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Abstract. Most of supervised learning algorithms assume the stability
of the target concept over time. Nevertheless in many real-user modeling
systems, where the data is collected over an extended period of time, the
learning task can be complicated by changes in the distribution under-
lying the data. This problem is known in machine learning as concept
drift. The main idea behind Statistical Quality Control is to monitor the
stability of one or more quality characteristics in a production process
which generally shows some variation over time. In this paper we present
a method for handling concept drift based on Shewhart P-Charts in an
on-line framework for supervised learning. We explore the use of two
alternatives P-charts, which differ only by the way they estimate the
target value to set the center line. Experiments with simulated concept
drift scenarios in the context of a user modeling prediction task compare
the proposed method with other adaptive approaches. The results show
that, both P-Charts consistently recognize concept changes, and that the
learner can adapt quickly to these changes to maintain its performance
level.

1 Introduction

User modeling systems are basically concerned with making inferences about
the user’s assumptions (e.g. preferences, goals, interests, etc.) from observations
of the user’s behavior during his/her interaction with the system. On the other
hand Machine Learning deals with the formation of models from observations. In
recent years a growing number of applications of machine learning techniques to
user modeling systems have been developed (e.g. information filtering). Observa-
tions of the user’s behavior can provide data (training examples) that a machine
learning system can use to induce a model designed to predict future actions
[13]. Nevertheless, for many user modeling systems where data is collected over
an extended period of time, the machine learning task can be complicated by
changes in the distribution underlying the data. This problem is known as con-
cept drift in machine learning. Depending on the rate of these changes we can
distinguish concept drift (when changes occur gradually) of concept shift (when
changes occur abruptly). Concept drift scenarios require on-line, incremental
learning algorithms, able to adapt quickly to drifting concepts.



In the last few years several methods to cope with concept drift have been
developed (e.g. [6,7,9,14]). The goal of this paper is to consider yet another
method to handle concept drift in an on-line framework for supervised learning.
Our method is based on Statistical Quality Control. In order to detect that a
change has occurred, usually, a process that monitors the value of some indica-
tors, such as performance measures, must be implemented. The benefit of our
method, compared to the other approaches, is that this monitoring process is
explicitly modelled using P-charts, an attribute Shewhart control chart. In this
paper, we explore how two alternatives P-Charts can be used to detect concept
changes. These two P-Charts differ only by the way they estimate the target
value to set the center line on the chart. We present a general algorithm to
handle concept drift based on P-Chart, which is broadly applicable to a range
of domains and learning algorithms. Experiments with simulated concept drift
scenarios in the context of a student modeling task compare our method with
other approaches. The results show that both P-charts consistently recognize
concept changes, and that, the learner can adapt quickly to these changes in
order to maintain its performance level.

In the next section, we review other work on adaptation to drifting concepts.
In section 3 we introduce some notions of Statistical Quality Control, and then,
explain how P-Chart can be used in the monitoring process to detect concept
drift. Further, we present the general algorithm to handle concept drift based on
P-Chart. In section 4 we describe a user modeling prediction task in an adaptive
educational system, and in section 5 we present experiments to evaluate the
proposed method in the context of this user modeling task. Finally, section 6
contains the conclusions and future work.

2 Related Work

In machine learning drifting concepts are often handled by time windows or
weighted examples according to their age or utility. In general, approaches to
cope with concept drift can be classified into two categories: i) approaches that
adapt a learner at regular intervals without considering whether changes have
really occurred; ) approaches that first detect concept changes, and next, the
learner is adapted to these changes. Examples of the former approaches are
weighted examples and time windows of fixed size. Weighted examples are based
on the simple idea that the importance of an example should decrease with
time (references about this approach can be found in [6],[7],[8], [9],[14]). When
a time window is used, at each time step the learner is induced only from the
examples that are included in the window. Here, the key difficulty is how to select
the appropriate window size: a small window can assure a fast adaptability in
phases with concept changes but in more stable phases it can affect the learner
performance, while a large window would produce good and stable learning
results in stable phases but can not react quickly to concept changes. In the
latter approaches,with the aim of detecting concept changes, some indicators
(e.g. performance measures, properties of the data, etc.) are monitored over time



(see [6] for a good overview of these indicators). If during the monitoring process
a concept drift is detected, some actions to adapt the learner to these changes
can be taken. When a time window of adaptive size is used these actions usually
lead to adjusting the window size according to the extent of concept drift [6]. As
a general rule, if a concept drift is detected the window size decreases, otherwise
the window size increases. An example of work relevant to this approach is the
FLORA family of algorithms developed by Widmer and Kubat [14]. For instance,
FLORA2 includes a window adjustment heuristic for a rule-based classifier. To
detect concept changes the accuracy and the coverage of the current learner are
monitored over time and the window size is adapted accordingly.

Other relevant works, which are served as base for this paper, are the works
of R.Klinkenberg and C.Lanquillon, both of them in information filtering. For
instance, Klinkenberg and Renz in [6], in order to detect concept drift, they
propose monitoring the values of three performance indicators: accuracy, recall
and precision over time, and then, comparing it to a confidence interval of stan-
dard sample errors for a moving average value (using the last M batches) of
each particular indicator. Although these heuristics seem to work well in their
particular domain, they have to deal with two main problems: i) to compute
performance measures, user feedback about the true class is required, but in
some real applications only partial user feedback is available; i) a considerable
number of parameters are needed to be tuned. Afterwards, in [7] Klinkenberg
and Joachims present a theoretically well-founded method to recognize and han-
dle concept changes using support vector machines. The key idea is to select the
window size so that the estimated generalization error on new examples is min-
imized. This approach uses unlabeled data to reduce the need for labeled data,
it doesn’t require complicated parameterization and it works effectively and ef-
ficiently in practice. However, it is not independent of the hypothesis language
(a support vector machine) and therefore it is not generally applicable.

On the other hand, Lanquillon [8] employs Statistical Quality Control to de-
tect changes in document stream with either little or no user feedback. Three
alternative performance measures: sample error rate (it requires only some user
feedback per batch), expected error rate and wvirtual rejects (the two last mea-
sures don’t require any user feedback) are monitored over time. A representative
training set is maintained through storage of new examples for which the true
class labels have been provided by the user. If the monitor has detected some
change, the filtering system is adapted based on the current training set by
running through the entire learning process from scratch.

3 Exploring the use of two P-Charts to cope with drifting
concepts

Similarly to Lanquillon, the underlying theory we propose to use to deal with
concept drift is Statistical Quality Control. In the section following we will in-
troduce some notions of this theory (a deeper discussion can be found in [12]).



3.1 Notions of Statistical Quality Control

The main idea behind Statistical Quality Control is to monitor the stability of
one or more quality characteristics in production processes [2]. The values of
the quality characteristic generally show some variation, which can be caused
by either some ”natural causes’ inherent in the production process or by some
” special causes” that can be traced to a particular problem. ” Natural causes’
are presented all the time while ” special causes’ occur at unpredictable times.
A process can be run in either of two mutually exclusive states: an in-control
state or an out-of-control state. An in-control state means that the successive
values of the quality characteristic, as they are observed over time, show a stable
random variation about a target value (variations caused by ”natural causes”).
Otherwise a process is out-of-control. A process is in statistical control if ” special
causes” have been detected and removed, so these sources of variability will not
influence the process in the future [2].

The Shewhart controls charts are a useful tool to distinguish whether a pro-
cess is in-control or out-of-control. The values of the quality characteristic are
plotted on the chart in time order and connected by a line. Some control lim-
its are established. If a value falls outside the control limits, it is assumed that
the process is out-of-control, i.e.;some ” special causes’ have shifted the process
off target, and therefore, some actions will be required to remove them. If the
distribution of the quality characteristic is Normal (or approximately Normal)
there is some statistical arguments for using the 3 sigma control limits (sigma
is the standard deviation around the mean). It is well-known that, if the dis-
tribution of a statistic is Normal,then approximately 99.7% of the observations
will fall within three standard deviations of the mean of the statistic. In addition
to control limits, we can also use warning limits. These limits are usually set a
bit closer to the mean than the control limits. For instance, if two consecutive
values fall outside the warning limits some actions can also be taken.

If the mean p and the standard deviation o of the statistic of interest (the
values of the quality characteristic) are known, then these values are used to set
up the parameters of the control chart, as follows:

LCL =y —30;UCL = p+ 3o, (2)
LWL=p—koyUWL=pu+ko;0<k<3. (3)

where C'L represents the center line, LC'L and UC'L - the upper and lower control
limits, and LWL and UW L - the upper and lower warning limits. However, in
most cases p and o are unknown and these values must be estimated from
previously observed data.

The control charts are often classified according to the type of quality charac-
teristic that they monitor: variables or attributes. Attribute data is also known
as count attribute. For the purpose of this paper, we focus on the P-Chart -
a control chart for the proportion mnonconforming (the ratio of the number of
nonconforming items in a population to the total number of items in that popu-
lation) where: 4) a dichotomous attribute with only two mutually exclusive and



exhaustive outcomes is measured (e.g. each unit produced is classified either
conforming or nonconforming to some specifications); i) the successive observa-
tions are independent over time; 7i4) for a random sample of n items the count
of units that are nonconforming is registered; iv) the quality characteristic to be
monitored is the sample proportion nonconforming; v) the sample size can vary.

The count of nonconforming items follows a Binomial distribution with pa-
rameters n and p, where p is the probability that any unit will nonconforming
(the population proportion). The distribution of the sample proportion noncon-
forming can also be obtained from the binomial with parameters:

p=p; o=

Moreover if the sample sizes are large (n > 30), the sample proportion non-
conforming is approximately Normal (a well-known result derived by the Central
Limit Theorem). As we have stated before, when p is not known, then it must be
estimated from observed data. Suppose that the estimate p of p is obtained from
previous data by some estimator. Then, from equations (1)—(4), the parameters
of the P-Chart for each individual ¢-th sample with size n; would be:

CL=p, (5)
51— 51— b
UCL=p+3 u;LCL:max 0,p—3 u ) (6)
¢ Ny
51— b 51— b
UWL=p+k Q;LWL:max 0,p—k w 0 <k <3(7)
t t

The usual procedure to compute the estimate p is by the weighted average
of m preliminary sample proportions (as a rule, m should be 20 or 25)

m

1 = 1
P=P==m—— ) NiPi = —=m—— » (count); (8)
iz M ; dimn Z

i=1"" =

where p; is the sample proportion of the i-th sample with size n;. Further we
call the estimate p the target value.

3.2 Using P-Chart for Detecting Concept Drift

In this section we explore the use of two alternatives P-Charts for detecting
concept drift in an on-line framework for supervised learning. Data arrives to the
learner over time in batches. For each batch, the examples are classified using
the current learner. The quality characteristic to be monitored is the sample
error rate, a sample proportion of the misclassified examples. Following is a
more formal definition of the sample error rate:



Definition 1. The sample error rate of a learner he with respect to target con-
cept f and sample D with n examples is the proportion of misclassified examples
by hg, i.e.,

Err(D,hz) =error(D, f,he) = % Z 0(f(x), he(x)) (9)
xeD

where §(f(x), he(z)) = { (1)’ 101;};16@21{1(@?3 # he(z) is the one-zero loss function.

In order to evaluate the sample error rate for each batch, user feedback about
the correct class for the examples is required. If the monitoring process detects
concept drift, the learner must be adapted accordingly. Next, the adapted learner
can be used to predict the class labels of the examples of the next batch.

In classical Shewhart control charts it is assumed that the successive sample
proportions should exhibit a stable random variation around the target value
over time. Such behavior is not observed in the learning tasks where, we know,
concept changes are likely to occur. It is well known that the learner’s goal
is to minimize the zero-one loss function. Consequently, while the learner has
not learned enough about the underlying target concept, the error rate should
exhibit a downward trend that reflects the desired improvement of the perfor-
mance. At once a concept change occurred, an opposite trend in the error rate
is immediately observed. In principle, a learning process is in-control only when
the learner is extremely stable. Therefore, in learning tasks we need to dynami-
cally estimate the target value taking into account the actual performance level
of the learner.

The two alternatives P-Charts, we propose to use, differ only by the way they
estimate the target value. To distinguish them, we denote one chart PAvG-chart
and the other PMIN-chart. For the PAvG-chart at each time ¢ the target value
p is estimated by the weighted average of the sample errors on the M previous
batches, i.e., the estimate p can be computed from equation (8) for i = ¢t — M to
t — 1. Here M is a required parameter that must be tuned. Similarly, Lanquillon
in [8] propose to estimate the target value by the weighted average of the sample
errors on recent batches only if they are within the warning limits of the chart.

The way in which we estimate the target value of the PMIN-chart is based
on the exposed facts related to the dynamic behavior of the learning task and
also on the method to detect concept drift presented in [10]. Let us introduce
the following definition:

Definition 2. A context S corresponds to a set of examples from the data
stream where the distribution underlying the examples is stationary (without

drifts)

In general, the problem of handling drifting concepts can be viewed as the
problem of the detection of the last moment when a concept drift occurred.
Thus, the data stream can be analyzed as a sequence of different contexts over
time, i.e. the detection and extraction of stable concepts between drifts. Suppose



that at time ¢ a new context begins to be processed. At the beginning, while
the learner has not learned enough, the error rate for this context should exhibit
a downward trend. This means that for the current context, all the time when
a lower error rate is achieved, the learner will try to improve, or at least, to
maintain its performance level. Based on these facts, we propose to maintain a
minimum value for the error rate for the current context and set the target value
to this minimum value instead of using some average of previous observed values.
Taking into account the way we estimate the target value, we can state that
PMIN-chart is not a typical statistical P-chart since it does not use a statistical
well-founded estimator (we will try to explore these issues in future works).
Suppose that Errg) is the error rate for the context S at time ¢t and S Errg)
its standard deviation. From equations(9),(4) these values can be computed by:

Errg) (1- Errg))

Errg) = Err(S(t),h[;); SErrgt) = 0
Ng

(10)

where ng) is the number of examples of the actual context S at time ¢. Let

Errpgn, denote the minimum-error rate. Initially, Err,,;, is set to some pre-
defined value (a big number). Next, at each time step, if Errg) + SErrg) <

Errpin then Err,,:, is set to Errg).

3.3 A general algorithm for handling concept drift in on-line
supervised learning based on control P-chart

We have developed a general algorithm for handling concept drift in an on-line
framework for supervised learning based on P-Chart. This is presented in Figure
1. In each time step, the algorithm begins by determining the sample error rate
for the current batch. Next, the target value is estimated by the mean_estimator
procedure (how it is estimated depends on the method that is used: weighted
average, minimum error, etc.). After estimating the target value, all the chart
parameters are computed by the equations (5)—(7). Since a low sample error
rate is desirable, we don’t need to use the low limits here. If the current sample
error Err; is above the upper control limit, a concept shift is suspected, and
it is assumed that a new context is beginning. In this case, only the examples
from this new context are used to re-learn the learner, thus forgetting all the
previous data. If the last alert occurred at the previous time step (LastAlert=t-
1), we assume, that the new context began at the time indicated in FirstAlert.
If the current sample error is above the upper warning limit and it occurred
at two or more consecutive times a concept drift is suspected. In this case, the
examples of the current batch are not used to update the learner (it allows that
the monitoring process will more quickly recognize a concept shift). If neither,
a concept shift or concept drift is suspected, the learner is updated to combine
the current learner with the examples of the current batch.

The precise way in which a learner can be updated in order to include new
data depends basically on the learning algorithm employed. In principle, there



are two main approaches: i) re-build the learner from scratch; i) update the
learner combining the current model with the new data. For instance, updat-
ing a Naive Bayes classifier is simple: the counters required for calculating the
prior probabilities can be increased as new examples arrives. For other learners,
updating can be more difficult (e.g. support vector machines). May be, in this
case it would be easier to relearn from scratch. A deeper discussion about these
issues can be found in [8].

procedure HandleConceptDriftWithPChart
(data,learner,k,mean_estimator())

for t=1 to N //for each batch with size n_t at time t
Errt:=Err(Batch_t,Learner);

CL:= mean_estimator();

Sigma:=sqrt (CL*(1-CL)/n_t);

UCL:=CL+3.Sigma; WCL:=CL+k.Sigma;

If Errt > UCL then /* concept shift suspected
{If LastAlert=t-1 then t_ini:=FirstAlert else t_ini:=t;

learner:=RelLearnFrom(learner,t_ini)}

else
If Errt > WCL then /* concept drift suspected
If LastAlert=t-1 then /* consecutive alerts
LastAlert:=t
else /* it can be a false alarm
{learner:= UpdateWith(learner,Batch_t)
FirstAlert:=t, LastAlert:=t}
else /* no changes was detected
learner:= UpdateWith(learner,Batch_t);
Next t;
return: learner
End

Fig. 1. General algorithm for handling concept drift using P-Chart.

4 The user modeling prediction task

The proposed algorithm to handle concept drift was tested for a user modeling
prediction task in the context of GIAS, an adaptive authoring tool to support
learning and teaching (see [1] for more details). In GIAS, the authors (teachers)
can define a course and associate to each course topic a set of existing online
learning resources. Whenever a student requests the learning resources of a se-
lected topic, a topic generator must decide which resources are "appropriate’ or



‘not appropriate’ for the student, thus partitioning the set of available resources
into these two classes. The choice of the appropriate set of resources for a par-
ticular student depends on the resource’s characteristics and on the student’s
cognitive state,learning style and preferences.

Learning style can be defined as the different ways a person collects, processes
and organizes information. This kind of information helps more effectively adap-
tive learning systems, to decide how to adapt its navigation and its presentation,
thus enhancing the student learning. On the other hand a learning resource can
be viewed as the implementation of a learning activity in a multimedia support.
By matching a learning style with the characteristics of the learning resources, in
principle, it is possible to determine what types of resources are more appropri-
ate to a particular student. Nevertheless, it is a fact that the student preferences
of certain types of multimedia resources or learning activities can change over
time. Since, an adaptive learning model is desirable. Therefore, the prediction
task that consists in determining whether a learning resource is or is not ap-
propriate for a particular student taking into account his/her learning style and
preferences and the resource’s characteristics, can be related with the concept
drift problem for a concept learning task. Moreover, in some aspects, this task is
related to the task of information filtering.

We use the Felder-Sylverman model [4] of learning style which classifies stu-
dents in five dimensions: visual/verbal, sensing/intuitive, sequential/global, in-
ductive/ deductive, active/reflective (we use only the first three dimensions). In
order to acquire the initial learning style we employ the Index of Learning Styles
Questionnaire (ILSQ) [3]. It helps to classify the preference for one or the other
category in each dimension as mild, moderate or strong.

In our learning task, the examples are described through 5 attributes: the first
three characterizing the student’s learning style and the last two characterizing

the learning resource. The possible values for each attribute are presented in the
Table 1.

Table 1. Establishing attributes and their possible values

Attribute Values
Characterizing the student’s learning style
VISUALVERBAL VVi,VV € {Visual, Verbal} ,i € {mild, moderate, strong}

SENSINGCONCEPTUAL SC'1i, SC € {Sensing, Conceptual} ,i € {mild, moder., strong}
GLOBALSEQUENTIAL GSi,GS € {Global, Sequential} ,i € {mild, moderate, strong}

Characterizing the learning resource

LEARNING ACTIVITY Lesson  objectives/Explanation/Example/Conceptual ~ Map
/Synthesis  Diagram/Glossary ~/Summary /Bibliography/
Historical Review /Inter.Activity

RESOURCE TYPE Text/HTML Text/Picture/Animated Picture/ Animated Pic-
ture with Voice/ Audio /Video /Software




For instance, suppose the following example:

VISUALVERBAL: Verbalmoderate; SENSINGCONCEPTUAL: Sensingmild; GLOB-
ALSEQUENTIAL: Globalmild; LEARNING ACTIVITY:explanation; RESOURCE TYPE
:audio.

The induced learner must predict if a learning resource implementing a learn-
ing activity such as ’explanation’ in a multimedia support of type *audio’ would
be appropriate for a student with a moderate preference for VERBAL category,
a mild preference for SENSING category and a mild preference for a GLOBAL
category.

For each student an individual predictive model is maintained. First, the
model is initialized from some initial training data taking into account the ac-
quired information about the student’s learning style. Whenever a student selects
a topic, the student’s current predictive model is used to classify the available
resources.

We choose the Naive Bayes (NB) classifier, one of the learning algorithms
most used in user modeling, as our predictive model because: ) it is simple;
it) it learns quickly (it doesn’t require large amount of data to learn); iii) low
computations to make decisions are needed; v)its results as probabilities are
easy to apply. Moreover, we propose to employ Adaptive Bayes [5], an adaptive
version of the Naive Bayes. The main difference between these two algorithms
is that Adaptive Bayes includes an updating scheme, that makes it possible to
better fit the current model to new data: after seeing each example, first, the
counters are incremented, and then, they are again updated in order to increase
the confidence on the correct class (the amount of adjustment is proportional to
the discrepancy between the predicted class and the correct class).

Since the NB classifier returns probabilities, all the resources of a same class
can be ranked. As a result, a page is sent to the student including two sepa-
rated ranked lists with the resource’s links: a ” resources suggested for study’ list
with the links for those resources classified as ’appropriate’ and ” other resources
for study”’ list with the links for those resources classified as 'not appropriate’.
Whenever possible, the correct class is obtained based on the observations about
the user’s choice of links: visited links are taken as positive examples. Obtaining
a relevant set of negative examples is more difficult. To obtain more examples we
suggest to the students to rate the resources explicitly. The obtained examples
are used to evaluate the sample error and update the predictive model.

5 Experiments

In order to test the two P-Charts proposed in section 3 we have conducted
experiments simulating concept drift scenarios in the context of the described
prediction task using artificial datasets.

5.1 Dataset Generation and Experimental Setup

The artificial datasets were generated to simulate the changes in the user’s pref-
erences, which can conduce to further adjustments in the initial learning style.



To simplify the experiments we don’t discriminate the preferences for a learn-
ing style category. Hence, the number of different learning styles is equal to 23,
which corresponds to the number of different datasets evaluated for each al-
gorithm. Note, that the underlying concept is different for each learning style.
The basic idea enclosing in the simulation of concept drift is based on the fol-
lowing facts that really exist in this learning task: for instance, suppose that a
student is initially classified as VERBAL. Learning resources that match with a
verbal learner (e.g. a learning resource that implements a learning activity such
as ” Historical Review’ in a " HTML Text” support) should be appropriate for
this verbal student. Hence, the underlying target concept can be represented by
the following logical rule:

IF LearningStyle Is Verbal AND
(ResourceLearningActivity OR ResourceType) matches Verbal
THEN Resource is Appropriate

Nevertheless, during the further interaction with the system, the student can
change his/her preferences for another kind of learning resource that no longer
matches with his/her learning style. This means that the underlying concept has
changed and, consequently, the previous rule can be replaced with another one,
like this:

IF LearningStyle Is Verbal AND
(ResourceLearningActivity OR ResourceType) matches Visual
THEN Resource is Appropriate

Moreover, these changes in the student’s preferences lead to further adjust-
ments in the student learning style, i.e., the underlying data distribution can
also change. Thus, to simulate concept drift scenarios, for each learning style,
datasets with 1600 examples were generated randomly. Each example was classi-
fied according to the current concept, which changes after every 400 examples (a
sequence of four logical rules was defined). All the examples were grouped into
32 batches of equal size with 50 examples each. Moreover, in order to initialize
the learner, a training dataset with 200 examples according to the first concept
was also generated.

The experiments were performed according to the on-line framework for su-
pervised learning described in the section 3.2. The two learning algorithms: Naive
Bayes (NB) and Adaptive Bayes (AB) were evaluated in combination with each
of the following approaches: a non-adaptive approach (the baseline approach),
Fixed Size Window (WFS) and the HandleConceptDriftWithPChart algorithm
described in the Figure 1 (the parameter k is set to 1) using PAvG-chart (we
denote this approach PAvg) and using PMIN-chart (we denote this approach
PMin).

5.2 Experimental Results and Analysis

In Figure 2 you can see an illustration of the two P-charts. In each time step,
the chart lines are adjusted according to the method employed to estimate the



target value and to set the center line. Both charts detected the three concept
shifts that really are in the data. The two first concept shifts (after t = 8 and
after t = 16) were detected immediately by the two P-charts (as you can see,
the point representing the sample error fall above the current control limit). The
third concept shift (after ¢ = 24) was also detected immediately by PAvG-Chart,
while it was detected with a little delay by PMIN-Chart. However, beginning at
t = 25, this chart started signaling a concept drift (the points that fall outside
the warning limits). This means, that an upward trend of the sample error was
detected. When further, at ¢ = 27 the concept shift was detected, all the ex-
amples beginning at ¢ = 25 are considered to belong to the same context and
consequently they are all used to re-learn the learner.
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Fig. 2. The PAvg-Chart(left) and PMin-Chart(right)

Table 2 shows the accuracy of all combinations of learning algorithms and
the different approaches averaged over 10 runs for each learning style. The re-
sults shown in column ” Acc. Avg” were obtained by averaging over the accuracy
of the eight learning styles for each approach. These averaged values are used
to construct the learning curves on the Figure 3. As you can see, at first, while
there is no concept drift, the performance of all approaches is good enough;
however, those approaches that use Adaptive Bayes show a better performance.
After the first change has occurred (after ¢ = 8), the performance of those ap-
proaches without concept drift detection, decreases significantly. Since the fixed
size window approach re-learns regularly from the last six batches, it can recover
its performance a little, but this adaptive approach could not outperform the
P-Chart approaches. Moreover, as you can notice, there are no significant differ-
ences on the performance between PAvg and PMin. Both approaches work well
and quickly react to concept drift. However, the results that we show for the
PAvg in the Figure 3 are the results that we obtained for M = 6. Table 3 com-



Table 2. Accuracy of the Naive Bayes and Adaptive Bayes combined with all the
explored approaches for the 8 learning styles (M = 6 for WFS and PAvg M=6)

Approaches LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 |Acc. Avg
1)|NB 70.50 64.42 69.59 64.71 77.33 7727 57.83 60.51 | 67.77
2)|[NB & WFS| 86.86 85.11 83.06 78.81 87.48 85.98 86.66 84.48 | 84.80
3)|INB & PAvg| 91.52 90.96 91.38 89.37 90.49 88.51 91.14 87.56 | 90.11
4)|INB & PMin| 91.41 90.96 91.24 89.15 90.27 90.03 90.25 89.30 | 90.04
5)|AB 75.73 70.79 73.42 67.01 80.61 80.09 70.38 68.24 | 73.28
6)
7)
8)
1

AB & WFS| 89.04 87.39 86.69 82.01 89.33 88.43 89.06 87.12| 87.38
AB & PAvg| 91.85 91.81 92.86 90.90 92.14 89.76 92.79 90.19 | 91.52
AB & PMin| 91.90 91.61 92.62 90.87 91.77 90.60 91.84 89.30 | 91.31
2) vs. (1) |+16.3 4+20.69 +13.46 +14.11 +10.15 +8.71 +28.83 +23.96| +17.03
vs. (1) |+21.02 +26.54 +21.79 +24.66 +13.16 +11.24 +33.31 +27.04| +22.35
4) vs. (1) |+20.91 +26.54 +21.65 +24.44 +12.94 +12.76 +32.43 +28.53| +22.27

o — —— — — =

(
(3)
(4)

I1[(6) vs (5) |+13.31 +20.17 +17.96 +22.36 +9.88 +8.42 +20.76 +19.31| +16.52
(7) vs (5)  |+16.12 +21.03 +19.26 +23.89 +11.53 +9.67 +22.42 +21.95| +18.23
(8) vs (5)  |+16.17 +20.83 +19.20 +23.86 +11.16 +10.51 +21.47 +21.06| +18.03

II[(4) vs. 3) | -0.11 00 -0.14 -022 -022 +152 -0.89 +0.52| -0.07
(8) vs (7) |+0.05 -020 -0.06 -+0.03 -0.38 +0.84 -0.95 -0.89 | -0.20

IV[(5) vs. (1) |+5.23 +6.37 +3.83 +2.30 +3.29 +2.83 +12.55 +7.73 | + 5.51
(6) vs. (2) |42.19 +2.28 +3.64 +3.19 +1.85 +2.45 +2.41 +2.64| +2.58
(7) vs. (3) |+0.33 +0.86 +1.30 +1.53 +1.66 +1.25 +1.66 +2.64| +1.40
(8) vs. (4) |+049 +0.66 +1.37 +1.72 +1.50 +0.57 +1.59 +2.26| +1.27

pares accuracy for different values of M. The results show that the performance
is affected by the variation of the parameter M. If the parameter M is tuned
accordingly, there are no significant differences on the performance of these two
P-charts. Therefore, we suggest the use of the PMin instead of the PAvg because:
i) PMin doesn’t depend on any parameter;ii) PMin better reflects the behaviour
of the learning process.

Finally, in the last lines of the Table 2, some comparative studies of the
learner performance for a pair of approaches are presented. Studies I and II
compare adaptive approaches to deal with concept drift against the baseline
non-adaptive approach in combination with Naive Bayes and Adaptive Bayes,
respectively. The results show that a significant improvement is achieved by
using any adaptive method instead of the non-adaptive one for both the learning
algorithms. However, the gain obtained by using the P-chart methods is superior
to the gain obtained by using windows of fixed size. In the latter approach the
learner is adapted regularly without considering whether a concept changes has
really occurred. Moreover, a more significant improvement is achieved with the
Naive Bayes due to the adaptation scheme included into Adaptive Bayes. The
study III compares the performance of the PAvg against PMin: the ”(4) vs. (3)”
line shows the performance increase obtained by using Naive Bayes with PMin
instead the PAvg, while ” (8) vs. (7)” shows the performance increase obtained by




using Adaptive Bayes with Pmin instead the Pavg. As we have stated above, if
M is set to 6 there are no significant differences on the performance of these two
methods. The last study IV compares the two learning algorithms. The results
show that Adaptive Bayes outperforms Naive Bayes for all the approaches. In
general, a more significant improvement is achieved when adaptive methods are
combined with Adaptive Bayes.
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Fig. 3. Comparison of the accuracy using P-Min and P-Avg with M=6

6 Conclusions and Future Work

This paper describes yet another method to handle concept drift in an on-
line framework for supervised learning based on Statistical Quality Control. We
present a general algorithm to handle concept drift using P-Charts, which is
broadly applicable to a range of domains and learning algorithms. The benefit
of our method, compared to the other approaches, is that the monitoring process
is explicitly modeled using P-charts. We explore how two alternative P-Charts:
PAvG-chart and PMIN-chart can be used to monitor the sample error rate in
order to detect concept changes. These P-charts differ only by the way they
estimate the target value to set the center line on the chart. The experimental
results in the context of a user modeling prediction task using Naive Bayes show
that both P-charts consistently recognize concept changes, and that, in general,
the proposed method allows the learner to adapt quickly to these changes in
order to maintain its performance level. However, for purpose of estimation of
the target value it is more convenient to consider PMin than PAvg because: 7)
PMin doesn’t require any parameter to be tuned; 4) since the learner’s goal is
to minimize the one-loss function, PMin better follows the natural behaviour of
the learning process. In future works we plan to test the proposed method with
other concept drift scenarios and other learning algorithms.



Table 3. Varying the parameter M of the P-Avg method and its effect on the perfor-

mance
NB AB
PMin 90.04 91.24
PAvg M =4 90.17 91.57
M=6 90.11 91.52
M =38 89.92 91.08
M =10 87.61 89.29
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