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Abstract

Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can
interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs
during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During
chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting
pathogens. However, S. aureus and P. aeruginosa often co-exist in the same niche influencing the CF pathogenesis. The goal
of this study was to investigate the reciprocal interaction of P. aeruginosa and S. aureus and understand the influence of P.
aeruginosa adaptation to the CF lung in order to gain important insight on the interplay occurring between the two main
pathogens of CF airways, which is still largely unknown. P. aeruginosa reference strains and eight lineages of clinical strains,
including early and late clonal isolates from different patients with CF, were tested for growth inhibition of S. aureus. Next, P.
aeruginosa/S. aureus competition was investigated in planktonic co-culture, biofilm, and mouse pneumonia model. P.
aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo
models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa
patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally
associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and
disease progression in CF.
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Introduction

Chronic airway infections and inflammation cause progressive

lung disease and are the leading causes of mortality in patients

with cystic fibrosis (CF) [1]. CF disease is characterized by the

accumulation of secretion in the lungs and by a decreased

mucociliary clearance that lead to an impaired ability to defeat

bacterial infections. The viscous CF lung secretions provide an

environment that protects bacteria from the assault of antibiotics

and immune cells, thus favoring colonization and persistence. CF

patients have a unique set of bacterial pathogens that are

frequently acquired in an age dependent sequence [2]. The most

frequently cultured organisms from the respiratory tract of young

children are Staphylococcus aureus and non-typeable Haemophilus

influenzae. Later, as the patient ages, infection progresses to involve

opportunistic pathogens such as Pseudomonas aeruginosa and

Burkholderia cepacia.

It is now becoming clear that the different bacteria coexisting in

CF airways have a mutual interaction and contribute to the

pathogenesis of the disease [3,4]. In a context that involves a

complex polymicrobial community a single-species microbial

analysis could be inadequate, as different microbes within the

community can interact each other and the resulting infection

pathogenesis differs from that in infections caused by the

component species individually [3,5]. Chronic bacterial infections

associated with CF lung disease have been studied by a range of

culture-independent profiling methodologies [6–12], and each

approach has revealed greater microbial diversity than was

previously recognized. Overall, the results of these studies suggest

that the polymicrobial nature of CF infections could play a key

role in driving disease and response to therapy and, in turn,

significantly impact upon clinical outcomes [1,7,13]. Nevertheless,

very little is known about the role of interspecies interactions in the

pathogenesis of the CF lung disease [14,15].

The Gram-positive bacterium S. aureus is the pathogen most

commonly isolated in nasopharyngeal samples from young

children with CF, and in the preantibiotic era, many CF patients

succumbed to S. aureus infection [16]. Recent data demonstrate an

increase in S. aureus infections in the CF population, not only in the

US but also in Europe, with methicillin-resistant S. aureus (MRSA)
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strains being on the rise [17,18], reflecting the overall increase in

prevalence and epidemiologic changes in the general population

[19,20].

Of the multiple opportunistic bacteria that may infect CF

patients, the Gram-negative bacterium P. aeruginosa is considered

to be the most significant as it has clearly been linked to worsening

of the pulmonary status [21]. Despite intensive antibiotic

treatments, P. aeruginosa infections are difficult to eradicate [22].

The antibiotic treatment may favor the emergence of antimicro-

bial drug resistance. One of the most striking characteristics of P.

aeruginosa chronic lung infection in CF patients is indeed the co-

existence of multiple phenotypes that are highly resistant to any

chemotherapy treatment [23].

Although S. aureus colonization/infection usually precedes

chronic colonization of the respiratory tract by P. aeruginosa, it

continues into adulthood, when 51% of patients become culture

positive for S. aureus [24]. Both organisms are commonly co-

isolated from CF respiratory cultures and it has been shown that

risk factors for initial P. aeruginosa airway infection in patients with

CF include S. aureus pre-colonization [25,26]. In addition, both

species are able to shift between a planktonic (free-living) life style

to surface-attached communities known as biofilms during chronic

infections. In human diseases including CF, biofilm-related

infections are directly correlated with dramatic increases in

antibiotic resistance [27,28,29].

In this study, we aimed to explore the interactions between S.

aureus and P. aeruginosa by using in vitro and murine models of

pneumonia. During chronic infection, P. aeruginosa undergoes

numerous selective pressures ranging from antibiotic treatments,

host immune response and interactions with other microorganisms

leading to the development of patho-adaptive lineages. The

adaptation of P. aeruginosa to the CF niche selects for clones with

reduced virulence in multi-hosts models [23,30]. We focused our

attention on the reciprocal influence of P. aeruginosa and S. aureus

and on understanding how P. aeruginosa adaptation to the CF lung

may interfere with S. aureus interaction. Using a collection of

longitudinal strains isolated from CF patients, we showed that P.

aeruginosa strains out-competed S. aureus. This effect was associated

with P. aeruginosa early strains, which in acute infection present

higher virulence. On the contrary, P. aeruginosa late adapted strains

showed reduced or abolished capacity to outcompete S. aureus.

This work provides key results on lung pathogenicity caused by

multi-bacterial infection.

Results

P. aeruginosa early and late clonal variants differently
influence growth of S. aureus

Eight lineages of P. aeruginosa strains, including 12 early (early

group) and 12 late (late group) clonal isolates from different

patients with CF were tested for growth inhibition of S. aureus

Newman and SH1000 strains on agar surfaces [25]. In particular,

late P. aeruginosa strains selected for this study were collected over a

period of 16.3 years and carried several patho-adaptive traits,

including mucoid and hypermutable phenotypes (Table 1) as

reported previously [23,31]. In addition, PAO1 and PA14 P.

aeruginosa reference strains, which show phenotypic traits charac-

teristic of early isolates [23], were also included.

As shown in Table 1, growth of S. aureus Newman and SH1000

strains was inhibited by PA14 and PAO1 P. aeruginosa reference

strains and by 100% (12/12) and 91.6% (11/12) of P. aeruginosa

early strains respectively in co-culture. The only exception was the

strain KK1 which was previously described as different in terms of

virulence potential from KK2, isolated at the same time point

[23]. The strength of inhibition of S. aureus in some cases differed

within clonal lineages (TR1 vs TR2; MF1 vs MF2; KK1 vs KK2).

Differently from P. aeruginosa early strains, 58.4% (7/12) of the

late strains had no effect on growth of S. aureus Newman and

SH1000 strains. These P. aeruginosa strains belonged to six different

lineages (NN, BT, AA, TR, MF, KK) indicating presence of at

least one P. aeruginosa strain unable to inhibit S. aureus growth in the

majority of CF patients (75%: 6/8). The other two P. aeruginosa

lineages (SG and BST) (25%: 2/8) inhibited S. aureus growth

although to a lesser extent when compared to early strains. Late P.

aeruginosa strains within the same lineage also differed with regard

to the strength of S. aureus growth inhibition (SG57 vs SG58; BT72

vs BT73; TR66 vs TR67), indicating a diversification of the

bacterial population during chronic infection as demonstrated for

other virulence traits [23,32]. The average inhibition halo of late

group was 11.6 mm versus Newman and 11.3 mm versus

SH1000, while the average inhibition halo of early group was

18.3 mm versus Newman and 17.4 mm versus SH1000. Late

group showed a statistically significant effect in reducing levels of

inhibition (regression parameter = 26.76 versus Newman and

regression parameter = 26.24 versus SH1000) with p,0.01 for

both settings. This data indicated that, as a group, late P. aeruginosa

strains differ significantly from early strains in their capacity to

inhibit S. aureus growth, suggesting a trend of P. aeruginosa patho-

adaptive variants to influence the growth of S. aureus.

On the contrary S. aureus did not exert any effect on the growth

of P. aeruginosa (Table S1).

Competition between S. aureus and P. aeruginosa in
planktonic co-cultures

Next, we investigated the interactions between S. aureus and P.

aeruginosa in planktonic growth by comparing the growth kinetics of

the two organisms in co-culture to those obtained in pure culture.

One reference P. aeruginosa strain PA14 and a pair of sequential

strains from patient AA were selected. Figure 1A shows the growth

curves of the reference S. aureus Newman and P. aeruginosa PA14

strains in single and dual cultures. PA14 maintained the same

growth rate in pure culture and in co-culture, and had a significant

negative effect on the overall trend of the growth of Newman

(p,0.001). In order to have a clear comprehension of the

differences in growth between S. aureus and P. aeruginosa, we

calculated the Competition Index (CI), that allows to compare the

differences in growth curve of mixed cultures, and the CI-like

index, the Relative Increase Ratio (RIR), that compares the

growth curves of the two species in pure culture (see Materials and

Methods). As shown in Figure 1B, the CI of PA14 versus Newman

was significantly different from the RIR in late exponential phase

(12 h, p,0.001) and stationary phase (24 h, p,0.001) of growth,

suggesting an inhibitory effect of P. aeruginosa on S. aureus.

Next, we explored the effect of P. aeruginosa strains isolated at the

onset of chronic colonization (early strains) or several years after

acquisition (late strains) from CF patients on growth of S. aureus. A

pair of well characterized P. aeruginosa clonal strains isolated from

CF patient were selected: the AA2 early strain and AA43 late

adapted strain carrying several phenotypic changes in virulence

factor production, and patho-adaptive mutations within the

genome temporally associated with CF lung infection [23,30,33].

The growth of Newman was significantly inhibited by the presence

of the early AA2 strain (p,0.001), while AA2 strain was not

affected from the presence of S. aureus (Figure 1C). The CI of AA2

versus Newman was significantly higher than the RIR in late

exponential phase (8 h, p,0.05 and 12 h, p,0.01, Figure 1D) and

in stationary phase (24 h, p,0.01). On the other hand, Newman

and the late strain AA43 interfered each other in co-culture,
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slightly but significantly reducing their growth rate compared to

pure culture (p,0.001, Figure 1E). It is worth noting that AA43

inhibited the growth of Newman to a lower extent compared to

AA2: while AA2 determined a reduction of 3, 5 and 6 log at 8, 12

and 24 h respectively, AA43 determined a reduction of less than 1

log at the same time points (Figure 1C and E). Being the

competition reciprocal between the two species and considering

their different growth rate in pure culture, the CI did not differ

from the RIR (Figure 1F). Similar results were obtained using the

same isolates of P. aeruginosa, AA2 and AA43, in co-culture with the

reference S. aureus SH1000 (Figure S1) strengthening the results

obtained with Newman. Taken together these data indicate that P.

aeruginosa strains, including reference or those isolated at the early

stage of chronic infection, can outcompete S. aureus in planktonic

cultures. On the other hand, P. aeruginosa patho-adaptive strains

lose this capacity over time.

S. aureus and P. aeruginosa interaction in biofilm
In order to understand if the reciprocal interaction among the

two species could affect their capacity to produce biofilm, we

quantified the biofilm biomass of individually cultured or co-

cultured at a ratio 1:1 S. aureus and P. aeruginosa by staining with

crystal violet. As shown in Figure 2, the results obtained from co-

cultured pair of strains formed by Newman and PA14 revealed

significantly lower level of biomass compared to Newman only

(Newman vs Newman+PA14 p,0.01), but similar to that

corresponding to PA14 alone. This data suggests an inhibitory

effect exerted by P. aeruginosa on S. aureus biofilm formation. For

clinical P. aeruginosa strains, while the OD value detected in the

mixed biofilm formed by Newman and AA2 was not significantly

different from both Newman and AA2 individually cultured, the

OD value associated to the mixed biofilm formed by Newman and

AA43 revealed significantly lower levels of biomass compared to

both Newman (Newman vs Newman+AA43 p,0.001) and AA43

(AA43 vs Newman+AA43 p,0.001) individually cultured. This

finding suggests a reciprocal interference of the two species,

confirming the results of batch co-culture experiments.

We also determined the amount of viable bacteria of each

species in both planktonic and sessile fractions in single and dual

cultures. In co-culture, we noticed that all strains of P. aeruginosa

Table 1. In vitro growth inhibition of S. aureus and P. aeruginosa.

P. aeruginosa spot S. aureus lawn (Newman) (inhibition halo) S. aureus lawn (SH1000) (inhibition halo)

PAO1 strong (24.5 mm) strong (20 mm)

PA14 strong (22 mm) strong (19 mm)

SG1 strong (23.5 mm) strong ( 22.5 mm)

SG57* strong (23 mm) strong (20.5 mm)

SG58* weak (14.5 mm) weak (15 mm)

NN2 weak (15 mm) weak (14 mm)

NN83#* no (9 mm) no (9 mm)

BT1# weak (15 mm) weak (14.5 mm)

BT2 weak (15 mm) weak (15 mm)

BT72* no (9 mm) no (9 mm)

BT73* weak (13.5 mm) weak (13 mm)

AA2 very strong (27 mm) strong (20.5 mm)

AA43* no (9 mm) no (9 mm)

TR1 weak (13.5 mm) weak (13.5 mm)

TR2 strong (20 mm) strong (20 mm)

TR66* weak (11.5 mm) weak (11.5 mm)

TR67* no (9 mm) no (9 mm)

MF1 weak (15 mm) strong (21 mm)

MF2# strong (21 mm) strong (18.5 mm)

MF51* no (9 mm) no (9 mm)

KK1 weak (12 mm) no (9 mm)

KK2 very strong (27 mm) very strong (26.5 mm)

KK71* no (9 mm) no (9 mm)

KK72* no (9 mm) no (9 mm)

BST2 weak (15 mm) weak (14.5 mm)

BST44#* weak (14.5 mm) weak (12.5 mm)

Twenty-four P. aeruginosa isolates were collected from eight individuals with CF (SG, NN, BT, AA, TR, MF, KK, BST) at the onset of chronic colonization (numbered 1-2) or
after 4.5–16.3 years of colonization (numbered 43-83). PAO1 and PA14 were included as reference strains. 5 ml spots of P. aeruginosa overnight cultures, normalized to
0.5 OD, were added to S. aureus lawn (normalized to 0.5 OD) on Mueller-Hinton agar and incubated overnight at 37uC. The table summarizes the results obtained: ‘‘weak
inhibition’’ indicates an inhibition halo #15 mm; ‘‘strong inhibition’’ indicates an inhibition halo .15 mm and #25 mm; ‘‘very strong inhibition’’ indicates an inhibition
halo .25 mm; ‘‘no inhibition‘‘ indicates absence of inhibition halo (9 mm is the diameter of the P. aeruginosa spot).
* Indicates mucoid phenotype.
#Indicates hypermutable phenotype. For statistical analysis see ‘‘Results’’.
doi:10.1371/journal.pone.0089614.t001
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tested determined a reduction of the number of both sessile and

planktonic Newman cells (p,0.001) (Figure 3A). In particular, the

bacterial load of Newman in sessile fraction, when co-cultured

with clinical early P. aeruginosa AA2, decreased of five log

compared to pure culture, while the clonal late strain AA43

caused a lower (two log) reduction. A similar effect was observed

also in planktonic fraction (Figure 3A) in agreement with batch co-

culture data.

On the contrary, the presence of Newman had no effect on

PA14 and AA2 growth in both planktonic and biofilm fractions,

while it moderately inhibited the attachment to polystyrene and

biofilm formation of the late P. aeruginosa strain AA43, confirming a

reciprocal interaction between Newman and AA43 (Figure 3B,

p,0.001).

Figure 4 shows the percentage of planktonic and sessile cells of

the two species in single and dual cultures. While Newman in pure

culture presented the highest percentage of sessile cells, in dual

culture was negatively affected by the presence of PA14 and AA2,

and the biofilm composition of the co-culture reflected that of P.

aeruginosa in pure culture (Figure 4A and 4B). A reciprocal

influence was evident only for the pair represented by Newman

and the late strain AA43 (Figure 4C). It is worth noting that in

single species biofilm, the mucoid AA43 strain, even if apparently

displaying a lower biofilm biomass compared to AA2 after staining

with crystal violet, presented a higher percentage of sessile cells

compared to AA2 (5.7% vs 3.4% respectively).

Competition between P. aeruginosa and S. aureus in a
mouse model of acute lung infection

To test whether the observed differences in planktonic growth

and biofilm formation in vitro would be relevant in vivo, a mouse

model of acute pneumonia was used. Thus, we set up in vivo

competition between P. aeruginosa and S. aureus in C57Bl/6NCrlBR

mice challenged with 16106 CFU of S. aureus and P. aeruginosa

strains mixed together at a 1:1 ratio. Eighteen hours after

infection, murine lungs were homogenized and plated. Differential

CFU counting was performed to calculate the CI. Results show

that P. aeruginosa reference strain PA14 and the early isolate AA2

outcompeted S. aureus strain Newman, as the CI, being signifi-

cantly different from 1, indicated a competitive advantage of P.

aeruginosa over S. aureus (PA14/Newman average CI = 5.0, p,0.01;

AA2/Newman average CI = 3.3, p,0.05). Different results were

obtained for the P. aeruginosa late isolate AA43 and Newman as the

CI 18 hours after challenge was not significantly different from 1

(AA43/Newman CI = 0.9), indicating no competition in this case

(Figure 5 and Table 2).

Discussion

The goal of this study was to investigate the influence of P.

aeruginosa adaptation to the CF lung on interaction with S. aureus in

co-culture, during biofilm formation and mouse lung infection, in

order to gain important insight on the interplay occurring between

the two main pathogens of CF airways, which is still largely

unknown. For this purpose, we used a panel of deeply genetically

and phenotypically characterized P. aeruginosa clonal strains

isolated from CF patients at different time points during CF

chronic lung infection [33,34].

We evaluated the inhibitory effect of eight P. aeruginosa lineages

on S. aureus, including strains isolated both at early and late stage of

chronic infection. A negative effect on S. aureus growth significantly

associated with early-infecting P. aeruginosa strains was observed,

while clonal late-infecting P. aeruginosa strains presented a

significantly reduced or abolished virulence when co-cultivated

with S. aureus. During chronic infection, P. aeruginosa undergoes

adaptation to the CF lung, leading to patho-adaptive lineages that

differ genotypically and phenotypically from the originally

infecting strain. Such microevolution usually determines loss of

motility, acquisition of mucoidy, antibiotic resistance and loss-of-

function mutations in virulence genes, suggesting attenuation of

virulence for CF adapted strains [30,35,36,37]. Here we demon-

strated for the first time that P. aeruginosa virulence traits affect also

the interaction with other CF-related pathogen as S. aureus. As

described for other traits, intra-clonal variation was observed both

in clonal P. aeruginosa early strains and late strains isolated at the

same time from the CF patients. One of the most striking

Figure 1. Single and dual species batch growth curves and competition index values. S. aureus strain (Newman) and P. aeruginosa strains
(PA14 and two clinical early and late isolates from a CF patient AA2 and AA43) were grown for 24 hours in BHI in single culture and in co-culture after
inoculation at equal ratio from mid-exponential phase pure cultures. Growth rate was monitored by colony count after plating on selective media for
both species. Results are represented as the mean of values obtained from three independent experiments. The error bars indicate the standard
deviations. A nonlinear mixed-effect model was fitted, using a four-parameters logistic regression function. Panel A: growth curves of Newman in
pure culture and in co-culture with PA14; Panel B: Competition index (CI) and Relative Increase Ratio (RIR) calculated from single and dual cultures of
Newman and PA14; Panel C: growth curves of Newman in pure culture and in co-culture with AA2; Panel D: CI and RIR calculated from single and dual
cultures of Newman and AA2; Panel E: growth curves of Newman in pure culture and in co-culture with AA43; Panel F: CI and RIR calculated from
single and dual cultures of Newman and AA43. Each value represents the mean of CI and RIR values from three independent experiments and the
bars indicate standard deviation. Statistically significant differences in Student’s t test and in nonlinear mixed-effect model are indicated by symbols
when present: *: p,0.05; **: p,0.01; ***: p,0.001.
doi:10.1371/journal.pone.0089614.g001

Figure 2. Biofilm formation by S. aureus and P. aeruginosa
strains in single and dual cultures. Bacteria were grown overnight
in 96-well flat-bottom microtiter plates in NB medium at 37uC either
individually cultured or co-cultured at a 1:1 ratio. Biofilm biomass was
quantified by staining with crystal violet and absorbance measurements
at OD 595 nm. The values represent the means of three independent
experiments, and the bars indicate standard deviation. Statistically
significant differences in Student’s t test are indicated by symbols when
present: **: p,0.01; ***: p,0.001.
doi:10.1371/journal.pone.0089614.g002
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characteristics of P. aeruginosa chronic lung infection in CF patients

is the intense diversification of the bacterial population, leading to

the co-existence of multiple phenotypes that may colonize different

airways niches. Thus, the intra-clonal variation that we have

observed is most likely the result of this process of genetic

adaptation.

Under planktonic growth conditions, we have shown that both

the reference P. aeruginosa strain PA14 and the clinical early strain

AA2 strongly inhibited the growth of S. aureus during late

logarithmic phase and stationary phase, without being influenced

in their growth rate. Antagonism between microorganisms within

a community could be attributed to simple competition for limited

resources or to direct antagonistic effects [36]. There is evidence

supporting antagonism between P. aeruginosa and S. aureus.

Mashburn et al. demonstrated that P. aeruginosa can lyse S. aureus

to use the iron released for its own growth [38]. Moreover, it has

been reported that S. aureus is susceptible to an arsenal of

respiratory inhibitors generated by P. aeruginosa, such as pyocyanin,

hydrogen cyanide or alkyl-hydroxyquinoline N-oxides (HQNO),

which are able to suppress the aerobic metabolism and growth of

S. aureus [25,39]. Interestingly, the late P. aeruginosa strain AA43,

clonal to AA2, inhibited the growth of S. aureus at a lower extent,

compared to AA2 and was not able to outcompete it. Besides

being less virulent, AA43 was also negatively affected by the

presence of S. aureus as its growth rate was significantly slowed

down by S. aureus cells.

Despite the increasing interest on the crucial role of biofilm in

CF infections, interspecies interactions of different organisms in

mixed species biofilms are still poorly understood [27]. Here we

have shown that in co-culture biofilms all P. aeruginosa strains were

able to outcompete S. aureus in both sessile and planktonic fractions

and the composition of the population in mixed biofilms was

determined by P. aeruginosa, albeit to different extent. Also under

biofilm growth conditions, the clonal late P. aeruginosa strains AA43

presented a different behavior in the presence of S. aureus

compared to the early AA2 strain. In single species biofilm, the

mucoid AA43 strain, even if apparently displaying a lower biofilm

biomass compared to AA2 after staining with crystal violet,

presented a higher percentage of sessile cells compared to AA2.

This difference in biofilm production reflects the well documented

phenotypic changes occurring in P. aeruginosa during the establish-

ment of chronic infection. Indeed, P. aeruginosa strains isolated from

CF patients at early stage of chronic infection are generally non-

encapsulated and express a variety of virulence factors, whereas P.

aeruginosa isolates from late stage typically lack virulence factors

and convert to a mucoid phenotype, associated with greater

biofilm formation and resistance to phagocytosis [37]. In apparent

contradiction, also the early strain AA2 was able to produce

biofilm. This could be explained considering the complexity of the

microbial interactions in the CF lung, the presence of a diverse

community of P. aeruginosa strains, and the many factors

contributing to the formation of the biofilm matrix of P. aeruginosa,

besides alginate production. In addition not all adapted isolates are

Figure 3. S. aureus and P. aeruginosa planktonic and sessile cells in single and dual cultures. Bacteria were grown overnight in 96-well flat-
bottom microtiter plates in NB medium at 37uC either individually cultured or co-cultured at a 1:1 ratio. CFU counts were determined in both
planktonic and sessile fractions. Panel A: planktonic (left) and sessile (right) cells of S. aureus strain Newman in pure culture and in co-culture with P.
aeruginosa strains PA14, AA2 and AA43. Statistically significant differences are referred to Newman in pure culture. Panel B: planktonic (left) and
sessile (right) cells of P. aeruginosa strains PA14, AA2 and AA43 in pure culture and in co-culture with S. aureus strain Newman. The values represent
the means of three independent experiments, and the bars indicate standard deviation. Statistically significant differences in non-parametric Mann–
Whitney test are indicated by symbols when present: **: p,0.01; ***: p,0.001.
doi:10.1371/journal.pone.0089614.g003

Figure 4. Percentage of planktonic and sessile cells in single and dual cultures. Bacteria were grown overnight in 96-well flat-bottom
microtiter plates in NB medium at 37uC either individually cultured or co-cultured at a 1:1 ratio. CFU counts were determined in both planktonic and
sessile fractions and the percentage of S. aureus and P. aeruginosa in the two fractions of single and dual cultures was calculated. Panel A:
percentages of planktonic and sessile cells of Newman in single culture (first histogram), PA14 in single culture (second histogram), Newman and
PA14 in ideal co-culture if the 2 species would not interfere each other (third histogram, percentages have been calculated considering the values of
the first and second histograms), and Newman and PA14 in co-culture (fourth histogram). Panel B: percentages of planktonic and sessile cells of
Newman in single culture (first histogram), AA2 in single culture (second histogram), Newman and AA2 in ideal co-culture if the 2 species would not
interfere each other (third histogram, percentages have been calculated considering the values of the first and second histograms), and Newman and
AA2 in co-culture (fourth histogram). Panel C: percentages of planktonic and sessile cells of Newman in single culture (first histogram), AA43 in single
culture (second histogram), Newman and AA43 in ideal co-culture if the 2 species would not interfere each other (third histogram, percentages have
been calculated considering the values of the first and second histograms), and Newman and AA43 in co-culture (fourth histogram). SA: S. aureus; PA:
P. aeruginosa.
doi:10.1371/journal.pone.0089614.g004
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mucoid and also early not adapted strains could produce biofilm

exploiting other biofilm matrix molecules [40]. In agreement with

data obtained in planktonic co-cultures, AA2 strongly inhibited the

growth of S. aureus in mixed biofilm, without being affected. Qazi et

al. demonstrated that factors related to biofilm formation are

down-regulated in S. aureus in response to P. aeruginosa presence,

consistently with our results [41]. Compared to AA2, P. aeruginosa

AA43 inhibited S. aureus growth at lower extent, determining a

reduction of S. aureus CFU count of about 1 and 2 log in planktonic

and sessile fractions respectively, when measured against S. aureus

individual biofilm. Moreover, the capacity to produce biofilm of

AA43 was negatively affected by the presence of S. aureus,

confirming its attenuated virulence and susceptibility to competitor

organism.

Although several studies using in vitro models demonstrated an

inhibitory effect of P. aeruginosa on the growth of also highly

virulent S. aureus strains such as USA 300, in line with our results

[27,42,43], in vivo models show contradictory results [42,44]. We

further investigated S. aureus/P. aeruginosa reciprocal interaction

setting up a murine model of acute lung co-infection. In agreement

with in vitro data, the reference strain PA14 and the early CF

clinical isolate AA2, after 18 hours of co-infection, inhibited S.

aureus, while the late CF clinical isolate AA43 did not outcompete

S. aureus.

It is known that environmental and early clinical isolates of P.

aeruginosa are equipped with a repertoire of virulence factors and,

among them, also substances with anti-bacterial activity, these

factors are selected against during the adaptation process to the CF

airways environment. The results obtained in the acute pneumo-

nia model, in which an early isolate is able to inhibit the growth of

another pathogen, while its clonal adapted strain is no longer able

to do so, strengthen the loss of anti-bacterial factors during

adaptation.

Our data underline the importance of bacterial interactions in

lung infection and in particular of the complexity of the

interactions of different pathogens that coexist in the CF airways.

However, given the genetic adaptation process of P. aeruginosa that

leads to the selection of different patho-adaptive variants,

descending from the initial infecting clone, further combinations

of clonal lineages of early and late isolates should be tested to

strengthen our in vivo data. Moreover, considering that the

adaptation process during chronic infection involves also S. aureus,

other experiments using clinical early and late S. aureus strains as

well as adapted phenotypes such as small colony variants should be

performed. Our results showing the influence of adaptation on the

reciprocal interactions between S. aureus and P. aeruginosa deserve

further investigations including the host response and the effect of

environmental conditions, such as microaerobic and anaerobic

Figure 5. Competition between P. aeruginosa and S. aureus
strains in a murine model of pneumoniae. Planktonic S. aureus
strain Newman and P. aeruginosa clinical isolates AA2 and AA43 and
reference strain PA14 were used to infect C57BL/6NCrlBR mice at a ratio
of 1:1. After 18 hours of acute infection lungs homogenates were
plated on selective plates to determine S. aureus and P. aeruginosa CFU.
Each circle represents the CI for a single animal in each group. A CI
value equal to 1 indicates equal competition of the two species; a CI
value significantly ,1 indicates a competitive advantage of S. aureus
that outcompetes P. aeruginosa; a CI value significantly .1 indicates a
competitive advantage of P. aeruginosa that outcompetes S. aureus.
Wilcoxon signed rank test of the null hypothesis that the distribution of
CI is symmetric about 1 was performed. Statistically significant
differences are indicated by symbols when present: *: p,0.05; **:
p,0.01. The data are pooled from two or three independent
experiments.
doi:10.1371/journal.pone.0089614.g005

Table 2. Colonization of murine lungs with S. aureus and P. aeruginosa reference and clinical strains in competition experiments.

PA14/Newman (n = 9a) AA2/Newman (n = 9a) AA43/Newman (n = 9a)

Mortality, % (no. of dead/total mice) 0 (0/9) 0 (0/9) 0 (0/9)

Co-infectedb, % (no. of co-infected/
surviving mice)

89 (8/9) 100 (9/9) 78 (7/9)

P. aeruginosa infectedc, % (no. of infected/
surviving mice)

100 (9/9) 100 (9/9) 78 (7/9)

S. aureus infectedd, % (no. of infected/
surviving mice)

89 (8/9) 100 (9/9) 78 (7/9)

Total cfu/lunge 3.36104 6.76103 5.86103

P. aeruginosa cfu/lunge 2.96104 4.56103 2.76103

S. aureus cfu/lunge 4.26103 2.26103 3.16103

CIf 5.0 3.3 0.9

aPooled mice, analyzed in two independent experiments.
bCo-infected mice, surviving after 18 hours from challenge.
cNumber of pooled mice infected with P. aeruginosa after 18 hours.
dNumber of pooled mice infected with S. aureus after 18 hours.
eMedian values are reported.
fCompetition Index.
doi:10.1371/journal.pone.0089614.t002
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conditions, on pathogens interactions, using both in vitro and in vivo

models of chronic infection that better mirror the progression of

CF lung disease.

Materials and Methods

Animals and ethics statement
Animal studies were conducted according to protocols approved

by the San Raffaele Scientific Institute (Milan, Italy) Institutional

Animal Care and Use Committee (IACUC, Number 444) and

adhered strictly to the Italian Ministry of Health guidelines for the

use and care of experimental animals. All efforts were made to

minimize the number of animals used and their suffering.

Research on P. aeruginosa bacterial isolates from the individuals

with CF has been approved by the responsible physician at the CF

center at Hannover Medical School, Germany. All patients gave

informed consent before the sample collection. Approval for

storing of biological materials was obtained by the Hannover

Medical School, Germany.

Bacterial strains
For S. aureus, Newman and SH1000 reference strains, were used

in the study [45,46]. Two P. aeruginosa reference strains, PA14 [47]

and PAO1 [48], and 8 clonal lineages of P. aeruginosa clinical

strains from CF patients (AA, SG, NN, BT, TR, MF, KK, BST),

including strains isolated at the onset of chronic colonization

(early: AA2, SG1, NN2, BT1, BT2, TR1, TR2, MF1, MF2, KK1,

KK2, BST2) or several years after acquisition and before patient’s

death (late: AA43, SG57, SG58, NN83, BT72, BT73, TR66,

TR67, MF51, KK71, KK72, BST44) were used in this study [23].

Clonality of strains, assessed by Pulsed Field Gel Electrophoresis

and multiple phenotypic traits, including motility, mucoid

phenotype, LasR phenotype, and pyocyanin secretion, have been

determined and previously reported [23,32].

S. aureus growth inhibition on agar surface
S. aureus cultures (Newman and SH1000) grown overnight in

Luria-Bertani broth (LB, DifcoTM) were normalized to 0.5 OD600

and uniformly spread on Mueller-Hinton agar plate (MH,

DifcoTM) by using a cotton swab. Then 5 ml of P. aeruginosa

culture, grown overnight in LB broth and normalized to 0.5

OD600, were added to the S. aureus lawn followed by incubation

overnight at 37uC [25]. The same procedure was performed

spotting S. aureus culture on P. aeruginosa lawn. The following P.

aeruginosa clonal lineages, including early and late clinical strains,

were tested: AA, SG, NN, BT, TR, MF, KK and BST (for details

see paragraph ‘‘Bacterial strains’’). As P. aeruginosa reference strains

we used PA14 and PAO1. The inhibition score was defined as

follows: ‘‘no inhibition’’ when no halo was observed around the

spot of P. aeruginosa that measures 9 mm; ‘‘weak inhibition’’

indicated an inhibition halo #15 mm; ‘‘strong inhibition’’

indicated an inhibition halo .15 mm and #25 mm; ‘‘very strong

inhibition’’ indicated an inhibition halo .25 mm. The choice for

inhibition strength ranges was based on preliminary assays

performed using the lawn of about 30 S. aureus strains (including

both reference and clinical strains of different origin) and spotting

about 60 P. aeruginosa strains (both reference and clinical strains) on

the different lawns.

Planktonic mono-culture and co-culture growth curves
All growth curves were performed in 30 ml of nutrient-rich not

selective medium, Brain-Heart Infusion broth (BHI, DifcoTM), at

37uC with shaking (180 rpm). The following strains were tested: S.

aureus (Newman, SH1000), P. aeruginosa (PA14, AA2 and AA43).

Strains were grown overnight in BHI and subcultured in fresh

medium for 2.5 hours to reach the mid-exponential phase of

growth. Bacteria were centrifuged, pellet was resuspended in fresh

medium and the OD600 was measured to adjust the concentration

of bacteria. For co-cultures each pair of S. aureus and P. aeruginosa

strains were inoculated at equal ratio (1 OD600, optical density)

from mid-exponential phase pure cultures and incubated at 37uC
for 24 hours. Pure cultures of each organism were used for

comparative purposes. At different time points (0, 0.5, 1, 2, 3, 4, 6,

8, 12 and 24 hours), samples were taken, serially diluted in sterile

phosphate-buffered saline (PBS) and plated onto Mannitol Salt

agar (MSA, DifcoTM) and Pseudomonas Isolation agar (PIA,

DifcoTM) to discriminate the two bacterial species. The agar plates

were incubated for 24 hours at 37uC and colony forming units

(CFU) were enumerated. Each experiment was repeated three

times independently. The competition index (CI) for mixed culture

was calculated as P. aeruginosa-to-S. aureus ratio within the output

sample, divided by the corresponding ratio for the input (inoculum

at time t = 0), as described by Macho and colleagues [49]. To

allow an easier comparison between the variations observed in

single versus mixed cultures a CI-like index, the Relative Increase

Ratio (RIR) was calculated as P. aeruginosa-to-S. aureus ratio within

the output sample, divided by the corresponding ratio in the

inoculum, using growth results from pure cultures [49]. As the

RIR is calculated on the results obtained from single growth

curves, only a CI that differs statistically from the RIR of the same

time-point can be considered a result of a significant competition

between the species [49].

Biofilm production
Biofilm production in static conditions was visualized by crystal

violet (CV) staining as previously described [34]. The following S.

aureus and P. aeruginosa strains were tested: Newman, PA14, AA2

and AA43. Strains were grown overnight in Nutrient Broth (NB,

DifcoTM) and subcultured in fresh medium for 2.5 hours to reach

the mid-exponential phase of growth. Bacteria were centrifuged,

pellet was washed with PBS, resuspended in fresh medium and the

OD600 was measured to adjust the concentration of bacteria [34].

Experiments were performed in triplicate and repeated three times

independently. The data were then averaged and the standard

deviation was calculated.

To correlate the growth in the planktonic fraction with biofilm

formation, the planktonic cell fractions, which were transferred to

new microtiter plates, were quantified by plating serial dilutions on

MSA and PIA agar plates. To enumerate the sessile cells of S.

aureus and P. aeruginosa, the wells were rinsed three times with

200 ml of PBS to remove non-adherent and weakly adherent

bacteria. Then, the biofilm was removed by scraping the surface of

each well with 1 ml PBS and the recovered cells were suspended

by vortexing for 30 sec. The number of sessile cells was

determined by plating serial dilutions on MSA and PIA agar

plates. To ensure the complete detachment of the bacteria, CV

(1%) assay was performed on each of the wells scraped, and

absorbance determined at 595 nm.

Mouse model of acute lung single and co-infection
Experiment of acute infection with S. aureus and P. aeruginosa

strains were performed using C57Bl/6NCrlBR male mice (20–22

gr), purchased by Charles River, with minor modification to

previous published protocols [20,30]. For the co-infections, P.

aeruginosa referent strain PA14 and clinical isolates AA2 and AA43,

and S. aureus referent strain Newman, grown at middle exponential

phase, were recovered by centrifugation and resuspended in PBS
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to the desired sub-lethal dose for infection of 16106 CFU both for

P. aeruginosa and S. aureus and mixed together at a ratio of 1:1.

C57Bl/6NCrlBR mice were anesthetized by an intraperitoneal

injection of a solution of 2.5% Avertin (2,2,2-tribromethanol, 97%;

Sigma Aldrich) in 0.9% NaCl and administered in a volume of

0.015 mlg21 body weight. Trachea was directly visualized by a

ventral midline incision, exposed and intubated with a sterile,

flexible 22-g cannula (Becton, Dickinson, Italy) attached to a 1 ml

syringe. Co-infection was established with a 60 ml inoculum

implanted via the cannula into the lung, with both lobes

inoculated. Mice were also infected with 16106 CFU of plank-

tonic P. aeruginosa or S. aureus for comparative purposes.

After 18 hours from infection, mice were euthanized and

murine lungs were aseptically excised, homogenized and plated

onto MSA and PIA plates for differential CFU counting. The

competition index (CI) was calculated as the ratio of P. aeruginosa to

S. aureus bacteria recovered from the murine lungs after 18 hours

from infection adjusted by the input ratio that was inoculated in

each animal (in vivo CI). A CI value equal to 1 indicates equal

competition of the two species; a CI value significantly ,1

indicates a competitive advantage of S. aureus that outcompetes P.

aeruginosa; a CI value significantly .1 indicates a competitive

advantage of P. aeruginosa that outcompetes S. aureus.

Statistical analysis
In vitro agar growth inhibition data were analyzed by means of a

LME (Linear Mixed effect model) separated for Newman and

SH1000. Response variable was inhibition and covariates were

groups (early versus late) and a random effect on patient to

account for lineages heterogeneity. To analyze batch co-culture

data reported in Figure 1A, 1C, 1E the CFU/ml values were

transformed using a log10 function. Data retrieved from single and

co-culture experiments showed a similar starting point (estimated

by intercept parameter A) and different behavior in some settings

over time , leading to different plateau values (estimated by

parameter B) at the end of the follow-up period. This suggested to

use a nonlinear mixed-effect model (ref), (with the non-linearity

described by a four-parameters logistic regression function) to

estimate the log10(CFU/ml) trend, modelled as it follows: A+B/

{1+exp[(C2x)/exp(D)]}.

This kind of model is widely used for growth curve modeling.

Since the parameter A represents horizontal asymptote relative to

the starting point, we assign a random effect (representing the

heterogeneity among experiments) on this parameter to include

heterogeneity among experiments. Parameter B represents the

horizontal asymptote relative to the final plateau; we studied the

possible influence of single/co-culture (described by its indicator

variable), in order to test the hypothesis of different plateau at the

end of the follow up. This represents the main effect of interest and

its significance was tested comparing likelihood with and without

it. Parameter C is the inflection point and has been estimated using

a maximum likelihood principle. Parameter D is strictly connected

to the so called scale parameter and represents the growth rate of

the logistic function. A fixed effect common for single single and

co-culture was estimated. RIR and CI indexes were analyzed

using Student’s t-test and the null hypothesis: mean CI was not

significantly different from mean RIR [49]. In vitro biofilm data

(OD values) were analyzed using Two-tailed Student’s t-test [34].

CFU biofilm data were analyzed by means of Mann–Whitney test,

a non-parametric procedure to evaluate a null hypothesis that two

populations are the same against an alternative that one

population tends to have larger values than the other. Competition

index (CI) of in vivo experiments was calculated adapting the

methods previously published [20]. To assess bacterial competition

Wilcoxon signed rank test of the null hypothesis that the

distribution of CI is symmetric about 1 was used. Significance

was set at the usual level 0.05. All statistical analyses were

performed using R 2.15.2 (http://www.R-project.org/).

Supporting Information

Table S1 In vitro growth inhibition of P. aeruginosa.

(DOCX)

Figure S1 Single and dual species batch growth curves
and competition index values. S. aureus strain (SH1000) and

P. aeruginosa strains (PA14 and two clinical early and late isolates

from a CF patient AA2 and AA43) were grown for 24 hours in

BHI in single culture and in co-culture after inoculation at equal

ratio from mid-exponential phase pure cultures. Growth rate was

monitored by colony count after plating on selective media for

both species. Results are represented as the mean of values

obtained from three independent experiments. The error bars

indicate the standard deviations. A nonlinear mixed-effect model

was fitted, using a four-parameters logistic regression function.

Panel A: growth curves of SH1000 in pure culture and in co-

culture with PA14; Panel B: Competition index (CI) and Relative

Increase Ratio (RIR) calculated from single and dual cultures of

SH1000 and PA14; Panel C: growth curves of SH1000 in pure

culture and in co-culture with AA2; Panel D: CI and RIR

calculated from single and dual cultures of SH1000 and AA2;

Panel E: growth curves of SH1000 in pure culture and in co-

culture with AA43; Panel F: CI and RIR calculated from single

and dual cultures of SH1000 and AA43. Each value represents the

mean of CI and RIR values from three independent experiments

and the bars indicate standard deviation. Statistically significant

differences in Student’s t test and in nonlinear mixed-effect model

are indicated by symbols when present: *: p,0.05; ***: p,0.001.

(TIF)
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