phase of our study, we again compared the
broad groups of NR and CR, to determine how similar or
different immune profiles are within each clinical condition.
First, median marker signal per ROI were examined.
Coordinates from tSNE plots of each ROI were examined
using box plots, which suggested that similarities existed
across patients with the CR and NR cohorts within the
immune markers that we considered for analysis (Figure S3).
To explore these dimensions further, PCA was conducted to
similarly reduce dimensionality and capture distinct separation
observed in the tSNE plots while simultaneously preserve
interpretability of features and identify potential relationships
between IMC data and association with CR. PCA revealed that
principal component (PC) 1 explained 51.47% of the variance
across immune markers, and this component was different
between CR and NR (p=0.000036, Figures 6A, C). Next, the
specific contribution of each immune marker was examined for
each PC, and PC1 had similar contributions from CD20, CD3,
CD45, CD66, CD8, and HLA-DR (Figure 6B). A logistic
regression model based on PC1 demonstrated that CR was
correctly modeled with at least 75% probability, with only one
outlier in each of the NR and CR ROI (Figure 6D).

Based on the success of PCA and logistic regression modeling
using median signal intensity rather than single cell data, further
March 2022 | Volume 13 | Article 831103
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FIGURE 4 | Visualization and quantification of immune subpopulations involved in chronic liver transplant rejection. (A) Histopatho
analysis was completed by creating single-cell masks labeled by specific immune cell meta-cluster. Representative images depict
relative frequency of specific immune subpopulations in individual regions of interest for no rejection (NR) and chronic rejection (CR
scores, where the zero-point is the average cell frequency within that subpopulation. Color scale shows z-score per column. (C) Q
the following subpopulations in chronic rejection when compared to liver with no rejection: Cytotoxic T-cell 2, Granulocytes, Macr
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FIGURE 5 | Characterization of spatial relationships between immune subpopulations mediating chronic liver transplant rejection. Phenograph meta-cluster data,
using neighborhood analysis, which identifies significant, pairwise interactions or avoidances between individual cells within a 4-pixel (4 mm) radius. (A) Clusterogr
chronic rejection across each row, highlighting significant pairwise interactions (red) and avoidances (blue) based on cluster ID across all 29 Phenograph clusters,
enables visualization of significant interactions and avoidances across the entire dataset (Histocat, 99 permutations, p<0.05). (B) This visual representation was fu
subpopulations using neighbouRhood in R (5000 permutations/p<0.01). Immune cell interactions were rare in liver with no rejection, while several strong interactio
shows percentage of significant interaction events. (C) Representative images were pseudocolored to highlight immune populations with significant interactions, in
Macrophage-2, as well as interactions between Cytotoxic T-cell-1 and Cytotoxic T-cell-2.
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FIGURE 6 | Principal component analysis of immune marker distribution via IMC demonstrates strong correlations with chronic rejection in clinical liver biopsies.
Following dimensionality reduction, tSNE plots obtained from individual regions of interest suggested that the immune milieu of chronic rejection was consistent
across patient samples. (A) Principal component analysis (PCA) of median signal intensity for each IMC marker revealed that Principal Component (PC) 1 explained
51.47% of the variance across markers. (B) The relative contributions of each marker for each component demonstrate that each of the immune markers contribute
to PC1, rather than one specific immune population. (C) PC1 accounted for most differences between liver with no rejection and chronic rejection (Wilcoxon Rank
Sum test, p=0.000036). (D) Based on a logistic regression on PC1, regions of interest from chronic rejection were correctly modeled with at least 75% probability,
with only one outlier from liver with no rejection and chronic rejection samples failing to group within the model. PCA was also performed using immune meta-cluster
proportions. (E) PC1 explained 36.16% of the variance across immune meta-clusters. (F) The relative contributions of each immune meta-cluster in each PC are
shown, highlighting that multiple immune subpopulations contribute to PC1. (G) PC1 accounted for most differences between liver with no rejection and chronic
rejection (Wilcoxon Rank Sum test, p=0.0000023). (H) Based on a logistic regression on PC1, regions of interest were modeled with the same accuracy as in
(D) but with two chronic rejection samples falling close to the 50% cut point.
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modeling was explored using immune cell meta-clusters for CR
and NR. Similar results were obtained, with PC1 explaining
36.16% of the variance across immune meta-clusters
(Figure 6E), with statistical difference between CR and NR
(p=0.000023, Figure 6G). Most of the immune meta-clusters
are represented in PC1, with Macrophage-2 and CTL-2 being
most dominant (Figure 6F). Logistic regression modeling of PC1
determined that CR was correctly modeled with the immune
markers, with only one outlier in the NR ROI and two in the
CR (Figure 6H).
DISCUSSION

Since the introduction of clinical solid organ transplantation in the
1950s, tissue-based diagnosis of rejection has relied on
histopathological evaluation and interpretation by experienced,
specialized pathologists. Difficulties in assessing alloimmunity at
the tissue level have limited the identification of pathogenic
immune subsets and further development of personalized
biomarkers and treatments of rejection. In this study, IMC was
explored as a novel single cell technique to characterize
alloimmunity in existing, FFPE clinical LT specimens. By using a
pilot panel of 10 IMC markers and analysis with computational
biology approaches, we highlight the potential for this technique to
deeply characterize the immune microenvironment within a
rejecting allograft at a single cell level. First, this study expands
prior work illustrating that IMC produces reliable, high quality
staining on FFPE tissue sections, regardless of vintage and storage,
in a similar time frame as traditional immunohistochemistry but
without the challenges of autofluorescence and background
staining (15–17). Second, we established that our single cell
segmentation pipeline enables highly dimensional, qualitative and
quantitative analysis of immune subpopulations involved in areas
of inflammation. Third, we demonstrated that spatial relationships
and interactions between immune subsets can be quantified.
Finally, we determined that single cell datasets generated using
IMC can be incorporated into models designed to stratify IMC
features by clinical outcomes with high reliability. Collectively,
these findings suggest that IMC, which has the potential to be
expanded as more immune markers are validated to include >30
antibodies for use on a single tissue section, has the potential to be a
transformative and paradigm shifting novel approach to the
diagnosis and management of rejection in clinical solid organ
transplantation. IMC offers a new capability to quantify severity
and complexity of inflammation, monitor graft-infiltrating
alloreactive lymphocytes during immunosuppression withdrawal
trials, identify new drug targets, and develop predictive models that
can be reliably associated with clinical outcomes.

Using a pilot panel based on 10 existing and validated
markers, IMC enabled identification of 11 unique immune
subpopulations across the entire study cohort. Among
these, only one was unique to CR, Macrophage-1. Also, not all
subpopulations expressed CD45, which is consistent with
prior work in clinical LT biopsies using multiplexed
immunohistochemistry and IMC (15, 19–21, 34). While
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neutrophils and Other Leukocytes (CD45+ cells) were rare
overall at <10% of the immune cell microenvironment, NR
had a higher proportion of these populations when compared
to CR (Figure 4). These findings correlate with prior work
examining neutrophil to lymphocyte ratio in the blood of LT
recipients during episodes of rejection, where patients with
TCMR had lower scores, and thus lower proportions of
neutrophils, when compared to patients without rejection (35).
While no studies, to our knowledge, have examined the role of
neutrophils in rejection episodes at the tissue level, prior work
has established a role for neutrophils during hepatic ischemia-
reperfusion injury and fibrogenesis in humans (36, 37). In
our study we excluded liver grafts with extensive fibrosis to
reduce the potential for fibrogenesis to alter the immune
microenvironment. A study examining a large population of
liver biopsies with varying degrees of fibrosis demonstrated that
as fibrosis progressed to F3/F4, a higher proportion of
neutrophils was present (37). Our observation that neutrophils
were rare during CR supports our study design, where patients
with advanced fibrosis were excluded. Four immune subsets were
more prominent in CR versus NR: Macrophage-2 (p<0.01),
CTL-2 (p<0.01), Other T-cell-1 (CD45+CD3+; p<0.05), and
Other T-cell-2 (CD45+CD3+; p<0.05) (Figure 4). Increases in
T-cell populations during CR were expected, as they represent a
dominant mediator of alloimmunity (38). We were unable to
further characterize the key features of these T-cell subsets,
including the role for CD4+ effector or CD4+Foxp3+
regulatory T-cells, which is a limitation of our pilot IMC
antibody panel. However, IMC still enabled a highly granular
and quantitative exploration of T-cell subpopulations using
relatively few conventional immune markers (CD45RA, CD45,
CD3, and CD8), resulting in identification of five distinct T-cell
subsets. As more IMC-compatible antibodies become available,
addition of markers for potentially important T-cell subsets such
as CD3+CD4+Foxp3+ regulatory T-cells will enable further
phenotyping of these cells within the tissue, providing the
opportunity to explore mechanisms of alloimmunity in
more detail.

Two distinct macrophage populations were observed in CR,
which may represent Kupffer cells and inflammatory
macrophages. The relative abundance of these two macrophage
populations has been implicated in a variety of pathological
states within the human liver, including rejection (39–41). CD68
expression is common to both Kupffer cells, liver-specific
macrophages which share an embryonic origin with
hepatocytes, and inflammatory macrophages, which are bone
marrow derived (42). Interestingly, Macrophage-2 was more
prominent in CR, while Macrophage-1 was not present in
NR. A prior study examining CD68+ in nine sex mismatched
donor and recipient pairs with CR post-LT determined
that CD68+ cells were prominent and largely of recipient
origin, suggesting that Macrophage-1 are recipient derived
inflammatory macrophages (43). If this is true, then expansion
of Macrophage-2, which could represent donor derived Kupffer
cells, would suggest that a CR is at least in part driven by donor-
derived immune populations. Moving forward, further
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phenotyping of these CD68+ populations using expanded IMC
panels and complementary techniques such as single cell
RNASeq will expand our understanding of their potential
pathogenic role in CR (44). Importantly, several drugs known
to target intrahepatic macrophages, including cenicriviroc, are
being investigated in ongoing clinical trials (39). Our data
suggest that these therapies could be explored for efficacy in
downregulating macrophage-mediated alloimmunity during
rejection episodes in LT.

Deeper examination of significant spatial relationships between
immune subsets using neighborhood analysis revealed the
complexity of the immune microenvironment of CR, even with
a somewhat limited sample size of 18 patients. Immune
subpopulations did not interact with each other in
neighborhood analysis in NR (Figure 5B), and this was
confirmed by visualization on NR ROI, where rare, spatially
separated immune cells were frequent (Figures 1, 2, 4, 5). This
suggests a state of immune equilibrium in NR, which is supported
by recent single cell RNA sequencing studies illustrating that
intrahepatic immune subsets in normal human liver
prominently express homeostatic genes rather than those
involved in activation (44–46). The immune microenvironment
of NR as characterized by IMC has implications as an important
reference point when attempting to establish operational tolerance
post-LT, as surveillance biopsies are a cornerstone of these studies
to rule out subclinical rejection during immunosuppression
withdrawal (34, 38, 47). Within CR, several immune
subpopulations had strong, significant interactions within a
subset, including Macrophage-2, CTL-2, and Other T-cell 1
(Figure 5). This suggests the presence of immune proliferation
and an active, smoldering inflammatory response despite the
chronicity of disease. Strong interactions were also observed
between populations, including CTL-2 and Macrophage-2, CTL-
1 and CTL-2, and B-cell with Other T-cell-1, which were
confirmed by visualizing specific subsets on tissue sections
(Figure 5C). These findings are supported by prior work
examining tissue-specific immune interactions in clinical liver
tissue, where semi-quantitative approaches and multiplexed
immunofluorescence identified interactions between macrophages
and CD3+ T-cells as well as an ‘immune synapse’ between
HLA-DPB1+ cells and protein tyrosine phosphatase receptor
type C-positive leukocytes during TCMR post-LT in the pediatric
iWITH study (34, 48). Moving forward, quantitative neighborhood
analysis of IMC data during rejection episodes has potential
clinical value in evaluating response to therapeutic intervention,
especially when evaluating immunotherapies designed to target
specific subpopulations.

While single cell applications are still emerging in the field of
solid organ transplantation, prior studies in other disease states
have correlated highly dimensional mass cytometry datasets
with clinical outcomes (12). Gaudilliere et al. examined blood
samples using CyTOF and associated immune phenotypes with
post-operative recovery as well as gestational age in pregnancy
(32, 33). By examining an 18 patient training cohort and 10
patient validation cohort using Elastic Net regression modeling
of immune subsets in peripheral blood, a model was
Frontiers in Immunology | www.frontiersin.org 13
constructed that predicted gestational age with high accuracy
(R=0.62, p=2.4x10-4) (32). More recently, the Bodenmiller
group published a detailed analysis of breast cancer using
IMC, wi th nove l hi s to log ic subtypes and ce l lu lar
neighborhoods correlating with survival outcomes (15).
Similar to these prior studies, examination of a modest and
clinically heterogenous population of LT recipients with CR
using IMC and PCA with logistic regression resulted in a highly
consistent immune phenotype associated with CR, using both
raw signal intensity per marker in each ROI and single cell
meta-cluster data (Figure 6). Importantly, PC-1 represented
most of the variability and was composed of multiple immune
markers, rather than a single dominant population as shown in
the remaining PCs. This is supported by quantification and
spatial analysis of immune populations in CR (Figures 4, 5),
where macrophages, T-cells, and other lymphocytes including
B-cells were upregulated and/or had significant interactions on
neighborhood analysis. When examined using logistic
regression modeling, PC-1 was associated with CR with >75%
probability, with only 1-2 ROI outlier depending on the data
being analyzed (Figure 6). It is possible that with a larger
patient cohort, validation dataset, and expanded IMC marker
panel, machine learning algorithms can be developed to
accurately predict clinical trajectories during rejection,
including steroid resistance, impending CR, and candidacy
for immunosuppression withdrawal.

There are limitations to this study. Patients were studied from a
single center, retrospectively, with different immunosuppressive
regimens, frequency of prior rejection episodes, and intervals
between first and second LT, and diagnosis of CR is based on
pathologic assessment using consensus criteria but without a
discrete scoring system (22). We are still optimizing our
protocol for use in needle core biopsies, so we were not able to
use stable post-LT biopsies as a reference group in this pilot study.
However, our NR normal liver was confirmed to be histologically
similar to stable post-LT liver biopsies by an experienced liver
transplant pathologist. We did not have access to fresh tissue or
blood samples from these patients to correlate immune
phenotypes using complementary techniques such as single cell
RNASeq, CyTOF, or plasma proteomics. Similarly, we were
limited by the selection of validated immune marker antibodies
for use in human FFPE tissue using IMC and plan to expand on
these studies as additional markers become available. Specifically,
relatively few T-cell markers were available for analysis, such as
CD4, Foxp3, CD28, Granzyme B, etc, limiting identification of the
role of potentially important subsets including regulatory T-cells.
Also, as stated in the results, while IMC signal intensity for a
specific marker can be quantified within an ROI and across
samples prepared using the same tissue type, during the same
experiment, signal intensity between different antibody markers in
IMC cannot be interpreted to indicate relative antigen density as
one might consider with traditional flow cytometry or CyTOF.
From a technical perspective, single cell segmentation algorithms
have the potential to capture markers from an adjacent cell,
thereby skewing results; however, over 30,000 immune cells
were analyzed, and all subsets identified had marker expression
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profiles that matched established immune populations.
Nonetheless, our segmentation and Phenograph analysis
pipeline may have resulted in identification of immune meta-
clusters, particularly those with similar markers, that may not
exhibit substantial functional differences.

In conclusion, this study establishes a novel, IMC-based
approach to quantify alloimmunity in clinical biopsy
specimens in transplant recipients. Creation of a single cell
dataset with spatial information enabled identification of 11
distinct immune populations involved in CR and highlighted
the complexity of the immune microenvironment within the
allograft. IMC staining can be completed on existing clinical
FFPE tissues slides in a matter of hours, and our study suggests
that this approach may be rapidly adapted to deeply characterize
rejection episodes, identify new therapeutic targets, and develop
predictive models of immune-mediated disease progression in
solid organ transplantation.
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