
Research Article

Adaptation of MPDATA Heterogeneous Stencil Computation to
Intel Xeon Phi Coprocessor

Lukasz Szustak,1 Krzysztof Rojek,1 Tomasz Olas,1 Lukasz Kuczynski,1

Kamil Halbiniak,1 and Pawel Gepner2

1Czestochowa University of Technology, Częstochowa, Poland
2Intel Corporation, Pipers Way, Swindon, Wiltshire SN3 1RJ, UK

Correspondence should be addressed to Lukasz Szustak; lszustak@icis.pcz.pl

Received 28 May 2014; Accepted 2 November 2014

Academic Editor: Ewa Deelman

Copyright © 2015 Lukasz Szustak et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e multidimensional positive de	nite advection transport algorithm (MPDATA) belongs to the group of nonoscillatory forward-
in-time algorithms and performs a sequence of stencil computations. MPDATA is one of the major parts of the dynamic core
of the EULAG geophysical model. In this work, we outline an approach to adaptation of the 3D MPDATA algorithm to the
Intel MIC architecture. In order to utilize available computing resources, we propose the (3 + 1)D decomposition of MPDATA
heterogeneous stencil computations. �is approach is based on combination of the loop tiling and fusion techniques. It allows us
to ease memory/communication bounds and better exploit the theoretical �oating point e�ciency of target computing platforms.
An important method of improving the e�ciency of the (3 + 1)D decomposition is partitioning of available cores/threads into work
teams. It permits for reducing inter-cache communication overheads. �is method also increases opportunities for the e�cient
distribution of MPDATA computation onto available resources of the Intel MIC architecture, as well as Intel CPUs. We discuss
preliminary performance results obtained on two hybrid platforms, containing two CPUs and Intel Xeon Phi. �e top-of-the-line
Intel XeonPhi 7120P gives the best performance results, and executesMPDATAalmost 2 times faster than two Intel XeonE5-2697v2
CPUs.

1. Introduction

In the last years, we can observe that the computational
power of processors has been rising much more faster than
the memory bandwidth. As a result, modern processor
architectures are very unbalanced concerning the relation
of theoretical peak performance versus memory bandwidth
[1]. One of the main problems of porting codes to the latest
computing platforms is to take the full advantage of memory
hierarchies.

Intel MIC is a novel architecture for high performance
computing [2–4]. It contains a large number of cores andwide
vector processing units. �e Intel Xeon Phi coprocessor is
the 	rst product based on this architecture. It o�ers notable
performance advantages over traditional processors and
supports practically the same traditional parallel program-
ming model. Although it is designed for massively parallel

applications, there is still an open question of how scienti	c
applications can utilize the computing power of Intel MIC.
�e primary challenge is an e�cient utilization of available
computing resources which correspond to 57–61 cores and
powerful vectors units with 512-bit width. When tackling
this challenge, the main issue is delivering on-time data
required for computations, taking into account features of
the Intel MIC’s main memory and cache hierarchy. Firstly,
the main memory bandwidth should be shared across more
than 228 threads. Secondly, apart from providing an e�cient
placement of data in the cache hierarchy, the distributed
structures of L2 cache force programmers to minimize the
intercache tra�c between cores.

In this work, the e�cient adaptation of the multidi-
mensional positive de	nite advection transport algorithm
(MPDATA) to the Intel MIC architecture is investigated.
As one of the most time-consuming routines, MPDATA

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 642705, 14 pages
http://dx.doi.org/10.1155/2015/642705

2 Scienti	c Programming

is among the two major parts of the dynamic core of the
EULAG geophysical model [5–7]. EULAG (Eulerian/semi-
Lagrangian �uid solver) is an established numerical model
for simulating thermo�uid �ows across a wide range of scales
and physical scenarios, including the numerical weather
prediction (NWP). �e structure of MPDATA consists of a
set of heterogeneous stencils, where each stencil may depend
on one or more others. Stencil computations are widely
used in scienti	c algorithms and simulations [8–10]. In these
computations, each point in a data grid is updated based
on its neighbours [9] according to a 	xed rule. MPDATA
requires the loading of 5 input matrices and returns only one.
We currently focus on the use of MPDATA in NWP, where
the size of grids is limited by � ≤ 2048, � ≤ 1024, and
� = [64, 128]. In our previous work [11], it has been shown
that MPDATA is strongly memory-bounded.

In this paper, we show how to use some of optimization
methods that we found e�ective, and demonstrate their
impact on the performance of both Intel MIC and CPU
architectures. �e proposed adaptation of MPDATA to Intel
MIC is based on the (3 + 1)D decomposition of MPDATA
heterogeneous stencil computations, using combination of
loop tiling and loop fusion techniques. It allows us to ease
the memory and communication bounds and better exploit
the �oating point e�ciency of target computing platforms.
Another contribution of the paper is a method for increasing
e�ciency of computations by reducing intercache communi-
cations. �is method is based on the partitioning of available
cores/threads into independent work teams. �is paper is an
extended version of work presented in [1, 12]. �is study not
only proposes modi	cations in the (3 + 1)D decomposition
of MPDATA, but also introduces the notion of work team
partitioning.

�e paper is organized as follows. Related works are
outlined in Section 2, while Section 3 presents the target
Intel MIC architecture. Section 4 presents an overview of
the MPDATA algorithm. Sections 5 and 6 introduce the
(3 + 1)D decomposition of MPDATA and the method of
the partitioning of cores into independent work teams,
respectively. An approach to the MPDATA parallelization
based on exploiting the task and data parallelism is described
in Section 7. Preliminary performance results are presented
in Section 8, while Section 9 gives conclusions and future
work.

2. Related Work

In our previous works [7, 13], we proposed two decomposi-
tions that provide the adaptation of MPDATA computations
to CPU and GPU architectures separately. �e achieved
performance results showed the possibility of achieving high
performance both on CPU and GPU platforms. Recently,
we have developed [14] a hybrid CPU-GPU version of
2D MPDATA, to fully utilize all the available comput-
ing resources by spreading computations across the entire
machine. To reveal performance constraints for theMPDATA
algorithm running on hybrid architectures, we follow the

simple methodology presented in [8], where the attainable
performance is estimated based on the �op-per-byte ratio.

Preliminary studies of porting anelastic numerical mod-
els to modern architectures, including hybrid CPU-GPU
architectures, were carried out in works [15, 16]. �e results
achieved for porting selected parts of EULAG to nontra-
ditional architectures revealed a considerable potential in
running scienti	c applications, including anelastic numerical
models, on novel hardware architectures.

�e newest research of EULAG parallelization on con-
ventional HPC architectures has been carried out using IBM
Blue Gene/Q and CRAY XE6 [17, 18]. �e 3D MPI paral-
lelization has been used for running EULAGon these systems
with tens of thousands of cores, or even with more than 100K
cores. However, when parallelizing EULAG computations on
supercomputers and CPU clusters, the e�ciency is declined
below 10%.

�eMPDATAalgorithm is a collection of stencils kernels,
which are commonly known as memory-bounded [10, 19].
Such kernels have been investigated by many authors over
the years [8, 9, 14, 20–24]. �e main direction of mem-
ory optimizations for stencil computations has principally
focused on di�erent decomposition strategies, like space and
temporal blocking techniques [20], that attempt to exploit
locality by performing operations on data blocks of a suitable
size before moving on to the next block. �ese strategies
have been used to improve the e�ciency of implementing
stencil codes in the context of variety of multi-/manycore
architectures (see, e.g., [14, 22, 25]). �e main assumption
for using the temporal blocking method is that no other
computations need to be performed between consecutive
stencils (or stages). �is assumption has been aggressively
used by us in [14] to improve the e�ciency of implementing
2D stencil codes on hybrid CPU-GPUplatforms by removing
or delaying synchronization between stages.

�e Intel MIC architecture is a relatively fresh computing
platform; however, themanagement ofmemory hierarchy has
been the target of optimizations in the past. In particular,
the performance evaluation of sparse-matrix multiplication
kernels on the Intel Xeon Phi coprocessor was presented
in [4]. �e authors show that Xeon Phi’s sparse kernels
performance is very promising and even better than that
of cutting-edge CPUs and GPUs. �is is mostly due to
the Xeon Phi’s wide registers and vectorization capabilities.
Additionally, they report that a relatively small size of L2
cache per core is not a problem for the coprocessor, but having
61 cores induces a signi	cant intercache tra�c overhead. In
this paper, we observe a similar problem and propose how to
solve it for MPDATA heterogeneous stencil computations.

Some results on porting stencil computation on Intel
Xeon Phi were presented in [26], where the regular 7-point
3D stencil kernel was investigated. A�er observing that
its performance is bounded by memory access, the cache
blocking is used by dividing the grid into multiple blocks of
size �� × �� × ��. As compared with the naive parallelization,
this approach allows the authors to increase the performance
by 64% or 23%, depending on the grid size. �e memory
behavior of stencil codes related to their performance on
Xeon Phi was the primary focus of paper [27], where di�erent

Scienti	c Programming 3

types of regular stencils were studied. In contrast to these
researches, where only regular (or homogeneous) stencils
codes were ported to the IntelMIC architecture, amuchmore
complex case of heterogeneous stencils is considered in this
paper.

3. Architecture Overview

3.1. Intel MIC Architecture. �e Intel MIC architecture com-
bines many Intel CPU cores onto a single chip [28]. �e
Intel Xeon Phi coprocessor is the 	rst product based on
this architecture. �e main advantage of these accelerators
is that it is built to provide a general-purpose programming
environment similar to that provided for Intel CPUs. �is
coprocessor is capable of running applications written in
industry-standard programming languages such as Fortran,
C, and C++.

�e Intel Xeon Phi coprocessor includes processing cores,
caches, memory controllers, PCIe client logic, and a very high
bandwidth, bidirectional ring interconnect [28, 29]. Each
coprocessor contains more than 50 cores clocked at 1 GHz or
more. �ese cores support four-way hyperthreading, which
gives more than 200 logical cores.�e actual number of cores
(from 57 to 61) depends on the generation and model of a
speci	c coprocessor. Each core features an in-order, dual-
issue ×86 pipeline, 32 KB of L1 data cache, and 512 KB of L2
cache that is kept fully coherent by a global-distributed tag
directory. As a result, the aggregate size of L2 caches can
exceed 25MB. �e memory controllers and the PCIe client
logic provide a direct interface to the GDDR5memory on the
coprocessor and the PCIe bus, respectively. �e coprocessor
has over 6GB of on-board memory (maximum 16GB). �e
high-speed bidirectional ring connects together all the cores,
caches, memory controllers, and PCIe client logic of Intel
Xeon Phi coprocessors.

An important component of each Intel Xeon Phi pro-
cessing core is its vector processing unit (VPU) [28], that
signi	cantly increases the computing power. Each VPU
supports a new 512-bit SIMD instruction set called Intel
Initial ManyCore Instructions. �e new ability to work with
512-bit vectors enables the fact of operating on 16 �oat or 8
double elements, instead of a single one.

�e Intel Phi coprocessor is delivered in form factor of a
PCI express device and can not be used as a stand-alone pro-
cessor. Since the Intel Xeon Phi coprocessor runs the Linux
operating system, any user can access the coprocessor as a
network node and directly run individual applications in the
native mode.�ese coprocessors also support heterogeneous
applications wherein a part of the application is executed
on the host (CPU), while another part is executed on the
coprocessor (o�oad mode).

3.2. Target Platforms. In this study, we use two platforms con-
taining a single Intel Xeon Phi coprocessor.�e 	rst platform
is equipped with the two newest Intel Xeon E5-2697 v2 CPUs
(total of 2 × 12 cores), based on the Ivy Bridge architecture,
and the Intel Xeon Phi 3120A card (57 cores). �e second
one includes two Sandy Bridge-EP Intel Xeon E5-2665 CPUs
(2 × 8 cores in total) and the top-of-the-line Intel Xeon

Table 1: Speci	cation of tested platforms [36].

First platform Second platform

Product
Intel Xeon Intel Xeon Intel Xeon Intel Xeon

E5-2697 v2 Phi 3120A E5-2665 Phi 7120P

Code name
Ivy

Bridge
Knights
Corner

Sandy
Bridge-EP

Knights
Corner

Number of
cores

2 × 12 57 2 × 8 61

Number of
threads

2 × 24 228 2 × 16 244

SIMD length
[bits]

256 512 256 512

Freq. [GHz] 2.7 1.1 2.4 1.238

Peak [GFlop/s] 518 1003 307 1208

LLC∗ size
[MB]

2 × 30 28.5 2 × 20 30.5

Memory size
[GB]

64 6 64 16

Memory
bandwidth
[GB/s]

2 × 51.2 240 2 × 51.2 352

∗Last level cache (LLC) refers to L3 cache for CPU, and to L2 cache for Intel
MIC.

Phi 7120P coprocessor (61 cores). �e peak performances of
these platforms are 1521.6 (2 × 259.2 + 1003.2)GFlop/s and
1515.5 (2 × 153.6 + 1208.3) GFlop/s, respectively. �ese values
are given for the double precision arithmetic, taking into
account the usage of SIMD vectorization. �e important
feature of Intel Xeon Phi coprocessors is the high memory
bandwidth. In particular, Intel Xeon Phi 7120P provides
352GB/s of memory bandwidth, as compared with 2 ×
51.2GB/s for bothCPUplatforms. A summary of key features
of tested platforms is shown in Table 1.

4. Outline of MPDATA

MPDATA belongs to the group of nonoscillatory forward-in-
time algorithms and performs a sequence of stencil compu-
tations [5, 30]. �e 3D MPDATA algorithm is based on the
	rst-order-accurate advection equation:

�Ψ
�	 = −

�
�
 (�Ψ) −

�
�� (VΨ) −

�
� (�Ψ) , (1)

where
, �, and are space coordinates, 	 is time, �, V, � =
const are �ow velocities, and Ψ is a nonnegative scalar 	eld.
Equation (1) is approximated according to the donor-cell
scheme, which for the (� + 1)th time step (� = 0, 1, 2, . . .)
gives the following equation:

Ψ∗�,�,� = Ψ
�
�,�,� − [� (Ψ

�
�,�,�, Ψ

�
�+1,�,�, ��+1/2,�,�)

−� (Ψ��−1,�,�, Ψ
�
�,�,�, ��−1/2,�,�)]

− [� (Ψ��,�,�, Ψ
�
�,�+1,�, ��,�+1/2,�)

− � (Ψ��,�−1,�, Ψ
�
�,�,�, ��,�−1/2,�)]

4 Scienti	c Programming

Stage 1 Stage 2 Stage 3

Stage 4

Stage 5 Stage 6

Stage 7 Stage 8

Stage 9 Stage 10 Stage 11

Stage 14

Stage 12

Stage 15 Stage 16

Stage 13

Stage 17

Figure 1: Data dependency graph for MPDATA.

− [� (Ψ��,�,�, Ψ
�
�,�,�+1,��,�,�+1/2)

−� (Ψ��,�,�−1, Ψ
�
�,�,�,��,�,�−1/2)] ,

� ≡ ��	
�
 , [�]+ ≡ 0.5 (� + |�|) ,

[�]− ≡ 0.5 (� − |�|) .
(2)

�e same de	nition is true for the local Courant numbers �
and�.

�e 	rst-order-accurate advection equation is approxi-
mated to the second order in �
, ��, and �	, through de	ning
the advection-di�usion equation. Such transformation is
widely described in the literature. For the full description
of the most important aspects of the second-order-accurate
formulation of MPDATA, the reader is referred to [5, 11].

As a part of the EULAG model, the MPDATA algorithm
is interleaved with other important computation (e.g., elliptic
solver) in each time step [31]. It limits the possibility to
apply any optimization beyond a single time step and, as a
consequence, the adaptation is performed inside each time
step.

�e whole MPDATA computations in each time step
are decomposed into a set of 17 heterogeneous stencils,
called further stages. Each stage is responsible for calculating
elements of a certain matrix, based on the corresponding
stencil. �e stages depend on each other, where outcomes
from prior stages are usually input data for the subsequent
computations (Figure 1).

A single MPDATA time step requires 5 input and one
output matrices; the other 16 matrices are intermediate ones.

In the basic, unoptimized implementation of the MPDATA
algorithm (Algorithm 1), every stage reads a required set
of matrices from the main memory and writes results to
the main memory a�er computation. In consequence, a
signi	cant tra�c to themainmemory is generated.Moreover,
compute units (cores/threads, and vector units) have to wait
for data transfers from the main memory to the cache
hierarchy.

For example, each loop iteration in the 	rst stage reads
one value of �1- and two values of
 In-matrices and then
performs two multiples, two subtractions, and the max and
min operations, and 	nally writes one value to the
Out-
matrix. For double precision �oating point element, this gives
32 bytes of transferred data. �us, the operational intensity
is 6 �ops/32 bytes = 0.187 (�op/byte), assuming that caches
exploit no reuse. Asmost modernHPC platforms, processors
can sustain at about several times as much instruction
throughput as DRAM data tra�c [10, 19], so it is crucial
to reduce the main memory data transfers. In order to
better utilize features of novel accelerators, the adaptation
of MPDATA computations to the Intel MIC architecture is
considered in this work, taking into account the memory-
bounded character of the algorithm.

5. (3 + 1)D Decomposition of MPDATA
Heterogeneous Stencil Computations

5.1. Basic Concepts of Adaptation of MPDATA to Intel Xeon
Phi Coprocessor. �e main aim of this work is to develop an
optimal parallel version of MPDATA heterogeneous stencil
computations that allows us to take the maximum advantage
of Intel Xeon Phi coprocessor, as well as modern CPUs.
First of all, the memory-bounded character of the MPDATA
algorithm must be alleviated in order to reveal the potential
of the available computing resources. To work around this
limitation, the (3 + 1)Ddecomposition ofMPDATAheteroge-
neous stencil computation is proposed.�is decomposition is
based on a block decomposition using mixture of loop tiling
and loop fusion techniques. �e prime assumption here is to
reduce a saturation of the main memory tra�c.

�is goal can be achieved by taking advantage of cache
memory reuse by shi�ing the data transfers from the main
memory to the cache hierarchy. A�er such modi	cation, the
available computing resources are able to execute MPDATA
computations more e�ciently. Hence, the (3 + 1)D decompo-
sition of MPDATA computation is considered 	rstly, while
utilization of cores and vector units is taken into account
subsequently. Further optimizations include partitioning of
threads into work teams to improve the e�ciency of intra-
cache communication and synchronization, as well as the
MPDATA block parallelization based on the task and data
parallelisms.

5.2. Block Decomposition Using a Mixture of Loop Tiling
and Loop Fusion Techniques. Since 3D MPDATA algorithm
includes so many intermediate computations, one of the
primary methods for reducing the memory tra�c within
each time step is to avoid data transfers associated with these
computations. It also allows us to improve the cache reuse and

Scienti	c Programming 5

//stage 1

for i-dim

for j-dim

for k-dim

f1[i][j][k] = xIn[i][j][k] * max(0.0, u1[i][j][k])

- xIn[i-1][j][k] * (-min(0.0, u1[i][j][k]));

//stage 2

for i-dim

for j-dim

for k-dim

f2[i][j][k] = xIn[i][j][k] * max(0.0, u2[i][j][k])

- xIn[i][j-1][k] * (-min(0.0, u2[i][j][k]));

//stage 3

for i-dim

for j-dim

for k-dim

f3[i][j][k] = xIn[i][j][k] * max(0.0, u3[i][j][k])

- xIn[i][j][k-1] * (-min(0.0, u3[i][j][k]));

//stage 4

for i-dim

for j-dim

for k-dim

xOut[i][j][k] = xIn[i][j][k] - (f1[i+1][j][k]

- f1[i][j][k] + f2[i][j+1][k] - f2[i][j][k]

+ f3[i][j][k+1] - f3[i][j][k])/h[i][j][k];

/*⋅ ⋅ ⋅ */

Algorithm 1: Part of MPDATA implementation.

operational intensity ratio. �e main requirement is to keep
all the intermediate results in the cache memory only. When
the intermediate results will be held in the cache hierarchy,
the memory tra�c will be generated only to transfer the
required input and output data for each MPDATA time step.
�is aim can be achieved by using a mixture of two well-
known loop optimization techniques [32, 33]: loop tiling
and loop fusions. Both techniques are most o�en used to
maximize the operational intensity ratio, reduce the loop
overheads, increase the instruction parallelism, and improve
the cache locality [33, 34].

�e idea of block decomposition using the mixture
of loop tiling and loop fusion techniques is shown in
Algorithm 2. �e proposed block decomposition is based on
the loop tiling technique, then adding the loop fusion to the
tiling (block) management level, and 	nally reusing the loop
fusion, but on the intratile level.

�e starting point of the proposed block decomposition
is applying the loop tiling technique for the original version
of the MPDATA code. �is process is applied for each stage
separately, where the loop’s iteration space of every stage
is partitioned into smaller chunks or blocks. Naturally, the
code does not require heavy modi	cations. Moreover, this
technique is also commonly used by compilers to make
the execution of certain types of loops more e�cient [32].
Algorithm 2(b) presents an example of such modi	cations of
the MPDATA code.

Enabling the loop tiling for all the stages separately does
not give the desired performance gain. �is is mainly due to

the fact that each stage is still characterized by a relatively
small arithmetic intensity ratio, and the main memory tra�c
associated with intermediate computations is not reduced.
However, this step is necessary for the further optimization
steps based on the loop fusion technique.

�e loop fusion optimization assumes merging the
selected loops, in order to reduce the loop overheads, increase
the instruction parallelism, improve the data locality, and
even reduce data transfers [32–34]. Taking into account all
the 17 MPDATA stages a�er applying the loop tiling (each
stage corresponds now to 6 loops, see Algorithm 2(b)), the
loop fusion optimization can be successfully applied for
loops associated with tilling management that correspond to
indices nBlockO�,mBlcokO�, and kBlockO�. In consequence,
all these loops now are merged (Algorithm 2(c)).

As a result of using the combination of these two
optimization techniques, the MPDATA grid is partitioned
into some MPDATA blocks, where subsequent blocks are
processed one by one. Every block includes all the stages
that performMPDATA computations on chunks of the corre-
sponding matrices. Furthermore, each computational block
is processed in parallel by the available computing units. �e
primary aim here is the possibility to avoid main memory
data transfers associated with all intermediate computations.
�is advantage can be achievedwhen relevant data, which are
required for computing everyMPDATAblock, are kept in the
cache hierarchy. Hence, the size �� × �� × �� of each block
has to be suited to the cache size. While the intermediate

6 Scienti	c Programming

(a)
for �-dim
for �-dim

for �-dim
S1 = . . .

/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim

for �-dim
S3 = . . .

/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim

for �-dim
S14 = . . .

/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim

for �-dim
S17 = . . .

(b)
for �BlockO� tiles
for�BlockO� tiles

for �BlockO� tiles {
for �-dim
for �-dim
for �-dim

S1 = . . .
}

/ ∗ ⋅ ⋅ ⋅ ∗ /
for �BlockO� tiles
for�BlockO� tiles

for �BlockO� tiles {
for �-dim
for �-dim
for �-dim

S3 = . . .
}

/ ∗ ⋅ ⋅ ⋅ ∗ /
for �BlockO� tiles
for�BlockO� tiles

for �BlockO� tiles {
for �-dim
for �-dim
for �-dim

S17 = . . .
}

(c)
for �BlockO� tiles
for�BlockO� tiles

for �BlockO� tiles {
for �-dim
for �-dim
for �-dim

S1 = . . .
/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim
for �-dim

S3 = . . .
/ ∗ ⋅ ⋅ ⋅ ∗ /

Algorithm 2: Continued.

Scienti	c Programming 7

for �-dim
for �-dim
for �-dim

S14 = . . .
/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim
for �-dim

S17 = . . .
}

(d)
for �BlockO� tiles
for�BlockO� tiles

for �BlockO� tiles {
for �-dim
for �-dim
for �-dim {

S1 = . . .
S2 = . . .
S3 = . . .

}
/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim

for �-dim {
S14 = . . .
S15 = . . .
S16 = . . .

}
/ ∗ ⋅ ⋅ ⋅ ∗ /
for �-dim
for �-dim

for �-dim {
S17 = . . .

}
}

Algorithm 2: Idea of block decomposition: (a) basic scheme of MPDATA code, codes a�er applying loop tiling (b), loop fusion on tiles
management level (c), and loop fusion on intratile level (d), where S1, S2, . . ., and S17 are exemplary MPDATA stages.

results are stored in cache, the main memory tra�c is only
generated for transfers of required input and output data.

However, the heterogeneous nature of the MPDATA
stages makes it di�cult to implement the proposed block
decomposition. It is due to the stencil structure of depen-
dencies, as well as the dependencies between stages, where
outputs of the stages are usually input data for the next one.
Since each MPDATA block provides computations for all the
stages, some extra calculations are required for each block. As
a negative e�ect, each block also requires more input data, so
some extra transfers to the main memory are required.

Extra calculation and communication take place on the
borders between adjacent blocks. �us, blocks have to be
extended by adequate halo areas. Opposite to the well-
known ghost cell expansion strategy [10, 35], which is
commonly used across homogeneous stencils corresponding
to successive time steps, the ghost halo expansion in the
proposed (3 + 1)D decomposition deals with heterogeneous
stencils corresponding to 17 MPDATA stages within a single

time step. �e sizes of halo areas are determined in three
dimensions: �, �, and �, according to the data dependencies
between subsequentMPDATA stages placed along the fourth
dimension �. Hence, each of 5 input, 16 temporary, and one
output matrices is partitioned into chunks of size �� × �� ×
��, which are further expanded by adequate halo areas of sizes
�� and � , �� and � , and �� and � , respectively. Table 2
presents sizes of ghost halo areas for theMPDATA algorithm.

�e proposed approach allows us to reduce the main
memory tra�c at the cost of extra computations associated
with halo areas in chunks of intermediate matrices. Another
advantage of this approach is the possibility of reducing
the main memory consumption because all the intermediate
results are stored only in the cache memory. In the case of
coprocessors, it plays an important role because the size of
the on-board main memory is 	xed and it is signi	cantly
smaller than that in the case of traditional CPU solutions.
�e requirement of expanding halo areas is one of the major
di�culties when applying the proposed approach, taking into

8 Scienti	c Programming

Table 2: Sizes of ghost halo areas for MPDATA.

�� � �� � �� �
Input matrices

�1 2 3 2 2 2 2

�2 2 2 2 3 2 2

�3 2 2 2 2 2 3

ℎ 2 2 2 2 2 2

In 3 3 3 3 3 3

Intermediate matrices

S1 2 3 2 2 2 2

S2 2 2 2 3 2 2

S3 2 2 2 2 2 3

S4 2 2 2 2 2 2

S5 1 2 1 1 1 1

S6 1 1 1 2 1 1

S7 1 1 1 1 1 2

S8 1 1 1 1 1 1

S9 1 1 1 1 1 1

S10 1 1 1 1 1 1

S11 1 1 1 1 1 1

S12 1 1 1 1 1 1

S13 1 1 1 1 1 1

S14 0 1 0 0 0 0

S15 0 0 0 1 0 0

S16 0 0 0 0 0 1

Output matrix (
Out)
S17 0 0 0 0 0 0

account data dependencies betweenMPDATA stages and the
heterogeneous nature of MPDATA stencils.

Although somememory transfers are now eliminated, the
transfers associated with the input and output data still have
a negative impact on the overall system performance. In par-
ticular, it is noticeable for the 	rst stages that they are strongly
dependent on the input data.�is constraint can be alleviated
by the reuse of the loop fusion inside each MPDATA block.
It is applicable because some stages depend on the same
MPDATA input data (see Algorithm 1). Hence, compressing
(merging) the appropriately chosen stages (loops) into pack-
ages of stages leads to the reduction of the main memory
tra�c for the input data. As a result, all the stages included
within every block are compressed into 6 packages of stages,
according to MPDATA data dependencies. �is strategy also
allows us to reduce the loop overheads and improves the
data cache locality. �e main disadvantage is the uniform
range of loops for the MPDATA stages contained in each
package. �us, the loops ranges of some stages have to be
increased and, as a consequence, unnecessary calculations
will be performed. Algorithm 2(d) uncovers an e�ect of
applying the loop fusion technique inside MPDATA blocks.

Summarizing all of the above, the MPDATA grid is par-
titioned according to �-, �-, and �-dimensions into sev-
eral blocks. Every block is responsible for computing all
the 17 stages placed along the fourth dimension �, taking

into account an appropriate ghost expansion. �is aim is
achieved by a mixture of the loop tiling and loop fusion
techniques (Algorithm 2(c)). Within a single block, each
stage provides computations for an adequate extended chunk
of the correspondingmatrix. Subsequently, the selected stages
are compressed into packages according to the loop fusion
optimization applied inside every block (Algorithm 2(d)).
�erefore, subsequent blocks are processed one by one, and
each computational block is processed in parallel by available
computing units. �e execution of a sequence of blocks
determines the 	nal output result for a single MPDATA time
step.

�e proposed (3 + 1)D decomposition refers to the four
directions of distribution of the MPDATA computation,
where �-, �-, and �-dimensions are related to the grid
partitioning, while the fourth �-dimension is associated with
a particular order of executing MPDATA stages (packages).
�is decomposition corresponds to the partitioning of the
MPDATA computational domain which is illustrated in
Figure 2.

5.3. Improving E�ciency of Decomposition. Although the
block decomposition of MPDATA allows for the reduction
of the memory tra�c, it still does not guarantee a satisfying
utilization of target platforms. It is mainly due to the cost of
extra computations and communications, which have impact
on the performance degradation. In particular, the three
groups of extra computation and communication can be
selected according to the �-, �-, and �-dimensions. Some
of them can be reduced or even avoided by applying the
following rules.

(1) �e additional calculation and communication in �-
dimension can be avoided if �� = �, and the size �� ×
�� × �� of block is small enough to save in cache all
the required data. �is rule is especially useful when
the value of � is relatively small, as it is in the case of
NWP, where � ∈ [64, 128].

(2) �e overheads associated with �-dimension are
avoided by leaving partial results in the cache mem-
ory. It becomes possible when extra computations
are repeated by adjacent blocks. In this case, some
results of intermediate computation have to reside in
cache for executing the next block. Such an approach
corresponds to a temporal and space blocking tech-
niques [10, 24]. �is rule requires us to develop
a �exible management of computations for all the
stages, as well as an adequate mapping of partial
results onto the cache space. In consequence, all the
chunks are still expanded by their halo areas, but
only some portions of these chunks are computed
within the current block. It means that this approach
does not increase the cache consumption. �e idea
of improving the e�ciency of block decomposition is
shown in Figure 3.

(3) In order to reduce additional calculations in �-
dimension, the size �� should be as large as possible
to save all the data required to compute a single block
in the cache hierarchy.

Scienti	c Programming 9

Stage 1
Stage 2

Stage 3

Stage 17

...

...

Package 1
Package 2

Package 6

k-dim

i-dim
j-dim

s-d
ims-d

im

Figure 2: Idea of MPDATA domain decomposition.

...

...

...

...

MPDATA grid
partitioning

Standard

into blocks

Keeping in cache partial results
computed within prior block

· · · · · · · · ·· · ·

(3 + 1)D decomposition

Improved
(3 + 1)D decomposition

i-dim

j-dim

A

A

B C A B BC

C

Figure 3: Idea of leaving partial results in cache memory.

6. Partitioning of Cores/Threads into
Independent Work Teams

Another method of improving the e�ciency of the proposed
(3 + 1)D decomposition is the partitioning of available
cores/threads into independent work teams. �e (3 + 1)D
decomposition moves the data transfers from the main
memory to the cache hierarchy. In consequence, a lot of
inter- and intracache communications are generated because
of dependencies between stages. Particularly, it is noticeable
when more than 200 Intel MIC’s threads cooperate, using L2
caches distributed across cores.

To alleviate this overhead, all the cores/threads are par-
titioned into independent work teams. �is aim is achieved
by performing some extra computations within every work
team. �e MPDATA grid is distributed into # pieces of
size �# × �# × �# which are extended by adequate halo
areas (see Table 2). All computations within each piece are
processed by a single work team of threads, according to
the proposed (3 + 1)D decomposition. Hence, each piece is
decomposed into some MPDATA blocks, where subsequent
blocks are processed one by one, and each computational
block is processed in parallel by the corresponding work
team. Figure 4 illustrates the idea of partitioning of Intel
MIC’s processing cores into independent work teams.

�e proposed method allows us to reduce inter- and
intracache communication overheads due to communication
between neighbor threads, as well as their synchronization.

�is method also increases opportunities for the e�cient
load distribution of MPDATA computations onto available
computing resources. �e work teams execute computations
in parallel and independently of each other, within each time
step. �ese advantages are achieved at the cost of some extra
computations performed by teams.

In general, pieces of the grid corresponding to di�erent
teams are characterized by various sizes. �e numbers of
cores/threads assigned to di�erent teams are varied, as well.
Figure 4 also shows an example of partitioning 60 Intel MIC’s
processing cores into 8 teams, and distributing the MPDATA
grid into # pieces. To provide load balancing, we distinguish
4 teams with 8 cores each, and 4 teams with 7 cores each.
Moreover, pieces of the MPDATA grid corresponding to
these teams have di�erent sizes along �-dimension. At this
point of our study, the estimation of �#� × �#� × �#� size
of the �th piece, and the number of cores/threads per each
team is based on empirical tests. Furthermore, it still requires
some performance modeling. In particular, the autotuning
technique [14] is a promising direction for estimating the best
con	guration of required parameters.

7. MPDATA Parallelization

7.1. Task andData Parallelism. In order to utilize the comput-
ing resources available in the Intel Xeon Phi coprocessor, the
proposed approach employs two main levels of parallelism:

10 Scienti	c Programming

60 coresGrid 8 teams

P0

P4

P4 P5 P6 P7

P3

k-dim

i-dim

j-dim

25%

25% 25% 25% 25%

47%

47%

53%

53%

Stage 1

Stage 17

Stage 1

Stage 17

...

...

Computed by
work team4
cores 32–38

Computed by
work team0

cores 0–7

s-d
im

s-d
im

4 teams with 8 cores each

4 teams with 7 cores each

Figure 4: Partitioning of Intel MIC’s processing cores into work teams when performing MPDATA computations.

(i) task parallelism which allows for utilizing more than
200 logical cores;

(ii) data parallelism to use e�ciently 512-bit vector pro-
cessing units.

�e MPDATA grid is distributed into a set of pieces.
All computations within each piece are performed by the
corresponding work team, according to the proposed (3
+ 1)D decomposition (see Figure 4). Hence, every piece is
partitioned into some MPDATA blocks, where subsequent
blocks are processed one by one, and each block of size �� ×
�� × �� is processed in parallel by the work team.

Every block is further decomposed into subblocks of size
��∗ × ��∗ × ��∗, where each subblock is processed by a
certain thread of the work team. A sequence of all the
MPDATA stages is executed within every subblock, taking
into account the adequate halo areas. Due to the data
dependencies of MPDATA, appropriate synchronizations of
all the threads within the work team are required between
stages. All computations within every subblock correspond
to a task. As a result, all the work teams provide parallel
computations, and tasks are processed in parallel by the
threads of every work team.

Another level of parallelization is SIMDi	cation applied
within each task (thread). �e scalar implementation of
MPDATA is converted to a vector version, which processes
one operation on multiple pairs of operands at once. So, the
scalar instructions are replaced by the Intel SIMD instruc-
tions. �e vectorization is performed within �-dimension,
where the value of size ��∗ is adjusted to the vector size.

7.2. Distribution of Calculations withinWork Team. An appro-
priate distribution of calculations within team of cores is
crucial for optimizing the overall system performance. �e
purpose is to provide the trade-o� between two coupled cri-
teria: load balancing and intracache communication. In fact,
aiming at improving the load balancing within a team, we
have to take into account the possibility of undesirable e�ect

of increasing the communication between cores/threads,
implemented through the cache hierarchy.

Figure 5 illustrates an example of two scenarios of dis-
tributing MPDATA calculations within a given team of cores
for the block of size 1 × 8 × �. In this example, a single team
corresponds to 4 cores (one thread per core is assumed). �e
	rst scenario (Figure 5(a)) features less amount of intracache
communications between tasks (threads) than the second
one. However, the load imbalance within the team of cores is
noticeable in this scenario. �e second one provides a better
load balance across available resources assigned to a team, but
it requires more intracache communications.

Because of the intracache communications between tasks,
the overall systemperformance depends on a suitablemethod
of pinning the task to available cores. �erefore, the physical
core a�nity plays a signi	cant role in optimizing the system
performance. In this work, the a�nity is adjusted manually
to force communication between tasks placed onto the
closest adjacent cores, as much as possible. �is increases
the sustained intracache bandwidth, as well as reduces cache
misses, and the latency of access to the cache memory.

8. Preliminary Performance Results

In this section, we present preliminary performance results
obtained for the double precision 3D MPDATA algorithm
on the platforms introduced in Section 3. In all the tests, we
use the icc compiler as a part of Intel Parallel Studio 2013,
with the same optimization �ags. �e best con	gurations,
including number of teams, sizes of pieces, size of block, and
distribution of computation within teams, are chosen in an
empirical way, individually for each platform.

To take advantage of Intel MIC computing resources,
the OpenMP standard is used for multi-/manycore program-
ming. Moreover, to perform computations according to the
proposed adaptation, a dedicatedmechanism for themanage-
ment ofMPDATAparallel computations is developed. Firstly,
the synchronization of threads required a�er each time step

Scienti	c Programming 11

S1:

S4:

S17:

C
o

re
0

C
o

re
1

C
o

re
2

C
o

re
3

Task

Computation of 1 × 1 × L subgrid

Halo area
Transfer of 1 × 1 × L subgrid from

L2 cache to L2 cache of neighbour core

(a)

S1:

S4:

S17:

C
o

re
0

C
o

re
1

C
o

re
2

C
o

re
3

Computation of 1 × 1 × L subgrid

Halo area
Transfer of 1 × 1 × L subgrid from

L2 cache to L2 cache of neighbour core

(b)

Figure 5: Example of distribution of calculations within a team of cores: (a) 	rst scenario decreases load balancing for reducing intracache
communications; (b) second scenario improves load balancing at the cost of increasing intracache communications.

is performed using the OpenMP barrier construct. Secondly,
a dedicated synchronization mechanism is implemented to
ensure synchronization among threads of each work team,
providing the correct execution of MPDATA stages inside
each time step. �is mechanism is based on using the
OpenMP atomic directive. Furthermore, to utilize vector
units available inside each Intel MIC core, scalar instructions
are replaced by appropriate Intel SIMD intrinsics.

Currently, only the 	rst four stages of MPDATA are
implemented and tested. It should be noted that these stages
require to transfer all 5 input and one output matrices and,
as a consequence, the overall system performance for the
proposed adaptation is still limited by the main memory
tra�c. According to the proposed (3 + 1)D decomposition
of MPDATA, the other stages will perform computations on
the data kept in cache. �e 	nal performance gain for the
proposed adaptation will be revealed when the computations
for all the MPDATA stages will be programmed.

Figure 6 presents the normalized execution time of the
3D MPDATA algorithm, for 500 time steps and the grid of
size 1024 × 512 × 64.

Figure 6(a) shows the performance gain for the improved
version of (3 + 1)D decomposition. �e proposed method
of reducing extra computations allows us to speed up the
MPDATA block version from 2 to 5 times, depending on the
platform used and size of the grid.

�e advantages of applying the loop fusion technique
on the tile management level are shown in Figure 6(b). �is
technique permits the increase of the performance by about
5–10%.

�e impact of block size on the overall performance is
illustrated in Figure 6(c). In general, the larger the block size
the higher the performance. However, the limiting factor is
the cache size.

According to Figure 6(d), among the four tested con	g-
urations, the best results are obtained for the con	guration
containing 10 teams, with 24 threads per each team. �ese
con	gurations are highly distinguished with respect to the
load balancing of MPDATA computations and intracache

communications. �erefore, signi	cant performance di�er-
ences are observed in these tests.

�e advantages of using vectorization are observed for all
the platforms. In particular, for Intel Xeon Phi 7120P, it allows
us to accelerate computationsmore than 3 times, using all the
available cores/threads (Figure 6(e)).

Figure 6(f) shows the performance obtained for the
di�erent numbers of threads per core, using Intel Xeon Phi
7120P. �e best e�ciency of computation is achieved when
running 4 threads per core.

�e performance comparison of all the platforms is
shown in Figure 7. For each platform, we use all the available
cores with the vectorization enabled. As expected, the best
performance result is obtained using Intel Xeon Phi 7120P.
�is coprocessor executes the MPDATA algorithm almost 2
times faster than two Intel Xeon E5-2697 v2CPUs, containing
24 cores totally. Both models of the Intel Xeon Phi coproces-
sor give similar performance results.

Additionally, a basic parallel version of the MPDATA
algorithm has been implemented and compared to the
proposed adaptation. �is version is based on applying the
OpenMP API and using a set of compiler directives. For
Intel Xeon Phi 7120P, the proposed adaptation allows us to
accelerate computations more than 4 times in comparison to
the basic version, while for the Intel CPUs this adaptation
increases the performance about 3 times. It should be noted
that the e�ciency of our adaptation scheme will increase
when all the MPDATA stages will be included into the code.
At the same time, the e�ciency of the basic parallel version
will be at a similar level as for the four MPDATA stages.

9. Conclusions and Future Work

Using the Intel Xeon Phi coprocessor to accelerate com-
putations in the 3D MPDATA algorithm is a promising
direction for developing the e�cient parallel implementation
of the EULAG model. Rewriting the EULAG code, and
replacing conventional HPC systems with heterogeneous
clusters using accelerators such as Intel MIC, is a prospective

12 Scienti	c Programming

100%

24%

Block version

Normalized execution time
Intel Xeon Phi 7120P

Improved block version

(a)

100%

81%

Disabled fusion

Enabled fusion

Normalized execution time
Intel Xeon Phi 7120P

(b)

100%

65%

Normalized execution time
Intel Xeon Phi 7120P

Block of size 1 × 32 × 64

Block of size 1 × 64 × 64

(c)

100%

44%

20%

15%

Normalized execution time
Intel Xeon Phi 7120P

1tm, 240th, 240th/tm

2tm, 240th, 120th/tm

6tm, 240th, 40th/tm

10tm, 240th, 24th/tm

tm: teams

th: threads

(d)

100%Disabled SIMD

Enabled SIMD

Normalized execution time
Intel Xeon Phi 7120P

32%

(e)

100%

87%

84%

65%

60 cores-60 threads

60 cores-120 threads

60 cores-180 threads

60 cores-240 threads

Normalized execution time
Intel Xeon Phi 7120P

(f)

Figure 6: Preliminary performance results: (a) performance gain for improved version of (3 + 1)D decomposition; (b) advantages of applying
the loop fusion on tile management level; (c) performance for di�erent block sizes; (d) performance for di�erent con	gurations of teams; (e)
advantages of using vectorization; (f) performance for di�erent numbers of threads per core.

Intel Xeon Phi 3120A

Intel Xeon Phi 7120P

100%

89%

56%

51%

Normalized execution time

2 × Intel Xeon E5-2665

2 × Intel Xeon E5-2697v2

Figure 7: Comparison of Intel Xeon CPU and Intel Xeon Phi (best
con	gurations with SIMD).

way to improve the e�ciency of using this model in practical
simulations.

�e main challenge of the proposed parallelization is to
take advantage of multi-/manycore, vectorization, and cache
reusing. For this aim, we propose the block version of the
3DMPDATA algorithm, based on combination of loop tiling
and loop fusion techniques. Such an approach gives us the
possibility to ease memory bounds by increasing the e�cient
cache reusing, and reducing the memory tra�c associated
with intermediate computations. Furthermore, the proposed
method of reducing extra computation allows us to accelerate
the MPDATA block version up to 4 times, depending on the
platform used and size of the grid.

Another method of improving the e�ciency of the pro-
posed block decomposition is the partitioning of available

cores/threads into teams. Each team corresponds to a piece
of the MPDATA grid and executes calculations according
to the block decomposition strategy. It allows us to reduce
intercache communication overheads due to communica-
tions between neighbour threads/cores, and their synchro-
nizations. �is method also increases opportunities for the
e�cient load distribution of MPDATA computations on
available resources.

An appropriate distribution of calculations within teams
of cores is crucial for optimizing the overall system per-
formance. �e purpose is to provide the trade-o� between
two coupled criteria: load balancing and intracache commu-
nication. Aiming at improving the load balancing within a
team, the possibility of an undesirable e�ect of increasing the
communication between cores/threads has to be taken into
account.

In all the performed tests, the Intel Xeon Phi 7120P copro-
cessor gives the best performance results and executes the
MPDATA algorithm almost 2 times faster than two Intel
Xeon E5-2697 v2 CPUs, containing 24 cores totally. �e
proposed adaptation allows us to utilize both Intel Xeon Phi
and Intel Xeon CPU computing resources. For Intel Xeon
Phi 7120P, the proposed adaptation executes MPDATA com-
putation 4 times faster than the basic version, while for the
Intel CPU this adaptation increases the performance about
3 times. �e multi-/manycore and vectorization features of

Scienti	c Programming 13

the Intel MIC and Intel CPU play the leading role in the
performance exploitation. �e other important feature is a
suitable selection of the block size, number of teams, number
of threads per core, and an adequate thread placement onto
physical cores. All these features have a signi	cant impact on
the sustained performance.

�e achieved performance results provide the basis
for further research on optimizing the distribution of the
MPDATA calculation across all the computing resources
of the Intel MIC architecture, taking into consideration
features of its on-board memory, cache hierarchy, computing
cores, and vector units. Additionally, the proposed approach
requires us to develop a �exible data and task scheduler, sup-
ported by adequate performance models. Another direction
of future work is adaptation of MPDATA to heterogeneous
clusters with Intel MICs, with a further development and
optimization of our code.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

�is work was supported by the Polish National Science
Centre under Grant no. UMO-2011/03/B/ST6/03500 and
by the Polish Ministry of Science and Education under
Grant no. BS/MN-1-112-304/2013/P. �e authors gratefully
acknowledge the help and support provided by Jamie Wilcox
from Intel EMEA Technical Marketing HPC Lab.

References

[1] L. Szustak, K. Rojek, and P. Gepner, “Using intel Xeon Phi
coprocessor to accelerate computations in MPDATA algo-
rithm,” in Parallel Processing and AppliedMathematics, vol. 8385
of Lecture Notes in Computer Science, pp. 582–592, Springer,
Berlin, Germany, 2014.

[2] J. Dongarra,M. Gates, A. Haidar et al., “PortableHPCprogram-
ming on Intel many-integrated-core hardware with MAGMA
port to Xeon Phi,” in Parallel Processing and Applied Mathemat-
ics, vol. 8384 of Lecture Notes in Computer Science, pp. 571–581,
Springer, Heidelberg, Germany, 2014.

[3] S. P. Pissis, C. Goll, P. Pavlidis, and A. Stamatakis, “Accelerating
string matching on MIC architecture for motif extraction,”
in Parallel Processing and Applied Mathematics, vol. 8386 of
Lecture Notes in Computer Science, pp. 258–267, Springer,
Berlin, Germany, 2014.

[4] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance eval-
uation of sparse matrix multiplication kernels on Intel Xeon
Phi,” in Parallel Processing and Applied Mathematics, vol. 8385
of Lecture Notes in Computer Science, pp. 559–570, Springer,
Berlin, Germany, 2014.

[5] P. K. Smolarkiewicz, “Multidimensional positive de	nite advec-
tion transport algorithm: an overview,” International Journal for
NumericalMethods in Fluids, vol. 50, no. 10, pp. 1123–1144, 2006.

[6] M. Ciznicki, P. Kopta, M. Kulczewski, K. Kurowski, and P.
Gepner, “Elliptic solver performance evaluation on modern

hardware architectures,” in Parallel Processing and Applied
Mathematics, vol. 8384 of Lecture Notes in Computer Science, pp.
155–165, Springer, Berlin, Germany, 2014.

[7] K. Rojek and L. Szustak, “Parallelization of EULAG model
on multicore architectures with GPU accelerators,” in Parallel
Processing and Applied Mathematics, vol. 7204 of Lecture Notes
in Computer Science, pp. 391–400, Springer, Berlin, Germany,
2012.

[8] G. Hager and M. Wittmann, Introduction to High Performance
Computing for Science and Engineers, CRCPress, NewYork, NY,
USA, 2011.

[9] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick,
“Impact ofmodernmemory subsystems on cache optimizations
for stencil computations,” in Proceedings of the Workshop on
Memory System Performance (MSP ’05), pp. 36–43, Chicago, Ill,
USA, June 2005.

[10] M.Wittmann, G. Hager, J. Treibig, and G. Wellein, “Leveraging
shared caches for parallel temporal blocking of stencil codes on
multicore processors and clusters,” Parallel Processing Letters,
vol. 20, no. 4, pp. 359–376, 2010.

[11] K. Rojek, L. Szustak, and R. Wyrzykowski, “Performance
analysis for stencil-based 3D MPDATA algorithm on GPU
architecture,” in Parallel Processing and Applied Mathematics,
vol. 8384 of Lecture Notes in Computer Science, pp. 145–154,
Springer, Berlin, Germany, 2014.

[12] L. Szustak, K. Rojek, R. Wyrzykowski, and P. Gepner, “Toward
e�cient distribution of MPDATA stencil computation on Intel
MIC architecture,” in Proceedings of the 1st International Work-
shop on High-Performance Stencil Computations (HiStencils '14),
pp. 51–56, 2014.

[13] R. Wyrzykowski, K. Rojek, and L. Szustak, “Using blue gene/P
and GPUs to accelerate computations in the EULAG model,”
in Large-Scale Scienti�c Computing, vol. 7116 of Lecture Notes in
Computer Science, pp. 670–677, 2012.

[14] R. Wyrzykowski, L. Szustak, and K. Rojek, “Parallelization of
2D MPDATA EULAG algorithm on hybrid architectures with
GPU accelerators,” Parallel Computing. Systems & Applications,
vol. 40, no. 8, pp. 425–447, 2014.

[15] K. Kurowski, M. Kulczewski, and M. Dobski, “Parallel and
GPU based strategies for selected CFD and climate modeling
models,” Environmental Science and Engineering, vol. 3, pp. 735–
747, 2011.

[16] R. Wyrzykowski, L. Szustak, K. Rojek, and A. Tomas, “Towards
e�cient decomposition and parallelization of MPDATA on
hybrid CPU-GPU cluster,” in Large-Scale Scienti�c Computing,
vol. 8353 of Lecture Notes in Computer Science, pp. 457–464,
2014.

[17] Z. P. Piotrowski, A. A. Wyszogrodzki, and P. K. Smolarkiewicz,
“Towards petascale simulation of atmospheric circulations with
soundproof equations,”ActaGeophysica, vol. 59, no. 6, pp. 1294–
1311, 2011.

[18] D. K. Wójcik,, M. Kurowski, B. Rosa, and M. Z. Ziemiański,
“A study on parallel performance of the EULAG F90/95 code,”
in Parallel Processing and Applied Mathematics, vol. 7204 of
Lecture Notes in Computer Science, pp. 419–428, Springer,
Berlin, Germany, 2012.

[19] R. Wyrzykowski, K. Rojek, and L. Szustak, “Model-driven
adaptation of double-precision matrix multiplication to the cell
processor architecture,” Parallel Computing, vol. 38, no. 4-5, pp.
260–276, 2012.

14 Scienti	c Programming

[20] R. Cruz, M. Araya-Polo, and J. Cela, “Introducing the semi-
stencil algorithm,” in Parallel Processing and AppliedMathemat-
ics, vol. 6067 of Lecture Notes in Computer Science, pp. 496–506,
Springer, Berlin, Germany, 2010.

[21] K. Datta, S. Kamill, S. Williams, L. Oliker, J. Shalf, and K.
Yelick, “Optimization and performance modeling of stencil
computations on modern microprocessors,” SIAM Review, vol.
51, no. 1, pp. 129–159, 2009.

[22] K. Datta, M. Murphy, V. Volkov et al., “Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC ’08), pp. 1–12, IEEE, Austin, Tex, USA, November 2008.

[23] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3D scien-
ti	c computations,” in Proceedings of the ACM/IEEE Conference
on Supercomputing (SC ’00), p. 32, Dallas, Tex, USA, November
2000.

[24] J. Treibig, G. Wellein, and G. Hager, “E�cient multicore-aware
parallelization strategies for iterative stencil computations,”
Journal of Computational Science, vol. 2, no. 2, pp. 130–137, 2011.

[25] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing CUDAperfor-
mance in 3D stencil methods with annotated C,” in Proceedings
of the 25th ACM International Conference on Supercomputing
(ICS ’11), pp. 214–224, June 2011.

[26] J. Fang, A. L. Varbanescu, and H. Sips, Benchmarking Intel Xeon
Phi to Guide Kernel Design, Del� University of Technology
Parallel and Distributed Systems Report Series, PDS-2013-005,
2013.

[27] J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington,W. A.Ward,
and R. Campbell, “Understanding the performance of stencil
computations on Intel’s Xeon Phi,” in Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER ’13),
IEEE, September 2013.

[28] Intel Xeon Phi Coprocessor System So�ware Developers Guide,
Intel Corporation, 2013.

[29] Colfax International, Parallel Programming and Optimization
with Intel Xeon Phi Coprocessors, Handbook on the Develop-
ment and Optimization of Parallel Applications for Intel Xeon
Processors and Intel Xeon Phi Coprocessors, Colfax International,
Sunnyvale, Calif, USA, 2013.

[30] P. Smolarkiewicz andW.W. Grabowski, “�emultidimensional
positive de	nite advection transport algorithm: nonoscillatory
option,” Journal of Computational Physics, vol. 86, no. 2, pp. 355–
375, 1990.

[31] P. K. Smolarkiewicz and L. G. Margolin, “MPDATA: a 	nite-
di�erence solver for geophysical �ows,” Journal of Computa-
tional Physics, vol. 140, no. 2, pp. 459–480, 1998.

[32] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler trans-
formations for high-perfomance computing,” ACM Computing
Surveys, vol. 26, no. 4, pp. 345–420, 1994.

[33] K. Kennedy, “Fast greedy weighted fusion,” International Jour-
nal of Parallel Programming, vol. 29, no. 5, pp. 463–491, 2001.

[34] G. Gao, R. Olsen, V. Sarkar, and R. �ekkath, “Collective
loop fusion for array contraction,” in Languages and Compilers
for Parallel Computing, vol. 757 of Lecture Notes in Computer
Science, pp. 281–295, 1993.

[35] C. Ding and Y. He, “A ghost cell expansionmethod for reducing
communications in solvingPDEproblems,” inProceedings of the
ACM/IEEE Conference on Supercomputing (SC ’01), p. 50, ACM
Press, Denver, Colo, USA, November 2001.

[36] Intel Architectures Comparison, http://ark.intel.com/.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

