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This paper considers the literature and some new experi-
mental results important for adaptation of muscle fiber
cross-sectional area and serial sarcomere number. Two
major points emerge: (1) general rules for the regulation
of adaptation (for in vivo immobilization, low gravity
conditions, synergist ablation, tenotomy and retinaculum
trans-section experiments) cannot be derived. As a conse-
quence, paradoxes are reported in the literature. Some
paradoxes are resolved by considering the interaction be-
tween different levels of organization (e.g. muscle geome-
trical effects), but others cannot. (2) An inventory of signal
transduction pathways affecting rates of muscle protein
synthesis and/or degradation reveals controversy concern-
ing the pathways and their relative contributions.

A major explanation for the above is not only the
inherently limited control of the experimental conditions
in vivo, but also of in situ experiments.

Culturing of mature single Xenopus muscle fibers at high
and low lengths (allowing longitudinal study of adaptation
for periods up to 3 months) did not yield major changes in
the fiber cross-sectional area or the serial sarcomere

number. This is very different from substantial effects
(within days) of immobilization in vivo. It is concluded
that overall strain does not uniquely regulate muscle fiber
size.
Force transmission, via pathways other than the myo-

tendinous junctions, may contribute to the discrepancies
reported: because of substantial serial heterogeneity of
sarcomere lengths within muscle fibers creating local varia-
tions in the mechanical stimuli for adaptation. For the
single muscle fiber, mechanical signalling is quite different
from the in vivo or in vitro condition. Removal of tensile
and shear effects of neighboring tissues (even of antago-
nistic muscle) modifies or removes mechanical stimuli for
adaptation.
It is concluded that the study of adaptation of muscle

size requires an integrative approach taking into account
fundamental mechanisms of adaptation, as well as effects
of higher levels of organization. More attention should
be paid to adaptation of connective tissues within
and surrounding the muscle and their effects on muscular
properties.

The need for understanding muscular adaptation

Major determinants of the capability of movement
induced by a muscle activity are (1) the maximum
(optimal) force that can be exerted by an active
muscle and (2) the length at which optimal force is
exerted (muscle optimum length), as well as (3) its
length range of active force exertion. These factors
can readily be quantified in experimental research on
experimental animals, but are far more difficult to
assess in humans.
Optimal muscle force is largely determined by the

physiological cross-sectional area of the muscle (Af,
usually defined at optimum length). The ratio of
muscle volume to (mean) muscle fiber optimum
length (or alternatively mean fiber length at muscle
optimum length) yields a fairly good estimate for Af.
It should be noted that this is also true for very

pennate muscle in which the estimate has been very
often confounded by erroneously introducing angu-
lar factors into the calculation (e.g. Fukunaga et al.,
1996). Another important factor is the measurement
of fiber or fascicle lengths at a standard muscle length
(e.g. optimum length or another standard).
The muscular length range of active force exertion

is determined primarily, but not exclusively, by the
number of sarcomeres arranged in series within the
muscle fibers (for a review on additional contributing
factors see Huijing, 2000). Unfortunately, this factor
cannot readily be estimated for in vivo muscles.
These prime parameters Af and serial sarcomere

number are adjusted so finely to functional demands
in daily life, that healthy people can use their muscles
without much attention to the tasks to be executed.
This means that as the body grows the fine-tuning to
functional tasks remains. A possible exception may
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be the growth spurt during initial phases of puberty.
However, in many pathological cases, muscular
properties may limit such easy use of muscle. For
example, a loss of muscle mass may occur in pathol-
ogies such as cerebral palsy (Sage, 1992; Young,
1994), spinal cord injury (Thomas et al., 1997; Castro
et al., 1999), chronic obstructive pulmonary disease
(Gosker et al., 2000) as well as cardiac cachexia
(Mancini et al., 1992; Gosker et al., 2000; Schulze
et al., 2002). In such cases, muscle fibers are not
adapted optimally (regarding Af and/or serial sarco-
mere number) to the daily tasks, causing limited
mobility in those patients.
The development of effective therapy requires a

fundamental knowledge of the mechanisms affecting
hypertrophy/atrophy and adaptation of the number
of sarcomeres in series (below further referred to as
serial sarcomere number). Also for sports sciences
such knowledge may be important to develop im-
proved training methods.
This review will integrate, on the one hand, results

regarding adaptation of the prime parameters Af and
serial sarcomere number from experiments per-
formed in vivo, in situ as well as in vitro, with those
of mathematical modelling of muscle (bioengineer-
ing) on the other hand. Such a study involves very
different levels of organization, at the level of (a) the
organism, (b) the limb, (c) the muscle group, (d) the
organ (i.e. muscle) and (e) the cell (i.e. muscle fiber).
Therefore, for the study of muscle properties an

integrative approach with respect to the level of
organization has recently been argued to be neces-
sary (Huijing, 2003), because of effects of myofascial
force transmission. This type of force transmission
will also be considered below.

Classical animal experimentation and some human in
vivo experiments

Our, rather limited, insights into mechanisms of
muscular adaptation are based predominantly on
these types of experiments. Several relatively simple
to impose experimental conditions have been used
to study in vivo effects on Af and serial number of
sarcomeres, as well as functional consequences of
any such adaptation. Note that in such animal
experiments the functional assessments were always
made on fully dissected muscle active in situ.
Researchers in this field are usually faced immedi-

ately with a difficult decision: To what should the
results of an experimental muscle be compared?
There are usually two options, each with its own
advantages and disadvantages. (1) Comparison with
the muscle within contra-lateral leg of the animal. An
obvious advantage is that inter-individual variance
does not affect the results. In this case the sometimes-

implicit assumption is made that the contra-lateral
muscle serving as control is not affected by the
intervention. It is clear that such an assumption
may be false in many cases: it is unlikely that the
use of the contralateral limb will be unchanged,
if very substantial changes are imposed on the
experimental limb of an animal or human. In some
cases it is clear that changes in some parameters of
the contra-lateral muscle may be higher than in the
experimental muscle (Heslinga & Huijing, 1993).
(2) Comparison with muscles of other individuals
not undergoing the intervention avoids comparisons
between muscles that both may have adapted, but
introduces inter-individual variance into the results.
Unfortunately, in this type of work, longitudinal

studies studying effects and mechanisms of adapta-
tion are usually not possible.

Natural growth

In young animals that are growing in body size, the
growing bones will stretch the muscles and keep them
dynamically active at relatively higher lengths and
possibly enhanced length ranges because of increased
moment arms. It is obvious that such conditions
constitute a signal for adaptation of serial sarcomere
number as well as Af. Generally, in healthy animals
for both variables sizable increases have been re-
ported accompanied by increase in optimum length
(Crawford, 1954; Goldspink, 1964, 1968; Williams &
Goldspink, 1971; Tardieu et al., 1977; de Koning et al.,
1987; Heslinga & Huijing, 1990; Heslinga et al., 1995).

Immobilization of joints

Muscle kept at low length

In this experiment, sustained maximum ankle plantar
flexion in a plaster cast immobilized cat or rodent
soleus muscle at low length was maintained (Tabary
et al., 1972; Goldspink et al., 1974; Williams &
Goldspink, 1978; Spector et al., 1982; Heslinga &
Huijing, 1993). Consistently, such experiments
yielded reductions in the number of sarcomeres in
series of m. soleus (� 25% to � 40%) after several
weeks of immobilization. Findings consistent with
this were also reported for the diaphragm for em-
physematous rats (Shrager et al., 2002).
Also in m. soleus, Af decreased by 35–40% after

low length immobilization (Spector et al., 1982;
Heslinga et al., 1995). As a consequence optimal force
was reduced, and this force was attained near the
length of immobilization, i.e. at a considerable short-
ening of the muscle (Williams & Goldspink, 1978).
Such results have led to the classical concept that

the actual experimental condition of the muscle
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determines the processes of adaptation (Williams &
Goldspink, 1978).
Intact innervation does not seem to be a major

factor in this type of adaptation, as in denervated
muscles immobilized at low length the serial sarco-
mere number was reduced equally as within muscles
with intact innervation. The process of adaptation
occurred only slower (Goldspink et al., 1974; Hayat
et al., 1978).
However, contrasting findings are reported also

for adaptation of serial sarcomere number, particu-
larly for highly pennate muscle. Tardieu et al. (1974)
found no change in serial sarcomere number for cat
tibialis anterior muscle after immobilization at low
length. In contrast, Tabary et al. (1972, cat soleus
muscle) as well as Heslinga and Huijing (1993, rat
soleus) found substantially decreased serial sarco-
meres numbers (� 20% to � 40%). However, for
medial gastrocnemius muscle of the same rats (He-
slinga & Huijing, 1993) immobilized at similar nor-
malized fiber lengths they found no decrease in serial
sarcomere number, but did find substantial decreases
in optimum muscle length as well as significant
atrophy.
Immobilization at low lengths, interrupted by

short periods during which the muscle was kept at
high lengths, also contributed to recognizing the very
high adaptive signal implicit in placing the muscle at
high lengths. Gomes et al. (2004) imposed maximally
high lengths (presumably through maximal dorsal
flexion of the ankle) only once a week for 40min, on
rat soleus muscle immobilized in shortened position.
This short high length exposure provided significant
protection against muscle fiber atrophy. In contrast,
it was not sufficient to prevent the reduction of
muscle weight and of serial sarcomere number. Ear-
lier Williams (1990) had shown that periods at high
lengths as short as 1/2 an hour daily were sufficient,
not only to prevent loss of sarcomeres, but actually
to cause an increase in serial sarcomere number.

Muscle kept at high length

The findings regarding the powerful effects of tem-
porarily keeping immobilized muscle at high lengths
are consistent with the general anabolic effects of
stretching a muscle to high lengths reported by
Goldspink (1977). Therefore, it is not surprising
that permanent immobilization at high lengths
yielded increases in serial sarcomere number and at
least the prevention of major atrophy or even in-
creased muscle fiber diameters (Crawford, 1954;
Tabary et al., 1972; Tardieu et al., 1974; Williams
& Goldspink, 1978). Consistent findings were also
reported for the diaphragm for emphysematous rats
after lung volume reduction surgery (Shrager et al.,
2002).

An important finding of those studies on muscles
of the lower limb was again that the new optimum
length is found near the length of immobilization.
For muscles immobilized at high lengths (i.e. over

optimum length), the increase in the serial sarcomere
number was not affected by muscular activity (Wil-
liams & Goldspink, 1978). These findings indicate
that activity is not necessary for adaptation of the
serial sarcomere number.

Low gravity conditions and limb suspension and bed rest

Human space travel has led to a highly increased
interest in effects of micro-gravity on skeletal muscle.
On earth, this has also led to enhanced interest in the
effects of limb or body suspension, presumably being
a valid model for low gravity conditions. A plethora
of literature can be found indicating that skeletal
muscles are vulnerable to marked atrophy under
micro-gravity (Nikawa et al., 2004). Sometimes,
such atrophy is reported in terms of changes in
muscle volume (Akima et al., 2000) and sometimes
as decreases in physiological cross-sectional area of
muscle (Miyamoto et al., 1998; Wimalawansa et al.,
1999) or muscle fibers (Roy et al., 1999a). Even short
periods of unweighting because of micro-gravity or
limb suspension result in decreases in the cytoplasmic
volume-to-myonucleus ratio (Kasper & Xun, 1996).
Somewhat surprisingly, we have not been able to

find reports regarding effects of micro-gravity or
unweighting on variables of length–force character-
istics or serial sarcomere number.
It is clear that, also in this area of research, effects

of actual length of the muscle or tendon complex are
often disregarded. How important such effects may
be, is evident from the finding reported by Goldspink
et al. (1986) that the much smaller atrophy of
extensor muscles in suspended limbs represents an
underestimate of the true atrophic effect because of
high length-related protein synthesis enhancement in
those muscles. It is even conceivable that at least
some of the differential atrophy effects reported for
muscles of different fiber type compositions may be
related to such length effects.

Tenotomy, myotomy or denervation of synergistic
muscles: overloading agonistic muscle

A large body of literature may also be found on what
is called compensatory hypertrophy after tenotomy,
or more often ablation, of synergist muscles. It
should be noted that synergist tenotomy does not
always have the expected hypertrophy effect (Ohira,
1989). Regarding many effects, related to compensa-
tory hypertrophy, the literature is contradictory. This
is particularly true for the question of occurrence of
hyperplasia. A meta-analysis of 17 studies has been
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suggested to show significant increases in muscle
fiber number (hyperplasia) (Kelley, 1996). However,
previously, severe criticism had been directed (e.g.
Taylor & Wilkinson, 1986) to, at least, some of the
methods used to estimate muscle fiber number ex-
periments. This criticism led to the conclusion that
hyperplasia has not yet been substantiated.
On the other hand, after compensatory hypertro-

phy many small diameter fibers were seen in muscles
undergoing such hypertrophy. These fibers appear to
be new fibers arising from satellite cells. They were
not seen after irradiation, which prevents hypertro-
phy by impairing activation, proliferation and/or
differentiation of satellite cells (Phelan & Gonyea,
1997). Yet, an increased number of branched muscle
fibers (Tamaki et al., 1996) may very well explain
findings interpreted as hyperplasia. In such a case,
the branching of muscle fibers should be interpreted
more as incomplete fusion during a process of
regeneration after damage rather than splitting of
muscle fibers.
A usually very sizable increase in muscle mass and

hypertrophy of muscle fibers is a very general finding
(see most references in this paragraph). An interest-
ing observation may be the following contrast be-
tween two types of results found sometimes: on the
one hand, we have muscle fiber type conversion to
slow types (i.e. an increase in percentage of type I
muscle fibers; Degens et al., 1995), as well as an
increasing slower myosin heavy chain (MHC) iso-
forms and a concomitant decrease in the faster MHC
isoforms (Stone et al., 1996). On the other hand is the
finding that isometric twitch time to peak tension
remains unaltered. This could lead to the hypothesis
that the slower intrinsic velocity of contraction is
compensated by an increased number of serial sar-
comeres. Freeman and Luff (1982) reported such an
increase in the number of serial sarcomeres.
The results even of ablation experiments have been

interpreted almost exclusively in simple terms of
effects of overload of the remaining agonistic muscles.
However, apart from myofascial effects to be dis-
cussed below, it is already clear that the surgical
intervention itself creates many signals for adaptation:
activated fibroblasts displaying a vesicular nucleus
with prominent nucleoli and an outstanding increase
in cytomembranes, particularly the rough endoplas-
mic reticulum, and the Golgi complex were reported
for both sham-operated and experimental animals
(Zamora & Marini, 1988). Damage, rather than an
increase in muscle activity, may play a more signifi-
cant role in at least the early activation of satellite cells
during compensatory hypertrophy (Snow, 1990).
Such conclusions are also supported by the similar

overall effects on muscle seen after injection of
damaging muscle compounds (Rosenblatt & Woods,
1992).

In any case, compensatory hypertrophy should
also be regarded with myofascial effects in mind.

Retinaculum release: changing muscle–tendon
complex length and moment arm

It has been hypothesized that the serial sarcomere
number is determined by the magnitude of excursion
performed by the muscle (e.g. Herring et al., 1984;
Burkholder & Lieber, 1998; Koh & Herzog, 1998).
For a start, this seems to be quite a reasonable
hypothesis that may be derived from the fact that
during natural growth with increased body size, both
moment arms and serial sarcomere numbers increase
substantially. Retinaculotomy is supposed to in-
crease the moment arm (i.e. the distance between
the muscle line of pull and the axis of joint rotation)
and therefore leads to enhanced excursion of the
muscle for identical joint ranges. It also leads to
a changed joint angle muscle length relation: for a
given joint angle the muscle–tendon complex will be
shorter. The presence of two opposing signals (short
muscle, increased length range) made it an appar-
ently elegant experiment to identify the most impor-
tant parameter for adaptation of muscle size.
However, experiments designed to do this, yielded
opposite conclusions: Burkholder and Lieber (1998,
adult mouse anterior tibial muscle) found a reduction
of serial sarcomere number, Koh and Herzog (1998,
young rabbits) found an increase. Such contrasting
findings regarding the adaptation of the serial sarco-
mere number indicate that either species differences
may be very important or the imposed in vivo
conditions may not have been similar.

Explaining some paradoxes: adaptation results are
dependent on muscle and tendon architecture as well
as on age

Immobilization of young growing animals

Immobilization of muscle of young animals at high
length yielded similar results to immobilization of
adult animals at low length (Tardieu et al., 1977).
Tardieu et al. (1977) also reported how to interpret
this initially baffling result: the length of tendon of
the young muscles immobilized at high length in-
creased very much changing the experimental condi-
tions of the muscle belly and of the fibers from high-
to low-length conditions during the experiment.

Effects of hyper or atrophy in pennate muscle

In parallel-fibered muscle or pennate muscle of a low
degree (i.e. muscles with the line of pulls of muscle
and of its fibers almost parallel) the effects of adapt-
ing Af and serial number of sarcomeres are indepen-
dent: for example, decreasing the serial sarcomere
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number shortens the muscle and atrophy decreases
muscle thickness. Each one of these factors does not
affect the other. In contrast, because of geometrical
effects, changes of the diameter of muscle fibers of
very pennate muscle will also affect muscle length.
One of the first authors to consider such conse-
quences of muscle geometry in the analysis of adap-
tation effects was Swatland (1980).
Another paradox: even within the same young

adult rat, the soleus muscle adapts serial sarcomere
number during growth and immobilization, but the
overlying gastrocnemius muscle does not. Also, this
paradoxical finding was resolved by taking into
account the geometric effects of very pennate gastro-
cnemius muscle (Heslinga & Huijing, 1993; Heslinga
et al., 1995). This means that during the period of
immobilization, atrophy released the muscle from the
low fiber length-related signal to remove sarcomeres
in series. This happens as follows: the muscle is kept
in the maximally in vivo shortened position with
short fiber and sarcomere lengths. In an unrestrained
muscle, progressive atrophy would lead to further
muscle belly shortening without changing fiber and
sarcomere lengths, exclusively because of the geo-
metric effect. If the muscle length is the restrained
variable, the muscle belly cannot shorten because of
atrophy, but can exclusively accommodate the geo-
metric effect by lengthening its fibers and sarcomeres
(Fig. 1). If this effect of atrophy is large enough to
bring the fibers near their optimum length, we should
expect the net long-term effects of immobilization at

optimum length. Such adaptation does not include
adaptation of serial sarcomere number.
Similar effects also explain the paradox of oppos-

ing results described above for retinaculum release
experiments of Koh and Herzog (1998) and Bur-
kholder and Lieber (1998). Retinaculum release has
two acute effects: (1) shortening of the muscle and
muscle fibers, because of a more direct path of the
tendon from insertion to the muscle belly and (2)
increasing the moment arm of the muscle at the joint,
so that increased muscular length ranges are neces-
sary to move the joint through an identical angle
range as prior to the retinacular release.
In their argumentation, Koh and Herzog failed to

take into account additional effects of muscle atro-
phy, which they reported for the experimental leg
with respect to the control muscle. Following the
argumentation presented above, we draw the follow-
ing conclusion: because of major atrophy, the muscle
fibers of rather pennate tibialis anticus (TA) muscle
were active at higher lengths than before the atrophy.
Therefore, one should expect adaptation, i.e. an
increased serial sarcomere number, based on effects
of high fiber lengths, instead of causally relating
increased serial sarcomere number and the enlarged
muscular excursion. Results for the adult mouse
muscle with resected retinaculae (Burkholder & Lie-
ber, 1998) confirm such reasoning: in this case the
physiological cross-sectional area (Af) was not chan-
ged, and therefore any confounding change in the
relation of muscle length and muscle fiber length is
not likely.
Therefore, the finding that the enlarged excursion

of these muscles was accompanied by a reduction in
the serial sarcomere number seems to support the
notion that excursion per se is not a most important
regulator of the serial sarcomere number. In agree-
ment with previous literature on muscular adapta-
tion, the specific conditions of the experiment of
Burkholder and Lieber, being the lower length of
muscle fibers, because of retinacular release must
have been the determining factor for adaptation of
serial sarcomere number.
A major lesson to be drawn from these paradoxes

is that the conditions of the muscle fibers and not of
the muscle–tendon complex or muscle seem to de-
termine the adaptation effect. This means that always
effects of serial elasticity, effects of pennation, etc.
and changes thereof have to be taken into account
before adaptation mechanisms can be adequately
studied.

Molecular mechanisms of adaptation of muscle size

Despite the controversies shown by the classical
experiments, such experiments have taught us that

Fig. 1. Schematic representation of effects of atrophy and
hypertrophy and immobilization on lengths of muscles and
fibers of pennate muscle. (a) Unrestrained condition. Note
that pennate muscle will drastically change its length with
changes in fiber diameter because of atrophy or (hyper-)
trophy. (b) Immobilized condition. Atrophy would lead to a
shortened length in pennate muscle. Because of the restraint
of immobilization the muscle can only keep its length by
lengthening muscle fibers. The arrow indicates immobilized
length.
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at least some physiological conditions are able to
trigger adaptation of muscle size. However, this is
only a limited aspect of the unravelling of the
mechanisms underlying the regulation of muscle
size. Advances in molecular biology have facilitated
the characterization of relevant signalling at the
cellular level (i.e. muscle fiber), as well as character-
ization of biochemical pathways downstream to the
signals applied to the muscle fibers.
Adaptation of muscle fibers is always the net effect

of the dynamics of synthesis and degradation of
proteins that constitutes the force generating and
passive elements of the muscle fiber. However, it
should be kept in mind that in muscular adaptation
not only the muscle fiber needs to adapt to new
circumstances, but, in a coordinated fashion, also the
basal lamina as well as collagen fiber reinforced
extracellular matrix (ECM) components (the endo-,
peri- and epimysial stroma of the muscle, as well as
its aponeuroses).
Nevertheless, we will presently focus on muscle

fiber processes.

Protein synthesis

In a theoretical analysis of changes in the rate of
muscular protein synthesis, the elements contributing
to such changes may be distinguished according to
two locations: outside the muscle fiber and inside the
muscle fiber. The former involves changes of satellite
cell activity and nucleus donation to the muscle fiber,
as well as changing sarcolemmal receptor sensitivity
for growth factors. The latter involves changing the
quantity of mRNA and a change in the rate of
translation of mRNA.

Extracellular events

The number of nuclei within a muscle fiber may
increase after proliferation of satellite cells and sub-
sequent fusion with the hosting muscle fiber. Note
that muscle fibers may also lose myonuclei by DNA
degradation. For a given rate of transcription of
mRNA per myonucleus, a change in the number of
myonuclei within the sarcoplasm implicates a change
in total capacity and rate of mRNA transcription.

Activation of satellite cells, satellite cell proliferation
and fusion with the hosting muscle fiber. Within
mammalian as well as amphibian muscle, the number
of myonuclei per unit fiber length is proportional to
the cross-sectional area of the muscle fibers (Roy et
al., 1999b; Jaspers, 2002). This indicates that within
healthy muscle fibers in vivo the volume of cytoplasm
per myonucleus is strictly regulated. Such regulation
was also shown after experimental hypertrophy, of
rat as well as cat muscle, in response to functional

overload by removal of synergistic muscles (Allen
et al., 1995; Roy et al., 1999b). The satellite cells, being
muscle stem cells located between the basal lamina
and the sarcolemma (Mauro, 1961), are sources
for additional myonuclei (Moss & Leblond, 1971).
Nevertheless, induction of compensatory hypertro-
phy and hypertrophy in response to weight bearing
at high length, is possible also without proliferation/
fusion of satellite cells (Dunn et al., 1999; Lowe &
Alway, 1999; Rommel et al., 2001). In partial agree-
ment with this, Kadi et al. (2004) reported increased
fiber cross-sectional area in humans because of heavy
resistance training, without an increase in the num-
ber of myonuclei, despite the fact that the number of
satellite cells had increased.
In vivo, rat and quail muscle hypertrophy in

response to an increase workload or continuous
weight bearing (at high length) is accompanied by
proliferation of satellite cells and fusion with the
hosting muscle fiber (Winchester et al., 1991; Carson
& Alway, 1996; Phelan & Gonyea, 1997). The
importance of satellite nuclei incorporation during
hypertrophy is further indicated by the lack of
compensatory hypertrophy of muscles g-radiated
prior to the hypertrophic stimulus (Rosenblatt
et al., 1994; Phelan & Gonyea, 1997; Barton-Davis
et al., 1999). On the basis of the literature cited we
conclude that it is likely that activation of satellite
cells is very important for the induction of hyper-
trophy. However, conditions, for which this may not
be the case, deserve further research.
Particularly for postnatal growth and hypertrophy

of mature muscle, several growth factors have been
identified in muscle, which are likely to be involved in
stimulating proliferation and fusion of satellite cells:
(1) during postnatal growth, the hepatocyte growth
factor (HGF) is expressed in the rat extensor digi-
torum muscle, but not in the mature muscle (Jen-
nische et al., 1993), (2) weight bearing at high length
enhances expression of basic fibroblast growth factor
(bFGF) in the wing muscle of the chicken (Mitchell
et al., 1999). (3) Immobilization of rabbit muscle at
high length (Yang et al., 1997) or that in combination
with increased muscle activation (McKoy et al.,
1999) stimulates expression and secretion by muscle
fibers of insulin-like growth factors (IGFs): IGF-1
and the IGF-1 splice variant called mechano-growth
factor (MGF). The capability of such growth factors
to bind to receptors on the satellite cell plasmalemma
and stimulate proliferation and differentiation of
muscle precursor cells has been shown for in vitro
cultures of myoblasts and satellite cells (for compre-
hensive reviews see Florini et al., 1996; Grounds,
1998; Hawke & Garry, 2001; Adams, 2002; Spangen-
burg et al., 2002). Whether these growth factors
act independently, or in synergy, remains a matter
of debate.

Huijing & Jaspers

354



The results of some of the in vitro experiments
indicate the capability of IGF-1, bFGF or HGF to
stimulate cell proliferation directly (Hawke & Garry,
2001). In contrast, there are also reports that IGF-1
and HGF are unable to induce myoblast prolifera-
tion themselves, but require unidentified serum com-
ponents to allow myoblast division to progress
(Florini et al., 1996; Grounds, 1998). These data
are consistent with the finding that in vitro the
simultaneous presence of bFGF and IGF-1 in a
serum-free medium yielded remarkably higher rates
of satellite cell proliferation, than when these cells
were exposed to these factors independently (Doumit
et al., 1993; Allen et al., 1995). Such findings indicate
that proliferation of satellite cells is regulated by
complex interactions between different growth fac-
tors. The feature, that may explain why the mechan-
isms underlying these interactions have remained
undiscovered as yet, is that in order to be successful
most cultures require a medium, which is supplemen-
ted with serum of unknown composition regarding
growth factors and other peptides.
It should be noted that Nitric oxide synthase

(NOS) producing nitric oxide (NO) is also involved
in stimulating proliferation and fusion of satellite
cells (Anderson, 2000; Anderson & Pilipowicz, 2002).
Myostatin, opposing effects by the factors promot-

ing proliferation and fusion with the hosting muscle
fiber, has been identified as an inhibitor of satellite
cell proliferation (Thomas et al., 2000; McCroskery
et al., 2003). This correlates with the finding that hind
limb suspension is accompanied by enhanced myos-
tatin expression and a substantial reduction of the
number of myonuclei (Carlson et al., 1999; Kawada
et al., 2001). Hypothetically, myostatin prevents
replacement of degrading myonuclei, causing a re-
duction of the capacity and rate of the transcriptional
machinery. Accordingly, myostatin may be viewed as
a mediator of muscle atrophy induction. However, it
should be noted that such a hypothesis was not
confirmed for myostatin-deficient mice, since they
lost more muscle mass during hind limb suspension
than wild types (McMahon et al., 2003). Therefore,
the results regarding a role of myostatin in the
induction of atrophy remains ambiguous.
Therefore, it must be concluded that the absence of

factors promoting satellite cell proliferation is likely
to be involved in atrophy induction.

Regulation of receptor binding of growth factors.
Heparan sulfate is one of the macromolecules of the
ECM that structures water around itself and causes a
less than full fluid consistency of the ECM. The
sulfated glycosaminoglycan branches of heparan
sulfate bind growth factors. An effect of binding of
bFGF to heparan sulfate is to increase the affinity of
the plasmalemma FGF receptor and bFGF for each

other (Roghani et al., 1994; Lin et al., 1999). Other
ligands may cause such effects as well: the effects of
IGF-1 are modulated by one of six identified IGF-1
binding proteins, which affect the affinities of the
IGF-1 receptor (IGFR1) and IGF-1 for each other
(for a review see Jones & Clemmons, 1995; Florini et
al., 1996). IGF-1 binding proteins do associate with
proteins at the cell surface or further away within the
ECM and by this increase the local concentrations of
IGF-1 in the vicinity of the IGFR1 (Jones & Clem-
mons, 1995).

Intracellular events

For a given number of myonuclei per muscle fiber,
the rate of transcription is affected by the presence or
absence of transcription factors, which either facil-
itate or inhibit transcription of muscle-specific genes.
A higher quantity of mRNA implicates the presence
of more templates for mRNA translation and hence
higher capacity and rate of synthesis of the corre-
sponding protein.
During hypertrophy of rat plantar flexor muscles

in response to either increased activation or removal
of synergistic muscles, MHC mRNA was increased
(Periasamy et al., 1989; Wong & Booth, 1990). In
addition, induction of hypertrophy of chicken ante-
rior latissimus dorsi muscle by continuous weight
bearing (at high length) was accompanied by an
increase in a-skeletal actin mRNA (Carson & Alway,
1996; Carson, 1997).
The rate of translation of mRNA into peptides is

determined by the number of ribosomes per mRNA
as well as the rate of translation per unit mRNA.

Biochemical-signalling pathways involved

The biochemical-signalling pathways (Fig. 2), which
are likely to be involved in muscular adaptation, will
be discussed briefly below.

Regulation of transcription of mRNA. In general,
two groups of pathways are distinguished: the cal-
cium/calmodulin-dependent pathways and the mito-
gen-activated protein kinase (MAPK) pathways.
Both are involved in the transcriptional regulation
of the adaptation of muscle size.

Calcium/calmodulin signalling. Intracellular
[Ca21] regulates the activity of calcineurin, a serine/
threonine phosphatase and calcium/calmodulin pro-
tein kinase (CaMK) (Schulman, 1993; Klee et al.,
1998). During both immobilization at high muscle
length and enhanced muscle activity, the sarcoplas-
mic [Ca21] are expected to be elevated. In the case of
high muscle fiber length, Ca21 may enter the muscle
fiber via stretch-activated channel within the sarco-
lemma, whereas increased activity implicates higher
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or more frequent release of Ca21 from the sarcoplas-
mic reticulum.
Inhibition of calcineurin-activity-induced atrophy

in mouse plantaris muscle, during compensatory
hypertrophy as well as during recovery from hind
limb suspension blocks the hypertrophic response
(Dunn et al., 1999; Mitchell et al., 2002). This
suggests that calcineurin is required for the induction
of hypertrophy. The requirement of enhanced activ-
ity of CaMK in the adaptation of muscle size has not
been indicated as yet, but is suggested as the activity
of CaMK was increased in chicken muscle after a

period of weight bearing at high length (Fluck et al.,
2000).
Downstream targets of the calcineurin and CaMK-

signalling pathways are transcription factors, such as
the nuclear factor of activated T cells (Dolmetsch
et al., 1997; Bassel-Duby & Olson, 2003), myocyte
enhancer factor 2 (MEF2; Passier et al., 2000; Wu et
al., 2001) and the GATA transcription factors (Mu-
saro et al., 1999). Note that GATA represents a
particular sequence of nucleotides within the DNA.
Specific GATA transcription factors bind to this
sequence to promote gene transcription.

Fig. 2. Schematic representation of major biochemical-signalling pathways involved in the regulation of muscle size. Two
neighboring muscle fibers are drawn schematically with their sarcolemma and basal lamina (BL, thick solid lines). The type I
collagen fiber reinforcement (e.g. endomysium) of the extracellular matrix (ECM) is not shown for reasons of clarity (for this
structure and details of BL, see Fig. 3). The abbreviations written at the location of the ECM indicate growth factors or
cytokines that have been secreted there by the muscle fibers. Growth factors are proteins with hormone-like functions.
Cytokines are glycoproteins (i.e. compounds consisting of mostly proteins, but with some carbohydrates as well) with such
functions. Major growth factors and cytokines are: insulin-like growth factors (IGF), basic fibroblast growth factor (bFGF),
hepatocyte growth factor (HGF), mechano-growth factor (MGF)and myostatin, as interleukin-4 (IL-4). They bind to a
number of sarcolemmal receptors and affect chemical-signalling pathways by doing so. Overviews of key pathways that are
activated by effects of mechanical strain and/or increased contractile activity are shown for major effects. Note that these effects
are initiated at the basal lamina and sarcolemma, the latter indicated by the chain-like elements: (I) effects on the quantity of
transcriptional machinery. By fusion of satellite cells (SC) with the muscle fiber the number of nuclei is increased (cf.
‘‘Molecular mechanisms of adaptation of muscle size’’), which affects the overall rate of DNA transcription, even if this rate
per nucleus is constant. (II) Given a set number of nuclei, all pathways leading to altered rates of DNA to mRNA transcription
are indicated in block II. The affected transcription rates to be considered are those of mRNA related to the synthesis of
muscular proteins directly (either contractile or cytoskeletal) or indirectly in two ways (a) via mRNA production for growth
factors or cytokines or (b) transcription factors. This block contains the major pathways described individually in ‘‘Molecular
mechanisms of adaptation of muscle size’’. Note that PKC pathways are activated by the release of calcium from the
sarcoplasmatic reticulum directly or via phospholipids in the sarcolemma. For explanation of the abbreviations refer to the text
in these sections. (III) The pathways affecting the translation of mRNA into proteins are grouped in block III. This block
contains the pathways described individually in ‘‘Molecular mechanisms of adaptation of muscle size’’. For explanation of
these abbreviations refer to the text in these sections. SR indicates the sarcoplasmatic reticulum releasing Ca ions into the
cytoplasm. rRNA represents ribosomal RNA, which constitute the body of ribosomes, which are the locus of mRNA to
protein translation.
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Activation of calcineurin and CaMK causes confor-
mational changes to these transcription factors, which
either activate them or stimulates their translocation
from the cytoplasm to the myonucleus. Both effects
cause enhanced gene transcription, because activation
and translocation of transcription factors facilitate
their binding to promotor regions of muscle genes
and by doing so enhance the rate of transcription.
Transcription of MHC and a-skeletal actin is

reported to be affected by such transcription factors
(e.g. Maeda et al., 2002; Sepulveda et al., 2002; Giger
et al., 2004; McCullagh et al., 2004). This could be
either a direct effect, or alternatively an indirect
effect. The indirect effects occur through stimulation
of the expression of other types of transcription
factors, such as the serum response factor (SRF)
and the myogenic regulatory factors Myf5, MyoD,
myogenin and MRF4 (Carson & Alway, 1996; Bas-
sel-Duby & Olson, 2003; Davis et al., 2003). This last
group of transcription factors is involved in regula-
tion of promotor activity of muscle-specific genes
(e.g. Carson et al., 1995).
In addition, some of these transcription factors

also enhance expression of growth factors such as
IGF-1 (McCall et al., 2003) and cytokines (i.e.
glycoproteins with hormone-like functions) such as
interleukin-4 (Horsley et al., 2001). These growth
factors are not only involved in stimulating prolif-
eration of satellite cells, but may also affect other
signalling pathways. For example, binding of IGF-1,
to the IGFR1, stimulates transcription and transla-
tion of mRNA via the MAPK (see ‘‘MAPK signal-
ling’’) and the phosphatidylinositol 3 kinase (PI3K)–
mammalian target of rapamycin (mTOR) pathway
(see ‘‘Control mRNA translation’’).
Whether the Ca21/calmodulin-activated pathways

play a crucial role in the induction of muscle hyper-
trophy is subjecta of controversy (e.g. Dunn et al.,
1999; Bodine et al., 2001b; Mitchell et al., 2002;
Bassel-Duby & Olson, 2003). Inhibition of the calci-
neurin activity in skeletal muscle during compensatory
hypertrophy or recovery from disuse-induced atrophy
has been shown to block the hypertrophic response
(Dunn et al., 1999; Mitchell et al., 2002). However,
this finding could not be confirmed (Bodine et al.,
2001b). To answer the question if these differences in
experimental results are because of differing experi-
mental conditions, further investigation is required.

MAPK signalling. Three main branches are
generally distinguished for MAPK signalling:

(B1) the c-Jun N-terminal protein kinase,
(B2) the extracellular regulated kinase (ERK) and
(B3) the 38 kDa stress-activated protein kinase (p38)

pathways.

Activated MAPK will phosphorylate and activate
transcription factors such as c-fos, c-jun, c-myc and
Elk1, as well as other kinases, which affect SRF
activity and a-skeletal actin expression (Davis,
1993; Ruwhof & van der Laarse, 2000). Generally,
activation of the MAPK pathways during hypertro-
phy is mediated via (1) receptor binding of growth
factors (e.g. IGF-1) (Florini et al., 1996), (2) activa-
tion of protein kinase C (PKC) or (3) integrin
(Carson & Wei, 2000) or dystroglycan signalling
(Rando, 2001).
Binding of insulin or IGF-1 to their receptors

results in phosphorylation of the insulin receptor
substrate (IRS-1) and the Src homology containing
protein (ShC), both which serve as multi-component
docking platforms for proteins that contain SH2
domains. Once bound to IRS-1 or ShC, these pro-
teins are able to activate the GTPase called Ras
(McCormick, 1993), which in turn activates all three
different MAPK pathways (Davis, 1993; Florini et
al., 1996). In vivo, inhibition of the MAPK/ERK
pathway within rat plantaris muscle prevents IGF-1-
induced hypertrophy of muscle (Haddad & Adams,
2004), suggesting a crucial role for this pathway in
the regulation of muscle size.
Rat soleus muscle can be genetically modified

causing permanent expression of activated Ras
(Murgia et al., 2000). The importance of MAPK
activity in the regulation of muscle fiber size is further
indicated by results of experiments in which such
modified rat soleus muscle, that was also denervated,
was prevented from atrophy (Murgia et al., 2000).
Other mediators of the MAPK activity are

grouped within the PKC family (see for reviews,
Jalili et al., 1999; Ruwhof & Van der Laarse, 2000)
that has been shown to be involved in the induction
of cardiac hypertrophy (Jalili et al., 1999). Although
compensatory hypertrophy of skeletal muscle is
accompanied by increased PKC activity (Richter &
Nielsen, 1991), its role in the regulation of skeletal
muscle fiber size is not established as yet.
Integrins and dystroglycans are trans-sarcolemmal

proteins that connect the cytoskeleton and ECM of
muscle fibers (see Fig. 3). Dystroglycans are known
to be associated with the focal adhesion kinase
(FAK) (Rando, 2001). However, there is clear evi-
dence that binding of the extracellular domain of an
integrin to ligands, such as laminin or fibronectin,
stimulates the formation of the so-called focal adhe-
sion complexes (FACs) at the cytoplasmic end of the
integrin. Mechanically loading integrins stimulates
activation of FAK and the small GTPase family
Rho, which in turn initiate the cascade of activation
of the MAPK pathways via the GTPase Ras located
at the FAC (Carson &Wei, 2000; Ruwhof & Van der
Laarse, 2000). MAPK activity, in rat calf muscles
in situ, is rapidly increased in response to mechanical
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stimuli (within o10min) (Martineau & Gardiner,
2002). This effect is quantitatively related to passive
and active tensions exerted by these muscles (Marti-
neau & Gardiner, 2001, 2002).

Compensatory hypertrophy of rat plantaris mus-
cle, after removal of a synergistic gastrocnemius
muscle, is accompanied by enhanced activity of
Rho (McClung et al., 2003). In contrast, overload
of chicken anterior latissimus dorsi muscle induced
by weight bearing at high muscle length was shown
to increase the FAK activity (Fluck et al., 1999).
Note that unloading of the rat plantar flexor muscles
by hind limb suspension reduced FAK activity
(Gordon et al., 2001) as well as the Rho concentra-
tions (McClung et al., 2004). Although direct evi-
dence for integrin-mediated MAPK signalling in
the induction of hypertrophy or adding of serial
sarcomeres is lacking, these findings implicate such
involvement.
Recently, indications of local differences in gene

expression according to location of muscle fibers
within the muscle have been shown in rat medial
gastrocnemius muscle in response to passive and
active loading. Constant mechanical loading of the
passive dissected in situ muscle (3N/g muscle mass),
as well as sinusoidal loading yielded fairly acutely
(i.e. within 5min) a substantially higher MAPK
activity within the proximal muscle fibers than within
distal muscle fibers (Csukly et al., 2002). Such local
differences could not be related to local difference in
muscle fiber type because other muscles (as soleus,
extensor digitorum longus (EDL) and plantaris mus-
cles) showed sensitivity of MAPK similar to the
overall effect for medial gastrocnemius muscle. In-
stead, Csukly et al. ascribed the differences to effects
on compartment tension because of local differences
in muscle geometry. It should be noted, however,
that substantial differences in mean sarcomeren
length between proximal and distal muscle fibers
are reported (Zuurbier & Huijing, 1993; Jaspers
et al., 1999). These mean fiber sarcomere differences
are opposite to the presumed distribution of tension
over intramuscular compartments and therefore not
likely to be the simple explanation of the differences
in MAPK activity.
In any case, a crucial role for the MAPKs is

indicated in the induction of hypertrophy. However,
to answer the question if this occurs directly by stimu-
lating the transcription of muscle-specific mRNA’s
or indirectly by enhancement of the expression of
growth factors requires further investigation is re-
quired.

Control mRNA translation. The regulation of trans-
lation of mRNA involves three phases:

� initiation of translation,
� elongation of the peptide chain and
� termination of translation.

Changing the translational capacity (i.e. number of
ribosomes) and/or translational rate regulates adap-

Fig. 3. Schematic view of supramolecular organization of
connections between the cytoskeleton and the endomysium.
There are two parallel systems of connections, which have
the following elements in common: the cytoskeleton (1) that
surrounds the sarcomeres within myofibrils and is connected
by desmin filaments (2) to sub-sarcolemmal actin filaments
(3). Such connections occur at least at the level of the Z-
disks, but may also exist at the M line. These actin filaments
(which are different from the thin filaments of the sarco-
meres) are connected via two types of system-specific mole-
cules to two system-specific types of trans-sarcolemmal
molecules. These trans-sarcolemmal molecules are con-
nected to the laminin of the basal lamina (8, which in muscle
is also called merosin). Laminin is connected to collagen type
IV (a non-fiber forming collagen type) of the basal lamina.
The connection between the basal lamina and the collagen
fibers of the endomysium (10) is made by glycoproteins.
System-specific elements are: (a) the dystrophin–sarcoglycan
system. For this system the connection between sub-sarco-
lemmal actin and laminin is made by dystrophin (4), which is
connected to the trans-sarcolemmal sarcoglycans (6). (b) The
talin–integrin system (also called the focal adhesion com-
plex). Talin (5) connects the sub-sarcolemmal actin filaments
via the integrins (7) to laminin. These systems are not fully
independent, because, since dystrophin and talin also bind
with high affinity (Senter et al., 1993), dystrophin may form
a link with the integrin and dystroglycan-based systems.
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tation of muscle size. The latter of these two is
particularly determined by the initiation of transla-
tion of the available mRNA and the speed of
elongation of the peptide chain (Nader et al., 2002;
Bolster et al., 2003).
During muscle hypertrophy in response to immo-

bilization at high length in combination with elec-
trical stimulation, the total RNA content increases
rapidly (Goldspink, 1977; Goldspink et al., 1995).
After tenotomy of rat gastrocnemius muscle, actino-
mycin-D blocking of RNA synthesis was reported to
prevent compensatory hypertrophy of plantaris and
soleus muscle (Goldberg & Goodman, 1969). As the
ribosomal RNA (rRNA), which forms the basis for
attachment and subsequent translation of the mRNA
template, constitutes more than 80% of the total
RNA, blocking the increase in total RNA would
predominantly block an increase in rRNA. Accord-
ingly, Nader et al. (2002) argued that the lack of
hypertrophy by the blocking of RNA synthesis
was because of a lack of rRNA synthesis capacity.
An increase in ribosomal number is thought to be
essential for the induction of hypertrophy. How-
ever, this rationale should be viewed with some
skepticism as this argumentation only holds true
when the mRNA content is not limiting the rate of
translation.
In addition, several cofactors of the ribosomal

proteins, such as the eukaryotic initiation factors,
elongation factors and binding proteins, have been
identified. These cofactors are involved in the regula-
tion of initiation of the peptide chain as well as of the
speed of elongation of the peptide chain. Regarding
adaptation of muscle size, activity of these cofactors
is affected by IGF-1 or insulin via the PI3K–mTOR
pathway. Therefore, they are likely to be major
determinants of the rate of protein synthesis (Bodine
et al., 2001b; Rommel et al., 2001; Pallafacchina et al.,
2002).
Details about such signalling pathways have been

reviewed extensively (Shah et al., 2000; Nader et al.,
2002; Bolster et al., 2003). Briefly, binding of IGF-1
or insulin to the IGFR1 at the outside of the
sarcolemma recruits IRS-1, which in turn activates
PI3K–mTOR pathway. Downstream target of PI3K
is the protein kinase B (called PKB or Akt), which on
phosphorylation activates mTOR and inhibits glyco-
gen synthase kinase 3b (GSK3b). Activated mTOR
does phosphorylate p70S6 kinase (p70S6K) as well as
the binding protein for the eukaryotic initiation
factor 4E (4E-BP1). When phosphorylated, both
p70S6K and 4E-BP1 promote the translation of
mRNA. Apart from its function in the glycogen
synthesis enzyme cascades, activated GSK3b phos-
phorylates the eukaryotic initiation factor 2 binding
protein (eIF2B) resulting in inhibition of initiation of
translation. Activation of Akt, therefore, indirectly

yields enhanced activity of eIF2B through inhibition
of GSK3b.
Furthermore, the activation of the PI3K–mTOR

pathway may also stimulate peptide-chain elongation
as activation of this pathway results in decreased
phosphorylation of eukaryotic elongation factor 2,
which increases the speed of peptide-chain elonga-
tion. As hypertrophy in response to immobilization
at high lengths and increased activity is accompanied
by enhanced expression of IGF-1 (McKoy et al.,
1999; Goldspink, 2003; Hameed et al., 2003) this
pathway is likely to be an important determinant of
the induction of protein synthesis.
Disuse-induced atrophy may also be regulated

by lowering the capacity or rate of translation of
mRNA. Total and phosphorylated Akt are decreased
after denervation-induced atrophy. Injection of a
plasmide (i.e. circular DNA) designed to perma-
nently express an active form of AKT in denervated
mouse tibialis anterior (i.e. bypassing the control of
Akt) showed a substantial reduction in atrophy after
denervation (Bodine et al., 2001b). In addition,
muscle unloading is associated with a decrease in
both mTOR (Reynolds et al., 2002) and P70S6
kinase phosphorylation (Bodine et al., 2001b), which
implicate a decreased rate of translation. Other
downstream regulators of translation are the inhibi-
tory factors of translation 4E-BP-1 and EF2 kinase.
The mRNA expression of these factors is elevated
during different atrophy models (Jagoe et al., 2002;
Stevenson et al., 2003).

NO. NO is a free radical produced ubiquitously
by NOS. Three different isoforms of NOS have been
identified (Reid, 1998; Stamler & Meissner, 2001):
type I isoform (also called neuronal NOS or nNOS),
type II (inducible or iNOS) and type III NOS
(endothelial NOS or eNOS). Both nNOS and
eNOS are permanently expressed in skeletal muscle
and their activity is mediated by interaction with
calcium and calmodulin (Nathan & Xie, 1994).
Within skeletal muscle, nNOS is located below the
sarcolemma and associated with the dystroglycan
complex (Brenman et al., 1995; Gossrau, 1998). In
contrast, iNOS is located in the cytoplasm and eNOS
is particularly present within the mitochondria (Bates
et al., 1996).
Several experiments indicate a role of NO in the

regulation of adaptation of muscle size. Increased
muscle activity is accompanied by increased concen-
trations of nNOS as is shown during electrical
stimulation of the rabbit EDL and TA muscle
(chronic stimulation: 3 weeks) (Reiser et al., 1997)
as well as rat soleus muscle (10min) (Balon &
Nadler, 1997). In addition, reloading of rat soleus
muscle after a period of hind limb unloading was
accompanied by an increase in nNOS (Tidball et al.,
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1998). Furthermore, release of NO from rat soleus
muscle, kept in vitro at high length for 2min in the
presence of calcium, was significantly higher than
that from muscle maintained at passive slack length
at similar calcium levels (Tidball et al., 1998), sug-
gesting that the activity of NOS is also affected by
mechanical stimuli. Indications of the requirement of
NO in the induction of hypertrophy and addition to
the serial sarcomere number have been found (e.g.
Koh & Tidball, 1999; Smith et al., 2002). Inhibition
of nNOS activity during compensatory hypertrophy
of rat plantaris muscle attenuates the induced hyper-
trophy (Smith et al., 2002). During remobilization
after a period of immobilization of the muscle at low
length, blocking of nNOS activity has been shown to
inhibit the addition of sarcomeres in series in rat
soleus muscle (Koh & Tidball, 1999).
Taken together, these findings do suggest that NOS

is relevant in the induction of hypertrophy and
addition of sarcomeres in series. The intracellular
biochemical mechanisms via which NOS affects pro-
tein synthesis and degradation are not well under-
stood. NO may be involved in the prevention of
protein degradation.

Protein degradation

Degradation of proteins is contrasted to their synth-
esis in the following way:
Synthesis involves genetic expression of the muscle

proteins themselves (transcription and mRNA trans-
lation), as well as expression of cofactors and activa-
tion of those cofactors, leading to enhanced or
decreased expression of the relevant muscle proteins.
Therefore, a decrease in synthesis rate of the

relevant proteins at constant rate of catabolism
would lead to a diminishing size of muscle.
In addition, degradation is regulated by the activ-

ity of proteolytic enzymatic pathways and by expres-
sion of cofactors and activation of these cofactors
leading to enhanced or decreased expression of
catalytic enzymes and their activation.
However, the susceptibility of proteins to degrada-

tion may also depend on conformational stability of
the protein, which is determined by factors such as
the intracellular temperature, free energy or pH.
During muscle atrophy in response to disuse or

immobilization, protein degradation is enhanced by
activation of proteolytic pathways (see for detailed
review, Jackman & Kandarian, 2004). Three intra-
cellular proteolytic systems are activated during
muscle atrophy (Taillandier et al., 1996) and will be
briefly discussed below: the calpain system, the
lysosomal system and the proteasome system. How-
ever, their relative contributions to the induction of
muscle atrophy in different conditions remains to be
elucidated by further research.

The calpain system

Calpains are calcium-activated cysteine proteases,
which in muscle tend to be concentrated at the Z-
disk of the sarcomeres (rat soleus muscle, Kuma-
moto et al., 1992). Calpains are particularly involved
in the degradation of cytoskeletal proteins (Huang &
Forsberg, 1998) and by doing so may make the
myofibrillar proteins accessible for the proteasomes.
A period of either unloading or denervation of rat

soleus muscle increases the expression of calpains
within the muscle (Taillandier et al., 1996; Haddad et
al., 2003). Inhibition of one of the calpains leads to
substantial attenuation of the atrophy (Tidball &
Spencer, 2002) illustrating their relevance in the
induction of muscular atrophy.

The lysosomal proteases

The organelles called lysosomes are single membrane
globular systems that contain hydrolytic enzymes.
Lysosomes carry hydrolases that degrade nucleo-
tides, proteins (e.g. cathepsins and collagenases),
lipids, phospholipids polymers into their monomers,
and also remove carbohydrate, sulfate, or phosphate
groups from molecules. These hydrolases are parti-
cularly active in an acid environment, which is
fortunate because, if they leak into the cytoplasm
at physiological pH ( � 7.2–7.4), they are not likely
to do much damage. Ubiquitination of sarcolemmal
proteins such as receptors and channels make them
targets for the lysosomal systems, which will reduce
their number and thus their involvement in the
induction of protein synthesis (Taillandier et al.,
1996; Jackman & Kandarian, 2004).
Increased activities of cathepsin have been shown

in soleus and extensor digitorum muscle from hind
limb suspended rats (Goldspink et al., 1986) suggest-
ing their possible involvement in the induction in
atrophy.

The proteasome system

The proteasome system is involved in protein loss in
a synergistic way with the calpains. The proteasome
is ubiquitous ATP- and ubiquitin-dependent proteo-
lytic system, which is able to degrade actin and
myosin in vitro (Solomon & Goldberg, 1996). Pro-
teins to be degraded are modified by covalent con-
jugation to multiple ubiquitin molecules, which
marks them for ATP-dependent degradation by the
proteasome complex (Ciechanover, 1994). During
different conditions of disuse of mouse muscle, such
as immobilization, denervation, hind limb suspen-
sion and fasting, the expression of the recently
identified muscle-specific F-box ubiquitine ligases,
MAFbx and MuRF1, was were enhanced (Bodine
et al., 2001a). For MAFbx, this was also the case in
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fasting animals (Gomes et al., 2001). Inhibition of
one of these proteasome systems leads to substantial
attenuation of atrophy (Bodine et al., 2001a). Inter-
estingly, recent data have shown that IGF-1 is a key
mediator of the expression of the MAFbx and
MuRF1 (Sandri et al., 2004; Stitt et al., 2004).
IGF-1 activates the PI3K/AKT pathway, which in
turn results in phosphorylation of the FOXO pro-
teins, a subgroup of the Forkhead box O (foxo)
family of transcription factors. Phosporylation of
the FOXO transcription factors results in their
cytoplasmic localization away from the target genes
in the nucleus (Brunet et al., 1999), which prevents
transcription of the MAFbx and MuRF1 genes.
These findings indicate that IGF-1 is simultaneously
able to stimulate protein synthesis and suppress
protein degradation.

Other mechanisms: NO

During remobilization of mice after hind limb un-
loading, the soleus muscle shows sarcolemmal injury,
which is accompanied by substantial increases in the
number of neutrophils and macrophages (Nguyen &
Tidball, 2003). As remarkably lower neutrophil con-
centrations were shown for muscles of transgenic
mice, overexpressing nNOS during remobilization, it
is suggested that NO helps to prevent enhanced
workload-related membrane damage (Nguyen &
Tidball, 2003) and hence a breakdown of muscle
proteins. In addition, in myoblasts NO has been
shown to inhibit calpain-mediated proteolysis of
talin and vinculin (Koh & Tidball, 2000). This
indicates that NO has the potential to increase
stability of cytoskeletal proteins and by doing so
diminishes the rate of protein degradation by the
proteasome system (see ‘‘The proteasome system’’).

Essentials of myofascial force transmission

Since 1983 (Street & Ramsey, 1965), it should have
been clear to modern researchers that force transmis-
sion pathways, in addition to myotendinous ones, are
arranged in series with the sarcomeres within muscle
fibers. Only in more recent years, evidence can be
found that a limited number of groups deal with this
issue. If one reads much earlier literature thoroughly,
it becomes clear that some people were aware of the
effects of such paths, even though they did not talk
about it in the specific terms of force transmission.
For example Kronecker and Cash (1880) showed
that muscles functioning within their natural con-
nective tissue context are limited in their movement,
compared with fully isolated muscle. Unfortunately,
they decided that such constraints were not very
important at sub-maximal levels of activation of
the muscle and left the idea alone.

The endomysium is a tunnel-like structure that
plays a major role in force transmission. A collection
of such tunnels, with shared walls between adjacent
tunnels, forms an integral part of the whole connec-
tive tissue stroma of a muscle. For the elegant and
thought provoking images of the microscopic struc-
ture of muscle without muscle fibers see Trotter and
Purslow (1992) and Nishimura et al. (1994).
Sarcomeres are connected via the cytoskeleton,

trans-sarcolemmal molecules and laminin to the
basal lamina. For a schematic view of molecules
thought to be involved see Fig. 3. The basal lamina
is connected in turn to the endomysium probably via
proteoglycans (Nishimura et al., 1996). Therefore,
the connective tissue stroma of a muscle (formed by
the endomysia, perimysia and epimysium as collagen
fiber reinforcement of the muscle ECM) is arranged
in series with the sarcomeres.
Work on force transmission within muscle with

non-spanning muscle fibers (i.e. muscle fibers that do
not fully span the distance between the proximal and
distal aponeuroses, but end within the muscle belly)
has given another major push to the development of
knowledge about mechanisms of force transmission
by pathways other than myotendinous pathways
(Loeb, 1984; Trotter, 1990; Hijikata et al., 1993;
Trotter et al., 1995).
For the particular case of non-spanning muscle

fibers, force transmission has been thought to occur
between (parallel arranged) sarcomeres within neigh-
boring muscle fibers, and therefore those authors
(with the exception of Hijikata et al., 1993) have
referred to muscle containing non-spanning muscle
fibers as series fibered muscle.
However, we have to consider the likeliness that

most of the force is transmitted predominantly
through the muscular connective tissue stroma rather
than onto the adjacent muscle fiber. In such a case
non-spanning muscle fibers would be arranged in
parallel rather than in series. If shearing of the basal
lamina and endomysial interfaces would not make
the interface with the endomysium very stiff, very
little of the force would be transmitted via such a
pathway even in otherwise extreme conditions. In
such conditions with tenotomy of a fraction of
muscle fibers from a fully dissected muscle (prevent-
ing myotendinous force transmission for the afflicted
muscle fibers), the force would be expected to fall
according to the decrease in physiological cross-
sectional area with tendinous connections at both
ends of the muscle fibers. This was shown experi-
mentally not to be the case (Huijing et al., 1998). In
addition, if the considerable force still exerted by the
afflicted muscle fibers would have been transmitted
onto the active sarcomeres of the neighboring muscle
fibers, having unaltered myotendinous function at
both fiber ends, the lengths of those sarcomeres and
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thus of those muscle fibers would have to be in-
creased substantially by the additional load imposed
on them. It was shown experimentally that this did
not occur (Huijing et al., 1998). Therefore, we con-
clude that most of the force that is transmitted by
shearing of the basal lamina and the interface be-
tween the groups of muscle fibers is transmitted
further via the muscular connective tissue stroma
and that is the reason why we should refer to the
whole process as myofascial force transmission.
The alternative correct way of expressing this is

that for a target sarcomere the myofascial connec-
tions form an additional load to be borne. Such an
additional load would prevent a sarcomere from
shortening sooner than in the case where only serial
sarcomeres loaded a specific target sarcomere.

Epimuscular myofascial force transmission

In almost all physiological experiments in vivo, in situ
and in vitro, muscular force or its equivalent (e.g.
moment) is measured exclusively at one end of the
muscle (or at one joint). Implicitly, it is assumed that
the origin and insertion of the muscles (tendinous or
otherwise) are the only structures arranged in series
with the sarcomeres of the muscle: in such a case
proximally and distally exerted forces would be
identical. The arguments presented above have led
us to initiate simultaneous measurement of force at
proximal and distal tendons of muscle, where possi-
ble. Results of those experiments have led to a major
change in our views on muscular function. The main
visions of muscular function derived from experi-
mental as well as modelling results regarding such
conditions will be presented below.
If force is transmitted from the muscular stroma to

anything else other than the muscles own origin or
insertion tendons, we speak of epimuscular myofas-
cial force transmission. An alternative way to express
the same condition is to say that the connective
tissues outside the muscle of interest may constitute
an additional load on all or a fraction of the
sarcomeres within the muscle fibers.

Characteristic feature: proximo-distal force differences

In all conditions with any net epimuscular force
transmission, forces exerted at origin and insertion
of a muscle or a muscle fiber are not identical
(Huijing & Baan, 2001a). The additional load im-
posed by epimuscular connective tissue structures
will affect forces exerted at specific tendons. Figure
4 shows an example of such force difference for a
tetanic contraction of rat EDL muscle that is active
within its natural connective tissue context. It should
be noted that an extremely important variable, in
addition to muscle length, is muscle position relative

to surrounding tissues. Proximal or distal lengthen-
ing to the same muscle length yielded quite different
effects on the forces exerted at proximal and distal
tendons, as well as on the proximo-distal force
difference (Huijing & Baan, 2003). For distal length-
ening, distal force increased more than proximal
force after proximal lengthening of EDL. The sign
of the proximo-distal force difference reversed for
proximal compared with distal lengthening. Also, for
distal lengthening, the proximo-distal force differ-
ences were higher.
The specific effects of relative position can be

shown more clearly if a muscle at constant length is
moved through its connective tissue context (Maas et
al., 2004): depending on position, the proximo-distal
force difference changed not only in magnitude, but
also in sign!

Two types of epimuscular transmission

Two types of epimuscular myofascial force transmis-
sion are distinguished:

Intermuscular myofascial force transmission. If the
myofascial load on the sarcomeres within the fibers
of a muscle is imposed via the direct and very short
connections of two adjacent muscular connective
tissue stromata, we speak of intermuscular myofas-
cial force transmission. In such a case shearing of the
shared epimysium may yield the stiffness that allows

Fig. 4. An example of proximo-distal force differences in rat
extensor digitorum longus (EDL) muscle. Force–time traces
of EDL isometric contractions are shown at two lengths. (1)
At low lengths EDL exerts a small force (a), but the
amplitude of the distal force dominates that of the proximal
force. This occurs in both twitches seen at 200 and 400ms, as
well as during the plateau of the tetanic contraction. (2) At a
high length, obtained by proximal lengthening, EDL force is
much higher (b), but in this case the proximal force dom-
inates the distal force, i.e. the side of dominance of force is
reversed.
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force transmission. If such intermuscular connec-
tions are stiff enough, force that has its origin within
sarcomeres of one muscle may be exerted via the
direct stroma–tendon connections at the tendon of
an adjacent muscle.

Extramuscular myofascial force transmission. If the
myofascial load on the sarcomeres within the fibers
of a muscle is imposed via non-muscular connective
tissue elements, we speak of extramuscular myofas-

cial force transmission between sarcomeres of a
muscle fiber and the extramuscular structures.
A major extramuscular structure that may be

involved in this pathway is the neurovascular tract,
i.e. the collagen fiber reinforced sheet or bundle of
connective tissues that envelops and protects blood
vessels, lymph vessels and nerves and their braches
outside the muscle (Fig. 5). The sheet or bundle is
continuous with the muscular stroma along most of
the length of the muscle belly, as the continuously
branching nerves, blood and lymph vessels within the
muscle are embedded within the peri- and endomy-
sia. However, at specific locations, major branches of
blood vessels and nerves enter the muscle belly. At
the other extremity of the sheet, the neurovascular
tract may also be attached to structures (i.e. inter-
muscular septa, interosseal membrane and periost)
forming the walls of a compartment in which a
muscle group is organized. It should be realized
that such structures are, sometimes very directly,
connected to the capsule and ligaments of the joint
(Fig. 6), so that some of the extramuscularly trans-
mitted force may be used for stabilization of the
joint.
In most physiological experiments on muscle, the

muscles are fully dissected from their surroundings
with the exception of their innervation and blood
supply, the integrity of which is usually crucial for
the experiment. This means that in the so-called
in situ experiments at least a remnant of the neuro-
vascular tract remains. Such a remnant was shown
to be capable of maintaining a substantial proximo-
distal force difference for passive, but not for active
force (Huijing & Baan, 2001a). However, it has since
been shown that the existence of a proximo-distal
active force difference is dependent on the relative

Fig. 5. The neurovascular tract as seen in a lateral view of
the dissected rat lower leg. If one loads a dissected extensor
digitorum longus (EDL) at proximal and distal tendons (i.e.
in vertical direction of the image), as the EDL is pulled
down, a connective tissue sheet is exposed that connects the
intramuscular connective tissue stroma of the EDL (and the
other muscles, not shown) to other passive elements of the
anterior crural compartment. As this sheet envelops both
nerves and blood vessels that either enter the muscles of the
anterior crural compartment or continue on into the foot or
into the peroneal compartment we refer to it as neurovas-
cular tract. It should be noted that in vivo the neurovascular
tract does not necessarily have the shape of a sheet. Con-
nections of this tract are made along its full length to the
interosseal membrane, the anterior intermuscular septum
and the periost of the tibia. The tract also forms a connec-
tion to the peroneal compartment and its muscles as it passes
through a fenestra (or window) in the intermuscular septum
(see also Fig. 6). The smallest divisions on the ruler indicate
millimetres.

Fig. 6. Connections of passive elements of the anterior crural compartment to ligaments of the knee, in addition to the general
fascia. The major connective tissue structure shown in this image of the fully dissected rat anterior crural compartment is the
anterior intermuscular septum (SIA) with its fenestra (F). The SIA is being strained via the forceps that is pulling on dissection
remnants of the general fascia seen in the bottom. SIA is attached at almost right angles to the interosseal membrane, which
runs between the tibia (T) and the fibula below the tibia in this image (not to be seen). Note that at the bottom left the SIA is
supported by the lateral collateral ligament that crosses the knee joint. The tibia is surrounded by its own membrane, the
periost (p), which is also connected to the medial collateral ligament (med CL) of the knee. Note that a part of any force exerted
via the neurovascular tract onto these structures may be exerted at the knee.
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position of the ‘‘fully dissected muscle’’ with respect
to the neurovascular tract and other tissues (Rijke-
lijkhuizen et al., 2004; Yucesoy et al., 2005).
It should also be noted that the neurovascular tract

forms an indirect connection between the stromata of
two adjacent (i.e. synergistic) muscles. Similarly,
neurovascular tracts even form a connection between
bellies of (antagonistic) muscles located in adjacent
compartments.
Recent evidence indicates that active force may

even be transmitted via extramuscular myofascial
pathways to the insertion of a muscle on bone via
epitendinous connective tissues (Rijkelijkhuizen et al.,
2004).
Recently, for some human cadavers, Bojsen-Møl-

ler et al. (2004) reported a rare anatomical variation
consisting of aponeurotic connections between distal
aponeuroses of gastrocnemius and soleus muscle.
Similar connections are also known between some
of the distal tendons of human extensor digitorum
communis muscle, but they seem to occur more
frequently there. Even though these connections
can yield mechanical interaction between the con-
nected muscles, they should not be confused with
myofascial connections, since the connections occur
along the myotendinous rather than the myofascial
paths.

Epimuscular myofascial force transmission between
adjacent synergists

For conditions involving several muscle groups acti-
vated and kept at constant muscle tendon complex
lengths, lengthening of one muscle or complex of
muscles affects force exerted at their origin and
insertion by adjacent muscles within the compart-
ment. This is a rather general feature (Maas et al.,
2001, 2003a; Huijing, 2002; Huijing & Baan, 2003;
Huijing et al., 2003; Yucesoy et al., 2003). Figure
7a, b shows an example of such results. In that case,
length–force characteristics of the tied rat tibialis
anterior and extensor hallucis longus complex were
determined. Length and position changes of that
complex caused substantial changes in the proximo-
distal active force difference of EDL, which was
kept at constant muscle–tendon complex length.
This indicates changes in epimuscular myofascial
force transmission between EDL and surrounding
structures within the anterior crural compartment.

Substantial serial distribution of sarcomere length expected

Intuitive reasoning leads to an expectation of serial
sarcomere length distributions. Any active sarcomere
will shorten to its active slack length if unopposed by
an external force (load) that balances the sarcomere
force. The active slack length is defined as the length
at which the sarcomere is active, but cannot exert

forces to its outside. The load imposed on the
sarcomere by the origin and insertion will definitely
act as such an opposing force. However, the epimus-
cular load is, like the myotendinous load, arranged in
series with the sarcomere and thus will contribute to
the force that will equilibrate with the force exerted
by the contracting sarcomere.
It should be noted that the stiffer parts of the

neurovascular tract (i.e. the locations where the
nerves and blood vessels do enter the muscle) are
not distributed uniformly over the muscle belly, but
are found at specific locations. As a consequence, the
epimuscular load is distributed over the muscle
stroma, and the loads will not be distributed uni-
formly to all sarcomeres within the fibers of the
muscle. Therefore, the sarcomeres exposed to a lower
load will shorten more before isometric force equili-
brium can be reached than the sarcomeres that are
more heavily loaded.

Force transmission between antagonistic muscles

The question posedis whether such intra-compart-
mental effects of interaction between muscles will
also be present for muscles located within different
compartments (Huijing, 2003). Potential myofascial
connections between antagonistic muscles are per
definition only of an extramuscular nature, because
there is no direct contact between the stromata of
antagonist muscles. This illustrates that intermus-
cular myofascial effects can in principle also be
mediated by extramuscular tissues.
The reasoning behind such hypotheses regarding

myofascial interaction between antagonistic muscles
is based on the fact that the relative positions of
antagonistic muscles change most drastically of all.
If extramuscular myofascial connections of sufficient
stiffness exist between antagonistic muscles, we
should expect very substantial effects. Figure 7a, c
shows preliminary experimental results indicating
that this is indeed the case. As force exerted by the
rat tibialis anterior and extensor hallucis longus
muscles at their tied together distal tendons was
determined at progressively higher lengths, distal
force exerted by the antagonistic peroneal group
dropped progressively to as much as 25% of the
initial force, despite the fact that the muscle tendon
complexes of the peroneal group were kept isome-
trically.
It should be noted that during in vivo movement

the relative positions of the two muscle groups
changes even more than in the experiment performed
because both synergistic and antagonistic muscle will
change their length in opposite directions, so that
at the extremes of the movement range one should
expect very sizable effects.
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In several different experiments in our laboratory
(unpublished observations), we have found similar
effects and interactions for all antagonistic muscle
groups within the rat lower part of the hind limb.
From such results, we conclude that even antagonis-
tic muscles should not be considered as being in-
dependent of each other and that by specifying
experimental conditions regarding adaptation of

muscles and tendons we should consider exclusively
not only the condition of the target muscles, but also
the conditions of all other muscles within the same
segment. Since several muscles related to a particular
segment are bi- or even poly-articular, this also
means that the conditions at joints further removed
from the segment of interest should be taken into
account when specifying experimental conditions of
a specific target muscle regarding muscular adapta-
tion and its effects.
It may be this factor that has added to the difficulty

of interpreting mechanisms of adaptation active in
classical experiments. Therefore, it is concluded that
the usual classical experimental conditions are too
complex to permit an enhanced understanding of the
real determining factors, let alone the mechanisms of
adaptation. It is clear that if we want to attain goals
described in the introduction a new approach to the
study of muscular adaptation of serial sarcomere

Fig. 7. Extramuscular myofascial force transmission be-
tween synergistic and antagonistic muscles: (a) length force
characteristics (active and passive) of the rat tibialis anterior
and extensor hallucis longus muscles of which the distal
tendons have been tied together (TA1EHL). Note that the
length of this complex was exclusively altered in this experi-
ment. (b) The proximo-distal force difference of rat EDL
(synergist of TA and EHL) and the effects of changing
TA1EHL length on it. Note that as TA1EHL is active at
higher lengths, the proximo-distal force difference first
increases its negative amplitude and then decreases it, despite
the fact that EDL muscle–tendon complex length was un-
changed. (c) Force exerted by all peroneal muscles (PER),
while being kept at constant muscle-tendon complex length,
at different lengths of antagonistic TA1EHL. Force is
expressed as percentage of initial force (at low TA1EHL
length). Note that as TA1EHL length and active force
increase, PER active force decreases by as much as 30%
(use left Y-axis), despite being kept at constant length. A
similar feature is seen for EDL distal active force, but the
amplitude of that decrease is limited to about 6% (use right
Y-axis in grey). TA1EHL length is expressed as a deviation
from its optimum length and the X-axis applies to all plots of
this figure.

Fig. 8. Combined experimental and finite-element model
results for distal lengthening of rat extensor digitorum
longus (EDL) with epimuscular myofascial connections.
The top panel shows experimental length–force curves of
rat EDL muscle, as well as a modelled segment of that curve.
Distal lengthening was used to change the EDL length. EDL
length is expressed as a deviation (Dlm1t dist) from initial
low length. Force was normalized for optimal distal EDL
force (Fmao EDLdist). In the specific conditions of these
experiments, at all modelled lengths, distal force (dist)
dominates proximal force (prox). Solid markers indicate
model force. For the length indicated (arrow), the lower
panel presents the distribution of strain in the muscle fiber
direction (indicated by a solid line with marking for prox-
imal fiber end (prox) and distal fiber end (dist)). The strain
value represents the fractional change from the initial length
(e.g. � 0.15 represents a 15% shortening with respect to
initial conditions). Note the particularly high serial distribu-
tion of strains within the model, indicating a high serial
distribution of sarcomere lengths within muscle fibers. Note
also that the lower proximal force is related to shortened
sarcomeres, not exposed to the added epimuscular myofas-
cial load that allows distal sarcomeres within the same
muscle fibers to be at higher lengths. The dotted contour
indicates the starting condition of the muscle.
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number and physiological cross-sectional area must
be developed.

Finite-element models of epimuscular myofascial force
transmission confirm relatively high serial and parallel
distribution of muscle fiber strain

Since during myofascial experiments, the connective
tissue around the muscle belly was left intact as much
as possible we cannot study details of the muscle,
because we cannot visualize them. Finite-element
models have helped us to understand what happens
within the muscle in conditions where epimuscular
myofascial force transmission is evident from simul-
taneous force measurements at both proximal and
distal tendons. Figure 8 shows an example of com-
bined experimental and model results. For details of
such modelling and experiments, see Yucesoy et al.
(2003). A clear proximo-distal total force difference is
present in rat EDL muscle at a length over optimum
length. Calculated local muscle fiber strains (repre-
sented as the fraction of actual lengths over the initial
lengths) yield an estimate of local sarcomere lengths.
Despite the high length of the muscle, particularly at
the extramuscularly connected face of the model,
sarcomeres located near the proximal end of muscle
fibers are shortened by up to 14% below their initial
length, whereas sarcomeres closer to the other (dis-
tal) end of the same muscle fiber are lengthened by up
to 50%. The distal sarcomeres are lengthened much
more because extra- and intermuscular myofascial
forces load them additionally. It is clear that such
myofascial connections cause high and stable serial
distributions of sarcomeres, which lead to the exer-
tion of different active and passive forces at the
proximal and distal end of each muscle fiber.
Such phenomena have very many functional con-

sequences. For example, intersarcomere dynamics
are not exclusively interactions between only sarco-
meres in series, as always assumed in the literature
(e.g. Denoth et al., 2002; Telley et al., 2003), but
actually constitute interactions between new units
entities arranged in series. This new unit is consti-
tuted by a sarcomere together with its relevant part
of the endomysium of the muscle fiber (arranged in
parallel to the specific sarcomere). Serial interaction
between such new units is much more stable me-
chanically because of the parallel paths of force
transmission. Therefore, myofascial force transmis-
sion is very likely to prevent the so-called popping
sarcomeres, which have been presumed to occur
(Morgan, 1990) because only the sarcomeres were
considered as exclusive serial units.
Also for adaptation, this finding is highly relevant,

because conditions will be very different for different
parts of the same muscle fiber. This means that the
ostensibly relatively simple conditions imposed on a

muscle during the classical experiments on adapta-
tion are actually very complex, because the condi-
tions even differ locally along the length of one
muscle fiber.
It should be noted that, for in vivo magnetic

resonance imaging (MRI) measurement of strain
and displacement velocity of aponeurosis and mus-
cular elements within human muscle, considerable
distributions of the values of these variables are
reported (Pappas et al., 2002; Finni et al., 2003a, b)
within a muscle. Such results are very difficult to
explain without the concepts of epimuscular myo-
fascial force transmission. In any case they at least
confirm the in vivo presence of the types of distribu-
tions foreseen on the basis of the finite-element
model calculations. More specific modelling of these
in vivo results is indicated to aid their interpretation.

Different species and epimuscular myofascial force
transmission

Epimuscular myofascial force transmission has been
shown to exist and have substantial effects in mam-
malian muscle both in rodents Huijing, 1999, 2002;
Huijing & Baan, 2001b, 2003; Maas et al., 2001,
2003a–c, 2004; Smeulders et al., 2002; Huijing et al.,
2003; Yucesoy et al., 2003; Rijkelijkhuizen et al.,
2004) and in human patients suffering from spastic
paresis (Smeulders et al., 2002, 2003, 2004a, b, c;
Kreulen et al., 2003).
Below we will present evidence regarding adapta-

tion in amphibian muscle fibers. Therefore, it is
necessary to ascertain that perimuscular myofascial
force transmission is also active in these species.
Presently, we are only able to present some prelimin-
ary data on Xenopus laevis muscle. However, such
data are essential for the line of reasoning of this
article.

Summary of methods used in X. laevis force transmission
experiments

The experimental approach was similar to that used
for rats: the animal was anaesthetized using urethane
solution (dose 0.05 mL/g body mass of 12.4% solu-
tion). Over the target muscle, skin and subcutaneous
tissues were removed and fasciotomy was performed
on the anterior tibial compartment. A muscle with
both proximal and distal tendons was selected: in this
case TA muscle with one tendon crossing the knee
joint and two distal tendons crossing the ankle joint.
A force transducer was attached to both the proximal
tendon and the combined distal tendons. The ankle
was maximally plantar flexed to allow free passage of
the distal TA tendons and their connections. High in
the femoral compartment, the distal end of the cut
sciatic nerve was stimulated maximally at 80Hz: all
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muscles in the lower leg were simultaneously active
maximally. Ambient temperature was regulated at
22 1C.

Preliminary results

At all muscle–tendon complex lengths studied, but
one, a proximo-distal force difference was found: at
low lengths considerable distal active force was
exerted (420% of distal optimal force), but simulta-
neously proximal active force equalled zero (Fig. 9).
At progressively higher lengths obtained by distal
lengthening, proximal as well as active distal force
increased, but not in a similar fashion: distal active
force increased much more. As a consequence, force
values approached each other, and after further
lengthening the proximo-distal force difference re-
versed its sign, i.e. distal force became dominant over
proximal force. These results are very similar to those
of previous experiments in other species and indicate
that epimuscular myofascial force transmission is
also active in X. laevis muscle.

Some important consequences of myofascial force
transmission for the study of adaptation

The conditions imposed on the muscle fibers of a
muscle that is working within the natural context of
its epimuscular connective tissues are quite complex.
The serial sarcomere length distribution within mus-

cle fibers is dependent not only on the length of the
muscle fibers, but also on the relative position of
those fibers with respect to other muscles and con-
nective tissues within the limb.
Direct intervention with the connective tissues, as

in ablation of synergistic muscles, will change the
conditions of myofascial force transmission drasti-
cally. Simple fasciotomy of the compartment as well
as progressive dissection of muscles and tendon
already does that (Huijing & Baan, 2001a; Smeulders
et al., 2002; Huijing et al., 2003; Kreulen et al., 2003;
Rijkelijkhuizen et al., 2004). Release of a retinaculum
does not only change the length and length range of a
muscle of which tendons pass through but it will also
change the relative position of the muscle with
respect to connective tissues of a compartment as
well as to other synergistic and antagonistic muscles.
Simple tenotomy will not remove a muscle from

functioning because of myofascial force transmis-
sion, because the muscle will not shorten to its active
slack length (Kreulen et al., 2003), but will be
restrained at higher lengths and may even be length-
ened by surrounding tissues.
The serials distribution of sarcomere length within

muscle fibers, enhanced by myofascial effects, raises
doubt on the concept, introduced above, that the
condition of the muscle fiber as a whole will be
the determining factor of adaptation. Considering
the asymmetries in muscle length effects (e.g. much
more powerful adaptation effects of high length
compared with low lengths: Williams, 1990), adapta-
tion of muscle fiber size may be a much more local
affair involving only parts of the muscle fiber. It is
conceivable that, regarding adaptation, the muscle
fiber as a syncytium should not be considered as one
unit, but rather as a collection of units of adaptation,
each of which react to its own local-specific mechan-
ical stimuli.
Therefore, it is also possible that the specific

myofascial effects on a muscle fiber will be respon-
sible for signals of adaptation. It is clear that to be
able to get closer look at the detailed mechanisms of
muscular adaptation we need to create experimen-
tally mechanical conditions which are less com-
plex than those usually afforded during in vivo
experiments.

Study of adaptation at the cellular level

Unravelling the mechanisms of adaptation of muscle
size requires a sophisticated in vitro approach to
overcome the problems related to the substantial
distributions of sarcomere strains expected within
muscle and muscle fibers during in vivo conditions.
Several in vitro setups have been developed for

mature mammalian, single muscle fibers. Since their

Fig. 9. An example of length–force characteristics of Xeno-
pus laevis tibialis anticus longus muscle embedded within its
natiural connective tissue context. Active force exerted by
maximally active TA was measured at its proximal tendon,
as well as the summed forces exerted by its two heads at the
distal two TA tendons that were connected to one force
transducer. Note that the proximo-distal active force differ-
ences observed are particularly high at low lengths, with
proximal force dominating distal force. At length higher
than the crossover point (approximately Dl5 5mm), distal
force dominates proximal force but with smaller differences.
The presence of such force differences indicates epimuscular
myofascial force transmission.
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initiation in the forties of the last century, such
systems have primarily been used for acute investiga-
tion of physiological and mechanical properties of
amphibian muscle fiber (e.g. Ramsey, 1947; Natori,
1954; Gordon et al., 1966; Lannergren, 1978; Wes-
terblad & Lannergren, 1986; Van der Laarse et al.,
1991).
However, more recently they have also been used

to study acute effects of hormones and growth
factors on cytoplasmic [Ca21] (Bruton et al., 1999).
In addition, long-term cultures of single mature
muscle fibers have also been developed and used to
study [Ca21] homeostasis (De Backer et al., 2002),
the effects of growth factors on satellite cell prolif-
eration (Bischoff, 1986) as well as MHC gene expres-
sion in response to different activation regimes (Liu
& Schneider, 1998). Such in vitro systems, however,
are inappropriate for the investigation of long-term
adaptation of muscle fiber size, because muscle fibers
are maintained in the presence of serum and fiber
length cannot be manipulated as the muscle fibers are
released from the tendons during the isolation by
using catalytic enzymes that facilitate cell isolation
(Bischoff, 1986; Liu & Schneider, 1998). In addition,
these enzymes may cause damage to or removal of
the endomysium (Bischoff, 1986) and basal lamina,
as possibly was the case with Liu and Schneider
(1998), which may affect both the ligand-receptor
signalling and the mechanical signalling via trans-
sarcolemmal complexes.
Most of our knowledge, regarding (1) how me-

chanical signals affect cells and (2) how the signals
are subsequently converted into intracellular bio-
chemical activities that regulate protein synthesis
and degradation, was based, until recently, on results
of culture experiments using myoblasts or non-mus-
cle cells such as epithelial cells, fibroblasts or osteo-
blasts. These types of cells are morphologically and
functionally different from mature muscle fibers
and, generally, culture of these types of cells needs
to be performed in the presence of a serum, of
unspecified content, to maintain the cells viability.
Despite the limitations of these models, such experi-
ments have substantially enhanced our understand-
ing of fundamental mechanisms of cellular signal
transduction.
Two pathways of mechano-transduction are distin-

guished: (1) mechano-chemical signal transduction to
the nuclei, i.e. an indirect pathway by which mechan-
ical stress applied to the muscle–tendon complex is
transmitted onto the ECM including the endomysium
to trans-sarcolemmal structures of muscle fiber and
subsequently converted at that location into biochem-
ical signals as treated above and (2) mechano-trans-
duction, i.e. pathways by which the mechanical load
exerted on the endomysium–basal lamina–trans-sar-
colemmal complexes of the muscle fiber is transmitted

via the cytoskeleton onto the myonucleus and leads
more directly to gene expression.

Mechano-chemical transduction

Within cell membranes, several trans-membrane re-
ceptors and channels are recognized that are able to
elicit biochemical activities upon mechanical loading.
Within muscle, the trans-sarcolemmal proteins most
likely involved in the adaptation of muscle size are
the integrins, the dystroglycans and the stretch-acti-
vated calcium channels (for reviews, see Carson &
Wei, 2000; Ruwhof & Van der Laarse, 2000; Rando,
2001). Among these, the integrins and dystroglycans
are the core proteins of adhesion complexes that
connect the ECM and the cellular cytoskeleton.
Pardo et al. (1983) first recognized the connection
of the myofibrils to the sarcolemma. Because of their
shape of the immunofluorescence they called these
sites ‘‘costameres’’. Later, the costameres were shown
to be sites of transmission of myofibrillar force of
adult cardiac myocytes to the ECM (Danowski et al.,
1992) and were hypothesized to reinforce and stabi-
lize the sarcolemma in skeletal muscle fibers (Petrof
et al., 1993). Subsequently, these trans-sarcolemmal
complexes were shown to be also involved in activa-
tion biochemical-signalling pathways.

The integrins

The integrin family can be described as heterodimeric
transmembrane glycoproteins consisting of a and b
subunits. Binding the integrin to glycoproteins in the
ECM, such as fibronectin and laminin, results in
the formation of sub-sarcolemmal FACs within the
muscle fibers, in which vinculin is thought to provide
a major mechanical linkage (Fig. 3) between the
integrin and the subsarcolemmal actin filaments
(different from sarcomeric actin filaments), which
are part of the cytoskeleton (Berthier & Blaineau,
1997). Also bound to vinculin is talin (Fig. 3).
Loading of FACs stimulates translocation and accu-
mulation at these sites of kinases, small GTPases
and other signalling molecules (e.g. PI3K, FAK and
Rho) (for reviews, see Ingber, 1997; Janmey, 1998;
Carson & Wei, 2000). These signalling molecules are
able to activate several signal transduction pathways
such as the MAPK and the PI3K–mTOR pathway,
which in turn increase both mRNA expression and
translation (see ‘‘Biochemical-signalling pathways’’).

The dystroglycan complexes

In addition to the integrins, the dystroglycans also
provide a mechanical linkage between the ECM and
the cytoskeleton (Berthier & Blaineau, 1997; Rando,
2001). Whereas vinculin is indicated as the major
protein that connects the integrin to the cytoskeleton,
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for the dystroglycans, dystrophin is identified to form
the connection to the cytoskeleton. Like for the
integrins, the dystroglycan complexes are also assem-
bly points for signalling molecules such as FAK and
RhoA, which have been shown to be able to mediate
biochemical-signalling pathways affecting the rate of
protein synthesis (Berthier & Blaineau, 1997; Rando,
2001).
Evidence of the involvement of the dystroglycan

complexes in mediating biochemical-signalling path-
ways such as the MAPK, the NO and the PI3K–
mTOR pathways is emerging (Rando, 2001; Langen-
bach & Rando, 2002; Spence et al., 2004). The
finding that dystrophin knockout mice do not ex-
press MGF (Goldspink et al., 1996) also indicates
involvement of the dystroglycan system in the induc-
tion of muscle hypertrophy. MGF is a potent sti-
mulator of proliferation of myoblasts (Yang & Gold-
spink, 2002) and therefore is likely to play an
important role in the activation of satellite cells.
The precise mechanisms of dystroglycan complexes
involvement in adaptation of muscle size remain to
be determined.

Linking of the integrin and the dystroglycan systems

As dystrophin and talin bind with high affinity
(Senter et al., 1993; Yoshida et al., 1998), dystrophin
also plays a role in linking both costameric trans-
sarcolemmal systems. Consequences of connecting
these two systems for force transmission and the
pathology of Duchenne muscular dystrophy (i.e.
dystrophin deficiency) have not been considered
as yet. In contrast, regarding signal transduction bi-
directional communication between the dystrophin-
containing complex and the integrin adhesion system
has been shown in cultured myocytes (Yoshida et al.,
1998). Further work on this topic is indicated.

Stretch-activated channels

Another type of mechano-sensitive trans-sarcolem-
mal structure is the stretch-activated channel. Stretch
of cardiac myocytes causes direct influx Ca21 via
these channels (Gannier et al., 1996; Tavi et al.,
1998), which likely activates the Ca21-mediated
pathways as mentioned above.
At higher lengths, mature isolated frog muscle

fibers show a length-dependent increase in free in-
tracellular [Ca21], starting at a mean sarcomere
length of 2.4 mm (Snowdowne, 1986). Stretch-acti-
vated channels are also detected in skeletal muscle
fibers (McBride et al., 2000) and may mediate eleva-
tion of intracellular [Ca21]. Whether the stretch-
activated channels are involved in the induction of
skeletal muscle hypertrophy remains to be clarified.
With respect to this, it should be noted that the
stretch-activated channels colocalize with a system of

connection to the cytoskeleton (i.e. the spectrin
system, Berthier & Blaineau, 1997).

Mechano-transduction

The alternative way by which mechanical load ex-
erted on cells is transduced into changed protein
synthesis or degradation is based on the concept
that cells are hard-wired systems according to the
principles of tensegrity. Combinations of stiff rods
and pre-stressed elastic strings characterize tensegrity
structures that yield stability. Movement of one
element of a tensegrity system involves movement
of the integral structure. Ingber (1997, 2003a, b) has
postulated the model of tensegrity-based signalling in
biological cells. This model proposes that the cytos-
keleton inclusive costameres constitute a pre-stressed
tensegrity structure that allows force transmission
from the collagen fiber reinforced ECM onto the
cytoskeleton and nucleus (Wang et al., 1993; Ingber,
1997). Force exerted via the ECM will have two
effects:

(a) Release of mRNA and ribosomes attached to the
cytoskeleton and translocation to the sites, where
protein synthesis is required (Chicurel et al., 1998).

(b) Nuclear deformations or conformational changes
of the chromatin that directly may affect the trans-
criptional activity (Bloom et al., 1996).

Accumulating evidence supporting this model in
the regulation of cellular organization is largely
based non-muscle cells (Chicurel et al., 1998; Lelievre
et al., 1998; Thomas et al., 2002).
With respect to adaptation of skeletal muscle, the

involvement of mechano-transduction in the regula-
tion of adaptation of muscle size remains to be
characterized. For lengthening of cardiomyocytes,
it was shown that cytoskeleton desmin filaments
transmit force onto the nucleus (Bloom et al.,
1996). It was hypothesized that this could alter the
conformation of the chromatin and possibly stimu-
late transcription. It should be realized that tensegr-
ity effects have only been shown for relatively small
cells (diameter in all directions o20 mm). Since
muscle fibers are very big multinucleated syncytia
(for example adult humans: cross-fiber diameter450
mm, 1 cmolengtho30 cm), it is very well conceivable
that the muscle fiber consists of many units of
tensegrity regulating muscle fiber size, i.e. the adap-
tations taking place within these local units.
In addition, changes in nuclear shape may also

cause entry of [Ca21] into the myonucleus as was
shown in isolated nuclei in response to osmo-me-
chanical stress (Itano et al., 2003).
However, direct mechanical signalling via the

cytoskeletal molecule desmin was not confirmed by
experiments with desmin knockout mice. After im-
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mobilization of mice muscles at high or low length,
desmin knockout mice showed the same adaptations
of the muscle physiological cross-sectional area, as
well as the serial sarcomere number as for wild types
(Shah et al., 2002). This may indicate that mechano-
transduction via desmin is either not relevant in the
regulation of muscle size, or, alternatively, that other
cytoskeletal proteins replacing desmin or acting in-
dependently are involved in mechano-transduction
as well.

First attempts at a new approach: long-term culture of
mature, single muscle fibers

Because of considerations of myofascial force trans-
mission, an experimental setup for single muscle
fibers from adult animals in vitro is required that
allows long-term culture of muscle fibers with intact
basal lamina and endomysium. In fact it should be
feared that any method of isolation of muscle fibers
that would damage the basal lamina–endomysium
complex would lead to substantial changes of
function of the muscle fiber and affect viability in a
major way.
Using a culture setup as indicated, factors such as

global or mean muscle fiber strain, hormonal com-
position of the culture medium as well as the type
and degree of contractile activity can be manipulated
independently during the culture. Such a system
should allow investigation of the effects of the factors

regulating adaptation of muscle fiber size indepen-
dently, as well as allow study of their interactions.
A unique culture system for mature single Xenopus

muscle fibers was developed by Lee-De Groot and
Van der Laarse (1996), which meets most of these
requirements. Using this system, these authors
showed that it is feasible to culture mature single
muscle fibers for 2 weeks. However, when using a
serum-free culture medium, as culture time pro-
gressed twitch force declined and the muscle fibers
were shown to be metabolically unstable (Lee-de
Groot & Van der Laarse, 1996).
However, the feasibility of dissections of single

muscle fibers with intact basal lamina and endomy-
sium and their culture warranted further develop-
ment of a system with the use of which, mature,
single Xenopus muscle fibers could be cultured in
stable conditions for up to months.
In close collaboration between the laboratories of

Huijing and Van der Laarse, Jaspers developed a
new culture medium and tuned the system such that
muscle fibers can be maintained metabolically stable,
while tetanic force as well as adaptation of the serial
sarcomere number can be studied longitudinally. The
success of this new, well-defined culture medium was
proved, as we were able to culture single mature X.
laevis muscle fibers for up to three months, while
tetanic force was stable (Jaspers et al., 2001; Jaspers
et al., 2004).

Dissection and culturing of single Xenopus muscle fibers

Dissection of single Xenopusmuscle fibers from small
fascicles attached to remnants of tendon requires
special skills. In Xenopus muscle this is generally
somewhat easier than in mammalian muscle, be-
cause, in contrast to mammalian experimental ani-
mals, the dimensions of the muscle fibers (diameter
up to 100 mm) are similar to those of muscle fibers of
adult humans. Measurement of the relationship
between muscle fiber cross-sectional area and the
oxidative capacity of muscle fibers has shown that
the metabolic fluxes of muscle fibers from X. laevis
and humans are similar, whereas those of rodent
muscle fibers are substantially higher (Van der
Laarse et al., 1991). A drawback may be that the
myonuclei of Xenopus are, in contrast with human
muscle fibers, not located exclusively at the periphery
of the fiber.
Single muscle fibers have been isolated aseptically

from fascicles of the adult X. laevis iliofibularis
muscle by cutting at the endomysia of surrounding
muscle fibers and removing the muscle fibers sur-
rounding a target fiber. Such dissection leaves the
endomysium and basal lamina surrounding the tar-
get muscle fiber (see Fig. 9 of Jaspers et al., 2004).

Fig. 10. Serial sarcomere length distribution in cultured
single Xenopus laevis muscle fibers. Using laser diffraction
techniques, saromere length was measured at intervals along
the length of the muscle fiber-basal lamina-endomysium
units cultured successfully for several weeks. Position along
the fiber is quantified as deviation from the proximal
myotendinous junction and normlized for muscle fiber
length. Note the rather limited size and location of serial
distribution of sarcomere length. Note also that these values
are very much lower than those expected of the basis of
finite-element modelling for fibers within a muscle exposed
to epimuscular myofascial force transmission.
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In addition to the high control of the physiological
conditions (overall strain, serum-free medium; for
details see Jaspers et al., 2001, 2004), a very impor-
tant methodological advantage is that the parameters
of interest can be studied longitudinally, which elim-
inates the need for group statistics and avoids diffi-
cult decisions regarding control groups.
Using such methods, not only adaptation at the

supra-molecular level but, using in situ hybridization,
also the very early signs of preparation for adapta-
tion can be studied(i.e. mRNA transcription) (Jas-
pers, 2002; Jaspers et al., 2002).

Overall strain does not uniquely regulate muscle
fiber size

Using a new culture medium, we investigated the
effects of culture of the muscle fiber at a mean
sarcomere length of 2.3 mm (l2.3 mm). At this length,
the muscle fiber is just over its passive slack length.
Before and after culture, the coefficient of variation
in sarcomere lengths along the muscle fiber
amounted to less than 2% (Fig. 10). Note that the
value is very much lower than those obtained for
muscle fibers during epimuscular myofascial force
transmission as predicted by finite-element modelling
(see ‘‘Finite-element models of epimuscular myofas-
cial force transmission confirm relatively high serial
and parallel distribution of muscle fiber strain’’).
During culture of up to 2 weeks at l2.3 mm, tetanic
force was shown to remain constant and the serial
sarcomere number was not changed (Jaspers et al.,
2001). These data indicate similar rates of protein
degradation and synthesis during culture at this fiber
length.
In order to test whether overall fiber strain un-

iquely regulates Af and the serial sarcomere number,
fibers were cultured (Jaspers et al., 2004) at positive
overall strain (i.e. � 5% over ‘2.3 mm, referred to as
‘‘long fibers’’ below) or negative overall strain (i.e.
� 20% below ‘2.3 mm, referred to as ‘‘short fibers’’
below). The culture period varied from 4 to 97 days.
Note that long fibers are cultured at sarcomere

lengths over 2.4 mm, i.e. a length at which Ca21 influx
from the ECM into the cytoplasm occurs (shown in
frog fibers). For the long fibers, cultured up to 17
days, we did not detect any sign of hypertrophy as
tetanic force remained stable or decreased slowly.
Also, the serial sarcomere number showed no major
effects of high strain. However, after 2 weeks of
culture for two fibers, which were characterized by
lower half-relaxation times than the others, a sig-
nificant, but small, increase in the serial sarcomere
number of approximately 4% was observed. For
short fibers the serial sarcomere number remained
unchanged, even after 97 days of culture. Surpris-
ingly, tetanic force doubled over this period. How-

ever, acutely after the culture, the increase in tetanic
force could be made to disappear immediately after
the muscle fiber had been activated tetanically at a
high length (i.e. over a mean sarcomere length of 2.3
mm) and tetanic force was again similar to its initial
value before culture. This is a relatively ill under-
stood phenomenon requiring further research.
It is concluded that culture muscle fibers at differ-

ent overall strains neither induce atrophy or hyper-
trophy, nor a major change in the serial sarcomere
number. Therefore, it is concluded that in vitro
adaptation of Af and serial sarcomere number is
not regulated by overall or local muscle fiber strain
per se.

Discrepancy between adaptation effects in vivo and
in vitro

Comparison of such in vitro results with those of the
classical experiments in vivo reveals strikingly differ-
ent effects in response to long-term maintenance of
muscle fibers at high or low lengths. Because of the
isolation of the muscle fibers and the culture itself,
the physical as well as the biochemical environment
of the muscle fiber hasbeen altered compared with
the in vivo situation. The discrepancy reported yields
challenges to identify mechanisms that are active
during adaptation in vivo, but which may not be
active in vitro and vice versa.

Molecular factors

The presence of autocrine/paracrine growth factors
at the sarcolemma, in combination of high overall
strain, is usually required for induction of hypertro-
phy and an increase in serial sarcomere number.
Since we are dealing with isolated muscle fibers,
paracrine factors from neighboring muscle fibers
are absent, but not from fibrocytes within the en-
domysium or micro-tendon.
It could be argued that autocrine growth factors

may have been washed away by continuously pump-
ing fresh culture medium through the culture cham-
ber. However, if one would suppose that during
culture growth factors were washed out, one would
expect long muscle fibers to atrophy, and particularly
short muscle fibers to atrophy and reduce their serial
sarcomere number. This clearly did not occur.
As the basal lamina is expected to facilitate the

presence of an unstirred layer near the sarcolemma of
the already gel-like ECM, the direct flow of perfusate
is expected to pass predominantly on the outside of
the endomysial tunnel of the isolated muscle fiber. In
addition, generally, the sulphated glycosaminoglycan
branches of the giant proteoglycan molecules (Vlo-
davsky et al., 1987; Vukicevic et al., 1992; Mason,
1994; Tatsumi et al., 1998, as well as collagen IV
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(Vukicevic et al., 1992) within the basal lamina bind
several types of growth factors, i.e. the basal lamina
acts as an anchor place for growth factors. Therefore,
it also acts as a source of growth factors if concen-
trations fall and hence the basal lamina regulates the
growth factor concentration. Therefore, a reduction
in the concentration of endocrine growth factors, if
any, in the neighborhood of their sarcolemmal re-
ceptors will not dramatic. There may be one notable
exception: binding of IGF-1 to heparan sulfate was
not shown (Vukicevic et al., 1992).
Therefore, it cannot be excluded that the concen-

tration of IGF-1 could have been lowered, because of
the absence of other binding proteins, other than
most common constituents of the ECM (e.g. IGF-1
binding proteins; Florini et al., 1996, or serum
proteins such as a1-acid glycoprotein and albumin;
Lovich et al., 2001 and specific plasma globulins;
Pardridge, 1981). It should be noted that albumin
concentration increased within the ECM of mouse
soleus muscle and rabbit tibialis muscle in response
to immobilization (Wagatsuma & Yamada, 2000)
and during low-frequency chronic stimulation (Hei-
lig & Pette, 1988), respectively.

Mechanical factors

The question that arises is whether isolation of a
single muscle fiber for the culture does not remove
the specific mechanical signals for adaptation of fiber
size. In view of the very substantial effects of epi-
muscular myofascial force transmission, for example,
on the serial distributions of sarcomere length within
one muscle fiber (as indicated by the finite-element
modelling), it is hypothesized that the removal of the
tensile and shear effects of neighboring muscle fibers
and neighboring muscle also modified or removed
the mechanical signal for adaptation. If this is true, it
means that the mechanical interactions, via neigh-
boring muscle fibers and their endomysial–perimysial
stromata, may potentially be major determinants of
adaptation of muscle size. It should be noted that
such interactions could originate from extra- or
intramuscular sources, as close as other bundles
within the same muscle, or as far away as antagonis-
tic muscles. Not only the forces exerted by those
sources, but particularly also their altered relative
positions causing shear deformation of the material
constituting their interfaces could potentially be
important variables.
In view of the very substantial effects of epimus-

cular myofascial force transmission (for example on
serial distributions of sarcomere length, as indicated
by the finite-element modelling), it is hypothesized
that the mechanical isolation of the muscle fiber
decreased the signal for adaptation.

This could affect the muscle fiber in two ways. The
removal of high local strains from the complex of
cytoskeleton, basal lamina and endomysium of the
muscle fiber would: (1) alter mechanical signalling at
the myonuclei according to the paradigm of tensegr-
ity (i.e. by changing cell shape or the shape of the
tensegrity unit of the muscle fiber leading to for
example expression of growth factors) and (2) alter-
natively, prevent exceeding the threshold for activa-
tion of signalling molecules at the sarcolemma
leading to biochemical signalling within the muscle
fiber to the nucleus and eventually enhanced expres-
sion of for instance growth factors.
When secreted into the ECM, such growth factors,

in turn, will stimulate proteins synthesis over a more
extended area along the length of the muscle fiber
(autocrine effects) as well as that of its neighboring
fibers (paracrine effects).
It may be somewhat surprising that, if mechano-

signalling within the muscle fiber leads to the expres-
sion of growth factors, secretion to the ECM is still
needed to activate biochemical-signalling pathways.
In such reasoning, we hypothesize that the secretion
of growth factors has as a major side effect to
coordinate the adaptation of different units along
the length of the muscle fiber and neighboring muscle
cells. This would mean that effects of myofascially
induced, variation of local tensile or shear strains
along the muscle fiber as expected in vivo are aver-
aged so that the degree of adaptation of a substantial
number of presumed units of adaptation is similar,
even though differences may be sustained over longer
distances.
For example, the differentially increased MAPK

activity within the fibers of rat medial gastrocnemius
muscle according to location within the muscle
(Csukly et al., 2002) may be related to such myofas-
cial effects (see Huijing & Baan, 2001a) of remnants
of the dissected neurovascular tract.

Overall conclusions and discussion

In the present work, we reviewed results from experi-
mental work as well as mathematical modelling for
very different levels of muscular organization. In
addition, we presented some new experimental re-
sults on epimuscular myofascial force transmission
in X. leavis and on myofascial force transmission
between antagonistic rat muscles to complete the
picture presented.
This review demonstrates that, although insight in

the mechanisms underlying adaptation of muscle
fiber size is growing fast, our knowledge remains
rather limited and often controversy reigns, because
of a lack of control over the physiological conditions
imposed by the experiments.
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The lack of experimental control is implicit for
in vivo work on humans, for which rather little
control on experimental conditions of a target muscle
is feasible (for example, on degree of activation, on
values of locally exerted forces and local strains). On
the other hand, one of the clear advantages of this
type of work is its immediate applicability.
A little more control, but as we argue above for

adaptation studies not a sufficient degree, is possible
within animal experiments involving muscle bellies
surrounded by their natural context of connective
tissues or, more usually, in maximally dissected
muscle in situ. It should be noted that in most
adaptation studies using animal experiments (for
example immobilization, surgical interventions) ex-
perimental conditions are imposed in vivo, while the
adaptation effect is assessed for the fully dissected
condition of the in situ muscle. Therefore, we argue
that adaptation effects should also be assessed with
myofascial effects active. If this is not done, potential
effects of epimuscular myofascial force transmission
will be neglected. A clear example can be derived
from observations in patients suffering from spastic
paresis of the flexor carpi ulnaris muscle (FCU). This
affliction leads to the typical palmar flexed and ulnar
abduction position of the wrist. After dissection of
the muscle for approximately 50% along the length
of the muscle belly (necessary to allow transfer of the
FCU tendon insertion to the extensor side subse-
quent to the experiment), measurements of length–
force characteristics yielded no indication for the
reason of this contracture (Smeulders et al., 2004b):
neither high passive forces, nor unusually high mus-
cle lengths were encountered at muscle–tendon com-
plex lengths corresponding to the maximal dorsi-
flexion position possible. This leads to the hypothesis
that the contracture accompanying the spastic par-
esis was caused by myofascial interaction of the FCU
with neighboring muscles or other tissues.
From this example, it is also clear that we need to

pay much more attention to potential adaptation of
the connective tissues within and surrounding the
muscle and its acute and long-term effects on mus-
cular properties.
The discrepancy between in vivo and in vitro data

on adaptation presented in paragraphs above (e.g.
effects on muscle fiber diameter and serial sarcomere
number in whole muscle kept at low lengths, but not
in isolated muscle fibers cultured under such condi-
tions) demonstrates the value of contrasting ap-
proaches at the extremes of the muscular organi-
zation (i.e. single fiber in vitro vs whole muscle in its
natural surroundings).
We argue here that we do need all levels of

experimentation presented, but that a better integra-
tion of results and developed knowledge is necessary.
In addition, a better tuning of the experiments to the

specific goals attainable at the specific level of orga-
nization is necessary (e.g. major mechanisms are not
likely to be discovered in an in vivo experiment). We
also suggest that uncovering knowledge of the me-
chanisms underlying adaptation of muscular size
requires much better control of experimental condi-
tions, as obtained for example through in vitro
experiments on mature muscle fibers. Sophisticated
techniques must be developed in order to study the
effects of mechanical signals that are applied to the
muscle fiber at the basal lamina and sarcolemma or
directly on the myonuclei and how such signals
trigger adaptation of muscle fiber size directly within
the nuclei and/or by interactions with biochemical
factors at the sarcolemma.
In spite of having gained knowledge of fundamen-

tal mechanisms of adaptation, the work has only
started, because we need to consider the question
how these mechanisms are affected and how their
effects are modulated by activity at higher levels of
muscular organization. For example, how do the
distributions of sarcomere lengths likely to be present
within a muscle fiber that is surrounded by adjacent
muscle fibers of the same muscle or by nearby fibers
of other muscles and extramuscular connective tis-
sues affect the processes of adaptation?
Therefore, knowledge on fundamental adaptation

mechanisms should be tested for recognition of effects
at the more complex levels of organization. Potential
modification of its effects at these higher levels of
muscular and connective tissue organization should
be quantified. In that way, integration will become
possible if results are obtained at all levels of experi-
mentation.
There are other types of important interactions

between the studies of the different levels of organi-
zation. For example, once aware of the presence of
distributions of serial sarcomere lengths, researchers
working at the level of the isolated muscle fiber may
try to impose such distributions on their isolated
cells. In other words, there should be two-way traffic
of information and ideas in people studying the
different levels of muscular organization.
It is clear that non-invasive imaging in human

subjects or patients will need to play a very important
role in the process of recognition of effects at the
highest level of organization of tissues. Presently, two
types of techniques are available for that: ultrasound
imaging and MRI. The former has the advantage of
being much cheaper and more easily applied than the
latter. However, the question whether ultrasound
imaging has sufficient contrast and resolution to
play a major role at the process of recognition of
effects of more fundamental mechanisms at the
in vivo level should be raised. MRI also has its
limitations regarding contrast, but application of
advanced radio-frequency techniques to give the
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tissue magnetic properties that can be recognized
within the image may help overcome this problem.
It is very unlikely that much mechanism will be

uncovered in studies performed at the in vivo level.
Epimuscular myofascial force transmission is a good
example in this case: in vivo imaging had been around
for years, without leading to any discovery of myo-
fascial effects, because measurement of locally ex-
erted muscle forces was essential to its recognition
and proof. The in vivo shifts of muscles (or their
parts) with respect to each other and with respect to
neighboring other tissues can be quantified quite well,
even using ultrasound imaging (e.g. Bojsen-Møller et
al., 2004). However, the interpretation of effects of
such relative movements and changes of relative posi-
tion remains very hard, unless information regarding
effects of myofascial movement, obtained from better-
controlled animal experiments, is integrated. We also
suggest that imaging and analysis of muscles in planes
of view that are quite unusual today (i.e. imaging
planes other than only the mid-longitudinal view of
the muscle showing recognizable fascicle patterns)

may be quite necessary to recognize the mechanism
of findings– based on animal experimentation.
Finite-element modelling may help to study fea-

tures at any level of organization that are inaccessible
to direct experimentation and can be used also to
feed and support the theoretical framework within
which results are to be interpreted.
If successful, the suggested integrative multilevel

approach to the study of muscular adaptation is
expected to lead also more directly toward applica-
tions that will allow manipulation of adaptive
processes for the use in clinical interventions, as
well as training-related goals. Considering the wide
range of studies and disciplines needed for such
study of adaptation, close collaboration of many
different types of laboratories is needed. The depart-
ments and faculties to which those laboratories
belong should also train their students to study at
the interdisciplinary level to such a degree that
communication across discipline boundaries is pos-
sible and the sometimes present abyss separating the
fundamental and applied scientists is bridged.
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