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Adaptation to sensory input tunes visual cortex
to criticality
Woodrow L. Shew1*, Wesley P. Clawson1, Jeff Pobst2, Yahya Karimipanah2, Nathaniel C. Wright2

and Ralf Wessel2

A long-standing hypothesis at the interface of physics and
neuroscience is that neural networks self-organize to the
critical point of a phase transition, thereby optimizing aspects
of sensory information processing1–3. This idea is partially
supported by strong evidence for critical dynamics observed
in the cerebral cortex4–10, but the impact of sensory input on
these dynamics is largely unknown. Thus, the foundations
of this hypothesis—the self-organization process and how
it manifests during strong sensory input—remain unstudied
experimentally. Here we show in visual cortex and in a
computational model that strong sensory input initially elicits
cortical network dynamics that are not critical, but adaptive
changes in the network rapidly tune the system to criticality.
This conclusion is based on observations of multifaceted
scaling laws predicted to occur at criticality4,11. Our findings
establish sensory adaptation as a self-organizing mechanism
that maintains criticality in visual cortex during sensory
information processing.

Sensory nervous systems adapt, dynamically tuning interactions
among large networks of neurons, to cope with a changing
environment12,13. The principles governing such adaptation at the
macroscopic level of neuronal network dynamics are not well
understood. Computational models and theory suggest that such
adaptation can maintain critical network dynamics14–16, but these
previous studies did not consider the strongly driven regime that
is expected during intense sensory input. Indeed, sufficiently strong
input may increase the overall excitability of a network by bringing
neurons closer to their firing thresholds and potentially tipping
the network into a high firing rate regime that is inconsistent
with critical dynamics (Supplementary Information 1). Thus, the
question remains: does strong sensory input drive cortical network
dynamics away from criticality or can adaptation counteract this
tendency and maintain the critical regime?

Here we addressed this question in turtle visual cortex and in
a companion computational model. In our experiments, we ob-
tained long-duration recordings of population neural activity (local
field potential, LFP) using a microelectrode array inserted into the
geniculo-recipient dorsal cortex (visual cortex) of the turtle eye-
attached whole-brain ex vivo preparation17 (Fig. 1a and Supple-
mentary Information 2). We measured multi-scale spatiotemporal
patterns of neural activity while visually stimulating the retina. Sim-
ilarly, in our model we studied changes in neural network activity
in response to changes in external input. Experimentally, and in the
model, we assessedwhether themeasured dynamics were near or far
from criticality. For this, we examined statistics and spatiotemporal
scaling laws of ‘neuronal avalanches’, which are bouts of elevated
population activity with correlations in space and time5 (Fig. 1b).

In brief, a neuronal avalanche is defined as a group of LFP peaks,
occurring on any electrode, irrespective of location, and separated
by inter-peak intervals less than a specified time (Methods). For
experiments in which spikes (that is, multiunit activity) were also
measurable, we confirmed that the rate of LFP peaks increases with
the rate of spikes (Supplementary Information 3). Thus, a period of
time with many LFP peaks—for example, a neuronal avalanche—
reflects an increase in population spike rate in the cortex.

At the onset of stimulation, we observed that LFP amplitude,
LFP peak rate, and avalanches were typically large scale—not con-
sistent with critical dynamics—during a transient period (Fig. 1c–e
and Supplementary Information 4). More specifically, avalanche
sizes S and durations D were often bimodally distributed dur-
ing the transient (Fig. 1f,g and Supplementary Information 5).
Following this large-scale transient response, LFP amplitude de-
creased and avalanches becamemore diverse in spatiotemporal scale
(Fig. 1e), resulting in power-law distributions, P(S)∼ S−τ (Fig. 1f)
and P(D)∼D−α (Fig. 1g) over a wide range of sizes and durations.
This fact is supported by rigorousmaximum likelihood fittingmeth-
ods10,18 and strict statistical criteria for fit quality (q>0.1, Methods).

These conclusions held for nine turtles and four types of visual
stimuli (n=13 data sets; complex movies, static grey screen, diffuse
flashes, moving dots) with power-law quality values q=0.31±0.13
(mean ± s.d.). Importantly, the different visual stimuli had very
different spatiotemporal structure, yet all resulted in power-law
avalanche distributions. This indicates that the power laws were due
to inherent neuronal network dynamics rather than externally im-
posed statistics of the stimulus. Notably, randomizing the recorded
LFP peak times abolished the power-law distributions of avalanche
size and duration, thus demonstrating the importance of correla-
tions, (Fig. 1f,g). Moreover, activity recorded outside visual cortex
was not power-law distributed (Supplementary Information 6).

What biophysical mechanisms could mediate self-organization
towards scale-free population activity during visual processing?
To address this question, we investigated a parsimonious model
network of probabilistic integrate-and-fire neurons with all-to-all
connectivity6,19,20 (Fig. 2a). A subset of neurons (20%) was
inhibitory. Motivated by previous experiments21 and models14,
we modelled adaptation as short-term synaptic depression with
recovery (Methods). However, our model differed from previously
studied models, as detailed in Supplementary Information 7.
We studied how the model dynamics and avalanche statistics
change as a result of increasing input rate. During a transient
period after increasing the input rate, the population spike rate
increased and synapses depressed (Fig. 2b,c). During the transient,
avalanches also increased markedly in size and duration (Fig. 2d),
qualitatively similar to the experimental observations (Fig. 1e).
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Figure 1 | Visually driven network dynamics are power-law distributed after non-power-law transient. a, Ex vivo whole brain with eyes attached. Visual

stimuli are projected onto the intact retina while activity is recorded with a 96-channel microelectrode array (MEA) inserted into the unfolded visual

cortex. b, Avalanches are defined as spatiotemporal clusters of large amplitude LFP peaks (black dots). Five example avalanches are shown, with one dot

per LFP peak. Avalanche size = number of LFP peaks; duration = time between the first and last peaks. SD, standard deviation. c, Natural movie visual

stimulus (subset of 1 frame per 200ms shown). d, At the start of the movie (green dashed line), there is a transient increase in stimulus-triggered average

LFP peak rate. The average is over 315 movie presentations. The grey region delineates quartiles. e, Stimulus-triggered avalanche size time series reveals

the tendency for very large avalanches during the transient response (red). Later, during the visually driven steady state, less extreme avalanches occur

(blue). Each point represents one avalanche. The line following each point indicates avalanche duration. Responses to 315 repeats of movie stimulation are

overlaid. f,g, Probability density functions for sizes and durations of avalanches during the transient response (red line) and during the visually driven

steady state (light and dark blue dots). Large avalanches (arrow) occur during the transient response, yielding bimodal distributions of avalanche sizes and

durations. Avalanches during the visually driven steady state are power-law distributed over the range indicated with dark blue dots. Grey shading

indicates the range (0.05–0.95) of expected probabilities for a perfect power law with the same number of samples as the experiment. Jittering the times

of LFP peaks destroys the power law (dashed line) by abolishing large-sized avalanches. Panels d–g are from one experiment with one turtle.

Avalanche size and duration distributions during the transient
period exhibited a distinct bimodal character consisting of small
and large avalanches (Fig. 2e,f), qualitatively similar to what we
found experimentally (Fig. 1f,g) and inconsistent with a power law.
Following the transient jump in population activity, the network

dynamically reached a new steady state of population activity and
average synaptic strength (Fig. 2b,c). In this driven steady state,
during continued high external input rate, the simulated neuronal
avalanche size and duration distributions were power laws (q>0.1)
(Fig. 2e,f and Supplementary Information 7). We note that the
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Figure 2 | Depressing synapses tune model dynamics to critical regime after non-critical transient. a, Conceptual cartoon illustrating model features,

including recurrent synapses (black) and input synapses (green) that change strength according short-term depression. b, A step increase in input (green,

input spikes per timestep for the whole network) causes a transient increase in the population spike rate of the network (black, median). The time series is

averaged over 40 trials. The grey region delineates quartiles. c, Following the input rate increase, there is a relatively slow decrease in median synaptic

strength for both recurrent (black) and input (green) synapses (average over 40 trials). The grey region delineates quartiles. The dashed line marks

stimulus onset. N= 1,000 is the number of neurons in the model. d, Stimulus-triggered avalanche time series. During a transient period after an increase in

input rate, avalanches of very large size occur (red). e, Distributions of avalanche size during the transient period (red) reveal a ‘bump’ in the avalanche size

distribution at large size (arrow). Avalanche sizes are power-law distributed after synapses have adapted (dark blue points are within power-law fit range,

light blue are outside the fit range). Grey shading indicates the range (0.05–0.95) of expected probabilities for a perfect power law with the same number

of samples. f, Avalanche durations follow a similar trend. Model parameters: low input R=0.05; high input R= 100; default synapses Λ0= 1.1; 30%

subsampling; 5,000 timesteps computed after increase in R.

similarity of model and experimental results persists even when
the model is subsampled—that is, many of the spikes are deleted
before analysing avalanches, such that the rate of model spikes
matches the experimentally observed LFP peak rate (Supplementary
Information 7).

In the model, a sufficiently strong increase in input rate
transiently tips the system into a regime without critical dynamics
(Supplementary Information 1). Adaptation then tunes the system

to a critical regime. Given the similarity between our model
results and our experiment, it is tempting to conclude that
the experimentally observed power-law avalanche distributions
occurred because adaptation tunes the visual cortex to criticality.
However, caution is called for, because power laws provide
necessary, but insufficient evidence for the critical regime22–24.
Therefore, additional tests are needed to determine whether
criticality underlies the experimentally observed power laws.
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Figure 3 | Steady state visually driven avalanches follow predictions for critical regime. a, Each point indicates the size and duration of one avalanche

(from one experiment, one turtle, as in Fig. 1). Avalanches from the visually driven steady state are shown. The linear relationship on logarithmic axes

reveals a power-law relationship between avalanche size and duration, as predicted by criticality theory: S∼Dβ . The slope of the best-fit line (red) matches

with the predicted β =(α− 1)/(τ − 1) (yellow). b, In different experiments, different values were found for duration exponents α and size exponents τ .

c, Different best-fit β were found for different turtles. Predicted β matched the best-fit β in the visually driven steady state. The line indicates an identical

match. d–f, Computational model exhibits the same relationship among power-law exponents as found experimentally. Different size and duration

exponents (e) were obtained by varying the input rate R, the degree of subsampling, and default synapse strengths Λ0 (see inset legend).

Two such tests arise from a particular relationship between
the size and duration of avalanches, which is predicted to occur
at criticality4,11 and confirmed by our model (Fig. 3d–f and
Supplementary Information 1 and 7). First, the average avalanche
size increases with duration according to a specific function S∼Dβ .
Second, the exponent β is predicted to depend on the exponents τ

and α as β =(α−1)/(τ −1).
Our experiments confirmed both these predictions (Fig. 3a–c).

In addition, we confirmed a third prediction based on empirically
estimated branching parameters25 in Supplementary Information 8.
First, we showed that avalanche size scales with duration according

to a power law (Fig. 3a). Second, we determined the ‘best-fit β ’
from the size versus duration data for each experiment (Fig. 3a).
Next we computed the ‘predicted β ’ using the observed exponents τ

and α. For different turtles and different visual stimuli, we obtained
a range of exponents; 1.7< τ < 2.6 and 1.8< α < 2.8 (Fig. 3b).
Importantly, the observed values of τ and α provided a good
prediction, β =(α−1)/(τ −1), of the best-fit β for all experiments
(Fig. 3c and Supplementary Information 5).

The experimentally observed range of the values for the
exponents τ and α (Fig. 3b) raises an important question as to the
origin of this variability. In the model, we demonstrated that τ and
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α depended on three factors (Fig. 3e): the subsample fraction, the
external input rate, and the default synaptic strength (parameterized
by the largest eigenvalue Λ0 of the default synaptic weight matrix26,
see Supplementary Information 7). Subsampling—that is, creating
avalanche distributions based on spikes from a subset of all model
neurons—tended to increase τ and α, consistent with previous
studies25,27. The effects of input rate and default synapse strengths
depended on the level of subsampling. Importantly, the various
combinations of τ and α observed in the model preserve the
size versus duration scaling relationship (Fig. 3f), similar to what
we found experimentally (Fig. 3c). We note that the near-linear
relationship between τ and α (Fig. 3b,e) has not, to our knowledge,
been predicted theoretically.

The close match between our experimental observations and
our model results suggests that adaptation plays a crucial role in
tuning cortical circuits towards the critical regime during vision.
Why should adaptation in sensory cortex tune the network to
operate near a critical regime? Previous computational studies and
cortex slice experiments suggest that the critical regime optimizes
several aspects of information processing (reviewed in ref. 3),
including dynamic range20,26,28 and information transmission5,6.
Our observation that transient response to stimulus onset is
not critical suggests that sensory cortex dynamically adapts to
gain the functional benefits of critical dynamics during strong
sensory input.

The critical regime has long been hypothesized to be a target of
homeostatic processes in neural networks. This could be achieved
by some ‘top-down’ mechanism (for example, neuromodulators
such as dopamine29) that tunes the network or as the result of
local self-organization14,16,30,31. In either case, one concern with this
hypothesis has been that, theoretically, the critical regime occupies
an infinitesimal volume in state space (the boundary between two
different regimes), which may be too small a target to hit for a real
biological tuning process contending with noise and imperfections.
Recent theoretical findings mitigate this concern, showing that
in networks with complex structure, the critical regime expands,
occupying a substantial region (Griffiths phase) in state space32.
Thus, our experiments, together with previous theory, establish the
critical regime as a viable target for adaptive self-tuning during
cortical sensory information processing.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Ex vivo eye-attached whole-brain preparation. All procedures were approved by
the Institutional Animal Care and Use Committees of both Washington University
and University of Arkansas, and conform to the guidelines of the National
Institutes of Health on the Care and Use of Laboratory Animals. Adult red-eared
turtles (n=9, Trachemys scripta elegans, 150–200 g weight, 12–15 cm carapace
length) were studied. Following anaesthesia (Propofol 10mg kg−1) and
decapitation, we surgically removed the brain, optic nerves and eyes, from the
cranium (Supplementary Information 9). One eye was hemisected and drained,
thus exposing the retina for visual stimulation; the other eye was removed. Two
cuts allowed the cortex to be unfolded, exposing the ventricular surface, thus
facilitating the subsequent insertion of the microelectrode array. The eye and the
brain were continuously perfused with artificial cerebrospinal fluid (in mM; 85
NaCl, 2 KCl, 2 MgCl2, 45 Na HCO3, 20 D glucose and 3 CaCl2, bubbled with 95%
O2 and 5% CO2), adjusted to pH 7.4 at room temperature. Recordings began 2–3 h
after induction of anaesthesia.

Microelectrode array measurements.We recorded wideband (0.7Hz–15 kHz)
extracellular voltages relative to a silver chloride pellet electrode in the bath at
30 kHz sample rate (Blackrock Microsystems, Cerebus). With post-processing
filtering (bandpass 5–100Hz) we extracted the local field potential (LFP). We used
two different electrode arrays. The first was a 96-channel microelectrode array
(10×10 square grid, 400 µm inter-electrode spacing, 500 µm electrode length, no
corner electrodes, Blackrock Microsystems). Using a micromanipulator (Sutter,
MP-285), we inserted this array to a depth of 250–500 µm, with the plane of
electrodes parallel to the dorsal surface of the cortex. The second array was
comprised of a three-dimensional (3D) grid of electrodes (4×4×8 grid, 16 shanks,
8 electrodes per shank, 300 µm inter shank spacing, 100 µm inter-electrode spacing
on each shank, Neuronexus). This second array was inserted to a depth such that
electrodes spanned the cortex from the ventricular to the dorsal surface. We
analysed data from electrodes that were located within the visually responsive
region of the cortex (Supplementary Information 2). This included between 13 and
28 electrodes (19 on average) for 10×10 electrodes, and approximately 48
electrodes for the 3D grid electrodes.

Visual stimuli. Visual stimuli (two types of greyscale movie, black dots moving on
a white background, uniform black to grey transition) were created by a computer
and delivered with either a miniature video projector (Aaxa Technologies, P4X Pico
Projector) or an LCD monitor (Samsung 19′′, 1,440× 900 pixels, contrast
ratio = 20,000:1, response time = 2ms). The projector/monitor image was focused
onto the retina with additional lenses (Fig. 1a). The mean light intensity
(irradiance) at the retina was 20mWm−2 for the monitor and 1Wm−2 for the
projector. In two experiments, we also used a brief flash from a light-emitting diode
(LED, 60Wm−2 at retina) placed near the retina to stimulate with a 1 s flash.
Further details about the stimuli, including timing, are in Supplementary
Information 10.

Avalanche analysis. The first step of avalanche detection was to compute the
standard deviation of every LFP trace. Next we defined an ‘LFP peak’ as a period of
time during which an LFP trace fluctuates beyond 3 to 4 standard deviations,
owing to either a positive or negative deflection (Fig. 1b). For each LFP peak, we
determined the time of its extreme value and the identity of the channel on which it
was recorded. The channel information was used to exclude from analysis LFP
peaks which were not within visual cortex. An avalanche was defined as a
spatiotemporal cluster of consecutive LFP peaks with inter-peak intervals not
exceeding a temporal threshold 1T (channel information does not play a role in
avalanche definition). 1T was chosen to be the average inter-peak interval (〈IPI〉,
inverse of population LFP peak rate), resulting in 1T =24±18ms (mean ± s.d.).
Avalanche duration was defined as the difference between the first and last LFP
peak time within the avalanche. The size of an avalanche was defined as the
number of LFP peaks comprising the avalanche. Avalanches were analysed
separately depending on whether they occurred during the transient period or
visually driven steady state period. Robustness of model and experimental results

to changes in 1T and definitions of time periods are described in Supplementary
Information 11.

Power-law fitting and fit quality, q. Using maximum likelihood methods10,18, we
fit a truncated power law (truncated at both the head and tail) to the avalanche
distributions during visually driven steady state (Supplementary Information 12).
The fitting function for the avalanche size distribution was
f (S)=S−τ (

∑xM
x=x0

x−τ )−1, where the maximum size xM was assumed to be the
largest observed size. The minimum size x0 and the exponent τ were fitting
parameters. As avalanche duration is a non-integer variable, the fitting function for
the duration distribution was g (D)=(1−α)(y1−α

M −y1−α
0 )−1D−α , where the

maximum yM was taken as the largest observed duration, and y0 and α were fitting
parameters. Exponents τ and α between 1 and 4 in increments of 0.01 were tried.
Minimum values x0 and y0 were tried, increasing from 0, but only up to the point
when the fitted power law matches the data well enough to have a
Kolmogorov–Smirnov statistic KS<1/

√

Nsamp, where Nsamp is the number of
avalanches comprising the data set (Supplementary Information 12). For fitting
model data size and duration distributions, we used the fitting function f (S) above,
because both size and duration are discrete variables for the model.

After finding the best-fit power law, the next step was to assess goodness-of-fit
q (refs 10,18). We compared the experimental data against 1,000 surrogate data sets
drawn from the best-fit power-law distribution with the same number of samples
as the experimental data set. The deviation between the surrogate data sets and a
perfect power law was quantified with the KS statistic. The quality q of the
power-law fit was defined as the fraction of these surrogate KS statistics which were
greater than the KS statistic for the experimental data. We use a very conservative
criterion, q>0.1, for judging the data to be power-law distributed. This is
demonstrated visually in Fig. 1f,g and Fig. 2e,f by plotting the experimental
distribution over a grey band which delineates the 5th–95th percentiles of the
surrogate data sets.

Computational model. A total of N =1,000 all-to-all connected binary neurons
received input from outside the network. The ‘strength’ of the synapse from neuron
j onto neuron i at time t is determined by the corresponding element of the
synaptic weight matrixWij(t). 20% of neurons are inhibitory—that is, with
negative entries in the weight matrix. �i(t) is the strength of the input synapse
onto neuron i (all excitatory). The binary state si(t+1) of neuron i (s=0 inactive,
s=1 spiking) is determined probabilistically based on the sum p(t+1) of its inputs
p(t+1)=�i(t)σi(t)+

∑N

j=1Wij(t)sj(t). If 0<p<1, then the neuron fires with
probability p. If p≥1, then the neuron fires with probability 1. If p≤0, then the
neuron does not fire. Time is discrete and state updates are synchronous. The input
σi(t) from the ith input synapse is binary (1 with probability r). The onset of
stimulation is modelled as a step increase from r=5×10−5 to either r=0.02 or
r=0.1. In Figs 2 and 3, we report the population input rate of R=Nr . The update
rules for synaptic dynamics areWij(t+1)=Wij(t)+τr

−1(W o
ij −Wij(t))−τd

−1

Wij(t)sj(t) and �i(t+1)=�i(t)+τr
−1(�o

i −�i(t))−τd
−1�i(t)σi(t). The default

weight matrix was constructed such that its largest eigenvalue Λ0 has absolute
value equal to either 1.0, 1.05, or 1.1 (Supplementary Information 7). A largest
eigenvalue of 1.0 corresponds approximately to an average synaptic weight of 1/N
and is known to result in critical dynamics for models with static synapses26.
Synapses depress with a time constant of τd =20 timesteps following a presynaptic
spike, then recover exponentially with a time constant of τr =400 timesteps.

Each avalanche is initiated by external input. On reaching a timestep with no
active cortical neurons, the avalanche is considered to be ended. We simulated 40
trials of step increase in input. In each trial, we ran the model for 5,000 timesteps
following the onset of increased input. As in previous studies25,27,33, subsampling
(Fig. 3) entailed analysing the spikes from a randomly chosen 30% or 10% of the
network. More extreme subsampling, which matches experimental LFP peak rate
with model spike rate, are explored in Supplementary Information 7.
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