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Abstract Humans are generally in standing or sitting

positions on Earth during the day. The musculoskeletal

system supports these positions and also allows motion.

Gravity acting in the longitudinal direction of the body

generates a hydrostatic pressure difference and induces

footward fluid shift. The vestibular system senses the

gravity of the body and reflexively controls the organs.

During spaceflight or exposure to microgravity, the load on

the musculoskeletal system and hydrostatic pressure dif-

ference is diminished. Thus, the skeletal muscle, particu-

larly in the lower limbs, is atrophied, and bone minerals are

lost via urinary excretion. In addition, the heart is atro-

phied, and the plasma volume is decreased, which may

induce orthostatic intolerance. Vestibular-related control

also declines; in particular, the otolith organs are more

susceptible to exposure to microgravity than the semicir-

cular canals. Using an advanced resistive exercise device

with administration of bisphosphonate is an effective

countermeasure against bone deconditioning. However,

atrophy of skeletal muscle and the heart has not been

completely prevented. Further ingenuity is needed in

designing countermeasures for muscular, cardiovascular,

and vestibular dysfunctions.

Keywords Spaceflight � Gravity � Atrophy � Bone mineral

density � Hydrostatic pressure � Orthostatic intolerance �
Bisphosphonate

Introduction

Land-living vertebrates are believed to have evolved from

fish [1]. During the process of evolution, the paired fins were

modified into the limbs of early tetrapods or amphibia. The

limbs came to be used to raise the animal body from the

ground, and in combination with lateral trunk flexions, to

propel the body forward. Reptiles are also descended from

early tetrapods. When the mammals evolved, the trunk was

also used to achieve an upright position. In humans, the trunk

musculature has come to be used for balancing the body on

the lower limbs and for movements of the head and trunk. In

the lower limbs, the soleus is essential for bipedal standing

and walking. In most mammals or quadrupeds, the center of

gravity lies between the forelimbs and hind limbs, and the

load on the hind limbs is thus smaller in quadrupeds than that

on the lower limbs in humans. Thus, they do not require a

large soleusmass. The soleusmuscle,which acts on the ankle

joint, is small in quadrupeds, but is relatively large in

humans. In contrast, the gastrocnemius in the same triceps

surae muscle is larger than the soleus in quadrupeds [2, 3].

The vestibular system senses the direction of gravity or

posture and plays important roles in controlling posture via

the motor neurons [4].

Standing, sitting, and walking exercise occupy about

16 h per day, and are the most common positions in the

daily lives of humans. The gravity is loaded in the longi-

tudinal direction of the body and has a major effect on the

cardiovascular system [5, 6]. During recumbent posture,

the body fluid, especially blood, is distributed uniformly
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along the body, and arterial pressure (AP) is uniform from

head to foot because the gravitational force and gradient

along the longitudinal direction of the body is almost zero.

However, changes in posture to either sitting or standing

result in generation of a hydrostatic pressure gradient due

to the force of gravity. The hydrostatic pressure on the head

is low, whereas that on the feet is high. The high hydro-

static pressure on the feet causes high arterial and venous

pressure. With this high venous pressure, the veins in the

lower body are dilated, since their walls are highly com-

pliant or extremely soft. With this pooling, the venous

return and cardiac output are decreased, and AP should be

decreased because it is the product of cardiac output and

total peripheral resistance of the blood vessels. During

postural change or standing, baroreflex control is consid-

ered important [7, 8].

Recently, humans have begun expanding their habitat into

space. During human spaceflight and exposure to a micro-

gravity environment, the effects of gravity on the body are

diminished. The body and tissue structures adapt to the new

environment, but the adaptation makes daily living difficult

following return to Earth or a 1-g environment. To prevent

adverse effects or deconditioning, various techniques or

countermeasures have been considered and adopted. Multi-

ple studies using Earth-based analogs and simulation of

microgravity have been successfully performed in humans

and animals, and are significant for their contribution to the

study of adaptation and deconditioning [9–11]; however, the

results are sometimes intermixed with data from space-

flights. Thus, this paper focuses on and summarizes general

changes and deconditioning in the musculoskeletal, cardio-

vascular, and vestibular systems during human spaceflight,

as well as reviewing the effects of the countermeasures.

Adaptation to microgravity and deconditioning

Skeletal muscles

Based on the myosin heavy chain isoform pattern, the

skeletal muscles of the adult mammalian limb generally

contain one slow fiber (type I) and two types of fast fibers

(type IIa and IIb) [12]. In the triceps surae of the lower

limb, the soleus is the slow muscle and contains primarily

the type I slow-twitch oxidative fibers. The gastrocnemius

is the type II fast-twitch glycolytic muscle [13–17]. Pos-

tural or antigravity muscles possess many slow-twitch

myofibers, whereas propulsive or locomotor muscles have

numerous fast-twitch myofibers [18–23].

Muscles are needed for movement and to counteract

gravity, and they must be used in order to maintain

the structure and the function. During spaceflight or in a

microgravity environment, humans do not need to support

their bodies; thus the antigravity muscles become atrophied.

The volume of quadriceps and triceps surae decreased by

-6.0 and -6.3%, respectively, after 8 days, and -5.5 to

-15.4 and -8.8 to -15.9%, respectively, after 9–16 days

of spaceflight [24, 25]. Fitts et al. reported that the slow-

twitch and antigravity soleus shows greater atrophy than the

fast-twitch gastrocnemius [26]. However, after 17 days of

spaceflight, the gastrocnemius (-12%) tended to atrophy

more than the soleus (-10%). Over longer spaceflight

durations of 112–196 days, crew members showed further

decreases in gastrocnemius (-24%) and soleus (-20%)

volume, and the decrease was smaller in the soleus [27]

(Fig. 1). In any of these cases, type II fibers are more

atrophied than the type I (Fig. 2). In the atrophied vastus

lateralis of the quadriceps muscle, the decline of cross-

sectional area in the type II and I fibers were -21 and

-11%, respectively, after 5 days of spaceflight, and -21 to

-36 and -16 to -17%, respectively, after 11 days of

spaceflight [28]. In the soleus muscle, type IIa fibers

declined by-26% and type I fibers declined by-15% after

17 days of spaceflight [29]. Type IIb fibers are the most

susceptible to a microgravity environment and the most

atrophied. However, type I fibers also exhibit atrophy, and

the percentage distribution of type II fibers becomes larger

in the atrophied muscle (Fig. 2). These observations are

opposite to those in rats. Type I and type II fibers declined

by -30 and -15%, respectively, after 14 days of space-

flight, and hind limb suspension [30]. Thus, consideration of

species difference is also necessary for discussion of the

muscle atrophy mechanism during spaceflight. In the hind

limb unloading rat model, electromyography is diminished

at the onset of unloading. The amplitude recovers within a

week, but the atrophy progresses [31–33]. Thus, species

difference should be considered, but muscle atrophy is not

induced by unloading only. After landing, following a 9- to

16-day spaceflight, the atrophy of the plantar flexor pro-

gresses for 4 days [25]. Muscle damage with weight bearing

after spaceflight may be induced [27, 34]. Along with

atrophy of the lower leg muscle, maximal voluntary con-

traction of the calf during plantar flexion is also reduced

from -0.1 to -37.6% during 1, 3, and 6 months of

spaceflight [35]. No correlation was found between the

decrease and flight duration. As observed in the decrease in

muscle volume, peak force decreased by-21 and-25% for

type I and type IIa fibers, respectively [29].

Skeletal system

Bone has mainly two functions. One is a rigid structure to

support and move the body on the ground, to protect

organs. The other is a reservoir of calcium in the body [1].

In a microgravity environment, the function of support has

less meaning, as in fish in water.
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Unloading of the skeleton results in calcium leaving the

bones. Within a few days of exposure to microgravity,

urinary calcium excretion increases by 60–70% [36].

Densitometry of the calcaneus showed a tendency for

increased bone mineral loss with longer spaceflight

(-7.4% after 2 months of spaceflight, and -4.5 and

-7.9% after 4 months of spaceflight) [37–39]. In the ver-

tebral column, loss of bone mineral density (BMD) from

-0.67 to 0.93% after 2–4 months, and -0.3 to -10.8%

after 5–7 months of spaceflight were observed [36, 40].

The values are variable due to individual heterogeneity and

variable methodology of measurements, but the decreases

are twice those of bed rest, which is also unloading for the

bones and a simulation of microgravity exposure [41, 42].

BMD decreases at weight-bearing points, such as the neck,

spine, pelvis, and femur. In contrast, the upper extremities

showed minimal or no decreases in BMD [43, 44] (Fig. 3).

However, the skull exhibited increases in BMD [27, 45].

The trabecular zone is more susceptible to microgravity,

and loss in BMD is larger than that in the cortical zone in

the femur [40]. Thus, regional differences in BMD change

are observed, and care should be taken in using metabolites

as bone markers [46, 47].

Cardiovascular system

Humans live in an upright position about 16 h per day on

Earth. The difference in posture from that of quadrupeds

also affects cardiovascular condition. When posture is

changed from a supine or recumbent position to an upright

position, a hydrostatic pressure difference is observed

along the longitudinal direction of the body [5]. Venous

vessels are highly compliant, and the increase in intravas-

cular pressure induces vessel distention and footward fluid

shift [6, 48–52]. This fluid redistribution or footward blood

shift may decrease the stroke volume of the heart [53]. To

maintain AP, particularly in the head, heart rate (HR) and

total peripheral resistance are raised reflexively [54]. In a

microgravity environment or during spaceflight, the

Fig. 1 Changes in muscle

volume of triceps surae in

astronauts after short (17 days)

and long (16–28 weeks)

spaceflights (drawn from data in

Ref. [27]). *p\ 0.05 vs

gastrocnemius

Fig. 2 Changes in muscle fiber

size (left panel) and fiber type

distribution (right panel) of the

vastus lateralis in astronauts

after 11 days of spaceflight

(drawn from data in Ref. [28]).

*p\ 0.05 vs type I of preflight,
�p\ 0.05 vs type IIa of

preflight, �p\ 0.05 vs type IIb

of preflight

Fig. 3 Changes in bone mineral density (BMD) of various portions

of astronauts after 4–14.4 months of spaceflight (drawn from data in

Ref. [44])

J Physiol Sci (2017) 67:271–281 273

123



hydrostatic pressure in the upper body is constantly as high

as that during supine or recumbent posture. Thus, forehead

thickness increases by 7% compared with that of preflight

in a supine position [55], and intraocular pressure by 92%

[56]. The heart size and stroke volume is increased tem-

porally with the fluid shift [57–59]. In spite of the head-

ward fluid shift, central venous pressure (CVP) decreases

[58]. The change is opposite from that during simulated

microgravity, such as head-down tilt and water immersion

[60–62]. The decrease in CVP may be induced by change

in the thoracic shape and reduction of intrathoracic pres-

sure due to loss of gravitational compression for the tho-

racic cage and mediastinum [63–65]. Thus, the vena cava

may be enlarged, and intravenous pressure is decreased,

but the transmural pressure may be increased.

Apparent diuresis is not observed during spaceflight

[66–68]; however, fluid intake is further decreased, and

body fluid balance is negative. Eight and twelve days of

flight decreased the plasma volume by -17%, probably

due to the negative fluid balance and movement of the fluid

to the extravascular space [69].

In a microgravity environment, large contractility of the

heart is not required to send blood toward the head against

gravity, and to maintain AP. Thus, the heart is atrophied by

-8 to -10% after 10 days of spaceflight [70]. Figure 4

shows the relationship between averages of stroke volume

and sympathetic nerve activity before and after spaceflight.

They vary inversely, and a decrease in stroke volume

induces an increase in sympathetic nerve activity. Stroke

volume is largest and muscle sympathetic nerve activity is

smallest during preflight supine position. With a change in

position from supine to upright position, stroke volume

decreased, and sympathetic nerve activity increased. Stroke

volume significantly decreased, and sympathetic nerve

activity increased after spaceflight even in the supine

position. However, their relationship was maintained even

after spaceflight [71] (Fig. 4). Even in the subjects who

experienced presyncope during 10 min of standing test, the

relationship was similar to that in non-presyncopal subjects

after 4–215 days of spaceflight [72]. Stroke volume in pre-

syncopal subjects at 6 min is 75% of that in non-presyn-

copal subjects, but HR is further increased. Thus, the

relationship between stroke volume and HR is maintained

even in presyncopal subjects (Fig. 5). As seen in these

values, responses of sympathetic nerves or HR to changes

in stroke volume, i.e., responses in the central arc of the

baroreflex, are maintained at levels similar to those during

preflight in spite of the decrease in cardiac size and blood

volume control [71, 73–76]. Response in the peripheral arc

of baroreflex control, i.e., decreased vascular contractility

or responses in resistant vessels for sympathetic nerves, are

also observed. Astronauts who could not complete 10 min

of standing after 9–14 days of spaceflight revealed signif-

icantly reduced response of vasoconstriction [74]. The

relationship between the low vasoconstrictive response and

failure to complete stand tests was observed in an

Fig. 4 Muscle sympathetic nerve activity plotted as a function of left

ventricular stroke volume before and on landing day after 16 days of

spaceflight (mean ± SE). With a change in position from supine to

upright, stroke volume decreased, and sympathetic nerve activity

increased. Stroke volume significantly decreased, and sympathetic

nerve activity increased after spaceflight in both supine and upright

positions. However, a relationship was maintained similar to that

before spaceflight. *p\ 0.05 for comparison between pre- and

postflight muscle sympathetic nerve activity and stroke volumes

(redrawn from data in Ref. [71])

Fig. 5 Heart rate plotted as a function of left ventricular stroke

volume during tilt test before and after 4–215 days of spaceflight in

astronauts who completed 10 min of tilt test (non-presyncopal) and

those who could not stand for the entire 10 min (mean ± SE). Values

are plotted regardless of flight duration, and values during 6 min after

the onset of tilt are plotted (drawn from data in Ref. [72]). The

relationship between stroke volume and HR in presyncopal subjects is

maintained, similar to that in non-presyncopal subjects after

spaceflight
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additional 87 astronauts after spaceflight [75, 77, 78].

However, the control of the AP may have been lost during

the last minute of standing in those presyncopal subjects

[72]. Thus, it is hard to determine whether the lowered

vascular resistance is the reason or result of presyncope.

Furthermore, vascular resistance is already elevated after

spaceflight compared to that during preflight

[71, 74, 75, 77, 78]. Since the capacity of vasoconstriction

is finite, the elevated resting vasoconstriction associated

with low circulating plasma volume and stroke volume

may have represented a reduction in vasoconstrictive

reserve. It is therefore unclear whether lower vascular

contractility or simply lower vasoconstrictive reserve sec-

ondary to hypovolemia is being observed.

After 9–14 days of spaceflight and returning to Earth,

orthostatic intolerance or orthostatic hypotension, i.e.,

acute drop of systolic AP more than 20 mmHg, has been

observed in 64% of astronauts [74]. As described above,

the orthostatic hypotension is considered to be induced

mostly by cardiac atrophy, decrease in blood volume, and

possibly decrease in vascular contractility [74, 75, 77, 78].

AP control at the onset of standing is importantly con-

trolled by the vestibular system, particularly the otolith

organs [50, 51, 79]. The otolith function or otolith-related

control is considered to be weakened after spaceflight, and

orthostatic hypotension at the onset of postural change may

be induced by otolith deconditioning, as described in the

next section [80–83].

Vestibular system

The vestibular system contains semicircular canals and

otolith organs. Semicircular canals sense angular acceler-

ation, and the otolith organs sense linear acceleration [84].

This system is important for equilibrium; in particular, the

otolith organs contribute to the determination of body

orientation with respect to gravity. This system also plays

important roles in controlling posture via the motor neu-

rons [4]. On Earth, 1-g acts in a vertical direction during

any posture, but the gravity is zero in any direction during

spaceflight. This unloading changes the characteristics of

the vestibular system and its related functions.

The caloric test, the test for semicircular canal function,

was performed before and after a 10-day spaceflight. The

intensity of the response was similar to that measured on

Earth [85]. The vestibulo-ocular reflex is involved in both

otolith and semicircular canals, but head yaw oscillation in

the test is sensed by semicircular canals only. A week of

spaceflight did not change in the gain or the responsive-

ness [86]. For otolith function, an ocular-counter rolling

test using a short-arm centrifuge during spaceflight showed

a 10% decrease in magnitude [87]. In an otolith tilt-trans-

lation test, the difference in angle between real vertical

direction and subjective vertical is measured. No difference

was observed between the real and subjective vertical

direction before spaceflight, but a difference of 15� was

found after a 16-day spaceflight [88]. Postural equilibrium

control measured by oscillation in the center of gravity was

seriously disrupted immediately following 4- to 16-day

spaceflight in all subjects [89, 90]. Thus, the function of

otolith organs is more susceptible to exposure to micro-

gravity than that of semicircular canals. However, the

results from the center of gravity test may be exaggerated

by the muscle atrophy described above. In order to evaluate

the changes to otolith organs more accurately, function

tests using less affected muscles will need to be done.

Countermeasures

Lower body negative pressure

A lower body negative pressure (LBNP) device applies

ambient pressure lower than the normal atmospheric pres-

sure to the lower portion of the body to induce footward

fluid shift. The chamber is sealed, and the seal is attached to

the iliac crest of the subject. The chamber pressure of-40 to

-60 mmHg, which is below the normal ambient pressure,

generates a force or weight bearing against the foot and

footward fluid shift similar to that on Earth [50, 74, 91, 92].

With the fluid shift during -40 mmHg, renin was released

[93], but lower negative pressure, such as -10 to

-20 mmHg, did not affect the renin release, and cardio-

vascular impact was relatively small [94].

The LBNP device in the Mir space station did not have a

saddle to support the body. Thus, negative pressure made

the feet press against the bottom of the chamber and

induced muscle contraction in the lower legs [95]. The

contraction avoided venous distension and blood pooling in

the legs. Thus, the fluid shift is considered to be less than

that using the LBNP device with a saddle used during

Skylab and the Shuttle program. The increase in HR was

higher with the saddle compared to that without the saddle

[95, 96].

The LBNP is used as a countermeasure with saline

ingestion. LBNP with saline ingestion (6–9 g NaCl in

900–1200 ml water) during the last 2–5 days before land-

ing subjectively improved orthostatic tolerance [95, 97].

About 1 l of isotonic saline ingestion and -30 mmHg of

LBNP exposure 4 h a day prior to landing showed less HR

increase and less decrease in systolic blood pressure

compared with astronauts without LBNP during the sim-

ulated orthostatic test [98]. Thus, the program is beneficial

for preventing orthostatic tolerance following landing, but

a 5-h treatment for each astronaut makes it impractical to

use.
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Combined with treadmill running, the countermeasure for

the musculoskeletal system, LBNP is proposed as both mus-

culoskeletal and cardiovascular countermeasure [99–107].

The body needs to pull toward the treadmill in a microgravity

environment during exercise. Bungee cords are used to strap

astronauts, but they exert forces against the feet of only 75 and

54% of the body weight during walking and running,

respectively, compared with those on Earth [108]. Pumping

effect with the muscle contraction further enhances headward

fluid shift. As described above, LBNP can generate similar

force or body weight against the feet, and similar footward

body fluid shift, as observed on the Earth. However, running

and walking causes central fluid shift, and use of a LBNP

device with no exercise is required as a countermeasure for

cardiovascular deconditioning [104, 109].

Exercise

On the Mir space station, Russian astronauts or cosmonauts

performed exercise using the bungee cord and treadmill

2–3 h on 3 of 4 days. The countermeasure was not effec-

tive for bone loss [44]. In addition to the treadmill, a cycle

ergometer was also used on the International Space Station

(ISS). Little information is available about the level of the

force, but BMD was decreased by 4% in the lumbar spine

and by 10% in the femur during a 6-month spaceflight [40].

Maximal voluntary contraction revealed a significant

decrease of 17% during a 3- to 6-month spaceflight [110].

Thus, the devices are not effective as a countermeasure for

bone loss during long-duration spaceflights.

Astronauts on the ISS allotted 2.5 h per day, 6 days per

week for exercise countermeasures during the mission. The

time also includes equipment set-up, reconfiguration, and

personal hygiene [111, 112]. In microgravity, high-intensity

interval training is much more effective than aerobic training

[113]. For the first long-duration spaceflight on the ISS in

2000, the treadmill and cycle ergometer were used for exer-

cise. After 6 weeks, the interim resistive exercise device

(iRED) was assembled [114, 115]. In 2008, the advanced

resistive exercise device (ARED) was launched to the ISS.

The iRED provided the ability to perform eight exercises, i.e.,

squats, single-leg squats, heel raises, single-leg heel raises,

deadlifts, Romanian deadlifts, upright rows, and bent-over

rows [112]. The ARED included these exercises and added

ninemore, i.e., back squat, sumo squat, sumo deadlift, shrugs,

shoulder press, bench press, bicep curl, triceps extension, and

single-arm row [112]. The iRED had a maximum load

equivalent of 1337 N, and the eccentric force was 60–80% of

the concentric force. On the other hand, ARED had a greater

load of 2675 N, and the eccentric force was 90% of the con-

centric force. Thus, ARED had greater resistance capability

[116]. The combination of treadmill, cycle ergometer, and

iRED did not maintain the muscle volume and peak power.

After 6 months of spaceflight, the gastrocnemius and soleus

atrophied by-10 and-15%, respectively. Their peak power

had declined by 32% after the spaceflight [117]. The calf

muscle volume decreased; the isokinetic strength decreased

-16 to-31%, and the isometric strength also decreased-2 to

-35% in 4 astronauts after 6 months of spaceflight [118]. By

using ARED, the isokinetic strength changes were relatively

improved in the thigh muscles, i.e., -9 to -20% with iRED

and -4 to -15% with ARED during an ISS expedition of

60–190 days, but did not reach statistical significance [119].

With iRED, the BMD and bone mineral content (BMC) were

still decreased in the pelvis and hip by -6 to -12% during

4–5 months of spaceflight. By using ARED, these changes

were diminished, and the BMDandBMC in the pelvis and hip

after the spaceflightwere not significantly different from those

before the spaceflight [112, 120]. However, the BMC and

BMD of the lumber vertebral column significantly decreased

by-0.2 to-5%with the use of either equipment.Thechanges

in the vertebrae were not significantly different between the

types of equipment. ARED was used with nutritional and

pharmaceutical countermeasures, i.e., oral bisphosphonates

(alendrone), calcium, and vitamin D [121]. Bisphosphonates

block osteoclast activation and thus slow bone resorption.

Moreover, they slow bone loss, improve BMD, and reduce

fracture rates [122–124]. Bisphosphonates were started

3 weeks before the flight and continued throughout the flight

[121]. They were taken at a dose of 70 mg/week, which is a

dose for osteoporosis treatment and twice the dose for pre-

venting osteoporosis [125]. About 400–800 IU of vitamin D3

was taken daily, and 800 IU is a dose for postmenopausal

women.More than 1000 mgofCawas also taken daily,which

is a similar dose to that given to postmenopausal women

[121, 126]. Before the use of ARED and bisphosphonates,

exercise with iRED decreased total hip BMD and BMC after

spaceflight. However, the countermeasure using both ARED

and bisphosphonates maintained BMD and BMC during

4.5–6.2 months of spaceflight (Fig. 6). Excessive load or

training with squats, overuse injuries, and fatigue-related

problems such as spine injuries still required attention [127],

but the combination of nutritional and pharmaceutical coun-

termeasures and ARED was effective in avoiding bone min-

eral loss for the lower extremities.

Future perspectives

Pharmaceutical countermeasures have been successful in

preventing deconditioning of the skeletal system. However,

exercise countermeasures as represented by ARED do not

completely prevent muscle and cardiac deconditioning. Thus,

atrophy of skeletal muscles and the heart is not induced by

disuse only. Gravity-sensing or gravity-related mechanisms

may be present, and the atrophy continues throughout the

spaceflight [128]. Furthermore, the reflex via the gravity
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sensors, such as muscle contraction for postural control

[129, 130] and vestibulo-cardiovascular control during

microgravity [79, 131, 132], is considered to change and leads

to atrophy of the myocardium and skeletal muscles for

standing. Artificial gravity with resistance exercise would

resolve the deconditioning and be an important countermea-

sure [133–136], but the ability to provide such a device on a

spacecraft will be an engineering challenge. In preparation for

a Mars exploration mission, it will be necessary to develop an

integrated and compact countermeasure for mission success.

Further research on a combination of electric activating

devices, such as galvanic vestibular stimulation and electrical

stimulation of antagonist muscles to resist volitional con-

traction of the agonist instead of gravity, is expected [83, 137].

Conclusion

In this manuscript, we have summarized changes in the

musculoskeletal, cardiovascular, and vestibular systems

with exposure to a microgravity environment, and their

current countermeasures. Spaceflight or exposure to

microgravity immediately induces bone loss with an

increase in urinary calcium excretion and muscle atrophy.

The heart is also atrophied, and plasma volume decreases.

Thus, decrease in stroke volume is considered to result in

orthostatic intolerance. The otolith-related function also

declines. As a countermeasure, ARED and bisphosphonates

are effective for maintaining BMD and BMC, as well as

effectively avoiding the deconditioning of bones, but they

are only partially effective for muscles. LBNP and fluid

loading do not completely avoid cardiac atrophy. Further

ingenuity is needed to design countermeasures capable of

preventing muscle and cardiac atrophy, and for maintaining

vestibular function in future spaceflights.
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