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Abstract. Several state-of-the-art Generic Visual Categorization
(GVC) systems are built around a vocabulary of visual terms and char-
acterize images with one histogram of visual word counts. We propose
a novel and practical approach to GVC based on a universal vocabu-
lary, which describes the content of all the considered classes of images,
and class vocabularies obtained through the adaptation of the univer-
sal vocabulary using class-specific data. An image is characterized by
a set of histograms - one per class - where each histogram describes
whether the image content is best modeled by the universal vocabulary or
the corresponding class vocabulary. It is shown experimentally on three
very different databases that this novel representation outperforms those
approaches which characterize an image with a single histogram.

1 Introduction

Generic Visual Categorization (GVC) is the pattern classification problem which
consists in assigning one or multiple labels to an image based on its semantic
content. We emphasize the use of the word “generic” as the goal is to classify a
wide variety of objects and scenes. GVC is a very challenging task as one has to
cope with variations in view, lighting and occlusion and with typical object and
scene variations.

Several state-of-the-art GVC systems [14, 1, 4, 9, 16] were inspired by the bag-
of-words (BOW) approach to text-categorization [13]. In the BOW representa-
tion, a text document is encoded as a histogram of the number of occurrences
of each word. Similarly, one can characterize an image by a histogram of visual
words count. The visual vocabulary provides a “mid-level” representation which
helps to bridge the semantic gap between the low-level features extracted from
an image and the high-level concepts to be categorized [1]. However, the main
difference with text categorization is that there is no given visual vocabulary for
the GVC problem and it has to be learned automatically from a training set.

To obtain the visual vocabulary, Sivic and Zisserman [14] and Csurka et al.
[4] originally proposed to cluster the low-level features with the K-means algo-
rithm, where each centroid corresponds to a visual word. To build a histogram,
each feature vector is assigned to its closest centroid. Hsu and Chang [9] and
Winn et al. [16] made use of the information bottleneck principle to obtain more
discriminative vocabularies. Farquhar et al. also proposed a generative model,
the Gaussian Mixture Model (GMM), to perform clustering [7]. In this case, a
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low-level feature is not assigned to one visual word but to all words probabilisti-
cally, resulting in a continuous histogram representation. They also proposed to
build the vocabulary by training class specific vocabularies and agglomerating
them in a single vocabulary (see also the work of Leung and Malik [10] and
Varma and Zisserman [15] for the related problem of texture classification). Al-
though substantial improvements were obtained, we believe that this approach
is unpractical for a large number of classes C. Indeed, if N is the size of the
class-vocabularies, the size of the agglomerated vocabulary, and therefore of the
histograms to be classified, will be C × N (c.f. the curse of dimensionality).

Our emphasis in this work is on developing a practical approach which scales
with the number of classes. We define a universal vocabulary, which describes
the visual content of all the considered classes, and class vocabularies, which are
obtained through the adaptation of the universal vocabulary using class-specific
data. While other approaches based on visual vocabularies characterize an image
with a single histogram, in the proposed approach, an image is represented by a
set of histograms of size 2×N , one per class. Each histogram describes whether an
image is more suitably modeled by the universal vocabulary or the corresponding
adapted vocabulary.

The remainder of this paper is organized as follows. In section 2, we motivate
the use of a universal vocabulary and of adapted class-vocabularies and describe
the training of both types of vocabularies. In section 3, we show how to charac-
terize an image by a set of histograms using these vocabularies. In section 4, we
explain how to reduce significantly the computational cost of the proposed ap-
proach with a fast scoring procedure. In section 5, we show experimentally that
the proposed representation outperforms those approaches which characterize
an image with a single histogram. Finally, we draw conclusions.

2 Universal and Adapted Vocabularies

Let us first motivate the use of a universal vocabulary and of adapted class-
vocabularies with a simple two-class problem where cats have to be distinguished
from dogs.

A universal vocabulary is supposed to represent the content of all possible
images and it is therefore trained with data from all classes under consideration.
Since cats and dogs have many similarities, cats’ and dogs’ low-level feature
vectors are likely to cluster into similar visual words such as “eye”, “ear” or
“tail”. Hence, a histogram representation based on such a vocabulary is not
powerful enough to help distinguish between cats and dogs. However, one can
derive class vocabularies by adapting the universal vocabulary with class-specific
data. Therefore, the universal “eye” word is likely to be specialized to “cat’s
eye” and “dog’s eye” as depicted on Figure 1. Note that, although visual words
are not guaranteed to be as meaningful as in the previous example, we believe
that the combination of these universal and specific representations provides the
necessary information to discriminate between classes.

As there exists a large body of work on the adaptation of GMMs, we represent
a vocabulary of visual words by means of a GMM as done in [7]. Let us denote
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Fig. 1. The cats and dogs example: training a universal vocabulary with images from
both classes and adapting this vocabulary to cat and dog vocabularies with class-
specific data

by λ the set of parameters of a GMM. λ = {wi, μi, Σi, i = 1...N} where wi,
μi and Σi denote respectively the weight, mean vector and covariance matrix
of Gaussian i and where N denotes the number of Gaussians. Each Gaussian
represents a word of the visual vocabulary: wi encodes the relative frequency
of word i, μi the mean of the word and Σi the variation around the mean.
In the following, we assume that the covariance matrices are diagonal as (i)
any distribution can be approximated with an arbitrary precision by a weighted
sum of Gaussians with diagonal covariances and (ii) the computational cost of
diagonal covariances is much lower than the cost involved by full covariances.
We use the notation σ2

i = diag(Σi).
If an observation x has been generated by the GMM, we have:

p(x|λ) =
N∑

i=1

wipi(x). (1)

The components pi are given by:

pi(x) =
exp

{
− 1

2 (x − μi)′Σ−1
i (x − μi)

}

(2π)D/2|Σi|1/2 (2)

where D is the dimensionality of the feature vectors and |.| denotes the deter-
minant operator.

We now explain how to train the universal and class vocabularies. The univer-
sal vocabulary is trained using maximum likelihood estimation (MLE) and the
class vocabularies are adapted using the maximum a posteriori (MAP) criterion.

2.1 MLE Training of the Universal Vocabulary

Let X = {xt, t = 1...T} be the set of training samples. In the following, the
superscript u denotes that a parameter or distribution relates to the universal
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vocabulary. The estimation of λu may be performed by maximizing the log-
likelihood function log p(X |λu). This is referred to as MLE.

The standard procedure for MLE is the Expectation Maximization (EM) al-
gorithm [5]. EM alternates two steps: (i) an expectation (E) step where the
posterior probabilities of mixture occupancy (also referred to as occupancy prob-
abilities) are computed based on the current estimates of the parameters, and
(ii) a maximization (M) step, where the parameters are updated based on the
expected complete data log-likelihood which depends on the occupancy proba-
bilities computed in the E-step.

For the E-step, one simply applies Bayes formula to obtain:

γt(i) = p(i|xt, λ
u) =

wu
i pu

i (xt)∑N
j=1 wu

j pu
j (xt)

. (3)

The occupancy probability γt(i) is the probability for observation xt to have
been generated by the i-th Gaussian.

The M-step re-estimation equations are [2]:

ŵu
i =

1
T

T∑

t=1

γt(i) (4)

μ̂u
i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

(5)

(σ̂u
i )2 =

∑T
t=1 γt(i)x2

t∑T
t=1 γt(i)

− (μ̂u
i )2 (6)

where x2 is a shorthand for diag(xx′).
Note that the initialization is an issue of paramount importance. Indeed EM is

only guaranteed to converge to a local optimum and the quality of this optimum
is largely dependent on the initial parameters. This initialization issue will be
discussed in 5.

2.2 MAP Adaptation of Class Vocabularies

Let X be the set of adaptation samples. In the following, the superscript a
denotes that a parameter or distribution relates to an adapted vocabulary.

The class vocabularies are estimated by adapting the universal vocabulary
using the class training data and a form of Bayesian adaptation: MAP. The
goal of MAP estimation is to maximize the posterior probability p(λa|X) or
equivalently log p(X |λa) + log p(λa). Hence, the main difference with MLE lies
in the assumption of an appropriate prior distribution of the parameters to be
estimated. Therefore, it remains to (i) choose the prior distribution family and
(ii) specify the parameters of the prior distribution.

The MAP adaptation of the GMM is a well-studied problem in the field of
speech and speaker recognition [8, 12]. For both applications, one is interested in
adapting a generic model, which reasonably describes the speech of any person,
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to more specific conditions using the data of a particular person. It was shown in
[8] that the prior densities for GMM parameters could be adequately represented
as a product of Dirichlet and normal-Wishart densities. When adapting a generic
model with MAP to more specific conditions, it is natural to use the parameters
of the generic model as a priori information on the location of the adapted
parameters in the parameter space.

As shown in [8], one can also apply the EM procedure to MAP estimation.
During the E-step, the occupancy probabilities γ are computed as was the case
for MLE:

γt(i) = p(i|xt, λ
a). (7)

The M-step re-estimation equations are [8]:

ŵa
i =

∑T
t=1 γt(i) + τw

i

T +
∑N

i=1 τw
i

, (8)

μ̂a
i =

∑T
t=1 γt(i)xt + τm

i μu
i∑T

t=1 γt(i) + τm
i

, (9)

(σ̂a
i )2 =

∑T
t=1 γt(i)x2

t + τs
i

(
(σu

i )2 + (μu
i )2

)
∑T

t=1 γt(i) + τs
i

− (μ̂a
i )2 . (10)

τw
i , τm

i and τs
i are relevance factors for the mixture weight, mean and variance

parameters and keep a balance between the a priori information contained in
the generic model and the new evidence brought by the class specific data.
If a mixture component i was estimated with a small number of observations∑T

t=1 γt(i), then more emphasis is put on the a priori information. On the other
hand, if it was estimated with a large number of observations, more emphasis
will be put on the new evidence. Hence MAP provides a more robust estimate
than MLE when little training data is available. The choice of parameter τ will
be discussed in the section on experimental results.

3 Bipartite Histograms

Once the universal and adapted vocabularies have been properly estimated, we
proceed as follows. For each class c, a novel vocabulary is obtained by merging
the universal vocabulary and the adapted vocabulary of class c. This will be
referred to as the combined vocabulary of class c. Note that the merging involves
adjusting the weight parameters of the Gaussians to reflect the vocabulary size
having doubled. In the case where the a priori probability p(c) of class c is known,
this can be done by multiplying the weights of the adapted vocabulary by p(c)
and the weights of the universal vocabulary by (1− p(c)). The other parameters
remain unchanged.

The rational behind this merging process is to make the Gaussians of the
universal and adapted vocabularies “compete” to account for the feature vectors
of an image. Indeed, if an image belongs to class c, it is more suitably described by
the visual words of class c rather than by the words of the universal vocabulary.
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Fig. 2. Generating one bipartite histogram per category. Each histogram is subse-
quently fed to a different classifier.

On the other hand, if an image belongs to another class, then the visual words
of the universal vocabulary will describe it more appropriately.

An image can therefore be characterized by a set of histograms - one per class -
using these combined vocabularies. These histograms are said to be bipartite
as half of the histogram reflects the contribution of the universal vocabulary in
explaining the image while the other half reflects the contribution of the adapted
vocabulary (c.f. Figure 2).

Interestingly, for a given image, summing the two halves of the bipartite his-
tograms (i.e. summing the count of a word in the universal vocabulary part
with the count of the corresponding word in the adapted vocabulary part)
should lead to the same histogram approximately, whatever the class. Note that
this histogram is the one we would obtain using only the universal vocabulary
representation. Hence, the key of the success of the proposed approach is the
ability to separate for each class the relevant information from the irrelevant
information.

To classify these histograms, we use one Support Vector Machine (SVM)
classifier per class. Each SVM is trained in a one-vs-all manner as done in [1, 4].
However, in [1, 4], as images are characterized by a single histogram, the same
histograms are fed to the classifiers. In the proposed approach, each classifier
is fed with different histograms, both at training and test time. Going back to
our cats and dogs example, a “cat” classifier will be trained with histograms
computed on the combined vocabulary of the class cat. In the same manner, at
test time the histogram obtained with the combined vocabulary of the class cat
will be fed to the cat classifier and the histogram obtained with the combined
vocabulary of the class dog will be fed to the dog classifier.

4 Computational Cost

When estimating a histogram, the most intensive part is the Gaussian compu-
tation, i.e. the computation of the values pi(x) (c.f. equation (2)). If N is the
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number of Gaussians in the universal vocabulary, and C is the number of classes,
a direct implementation would require N × (C + 1) Gaussian computations per
image. This is unacceptable for large values of N or C.

To reduce the computational cost, we make use of a fast scoring proce-
dure devised by Reynolds et al. for the speaker recognition problem [12]. This
technique is based on two observations. The first one is that, when a large
GMM is evaluated, only a few of the mixtures will contribute significantly to
the likelihood value (c.f. equation (1)) and therefore, only a few of the mix-
tures will have a significant occupancy probability γt(i). This property was
observed empirically. The second one is that the Gaussians of an adapted vo-
cabulary retain a correspondence with the mixtures of the universal vocabu-
lary. Therefore, if a feature vector x scores high on the i-th component of the
universal vocabulary, it will score highly on the i-th Gaussians of all adapted
vocabularies.

The fast scoring procedure operates as follows on each feature vector xt:

1. Compute the likelihood pu
i (xt) for all the mixture components i of the univer-

sal vocabulary (N Gaussian computations). Retain the K best components.
2. Compute the likelihood values pa

i (xt) for the K corresponding components
of the C adapted vocabularies (K × C Gaussian computations).

3. For the C combined vocabularies, compute the occupancy probabilities γt(i)
on the 2 × K corresponding components. Assume that the occupancy prob-
abilities are zero for the other components.

Hence, the number of Gaussian computations is reduced from N × (C + 1) to
N + K × C. For large values of C this is reduction of the computational cost
by a factor N/K. Typical values for N and K are N = 1, 024 and K = 5.
Note that we did not observe any significant decrease of the performance in our
experiments with as little as K = 2 best components. Hence the value K = 5 is
a rather conservative choice.

Returning to our cats and dogs example, this fast scoring procedure simply
consists in first determining whether the input feature vector corresponds to an
eye, a tail, etc. and then if it is a tail, whether it is more likely to be the tail of
cat or the tail of a dog.

5 Experimental Validation

In this section, we carry out a comparative evaluation of the proposed approach
on three very different databases: an in-house database of scenes, the LAVA7
database and the Wang database. The two approaches which will serve as a
baseline are (i) the one which makes use only of the universal vocabulary (as
in [14, 4]) and (ii) the one which agglomerates class-vocabularies into a single
vocabulary (as in [7]). We consider a classification task, i.e. each image is to
be assigned to one class and the measure of performance is the percentage of
images assigned to their correct classes. In the following section, we describe the
experimental setup. We then provide results.
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5.1 Experimental Setup

The low-level local features are based on local histograms of orientations as
described in [11]. These features were extracted on a regular grid at different
scales. As all images were resized before the feature extraction step so that
they contained (approximately) the same number of pixels, the same number of
features was extracted from all images (approximately).

The dimensionality of feature vectors was subsequently reduced from 128 to
50 using Principal Component Analysis (PCA). This decorrelates the dimensions
of the feature vectors and thus makes the diagonal covariance assumption more
reasonable. Discarding the last components also removes noise and thus increases
the performance. It also significantly reduces the cost of Gaussian computations.

To alleviate the difficult initialization problem when training the universal
vocabulary with MLE, we used a strategy inspired by the vector quantization
algorithm. We start with a vocabulary of one unique word and then increase the
number of Gaussians iteratively. Each iteration consists of two steps: (i) all the
Gaussians which were estimated at the previous step with more than a given
number of observations are split into two by introducing a slight perturbation in
the mean and (ii) EM is performed until convergence, i.e. until the log-likelihood
difference between two iterations falls below a predefined threshold. These two
steps can be repeated until the desired number of Gaussians is obtained. An
advantage of increasing progressively the number of Gaussians is that it allows
to monitor the recognition performance to select the optimum vocabulary size.

For MAP adaptation, to reduce the number of parameters to hand-tune, we
enforced τw

i = τm
i = τs

i = τ . We tried different values for τ and found that
values between 5 and 50 were reasonable. In our experiments, we set τ = 10.
We demonstrate below the influence of adapting either all parameters, i.e. the
mixture weights, means and covariances, or a subset of the parameters.

As for classifying the histograms, we used linear SVMs for both the proposed
approach and the approach based on a single vocabulary. The only parameter to
set is the one which controls the trade-off between the margin and the number of
misclassified points, commonly known as C. It was fixed to 300 in all the following
experiments. Note that in the linear case the cost of classifying a histogram is
independent of the number of support vectors and can be neglected compared
to the cost of Gaussian computations.

5.2 Results

In-house database. The first set of experiments was carried out on an in-house
database of 8 scenes relating to amusement parks, boats, New York city, tennis,
sunrise/sunset, surfing, underwater and waterfalls. This is a challenging set as we
collected the training data while the test material was collected independently
by a third party. Approximately 12,000 images were available for training and
1,750 for testing.

We first determine which Gaussian parameters are the most crucial ones to
adapt in the proposed approach. Results are presented on Figure 3(a) as the
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Fig. 3. Results on the in-house 8 scenes database. (a) Influence of the adaptation
of the different Gaussian parameters (weight w, mean μ and covariance σ2) on the
classification accuracy. (b) Comparison of the proposed approach (universal + adapted
vocabularies) with the two baseline systems (universal vocabulary and agglomerated
vocabulary).

classification accuracy versus the number of Gaussian components, i.e. the vo-
cabulary size. Clearly, adapting only the weights leads to a poor performance.
Adapting either the means or the covariances has roughly the same impact and
adapting both parameters leads to an additional small improvement. However,
adapting the three parameters does not give further improvement. This experi-
ment clearly shows that the relative frequency of a word (weight) in an adapted
vocabulary has little influence; what matters is the location of the word (mean)
and its variations (covariance). In the following, we adapt only the means and
covariances.

We now compare the proposed approach with the two baseline approaches.
Results are presented on Figure 3(b) as the classification accuracy versus the
number of Gaussian computations per sample. For the two baselines, the num-
ber of Gaussian computations per sample is exactly the number of components.
For the proposed approach, this is slightly higher (c.f. section 4). The proposed
approach clearly outperforms the baselines. Indeed, it achieves an 88.8% accu-
racy while the approach based solely on a universal vocabulary achieves 81.4%
accuracy and the approach based on an agglomerated vocabulary achieves an
84.9% accuracy for a vocabulary size of 1,024 visual words. This shows that the
adapted vocabularies encode more discriminative information.

LAVA7 Database [4]. This database, also sometimes referred to as Xerox7
database [17], contains 1,776 images of seven objects: bikes, books, buildings,
cars, faces, phones and trees. It served as a testbed for object recognition ex-
periments during the course of the European LAVA project. The standard setup
for running experiments on this database is a ten-fold cross-validation. Results
are presented on Figure 4(a) as the classification accuracy versus the number
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of Gaussian computations per sample. We can see that the proposed approach
outperforms the two baseline systems.

To the best of our knowledge, the best results reported on this database are
those of Zhang et al. [17]. With their approach, which makes use of two feature
extractors, two feature descriptors and an earth mover’s distance (EMD) based
kernel, they achieve a 94.3% accuracy but at a very high computational cost:
the classification of an image takes on the order of 1 min on a modern PC.
Running our non-optimized code on a 2.4 GHz AMD Opteron with 4GB RAM,
our best system categorizes an image into one of the 7 categories with an accuracy
of 95.8% in roughly 150 ms: approximately 125ms for the feature extraction
and 25ms for the histogram building (the cost of the SVM classification can be
neglected).

Wang Database [3]. This database contains 10 categories: Africa, beach,
buildings, buses, dinosaurs, elephants, flowers, horses, mountains and food. Each
category contains 100 images, which makes a total of 1,000 images. We used the
same setup as in [3]: we randomly divided each category set into a training set
and a test set, each with 50 images, and repeated the experiment 5 times. To
prove that our good results are not restricted to SIFT-like features, we experi-
mented with color features based on local mean and standard deviation in the
RGB channels. Results are presented on Figure 4(b) as the classification accu-
racy versus the number of Gaussian computations per sample. We can observe
that the proposed approach performs best, thus proving that our good results
are not SIFT-specific. If we run separately two systems, one based on SIFT fea-
tures and one based on color features, and if we do a late fusion (averaging the
scores of the two systems), we get a 92.8% classification accuracy. To the best
of our knowledge, the highest accuracy which had been previously reported on
this database was 87.3% [6].
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Fig. 4. Comparison of the proposed approach (universal + adapted vocabularies) with
the two baseline systems (universal vocabulary and agglomerated vocabulary) on (a)
the LAVA7 database and (b) the Wang database
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6 Conclusion

We proposed a novel and practical approach to GVC based on a universal vo-
cabulary, which describes the content of all the considered classes of images, and
class vocabularies obtained from the universal vocabulary using class-specific
data and MAP adaptation. An image is characterized by a set of histograms
- one per class - where each histogram describes whether the image content is
best modeled by the universal vocabulary or the corresponding class vocabulary.
It was shown experimentally on three very different databases that this novel
representation outperforms those approaches which characterize an image with
a single histogram.

Note that, although less emphasis has been put on the reduction of the mem-
ory requirements, a simple approach could be used, if necessary, to reduce the
number of Gaussians to store for each adapted vocabulary. As there exists a
correspondence between the Gaussians in the universal and adapted vocabular-
ies, one could save only those Gaussians which have significantly changed in the
adapted vocabularies. This can be measured using various metrics such as the
divergence, the Bhattacharya distance or the Gaussian overlap.

Also, although we have only considered a flat hierarchy of classes in this
work, the proposed framework would be particularly suited to a hierarchical
organization where the vocabularies of classes at a given level of the hierarchy
would be adapted from their parent vocabularies.
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