
 Open access Proceedings Article DOI:10.1109/SAINT.2003.1183048

Adapted content delivery for different contexts — Source link

Tayeb Lemlouma, Nabil Layaïda

Institutions: French Institute for Research in Computer Science and Automation

Published on: 27 Jan 2003 - Symposium on Applications and the Internet

Topics: Server, Client, Fat client, Adaptation (computer science) and XSLT

Related papers:

 Context-aware adaptation for mobile devices

 MM4U: A Framework for Creating Personalized Multimedia Content

 Towards a multimedia formatting vocabulary

 Composite Capability/Preference Profiles (CC/PP) : Structure and Vocabularies

 Content adaptation framework: bringing the Internet to information appliances

Share this paper:

View more about this paper here: https://typeset.io/papers/adapted-content-delivery-for-different-contexts-
2u7vuclg69

https://typeset.io/
https://www.doi.org/10.1109/SAINT.2003.1183048
https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69
https://typeset.io/authors/tayeb-lemlouma-1fljnfck8r
https://typeset.io/authors/nabil-layaida-iak8mau2y4
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/symposium-on-applications-and-the-internet-1nkcq1fn
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/topics/client-3v46lwhq
https://typeset.io/topics/fat-client-2facxtvi
https://typeset.io/topics/adaptation-computer-science-3b52w1xi
https://typeset.io/topics/xslt-gjqah1pe
https://typeset.io/papers/context-aware-adaptation-for-mobile-devices-4y5aygdnm7
https://typeset.io/papers/mm4u-a-framework-for-creating-personalized-multimedia-47a4yzhxk9
https://typeset.io/papers/towards-a-multimedia-formatting-vocabulary-58kevqvyet
https://typeset.io/papers/composite-capability-preference-profiles-cc-pp-structure-and-1by9d77jb0
https://typeset.io/papers/content-adaptation-framework-bringing-the-internet-to-113ef1zn1d
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69
https://twitter.com/intent/tweet?text=Adapted%20content%20delivery%20for%20different%20contexts&url=https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69
https://typeset.io/papers/adapted-content-delivery-for-different-contexts-2u7vuclg69

HAL Id: inria-00423426
https://hal.inria.fr/inria-00423426

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapted Content Delivery for Different Contexts
Tayeb Lemlouma, Nabil Layaïda

To cite this version:
Tayeb Lemlouma, Nabil Layaïda. Adapted Content Delivery for Different Contexts. Proc. Interna-
tional Symposium on Applications and the Internet (SAINT 2003), Jan 2003, Orlando, FL, United
States. pp.190-197. inria-00423426

https://hal.inria.fr/inria-00423426
https://hal.archives-ouvertes.fr

Adapted Content Delivery for Different Contexts

Tayeb Lemlouma
1
 and Nabil Layaïda

2

OPERA Project, INRIA Rhône Alpes
1
Tayeb.Lemlouma@inrialpes.fr

2
Nabil.Layaida@inrialpes.fr

Abstract

In this paper, we present a framework which allows

adapted content delivery for different target contexts. This

framework is based on a Universal Profiling Schema

UPS for describing the environment characteristics and

on an profile exchange protocol. In the server and the

proxy side, we give a strategy for matching the different

constraints (clients, servers, content, etc.) in order to find

an agreement between the server adaptation capabilities

and the client preferences and constraints. Usually such

environments are subject to frequent changes. To tackle

this difficulty, we propose a dynamic adaptation

approach based on XSLT for structural transformation

and resource aware transcoders for the media

adaptation.

1. Introduction

In the last few years, new devices such as small palm

computers, smart phones, pocket PCs became common

components of the computing infrastructure. According to

some estimates cited by the W3C, by the near future, 75%

of the web content access will be soon generated by these

devices rather than by desktop PCs.

At the same time, content delivery practices faces new

challenges regarding exchange protocols and the

accompanying strategies used to meet client, server and

network constraints [10]. In particular, the diversity in the

current infrastructure is still increasing at every level:

users, network, access methods, protocols, etc.

In such heterogeneous environments, it’s clear that

transformation have a particularly important role to play

in the content delivery. In addition, users needs vary with

respect to their capacities and preferences, therefore,

content servers can not perform adaptations, in advance,

for every kind of client. This underlines the need of

adapting the content dynamically.

Many solutions and architectures have been proposed

to help in designing adaptive multimedia systems for

heterogeneous devices. In general, the focus is given on

taking into account some predefined constraints and

working to optimize and deliver the content. For example,

by transforming HTML content to some markup

languages [15]. Some studies aim to handle network

limitations by reducing the bandwidth consumption [1],

or the device constraints by handling videos streams in

terms of spatial and temporal transcoding [9] and

adapting the audio quality to the network characteristics

[2], etc.

Unfortunately, these systems do not address neither

client and environment modeling and description nor

exchange protocols which allow the delivery of an

adapted content. Furthermore, the proposed content

adaptation strategies are limited to specific applications

and can not be applied to larger scales such as the web.

In this paper, we present a strategy for adapted content

delivery in heterogeneous environments. This strategy is

described in terms of description model, communication

protocol and negotiation and adaptation methods. It is

applied in the context of multimedia content delivery for

resource limited devices in an environment subject to

variable constraints. We define adaptation methods which

allow take into account the environment constraints and

end with a service agreement between the server, the

network capabilities and the client requirements.

2. The client context and the UPS schema

Before discussing the UPS description approach, let’s

have first a look on the user context description using the

HTTP protocol and the servers behavior to these kink of

requests. The following figure shows the request of a

PDA device (iPAQ 3600) using Pocket Internet Explorer

under Windows CE. The requested content is a GIF

image.

GET http://www.inrialpes.fr/opera/people/Tayeb.Lemlouma/E-

Learning-Arch.gif HTTP/1.1

Accept: */*

UA-OS: Windows CE (POCKET PC) - Version 3.0

UA-color: color16

UA-pixels: 240x320

UA-CPU: ARM SA1110

UA-Language: JavaScript

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/2.0 (compatible; MSIE 3.02; Windows CE;

240x320)

Host: www.inrialpes.fr

Figure 1. The HTTP request of a PDA (iPAQ 3600)
using Pocket IE under Windows CE

As we can see through the previous examples, the

player includes the client context description as header

fields inserted into the request. This description depends

on the used device and varies from a player to another.

Unfortunately, most of the existing servers don’t take into

account this kind of information. The following figure

shows the requested image (Figure 1) as displayed by the

PDA.

Figure 2. The received reply on a PDA device

Here, the client context wasn’t usefully considered by

the server since the display capabilities were not taken

into account. As shown earlier, context information were

conveyed inside the request using the two HTTP header

fields: "UA-color: color16" and "UA-pixels: 240x320".

As we can see, the received image is not compatible with

it display limitations. The image can’t be displayed

entirely on the screen. This kind of situations becomes

more complicated when the image is included in complex

documents structures such as in a HTML page.

A context is defined generally as: 'Any information

than can be used to characterize the situation of any

entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and

an application, including the user and applications

themselves' [3]. Other definitions exist such as defining

the context as: 'the application’s settings' [14].

We define the context from the content adaptation

point of view as the set of information that has a direct

relationship to the requested document. As context

description is also a matter of details level, determining

the information to provide is the responsibility of the

exchange protocol used in contexts transmissions. In

order to achieve the content adaptation and negotiation

task, the content provider should request a sub set of the

user context which is related to the functionalities of the

content to be delivered. For example, the server can

request the client context capabilities related to displaying

videos if the original content contains videos. However,

for performance reasons, it should avoid such description

requests if the original content contains only text data.

The universal profiling schema (UPS) [11] was

defined to serve as a universal model that provides a

detailed description framework for different contexts.

UPS is built on top of CC/PP [6] and RDF [13].

The description of a context in UPS is profiles stored

as XML markup. UPS identifies three main categories of

contexts: the client, the server and the network. The client

category includes the client profile that describes the

client capabilities and preferences in general and the

client resource profile that describes the client capabilities

for a particular resource. The server category includes the

document instance profile that describes the document

characteristics, the resource profile that describes a media

resource and the adaptation method profile that describes

an available adaptation method available in the server or a

proxy side. The network category is represented by the

network profile that describes the network characteristics.

The UPS approach of describing a context category

using different profile types has many advantages. The

approach allows minimizing the profiles size by

separating the information according to its type. This

favors re-use for example if the profile describes an

image used in many documents. Furthermore, it allows

optimizing the exchanged information between the server

and the client: the server can receive a profile and request

only the related profiles that are involved in the content

delivery. Profiles are requested on demand using the

profile links included in received profile. For example,

the client profile includes usually profile links to resource

client profiles. A package that ensures the creation of

valid UPS profiles is given in [16].

3. Negotiation exchange protocol

The negotiation protocol is a set of adaptation and

negotiation messages exchanged between the client and

the server. These messages allow the transmission of the

client description (client profile), context change, and

profile requests, etc. The goal of such a protocol is to

define a way of conveying clients’ characteristics and

transporting only the required information when

necessary. Client characteristics will be used during the

content adaptation and negotiation matching applied at

the server side. The protocol allows to find an agreement

between the capability of the server (and/or the proxies)

and the client needs.

In our approach, we distinguish communication and

negotiation aspects in the protocols. The HTTP [12]

protocol is an example of a communication protocol. The

negotiation protocol carry information related to the

content negotiation and adaptation.

One possible approach is to integrate the two in a

single protocol. The HTTP/1.0 and HTTP/1.1 [8]

represent an example of such protocols. Using HTTP/1.0,

the client context is sent inside the user agent request

through a set of accept headers. The content negotiation is

applied at the server side and consists in applying content

variant selection. The client description in HTTP/1.1 is

achieved in a similar way. However, the server applies

transparent content negotiation strategy [8] by sending the

list of available variants and their properties to the client.

Here, the responsibility of selecting the best variant is left

to the user agent.

Another exchange protocol is presented in [7]. The

protocol, called CC/PP exchange protocol, defines a way

for exchanging clients’ description based on the HTTP

extension framework [5] and complies with HTTP/1.1

[4]. The protocol uses mainly two concepts: the

extension declaration and a set of different header fields.

The strategy consists to send the client request with the

profile information using URIs and profiles differences

principle [7]. Unfortunately, the defined protocol depends

widely to HTTP which limits the exchange of adaptation

and negotiation messages to clients that use only the

HTTP protocol.

From the adaptation point of view, the HTTP protocol

presents two main limitations:

1) A poor context description: sending the context as

several accept headers in every request is highly

inefficient. Furthermore, the syntax of the user agent

capabilities and preferences is not extensible and

expressive to encompass cover all the diversity of devices

and media resources.

2) A limited adapted content delivery: at the server

side, the protocol uses a content negotiation strategy to

provide an adapted content to the client. The applied

strategy is based on the provision of several versions of

the same content identified using a single URI. The

process consists in matching the available versions

properties with the client capabilities. Following such an

approach requires providing the variants for each target

context which puts the burden on content providers.

The exchange protocol use in our case is not

dependent on the communication protocol. The protocol

is optimized and only useful information is transmitted.

The protocol defines the following minimal set of

message types:

GET_GLOBAL_PROFILE

OK_SENDING_PROFILE

OK_SENDING_CHANGE

NO_PROFILES_CHANGE

NO_PROFILE_ACQUISITION

These messages are exchanged between a module

located on the client and another on the server. The first

message type is used by the server to get the current user

agent context. The context is represented by a set of client

properties written in UPS [11]. The server sends this

request before the delivery to take into account the

context in which the content will be used by the client.

The second message type is used by the client or the

intermediate proxy in order to send the profile requested

by the server. During content access, client description

(especially the preferences) can have some changes, the

third message type is used to send theses changes. The

fourth message type is used when there is no difference

between the current client context and the last context

sent to the server. Finally, the last message type is used

when the user module is not able to send a description of

the client.

The server handling of the possible changes that may

occur into the context represents an important aspect.

Here, we have two solutions: sending the complete

context description with the context change or sending

only the change (the profile difference). The first solution

is not efficient. The second solution requires server

profile caching and assumes that at least the initial

context is already sent.

The protocol that we have defined uses a simple

caching strategy based on the clients IP addresses. The

user context is stored temporarily in the server (or the

proxy) side and is associated to a unique name using the

client IP address. Any further changes will be referred to

the same user context name.

The defined protocol has been implemented in a

proxy-based and server-based architecture. In the first

situation the negotiation module is integrated to an

intermediate proxy that handles the client requests and the

server replies. A player listener module was developed to

serve as communication proxy. The module receives

players’ requests and sends them to the original server.

Client requests are sometimes modified according to the

client context sent by the user context module (UCM).

The figure shows two sessions (between client UCM

modules and the UCM listener) in which only

negotiation-oriented messages are exchanged. The other

sessions between players and the player listener (the

proxy) are achieved using the communication protocol.

The proxy-based architecture allows testing the context

exchange and the content adaptation but doesn’t allow a

full control of the original server content.

Figure 3. Negotiation and communication
sessions

UCM Listener

Player

Listener

UCM 1

UCM 2

Player 1

Player 2

 Negotiation

i Communication

i

 Devices

 Proxy

For example, in such architectures, the content

selection and substitution can’t be applied by the protocol

because the proxy hasn’t access to the entire server

content. This module has also been integrated a server-

based architecture. The player listener is located on the

content server.

The global scenario can be summarized as follows:

Figure 4. The general scenario between the
device and the content provider

First the user context (or the profile) is initialized, and

when the client requests a content, the UCM listener tries

to exchange negotiation messages in order to retrieve the

required information. Once, the content provider has all

the required information, the content negotiation and

adaptation task is executed and the results are sent to the

client using the communication protocol.

4. The content negotiation strategy

Interactions with the content server can vary from a

client to another. A client requests the content using its

device (PDA, laptop, phone, etc.) with specific

characteristics and capabilities. Consequently, the

retrieved content will differ consequently. Content

negotiation aims to guide content servers to deliver the

appropriate content according to the user context, i.e. the

client capabilities and the user preferences.

Generally, a content negotiation solution requires the

following basic components (Figure 5):

a) A description tool of the context in which the

content is used: such as the description of the client

context, the server capabilities, the document profile, etc.

b) An exchange protocol: a well determined format for

the exchange of control messages and the communication

of the user context to the server or other entities.

c) Adaptation methods and content versions: used to

adapt the content or to deliver a variant.

d) A matching strategy: an algorithm which is applied

at the server side and which aims to match the different

profiles (clients, document, server, etc.) in order to

determine the best common context and methods to apply

for the content delivery.

Content negotiation techniques are applied mainly

following two ways:

1- Variant selection: consists to choose the best

variant of the server content on behalf the user agent. The

selection is applied on the available variant list and based

on variants description and the user requirements.

Selection parameters include the language, the media

type, the char-set, etc. The decision of the selection can

be determined using an algorithm that handles the

different situations [12][8]. Unfortunately, variant

selection is not enough flexible and dependents on the

variants availability.

Figure 5. The content negotiation framework

2- Content adaptation: In several situations, the

available content can’t satisfy the client needs. In such

cases, the content can be made available after applying

some adaptations. The adaptation process can be achieved

with a program, a script, a XSLT style sheet, etc.

Adaptation techniques can be separated into two

categories:

a) Media resources transformation category: in this

category, we group the media adaptation techniques like

image and video transcoding (color reduction, resizing,

etc.).

b) Structural transformation category: is related to

transformations that are applied on the document

structure. An example of such application: transforming

HTML to WML, filtering HTML documents,

transforming XML to SVG, etc. A structural

transformation can either keep the same media resource

used by the original document, filter it or require an

external media resource transformation to adapt the media

for the end user context.

The goal of the content negotiation and adaptation is to

use server and proxies capabilities to respond, in the best

way, to the global context requirements. These

U
C

M
 M

o
d

u
le

Content provider

 Profile Interrogations

U
C

M
 L

is
te

n
e

r

P
la

y
e

r
L

is
te

n
e

r

 Client Profile Initialization

Document Request

UCM Module Reply

Adapted Document

Device

P
la

y
e
r

requirements can be described as a set of constraints that

need to be solved.

The concept of constraints takes a high importance in

the practical application of the content negotiation. In this

context, we define a constraint as: “an atomic

requirement that belongs to the environment in which the

final delivered content will be used”. In practice, the

architecture can take into account the constraints

collection of more than one element.

In our approach, the resolution strategy starts from the

assumption that the original content is accepted and

continues by adding the constraints progressively.

Finally, it ends with a solution that determines the content

to be delivered. Possible solutions include an empty

content in the case where the constraints can not be

solved. In this case, the server sends a negative reply to

the client.

In order to achieve an efficient content negotiation

solution, the environment constraints must be well

expressed in order to reflect the picture of the delivery

context. Constraints syntax must:

1- Provide enough expressiveness, in order to allow

the description of what is required.

2- Offer an easy analysis for resolution strategies.

3- Avoid ambiguity: constraints must result in a

unique solution.

Example: Let’s assume that we have in the server side

an original content in the form of XML document written

in English. Let’s have the two following constraints

expressed in the natural language: C1={the preferred

language is French}, C2={the only supported language is

French}. In a situation where the global context is

represented by the first constraint C1, the content of the

server can be delivered directly to the client. This case is

equivalent to having no constraints at all. In a situation

where we have C2 as environment constraint, the original

content can’t be delivered directly to the client because

the content doesn’t respect the environment constraints.

In our approach, the client constraints that depend on

capabilities are extracted directly from the

HardwarePlatform, SoftwarePlatform and BrowserUA

components from the UPS client profiles. In the RDF

bags: OnlySupportedResources,

PreferredSupportedResource and

NonSupportedResources, we extract additional

constraints related to the content in terms of capabilities

and preferences. During the negotiation matching, the

client profile and the document instance profile of the

requested content are parsed and the set of included

constraints are stored in memory according to their types.

The server makes the reference to the document instance

profile. According to its content, the server can retrieve -

using the exchange protocol- the client resource profile

[11] that corresponds to the resource used by the

requested content. For example, the server retrieves the

client resource profile of the WBMP images if the

original requested document uses WBMP images.

The server checks then if the resource (media or

document) is supported by the client or not. In the

positive case the resource is sent directly to the client

without any modifications. In the negative case the server

checks if there is any other version that can respond to the

client requirements. Links to the list of versions related to

the resource are included in the document instance profile

or the client resource profile [11]. If the server succeeds

to find a variant that responds to the client requirements,

the original resource is substituted by the variant

resource; otherwise the server tries to adapt the original

resource. To achieve this operation, the server compares

the original resource description (using its profile) and the

set of the input requirements of each available adaptation

methods included in the RDF bag: InputRequirements of

the adaptation method profile [11]. If the resource

description matches the input requirements of an

adaptation method, the server checks if the output

description of this method (included in the RDF bag

OutputDescription of the adaptation method profile)

matches the client requirements. If yes, the server applies

this adaptation method on the original resource and

delivers the created resource to the client. In the negative

case, i.e. no adaptation method can be applied, the server

sends a negative reply concerning the requested resource

in order to avoid the client blocking.

5. Architecture

The negotiation exchange protocol and the content

negotiation and adaptation strategies have been

implemented within a proxy-based and server-based

architecture (Figure 6). In both architectures, the used

network is based on two infrastructure types: an 802.11

wireless LAN and a wired network. Three kinds of

devices are used to access content: a personal device

assistant (iPAQ 3600) running under Windows CE and

connected through the wireless network, a laptop

computer using both the wired connection and the

wireless one and a personal computer that uses the wired

network.

In the proxy-based architecture a negotiation module is

added to the communication proxy in order to retrieve

and request the different client profiles. The same module

is integrated to the content server in the server-based

architecture.

The difference between the two architectures is that in

the case where we use an intermediate proxy, we can not

experiment all the aspects of the content negotiation and

adaptation strategy. In this case, tasks like evaluating the

available content variants and content substitutions can

not be performed correctly due to the lack of control on

the content.

Figure 6. Server and proxy based Architecture

The proxy-based architecture is a very suitable for the

context change support. In this case, the proxy is the

entity responsible of retrieving client contexts and

looking for the eventual changes that may occur. These

changes are therefore transparent for the content server.

The proxy can transform existing multimedia content and

thus the content server is not directly involved in the

adaptation.

At this stage, the client profile is always stored in the

same location as the user context module. At any

moment, the profile can be changed by selecting another

profile.

6. Dynamic transformation and adaptation

An adaptation method M is applied on a resource R, if

the UPS description of R matches the UPS input

requirement of M, and the UPS output description of M

matches the client requirements. To avoid developing

static adaptation methods for each kind of resources

adaptation, it’s preferable that the server has methods that

provedes many outputs depending to the context of their

application. This is called dynamic adaptation. A dynamic

adaptation is the one that interacts with the current client

context. Taking into account the client context by an

adaptation method can be achieved at two locations: the

client or the server (or proxy).

In the general case, the client content adaptation is

achieved using scripts and rendering styles which are sent

inside the content and evaluated during the rendering

according to the capability of the user device.

Unfortunately, this kind of adaptation has many

disadvantages and depends widely on the client

processing power.

Dynamic adaptation on the server represents a best

alternative to deal with the variety of client contexts. It

allows the delivery of adapted content directly. In our

system, we consider two kinds of adaptations: the

structural adaptation (transformation) and the media

adaptation. Structural transformations are based on XSLT

[19] which allows transforming XML document into

other XML documents. Media adaptations use specific

applications.

6.1. Using the XSLT language

Providing XSLT style sheets that handles client

profiles is seems interesting since the server can obtain

adapted content by applying the generated style sheet to

content. It is also possible to concatenate the original

service with the user agent context (or profile) and then

apply the style sheet. In practice, this is very complicated

to achieve using XSLT templates. The two parts of the

input tree (the constraints profile and the original content,

see Figure 7) are separated and requires intensive

processing to achieve the cooperation between them.

The scheme that we propose here consists to define a

generic style sheet that admits as input the client profile

and generates as output a style sheet.

Constraints Original document

 Constraints + Original document

Figure 7. Support of user constraints by
concatenation.

So, the generation of the style sheet that will be used

in the final adaptation is done automatically. This

adaptation will satisfy the received set of client

constraints and is applicable for all documents with the

same constraints.

In our proposed solution, the time of the adaptation of

n content instances equals to the creation time of the

generated style sheet plus the time of the adaptation of the

n instances. This time is very smaller if compared to the

one required in the first discussed solution. In this last,

the corresponding time equals to: the time of the

concatenation and the creation of the original content

with the client profile, plus the time required for adapting

the output document. Formally, the adaptation time T of n

content instances equals to:

a) In the first solution:

T = n . time (concatenation_And_Creation

(Client_Profile, Original_Content)) + n . time (adapting

(Created_Document))

b) In the second solution:

T = 1 . time (creation_of_the_Generated_Style_Sheet

(Client_Profile, Predefined_Style_Sheet)) + n . time

(adapting (Original_Content)).

The creation of the generated Style Sheet is done once

for the same client profile.

In the following, we give an application example of

our approach. The example presents a dynamic filtering

of SMIL [18] content. The figure 8 gives a simple client

profile that indicates the non support of audio and parallel

 +

scenarios executions. Figure 9 represents the generic

XSLT style sheet used for filtering. The style sheet of the

figure 10 is generated automatically following the

proposed approach and it can be used to transform SMIL

content according to the user constraints given in the

client profile.
<ClientProfile>
<Service category="smil" name="Synchronized Multimedia
Integration Language">
 <SoftwarUsed>RealPlayer 8 Basic 6.0</SoftwarUsed>
 <ServiceComponent category="video" tagName="video"
support="yes">
 <SourceType>
 <NotSupportedBag>
 mpeg
 </NotSupportedBag>
 <OnlySupportedBag>
 </OnlySupportedBag>
 </SourceType>
</ServiceComponent>
<ServiceComponent category="image" tagName="img"
support="yes">
 <MaxDisplay>100x200</MaxDisplay>
 <MaxSize>2000K</MaxSize>
</ServiceComponent>
<!-- support=no, the service is completely not
supported -->
<ServiceComponent category="audio" tagName="audio"
support="no">
</ServiceComponent>
<!-- support=noTag, the sevice tag is not supported,
but its content is -->
<ServiceComponent category="paralel execution"
tagName="par" support="noTag">
</ServiceComponent>
</Service>

</ClientProfile>

Figure 8. The client profile
...
<xsl:template match="ServiceComponent">
<xsl:variable name="E">
<xsl:value-of select="@tagName" />
</xsl:variable>
<xsl:choose>
 <xsl:when test="@support = 'no'">
<!-- Non supporting services processing -->
<xsl:text>
</xsl:text>
<xsl:element name="xsl:template">
<xsl:attribute name="match">
<xsl:value-of select="$E"/></xsl:attribute>
<xsl:text>
</xsl:text>
</xsl:element>
</xsl:when>
<xsl:when test="@support = 'noTag'">
<!-- Non supporting services tag processing -->
<xsl:text>
</xsl:text>
<xsl:element name="xsl:template">
<xsl:attribute name="match">
<xsl:value-of select="$E"/></xsl:attribute>
<xsl:text>
</xsl:text>
<xsl:element name="xsl:apply-templates"></xsl:element>
<xsl:text>
</xsl:text>
</xsl:element>
</xsl:when>
<!-- End of the non supporting services processing -->
<xsl:otherwise></xsl:otherwise>
</xsl:choose>
</xsl:template>
...

Figure 9. The generic style sheet for filtering
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output omit-xml-declaration="yes"/>
<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="@*"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<xsl:template match="@*">
<xsl:copy/>
</xsl:template>
<xsl:template match="audio">
</xsl:template>
<xsl:template match="par">
<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

Figure 10. The generated XSLT style sheet

Unfortunately, XSLT transformation is applied at the

document structure level and can’t ensure advanced

adaptations such those depending to the client screen,

color or resolution supports, etc. Consequently XSLT

transformations must be enriched by other kind of

adaptations that acts directly on media elements.

6.2. Using media adaptation methods

This kind of adaptation concerns media resources such

as images, videos, etc. A context is considered as a set of

variables that reflect the state of the client capabilities and

preferences. Consequently, a context change is equivalent

to a values change of these parameters. The new values of

the context are taken as input and the corresponding

adaptation methods are applied.

Here are some experimental results concerning the

dynamic adaptation used within the exchange protocol. In

each application, a user is associated with as a set of

variables used in the adaptation.

Application 1: Image generation using structural

transformation (Figure 11): XML to SVG [17]. The client

context about the requested content includes the

following set: {wanted_text="Structural Transformation",

image_width = 400, image_height = 60,

preferred_font_color = "blue", preferred_font_size = 30,

preferred background color = "red", preferred text

position=40}.

Figure 11. Created Image

Application 2: Images compression (Figure 12). The

client context includes the following set:

{Jpeg_Image_compression = 90%}.

 Application 3: Images resizing (Figure 13). The

client (PDA) context includes: {screen_width = 240,

screen_height = 320}.

Figure 12.a: Requested
content

Figure 12.b Image
compression

Figure 13.a: Requested
content

Figure 13.b: Adapted
content (Resizing for

240X320)

7. Conclusions

In the current internet, providing adaptable content

delivery is crucial. This becomes even more important

when considering multimedia content which requires the

handling of resource intensive media.

As stated in the paper, defining a complete adaptable

content delivery system is not an easy task. It introduces

many challenges at different levels of the current

infrastructure. One of such challenges is the definition of

a model for describing the environment or the

environment constraints that have to be taken into

account. UPS was proposed as a flexible model for

describing not only the client but also the content and the

server or the proxy capabilities.

We have presented also a protocol and a negotiation

and the adaptation strategy which allows the delivery of

the final content to the user agent. In order to support the

dynamic context changes, two principles were presented

concerning structural transformation -using XSLT- and

media adaptation using direct transcoding methods.

The defined framework remains extensible especially

for the context description. This allows to handle new

terminals type in the proposed framework.

8. References

[1] Chi Chi Hung and Lim Yan Hong. Adaptive Proxy-based

Content Transformation Framework for the World Wide

Web. IEEE 2000.

[2] Christianson L. and Brown K. Rate Adaptation for

Improved Audio Quality in Wireless Networks. The 6th

IEEE International Workshop on Mobile Multimedia

Communications MOMUC’99, San Diego, California,

USA, 15 - 17 November 1999.

[3] Dey A. K. and Abowd G. D. Toward a Better

Understanding of Context and Context –Awareness. GVU

Technical Report, 1999.

[4] Fielding R. and al. Hypertext Transfer Protocol -

HTTP/1.1. Internet Draft, November 18, 1998.

[5] Frystyk N. H., Leach P. and Scott L. HTTP Extension

Framework. Internet Draft,

http://www.w3.org/Protocols/HTTP/ietf-http-ext/draft-

frystyk-http-extensions-03.txt, March 15, 1999.

[6] Graham Klyne, Franklin Reynolds, Chris Woodrow, and

Hidetaka Ohto, Composite Capability/Preference Profiles

(CC/PP): Structure and Vocabularies,

http://www.w3.org/TR/CCPP-struct-vocab/, W3C Working

Draft, 15 March 2001.

[7] Hidetaka O. and Johan H. CC/PP Exchange Protocol Based

on HTTP Extension Framework. W3C Note,

http://www.w3.org/TR/NOTE-CCPPexchange, 24 June

1999.

[8] Holtman K., TUE and Mutz A. Transparent Content

Negotiation in HTTP. RFC 2295, Network Working

Group, March 1998.

[9] John R. Smith. VideoZoom Spatio-temporal Video

Browser. IEEE Trans. Multimedia, Vol. 1, No. 2, June ’99.

[10] Lazar A.A. Challenges in Multimedia Networking.

Proceedings of the International Hi-Tech Forum, Osaka

`94, Osaka, Japan, February 24-25, 1994 pp. 24-33.

[11] Lemlouma T. and Layaïda N. Universal Profiling for

Content Negotiation and Adaptation in Heterogeneous

Environments. W3C Workshop on Delivery Context.

W3C/INRIA Sophia-Antipolis, France, 4-5 March 2002.

[12] Network Working Group. Hypertext Transfer Protocol –

HTTP/1.0. RFC 1945: http://www.ietf.org/ rfc/rfc1945.txt,

May 1996.

[13] Ora L. and Ralph S. Ressource Description Framework

(RDF) Model and Syntax Specification, W3C

Recommendation: http://www.w3.org/TR/1999/REC-rdf-

syntax.

[14] Rodden, T., Cheverst, K., Davies, K. Dix, A. Exploiting

Context in HCI Design for Mobile Systems. Workshop on

Human Computer Interaction with Mobile Devices, 1998.

[15] WebSphere. Transcoding Publisher. IBM Corp,

http://www-4.ibm.com/software/webservers/transcoding/.

[16] W3C. CC/PP. http://www.w3.org/Mobile/CCPP/

[17] W3C. Scalable Vector Graphics (SVG).

http://www.w3.org/Graphics/SVG/Overview.html8

[18] W3C. Synchronized Multimedia Integration Language

(SMIL 2.0) Specification, http://www.w3.org/AudioVideo.

[19] W3C. XSL Transformations (XSLT) Version 1.0. W3C

Recommendation. http://www.w3.org/TR/1999/REC-xslt-

19991116.

