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Abstract

Sequential fine-tuning and multi-task learn-

ing are methods aiming to incorporate knowl-

edge from multiple tasks; however, they suffer

from catastrophic forgetting and difficulties in

dataset balancing. To address these shortcom-

ings, we propose AdapterFusion, a new two

stage learning algorithm that leverages knowl-

edge from multiple tasks. First, in the knowl-

edge extraction stage we learn task specific pa-

rameters called adapters, that encapsulate the

task-specific information. We then combine

the adapters in a separate knowledge composi-

tion step. We show that by separating the two

stages, i.e., knowledge extraction and knowl-

edge composition, the classifier can effectively

exploit the representations learned from mul-

tiple tasks in a non-destructive manner. We

empirically evaluate AdapterFusion on 16 di-

verse NLU tasks, and find that it effectively

combines various types of knowledge at differ-

ent layers of the model. We show that our ap-

proach outperforms traditional strategies such

as full fine-tuning as well as multi-task learn-

ing. Our code and adapters are available at

AdapterHub.ml.

1 Introduction

The most commonly used method for solving

NLU tasks is to leverage pretrained models, with

the dominant architecture being a transformer

(Vaswani et al., 2017), typically trained with a

language modelling objective (Devlin et al., 2019;

Radford et al., 2018; Liu et al., 2019b). Transfer

to a task of interest is achieved by fine-tuning all

the weights of the pretrained model on that single

task, often yielding state-of-the-art results (Zhang

and Yang, 2017; Ruder, 2017; Howard and Ruder,

2018; Peters et al., 2019). However, each task of in-

terest requires all the parameters of the network to

be fine-tuned, which results in a specialized model

for each task.
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Figure 1: AdapterFusion architecture inside a trans-

former (Vaswani et al., 2017). The AdapterFusion com-

ponent takes as input the representations of multiple

adapters trained on different tasks and learns a parame-

terized mixer of the encoded information.

There are two approaches for sharing informa-

tion across multiple tasks. The first consists of

starting from the pretrained language model and

sequentially fine-tuning on each of the tasks one

by one (Phang et al., 2018). However, as we subse-

quently fine-tune the model weights on new tasks,

the problem of catastrophic forgetting (McCloskey

and Cohen, 1989; French, 1999) can arise, which

results in loss of knowledge already learned from

all previous tasks. This, together with the non-

trivial decision of the order of tasks in which to

fine-tune the model, hinders the effective transfer

of knowledge. Multi-task learning (Caruana, 1997;

Zhang and Yang, 2017; Liu et al., 2019a) is another

approach for sharing information across multiple

tasks. This involves fine-tuning the weights of a

pretrained language model using a weighted sum

of the objective function of each target task simul-

taneously. Using this approach, the network cap-

tures the common structure underlying all the target

tasks. However, multi-task learning requires simul-

https://AdapterHub.ml
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taneous access to all tasks during training. Adding

new tasks thus requires complete joint retraining.

Further, it is difficult to balance multiple tasks and

train a model that solves each task equally well. As

has been shown in Lee et al. (2017), these models

often overfit on low resource tasks and underfit on

high resource tasks. This makes it difficult to ef-

fectively transfer knowledge across tasks with all

the tasks being solved equally well (Pfeiffer et al.,

2020b), thus considerably limiting the applicability

of multi-task learning in many scenarios.

Recently, adapters (Rebuffi et al., 2017; Houlsby

et al., 2019) have emerged as an alternative training

strategy. Adapters do not require fine-tuning of all

parameters of the pretrained model, and instead

introduce a small number of task specific param-

eters — while keeping the underlying pretrained

language model fixed. Thus, we can separately and

simultaneously train adapters for multiple tasks,

which all share the same underlying pretrained pa-

rameters. However, to date, there exists no method

for using multiple adapters to maximize the trans-

fer of knowledge across tasks without suffering

from the same problems as sequential fine-tuning

and multi-task learning. For instance, Stickland

and Murray (2019) propose a multi-task approach

for training adapters, which still suffers from the

difficulty of balancing the various target tasks and

requiring simultaneous access to all target tasks.

In this paper we address these limitations and

propose a new variant of adapters called Adapter-

Fusion. We further propose a novel two stage learn-

ing algorithm that allows us to effectively share

knowledge across multiple tasks while avoiding

the issues of catastrophic forgetting and balancing

of different tasks. Our AdapterFusion architec-

ture, illustrated in Figure 1, has two components.

The first component is an adapter trained on a task

without changing the weights of the underlying lan-

guage model. The second component — our novel

Fusion layer — combines the representations from

several such task adapters in order to improve the

performance on the target task.

Contributions Our main contributions are: (1)

We introduce a novel two-stage transfer learning

strategy, termed AdapterFusion, which combines

the knowledge from multiple source tasks to per-

form better on a target task. (2) We empirically

evaluate our proposed approach on a set of 16 di-

verse NLU tasks such as sentiment analysis, com-

monsense reasoning, paraphrase detection, and rec-

ognizing textual entailment. (3) We compare our

approach with Stickland and Murray (2019) where

adapters are trained for all tasks in a multi-task man-

ner, finding that AdapterFusion is able to improve

this method, even though the model has simultane-

ous access to all tasks during pretraining. (4) We

show that our proposed approach outperforms fully

fine-tuning the transformer model on a single tar-

get task. Our approach additionally outperforms

adapter based models trained both in a Single-Task,

as well as Multi-Task setup.

The code of this work is integrated into the

AdapterHub.ml (Pfeiffer et al., 2020a).

2 Background

In this section, we formalize our goal of transfer

learning (Pan and Yang, 2010; Torrey and Shavlik,

2010; Ruder, 2019), highlight its key challenges,

and provide a brief overview of common methods

that can be used to address them. This is followed

by an introduction to adapters (Rebuffi et al., 2017)

and a brief formalism of the two approaches to

training adapters.

Task Definition. We are given a model that is pre-

trained on a task with training data D0 and a loss

function L0. The weights Θ0 of this model are

learned as follows:

D0 := Large corpus of unlabelled text

L0 := Masked language modelling loss

Θ0 ← argmin
Θ

L0(D0; Θ)

In the remainder of this paper, we refer to this

pretrained model by the tuple (D0, L0).
We define C as the set of N classification tasks

having labelled data of varying sizes and different

loss functions:

C = {(D1, L1), . . . , (DN , LN )}

The aim is to be able to leverage a set of N
tasks to improve on a target task m with Cm =
(Dm, Lm). In this work we focus on the setting

where m ∈ {1, . . . , N}.

Desiderata. We wish to learn a parameterization

Θm that is defined as follows:

Θm ← argmin
Θ′

Lm(Dm; Θ′)

where Θ′ is expected to have encapsulated relevant

information from all the N tasks. The target model

https://AdapterHub.ml
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for task m is initialized with Θ′ for which we learn

the optimal parameters Θm through minimizing

the task’s loss on its training data.

2.1 Current Approaches to Transfer

Learning

There are two predominant approaches to achieve

sharing of information from one task to another.

2.1.1 Sequential Fine-Tuning

This involves sequentially updating all the weights

of the model on each task. For a set of N tasks,

the order of fine-tuning is defined and at each step

the model is initialized with the parameters learned

through the previous step. However, this approach

does not perform well beyond two sequential tasks

(Phang et al., 2018; Pruksachatkun et al., 2020) due

to catastrophic forgetting.

2.1.2 Multi-Task Learning (MTL)

All tasks are trained simultaneously with the aim

of learning a shared representation that will en-

able the model to generalize better on each task

(Caruana, 1997; Collobert and Weston, 2008; Nam

et al., 2014; Liu et al., 2016, 2017; Zhang and Yang,

2017; Ruder, 2017; Ruder et al., 2019; Sanh et al.,

2019; Pfeiffer et al., 2020b, inter alia).

Θ0→{1,...,N} ← argmin
Θ

(

N
∑

n=1

Ln(Dn; Θ0)

)

Where Θ0→{1,...,N} indicates that we start with Θ0

and fine-tune on a set of tasks {1, ..., N}.
However, MTL requires simultaneous access to

all tasks, making it difficult to add more tasks on

the fly. As the different tasks have varying sizes as

well as loss functions, effectively combining them

during training is very challenging and requires

heuristic approaches as proposed in Stickland and

Murray (2019).

2.2 Adapters

While the predominant methodology for transfer

learning is to fine-tune all weights of the pre-

trained model, adapters (Houlsby et al., 2019)

have recently been introduced as an alternative

approach with applications in domain transfer

(Rücklé et al., 2020b), machine translation (Bapna

and Firat, 2019; Philip et al., 2020) transfer learn-

ing (Stickland and Murray, 2019; Wang et al., 2020;

Lauscher et al., 2020), and cross-lingual transfer

(Pfeiffer et al., 2020c,d; Üstün et al., 2020; Vi-

doni et al., 2020). Adapters share a large set of

parameters Θ across all tasks and introduce a small

number of task-specific parameters Φn. While

Θ represents the weights of a pretrained model

(e.g., a transformer), the parameters Φn, where

n ∈ {1, . . . , N}, are used to encode task-specific

representations in intermediate layers of the shared

model. Current work on adapters focuses either on

training adapters for each task separately (Houlsby

et al., 2019; Bapna and Firat, 2019; Pfeiffer et al.,

2020a) or training them in a multi-task setting to

leverage shared representations (Stickland and Mur-

ray, 2019). We discuss both variants below.

2.2.1 Single-Task Adapters (ST-A)

For each of the N tasks, the model is initialized

with parameters Θ0. In addition, a set of new and

randomly initialized adapter parameters Φn are in-

troduced.

The parameters Θ0 are fixed and only the pa-

rameters Φn are trained. This makes it possible to

efficiently parallelize the training of adapters for all

N tasks, and store the corresponding knowledge

in designated parts of the model. The objective for

each task n ∈ {1, . . . , N} is of the form:

Φn ← argmin
Φ

Ln(Dn; Θ0,Φ)

For common adapter architectures, Φ contains

considerably fewer parameters than Θ, e.g., only

3.6% of the parameters of the pretrained model in

Houlsby et al. (2019).

2.2.2 Multi-Task Adapters (MT-A)

Stickland and Murray (2019) propose to train

adapters for N tasks in parallel with a multi-task

objective. The underlying parameters Θ0 are fine-

tuned along with the task-specific parameters in

Φn. The training objective can be defined as:

Θ← argmin
Θ,Φ

(

N
∑

n=1

Ln(Dn; Θ0,Φn)

)

where

Θ = Θ0→{1,...,N},Φ1, . . . ,ΦN .

2.2.3 Adapters in Practice

Introducing new adapter parameters in different

layers of an otherwise fixed pretrained model has

been shown to perform on-par with, or only slightly

below, full model fine-tuning (Houlsby et al., 2019;

Stickland and Murray, 2019; Pfeiffer et al., 2020a).
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For NLP tasks, adapters have been introduced for

the transformer architecture (Vaswani et al., 2017).

At each transformer layer l, a set of adapter param-

eters Φl is introduced. The placement and archi-

tecture of adapter parameters Φ within a pretrained

model is non-trivial. Houlsby et al. (2019) experi-

ment with different architectures, finding that a two-

layer feed-foward neural network with a bottleneck

works well. They place two of these components

within one layer, one after the multi-head atten-

tion (further referred to as bottom) and one after

the feed-forward layers of the transformer (further

referred to as top).1 Bapna and Firat (2019) and

Stickland and Murray (2019) only introduce one

of these components at the top position, however,

Bapna and Firat (2019) include an additional layer

norm (Ba et al., 2016).

Adapters trained in both single-task (ST-A) or

multi-task (MT-A) setups have learned the idiosyn-

cratic knowledge of the respective tasks’ training

data, encapsulated in their designated parameters.

This results in a compression of information, which

requires less space to store task-specific knowledge.

However, the distinct weights of adapters prevent

a downstream task from being able to use multi-

ple sources of extracted information. In the next

section we describe our two stage algorithm which

tackles the sharing of information stored in adapters

trained on different tasks.

3 AdapterFusion

Adapters avoid catastrophic forgetting by intro-

ducing task-specific parameters; however, current

adapter approaches do not allow sharing of infor-

mation between tasks. To mitigate this we propose

AdapterFusion.

3.1 Learning algorithm

In the first stage of our learning algorithm, we train

either ST-A or MT-A for each of the N tasks.

In the second stage, we then combine the set of

N adapters by using AdapterFusion. While fixing

both the parameters Θ as well as all adapters Φ, we

introduce parameters Ψ that learn to combine the

N task adapters to solve the target task.

Ψm ← argmin
Ψ

Lm(Dm; Θ,Φ1, . . . ,ΦN ,Ψ)

Ψm are the newly learned AdapterFusion param-

eters for task m. Θ refers to Θ0 in the ST-A

1We illustrate these placements in Appendix Figure 5 (left).
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Figure 2: Our AdapterFusion architecture. This in-

cludes learnable weights Query, Key, and Value. Query

takes as input the output of the pretrained transformer

weights. Both Key and Value take as input the out-

put of the respective adapters. The dot product of the

query with all the keys is passed into a softmax func-

tion, which learns to weight the adapters with respect

to the context.

setting or Θ0→{1,...,N,m} in the MT-A setup. In

our experiments we focus on the setting where

m ∈ {1, ..., N}, which means that the training

dataset of m is used twice: once for training the

adapters Φm and again for training Fusion parame-

ters Ψm, which learn to compose the information

stored in the N task adapters.

By separating the two stages — knowledge ex-

traction in the adapters, and knowledge composi-

tion with AdapterFusion — we address the issues

of catastrophic forgetting, interference between

tasks and training instabilities.

3.2 Components

AdapterFusion learns to compose the N task

adapters Φn and the shared pretrained model Θ, by

introducing a new set of weights Ψ. These param-

eters learn to combine the adapters as a dynamic

function of the target task data.

As illustrated in Figure 2, we define the Adapter-

Fusion parameters Ψ to consist of Key, Value and

Query matrices at each layer l, denoted by Kl, Vl

and Ql respectively. At each layer l of the trans-

former and each time-step t, the output of the feed-

forward sub-layer of layer l is taken as the query

vector. The output of each adapter zl,t is used as in-

put to both the value and key transformations. Sim-

ilar to attention (Bahdanau et al., 2015; Vaswani

et al., 2017), we learn a contextual activation of
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each adapter n using

sl,t = softmax(h⊤
l,tQl ⊗ z⊤l,t,nKl), n ∈ {1, ..., N}

z′l,t,n = z⊤l,t,nVl, n ∈ {1, ..., N}

Z′
l,t = [z′l,t,0, ..., z′l,t,N ]

ol,t = s⊤l,tZ
′
l,t

Where ⊗ represents the dot product and [·, ·] indi-

cates the concatenation of vectors.

Given the context, AdapterFusion learns a pa-

rameterized mixer of the available trained adapters.

It learns to identify and activate the most useful

adapter for a given input.

4 Experiments

In this section we evaluate how effective Adapter-

Fusion is in overcoming the issues faced by other

transfer learning methods. We provide a brief de-

scription of the 16 diverse datasets that we use for

our study, each of which uses accuracy as the scor-

ing metric.

4.1 Experimental Setup

In order to investigate our model’s ability to over-

come catastrophic forgetting, we compare Fusion

using ST-A to only the ST-A for the task. We also

compare Fusion using ST-A to MT-A for the task

to test whether our two-stage procedure alleviates

the problems of interference between tasks. Fi-

nally, our experiments to compare MT-A with and

without Fusion let us investigate the versatility of

our approach. Gains in this setting would show

that AdapterFusion is useful even when the base

adapters have already been trained jointly.

In all experiments, we use BERT-base-uncased

(Devlin et al., 2019) as the pretrained language

model. We train ST-A, described in Appendix A.2

and illustrated in Figure 5, for all datasets described

in §4.2. We train them with reduction factors2

{2, 16, 64} and learning rate 0.0001 with AdamW

and a linear learning rate decay. We train for a max-

imum of 30 epochs with early stopping. We follow

the setup used in Stickland and Murray (2019) for

training the MT-A. We use the default hyperpa-

rameters3, and train a MT-A model on all datasets

simultaneously.

For AdapterFusion, we empirically find that a

learning rate of 5e − 5 works well, and use this

2A reduction factor indicates the factor by which the hid-
den size is reduced such that the bottle-neck size for BERT
Base with factor 64 is reduced to 12 (768/64 = 12).

3We additionally test out batch sizes 16 and 32.

in all experiments.4 We train for a maximum of

10 epochs with early stopping. While we initialize

Q and K randomly, we initialize V with a diago-

nal of ones and the rest of the matrix with random

weights having a small norm (1e− 6). Multiplying

the adapter output with this value matrix V initially

adds small amounts of noise, but retains the over-

all representation. We continue to regularize the

Value matrix using l2-norm to avoid introducing

additional capacity.

4.2 Tasks and Datasets

We briefly summarize the different types of tasks

that we include in our experiments, and reference

the related datasets accordingly. A detailed descrip-

tions can be found in Appendix A.1.

Commonsense reasoning is used to gauge

whether the model can perform basic reason-

ing skills: Hellaswag (Zellers et al., 2018,

2019), Winogrande (Sakaguchi et al., 2020), Cos-

mosQA (Huang et al., 2019), CSQA (Talmor

et al., 2019), SocialIQA (Sap et al., 2019). Sen-

timent analysis predicts whether a given text has

a positive or negative sentiment: IMDb (Maas

et al., 2011), SST (Socher et al., 2013). Nat-

ural language inference predicts whether one

sentence entails, contradicts, or is neutral to an-

other: MNLI (Williams et al., 2018), SciTail (Khot

et al., 2018), SICK (Marelli et al., 2014), RTE (as

combined by Wang et al. (2018)), CB (De Marn-

effe et al., 2019). Sentence relatedness captures

whether two sentences include similar content:

MRPC (Dolan and Brockett, 2005), QQP5. We

also use an argument mining Argument (Stab et al.,

2018) and reading comprehension BoolQ (Clark

et al., 2019) dataset.

5 Results

We present results for all 16 datasets in Table 1. For

reference, we also include the adapter architecture

of Houlsby et al. (2019), ST-AHoulsby, which has

twice as many parameters compared to ST-A. To

provide a fair comparison to Stickland and Murray

(2019) we primarily experiment with BERT-base-

uncased. We additionally validate our best model

configurations — ST-A and Fusion with ST-A —

with RoBERTa-base, for which we present our re-

sults in Appendix Table 4.

4We have experimented with learning rates {6e−6, 5e−5,
1e− 4, 2e− 4}

5data.quora.com/First-Quora-DatasetReleaseQuestion-
Pairs

http://data.quora.com/First-Quora-DatasetReleaseQuestion-Pairs
http://data.quora.com/First-Quora-DatasetReleaseQuestion-Pairs
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Dataset Head Full ST-A MT-A F. w/ ST-A F. w/ MT-A ST-AHoulsby

MNLI 54.59 84.10 84.32 82.49 ±0.49 84.28 83.05 84.13
QQP 76.79 90.87 90.59 89.47 ±0.60 90.71 90.58 90.63
SST 85.17 ±0.45 92.39 ±0.22 91.85 ±0.41 92.27 ±0.71 92.20 ±0.18 93.00 ±0.20 92.75 ±0.37

WGrande 51.92 ±0.35 60.01 ±0.08 61.09 ±0.11 57.70 ±1.40 60.23 ±0.31 59.32 ±0.30 59.32 ±1.33

IMDB 85.05 ±0.22 94.05 ±0.21 93.85 ±0.07 92.56 ±0.54 93.82 ±0.39 92.66 ±0.32 93.96 ±0.22

HSwag 34.17 ±0.27 39.25 ±0.76 38.11 ±0.14 36.47 ±0.98 37.98 ±0.01 37.36 ±0.10 38.65 ±0.25

SocIQA 50.33 ±2.50 62.05 ±0.04 62.41 ±0.11 61.21 ±0.89 63.16 ±0.24 62.56 ±0.10 62.73 ±0.53

CosQA 50.06 ±0.51 60.28 ±0.40 60.01 ±0.02 61.25 ±0.90 60.65 ±0.55 62.78 ±0.07 61.37 ±0.35

SciTail 85.30 ±2.44 94.32 ±0.11 93.90 ±0.16 94.53 ±0.43 94.04 ±0.23 94.79 ±0.17 94.07 ±0.39

Argument 70.61 ±0.59 76.87 ±0.32 77.65 ±0.34 75.70 ±0.60 77.65 ±0.21 76.08 ±0.27 77.44 ±0.62

CSQA 41.09 ±0.27 58.88 ±0.40 58.91 ±0.57 53.30 ±2.19 59.73 ±0.54 56.73 ±0.14 60.05 ±0.36

BoolQ 63.07 ±1.27 74.84 ±0.24 75.66 ±1.25 78.76 ±0.76 76.25 ±0.19 79.18 ±0.45 76.02 ±1.13

MRPC 71.91 ±0.13 85.14 ±0.45 85.16 ±0.52 81.86 ±0.99 90.29 ±0.84 84.68 ±0.32 86.66 ±0.81

SICK 76.30 ±0.71 87.30 ±0.42 86.20 ±0.00 88.61 ±1.06 87.28 ±0.99 90.43 ±0.30 86.12 ±0.54

RTE 61.37 ±1.17 65.41 ±0.90 71.04 ±1.62 77.61 ±3.21 76.82 ±1.68 79.96 ±0.76 69.67 ±1.96

CB 68.93 ±4.82 82.49 ±2.33 86.07 ±3.87 89.09 ±1.15 92.14 ±0.97 89.81 ±0.99 87.50 ±4.72

Mean 64.17 75.51 76.05 75.80 77.33 77.06 76.32

Table 1: Mean and standard deviation results (development sets) for each of the 16 datasets and the different

architectural setups. The datasets are ordered by their respective training dataset size. Dashed horizontal lines

separate datasizes {> 40k,> 10k,> 5k}, respectively. Each model is initialized with BERT-base (Devlin et al.,

2019) weights. Head indicates training only a classification head on top of fixed BERT weights. For Full training

we fine-tune all weights of BERT. Single-Task Adapters (ST-A) is the training of independently trained adapters

for each task, using the architecture illustrated in Figure 5. Multi-Task Adapters (MT-A) shows results of jointly

trained adapters using the default settings of Stickland and Murray (2019). Fusion w/ ST-A and Fusion w/ MT-A

show the results of AdapterFusion using the respective pre-trained Adapters. ST-AHoulsby shows the results of

ST-Adapters with the architecture proposed by Houlsby et al. (2019). Reported results are accuracy scores.

5.1 Adapters

Training only a prediction-head on the output of a

pretrained model can also be considered an adapter.

This procedure, commonly referred to as training

only the Head, performs considerably worse than

fine-tuning all weights (Howard and Ruder, 2018;

Peters et al., 2019). We show that the performance

of only fine-tuning the Head compared to Full fine-

tuning causes on average a drop of 10 points in

accuracy. This demonstrates the need for more

complex adaptation approaches.

In Table 1 we show the results for MT-A and

ST-A with a reduction factor 16 (see the appendix

Table 3 for more results) which we find has a good

trade-off between the number of newly introduced

parameters and the task performance. Interest-

ingly, the ST-A have a regularization effect on some

datasets, resulting in better performance on average

for certain tasks, even though a much small propor-

tion of weights is trained. On average, we improve

0.66% by training ST-A instead of the Full model.

For MT-A we find that there are considerable

performance drops of more than 2% for CSQA

and MRPC, despite the heuristic strategies for sam-

pling from the different datasets (Stickland and

Murray, 2019). This indicates that these heuristics

only partially address common problems of multi-

task learning such as catastrophic interference. It

also shows that learning a shared representation

jointly does not guarantee the best results for all

tasks. On average, however, we do see a perfor-

mance increase of 0.4% using MT-A over Full fine-

tuning on each task separately, which demonstrates

that there are advantages in leveraging information

from other tasks with multi-task learning.

5.2 AdapterFusion

AdapterFusion aims to improve performance on a

given target task m by transferring task specific

knowledge from the set of all N task adapters,

where m ∈ {1, . . . , N}. We hypothesize that if

there exists at least one task that supports the target

task, AdapterFusion should lead to performance

gains. If no such task exists, then the performance

should remain the same.

Dependence on the size of training data. In Ta-

ble 1 we notice that having access to relevant tasks

considerably improves the performance for the tar-

get task when using AdapterFusion. While datasets

with more than 40k training instances perform well

without Fusion, smaller datasets with fewer train-

ing instances benefit more from our approach. We
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Figure 3: Relative performance difference of the two adapter architectures and the AdapterFusion models over

fully fine-tuned BERT. Fusion improves over its corresponding adapters (ST-A and MT-A) for most tasks.
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IMDB րր րր ցց →→
HellaSwag →→ րր ցց րր
SocialIQA րր րր →→ րր
CosmosQA րր ցց րր րր
SciTail →→ րր րր →→
Argument →→ րր ցց րր
CSQA րր րր ցց րր
BoolQ րր ցց րր րր
MRPC րր րր ցց րր
SICK րր ցց րր րր
RTE րր ցց րր րր
CB րր րր րր րր

Improved 10/16 11/16 7/16 14/16

Table 2: Performance changes of AdapterFusion com-

pared to ST-A and MT-A. Arrows indicate whether

there has been an improvement րր (> 0.3), decrease

ցց (< −0.3), or whether the results have stayed the

same→→ [−0.3, 0.3].

observe particularly large performance gains for

datasets with less than 5k training instances. For

example, Fusion with ST-A achieves substantial

improvements of 6.5 % for RTE and 5.64 % for

MRPC. In addition, we also see performance gains

for moderately sized datasets such as the common-

sense tasks CosmosQA and CSQA. Fusion with MT-

A achieves smaller improvements, as the model al-

ready includes a shared set of parameters. However,

we do see performance gains for SICK, SocialIQA,

Winogrande and MRPC. On average, we observe

improvements of 1.27% and 1.25% when using

Fusion with ST-A and MT-A, respectively.

Mitigating catastrophic interference. In order

to identify whether our approach is able to mit-

igate problems faced by multi-task learning, we

present the performance differences of adapters and

AdapterFusion compared to the fully fine-tuned

model in Figure 3. In Table 2, we compare Adapter-

Fusion to ST-A and MT-A. The arrows indicate

whether there is an improvementրր, decreaseցց,

or if the the results remain the same→→. We com-

pare the performance of both, Fusion with ST-A

and Fusion with MT-A, to ST-A and MT-A. We

summarize our four most important findings below.

(1) In the case of Fusion with ST-A, for 15/16
tasks, the performance remains the same or im-

proves as compared to the task’s pretrained adapter.

For 10/16 tasks we see performance gains. This

shows that having access to adapters from other

tasks is beneficial and in the majority of cases leads

to better results on the target task. (2) We find

that for 11/16 tasks, Fusion with ST-A improves

the performance compared to MT-A. This demon-

strates the ability of Fusion with ST-A to share

information between tasks while avoiding the in-

terference that multi-task training suffers from. (3)

For only 7/16 tasks, we see an improvement of Fu-

sion with MT-A over the ST-A. Training of MT-A

in the first stage of our algorithm suffers from all

the problems of multi-task learning and results in

less effective adapters than our ST-A on average.

Fusion helps bridge some of this gap but is not able

to mitigate the entire performance drop. (4) In the

case of AdapterFusion with MT-A, we see that the

performances on all 16 tasks improves or stays the

same. This demonstrates that AdapterFusion can

successfully combine the specific adapter weights,

even if the adapters were trained in a multi-task

setting, confirming that our method is versatile.

Summary. Our findings demonstrate that Fusion

with ST-A is the most promising approach to shar-

ing information across tasks. Our approach allows

us to train adapters in parallel and it requires no

heuristic sampling strategies to deal with imbal-

anced datasets. It also allows researchers to easily

add more tasks as they become available, without

requiring complete model retraining.

While Fusion with MT-A does provide gains

over simply using MT-A, the effort required to train
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Figure 4: AdapterFusion activations of pretrained ST-Adapters. Rows indicate the target task m, columns indicate

adapters n. We assume that the softmax activation for Φn,l is high if the information of adapter n is useful for

task m. For our analysis, we calculate the softmax activation for each adapter Φn,l, where n ∈ {1, . . . , N}, and

average over all activations within the same layer l calculated over all instances in the development set.

these in a multi-task setting followed by the Fusion

step are not warranted by the limited gains in per-

formance. On the other hand, we find that Fusion

with ST-A is an efficient and versatile approach to

transfer learning.

6 Analysis of Fusion Activation

We analyze the weighting patterns that are learned

by AdapterFusion to better understand which tasks

impact the model predictions, and whether there

exist differences across BERT layers.

We plot the results for layers 1, 7, 9, and 12 and

ST-A in Figure 4 (see Appendix Figure 6 for the

remaining layers). We find that tasks which do not

benefit from AdapterFusion tend to more strongly

activate their own adapter at every layer (e.g. Argu-

ment, HellaSwag, MNLI, QQP, SciTail). This con-

firms that AdapterFusion only extracts information

from adapters if they are beneficial for the target

task m. We further find that MNLI is a useful inter-

mediate task that benefits a large number of target

tasks, e.g. BoolQ, SICK, CSQA, SST-2, CB, MRPC,

RTE, which is in line with previous work (Phang

et al., 2018; Conneau and Kiela, 2018; Reimers

and Gurevych, 2019). Similarly, QQP is utilized

by a large number of tasks, e.g. SICK, IMDB, RTE,

CB, MRPC, SST-2. Most importantly, tasks with

small datasets such as CB, RTE, and MRPC often

strongly rely on adapters trained on large datasets

such as MNLI and QQP.

Interestingly, we find that the activations in layer

12 are considerably more distributed across multi-

ple tasks than adapters in earlier layers. The poten-

tial reason for this is that the last adapters are not

encapsulated between frozen pretrained layers, and

can thus be considered as an extension of the pre-

diction head. The representations of the adapters

in the 12th layer might thus not be as comparable,

resulting in more distributed activations. This is

in line with Pfeiffer et al. (2020d) who are able to

improve zero-shot cross-lingual performance con-

siderably by dropping the adapters in the last layer.

7 Contemporary Work

In contemporaneous work, other approaches for

parameter efficient fine-tuning have been proposed.

Guo et al. (2020) train sparse “diff” vectors which

are applied on top of pretrained frozen parameter

vectors. Ravfogel and Goldberg (2021) only fine-

tune bias terms of the pretrained language mod-

els, achieving similar results as full model fine-

tuning. Li and Liang (2021) propose prefix-tuning

for natural language generation tasks. Here, con-

tinuous task-specific vectors are trained while the

remaining model is kept frozen. These alternative,

parameter-efficient fine-tuning strategies all encap-

sulate the idiosyncratic task-specific information

in designated parameters, creating the potential for

new composition approaches of multiple tasks.

Rücklé et al. (2020a) analyse the training and

inference efficiency of adapters and AdapterFu-

sion. For AdapterFusion, they find that adding

more tasks to the set of adapters results in a linear

increase of computational cost, both for training

and inference. They further propose approaches to

mitigate this overhead.

8 Conclusion and Outlook

8.1 Conclusion

We propose a novel approach to transfer learning

called AdapterFusion which provides a simple and

effective way to combine information from several
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tasks. By separating the extraction of knowledge

from its composition, we are able to effectively

avoid the common pitfalls of multi-task learning,

such as catastrophic forgetting and interference be-

tween tasks. Further, AdapterFusion mitigates the

problem of traditional multi-task learning in which

complete re-training is required, when new tasks

are added to the pool of datasets.

We have shown that AdapterFusion is compati-

ble with adapters trained in both single-task as well

as multi-task setups. AdapterFusion consistently

outperforms fully fine-tuned models on the target

task, demonstrating the value in having access to

information from other tasks. While we observe

gains using both ST-A as well as MT-A, we find

that composing ST-A using AdapterFusion is the

more efficient strategy, as adapters can be trained

in parallel and re-used.

Finally, we analyze the weighting patterns of in-

dividual adapters in AdapterFusion which reveal

that tasks with small datasets more often rely on

information from tasks with large datasets, thereby

achieving the largest performance gains in our ex-

periments. We show that AdapterFusion is able

to identify and select adapters that contain knowl-

edge relevant to task of interest, while ignoring the

remaining ones. This provides an implicit no-op

option and makes AdapterFusion a suitable and

versatile transfer learning approach for any NLU

setting.

8.2 Outlook

Rücklé et al. (2020a) have studied pruning a large

portion of adapters after Fusion training. Their re-

sults show that removing the less activated adapters

results in almost no performance drop at inference

time while considerably improving the inference

speed. They also provide some initial evidence that

it is possible to train Fusion with a subset of the

available adapters in each minibatch, potentially

enabling us to scale our approach to large adapter

sets — which would otherwise be computationally

infeasible. We believe that such extensions are a

promising direction for future work.

Pfeiffer et al. (2020d) have achieved consider-

able improvements in the zero-shot cross-lingual

transfer performance by dropping the adapters in

the last layer. In preliminary results, we have ob-

served similar trends with AdapterFusion when the

adapters in the last layer are not used. We will

investigate this further in future work.
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A Appendices

A.1 Datasets

Commonsense Reasoning We work with a large

number of datasets, all of which have emerged re-

cently in this domain, ranging from sentence level

and document level classification to multiple choice

questions. The next sentence prediction task Hel-

laSWAG (Zellers et al., 2019) is a more difficult

version of the previously released SWAG dataset

(Zellers et al., 2018). Winogrande (Sakaguchi et al.,

2020) is a large scale and adversarially filtered

(Zellers et al., 2018) adaptation of the Winograd

Schema Challenge (Levesque, 2011). Cosmos QA

(Huang et al., 2019) is a commonsense reading

comprehension dataset which requires reasoning

over larger text passages. Social IQA (Sap et al.,

2019) is a multiple choice dataset which requires

reasoning over social interactions between humans.

Commonsense QA (Talmor et al., 2019) is a mul-

tiple choice dataset based on ConceptNet (Speer

et al., 2017), which requires reasoning over general

knowledge.

Sentiment Analysis We conduct experiments on

two binary sentiment classification tasks on long

and short text passages. IMDb (Maas et al., 2011)

consists of long movie reviews and SST-2 (Socher

et al., 2013) consists of short movie reviews from

Rotten Tomatoes6.

Natural Language Inference (NLI) The goal is

to classify whether two sentences entail, contradict,

or are neutral to each other. For this we conduct

experiments on MultiNLI (Williams et al., 2018),

a multi-genre dataset, SciTail (Khot et al., 2018)

a NLI dataset on scientific text, SICK (Marelli

et al., 2014) a NLI dataset with relatedness scores,

the composition of Recognizing Textual Entailment

(RTE) datasets provided by Wang, Singh, Michael,

Hill, Levy, and Bowman (2018), as well as the

Commitment Bank (CB) (De Marneffe et al., 2019)

three-class textual entailment dataset.

Sentence Relatedness We include two semantic

relatedness datasets which capture whether or not

two text samples include similar content. Microsoft

Research Paraphrase Corpus (MRPC) (Dolan and

Brockett, 2005) consists of sentence pairs which

capture a paraphrase/semantic equivalence relation-

ship. Quora Question Pairs (QQP) targets dupli-

cate question detection.7

Misc The Argument Aspect corpus (Stab et al.,

2018) is a three-way classification task to pre-

dict whether a document provides arguments for,

against or none for a given topic (Nuclear Energy,

Abortion, Gun-Control, etc). BoolQ (Clark et al.,

2019) is a binary reading comprehension classifica-

tion task for simple yes, no questions.

A.2 What Is The Best Adapter Setup?

As described in §2.2.3, the placement of adapter pa-

rameters Φ within a pretrained model is non-trivial,

and thus requires extensive experiments. In order

to identify the best ST-A setting, we run an exhaus-

tive architecture search on the hyperparameters —

including the position and number of adapters in

each transformer layer, the position and number

of pretrained or task dependent layer norms, the

position of residual connections, the bottleneck re-

duction factors {2, 8, 16, 64}, and the non linear-

ity {ReLU, LeakyReLU, Swish} used within the

adapter. We illustrate this in Figure 5. This grid

search includes the settings introduced by Houlsby

et al. (2019) and Bapna and Firat (2019). We per-

form this search on three diverse tasks8 and find

6www.rottentomatoes.com
7data.quora.com/First-Quora-DatasetReleaseQuestion-

Pairs
8SST-2, Commonsense QA, and Argument.
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Figure 5: Different architectural components of the

adapter. On the left, we show all components for which

we conduct an exhaustive search (dashed lines). On the

right, we show the adapter architecture that performs

the best across all our tasks.

that across all three tasks, the same setup obtains

best results. We present our results on the SST-

2, Argument, and CSQA datasets in Figures 7, 8,

and 9 respectively, at different granularity levels.

We find that in contrast to Houlsby et al. (2019),

but in line with Bapna and Firat (2019), a single

adapter after the feed-forward layer outperforms

other settings. While we find that this setting per-

forms on-par with that of Houlsby et al. (2019), it

requires only half the number of newly introduced

adapters as compared to them, resulting in a more

efficient setting in terms of number of operations.

For the single-task adapter setting, we thus per-

form all subsequent experiments with the best ar-

chitecture illustrated in Figure 5 on the right and a

learning rate of 1e − 4. In order to reproduce the

multi-task results in Stickland and Murray (2019)

and build upon them, for experiments involving

multi-task training, we adopt their architecture as

described in §2.2.3.

A.3 AdapterFusion Activations of all Layers

We present the cross-product of activations of

AdapterFusion of all layers for BERT-Base and

ST-A16 in Figure 6, as an extension to Figure 4.

A.4 BERT-base ST-A with Reduction Factors

{2, 16, 64}

We present the ST-A results with different capacity

leveraging BERT-base weights in Table 3. Reduc-

tion factors 2, 16, and 64 amount to dense adapter

dimensions 384, 48, and 12 respectively.

A.5 ST-A and Fusion with ST-A Results with

RoBERTa-base

In order to validate our findings of our best

setup—ST-A—we re-evaluate our results leverag-

ing RoBERTa-base weights. We present our re-

sults in Table 4. Similar to our findigs with BERT-

base, especially datasets with less data profit from

AdapterFusion. We find that, in contrast to BERT-

base, RoBERTa-base does not perform well with

high capacity adapters with reduction factor 2.
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Figure 6: AdapterFusion activations in the 12 BERT-base layers. Target tasks are presented in rows, whereas the

set of adapters are displayed in columns. Black squares indicate that an adapter has not been activated, whereas

white cells indicate full activation.
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Figure 7: Results of the grid search on the SST-2 dataset over the architecture settings illustrated on the left of

Figure 5. As we go from (a) to (c), the best performing setting is used for further search over other hyperparameters.

We find that the best performing architecture is Top Adapter Only with Pretrained LayerNorm Before & After

including No New LayerNorm. This Architecture is illustrated on the right of Figure 5.
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Figure 8: Results of the grid search on the Argument dataset over the architecture settings illustrated on the left of

Figure 5. As we go from (a) to (c), the best performing setting is used for further search over other hyperparameters.

We find that the best performing architecture is Top Adapter Only with Pretrained LayerNorm Before & After

including No New LayerNorm. This Architecture is illustrated on the right of Figure 5.
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Figure 9: Results of the grid search on the CSQA dataset over the architecture settings illustrated on the left of

Figure 5. As we go from (a) to (c), the best performing setting is used for further search over other hyperparameters.

We find that the best performing architecture is Top Adapter Only with Pretrained LayerNorm Before & After

including No New LayerNorm. This Architecture is illustrated on the right of Figure 5.
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Dataset ST-A2 ST-A16 ST-A64

MultiNLI 84.60 84.32 84.08
QQP 90.57 90.59 89.73
SST 92.66 ±0.32 91.85 ±0.41 92.01 ±0.33

Winogrande 62.11 ±0.09 61.09 ±0.11 59.70 ±0.06

IMDB 94.20 ±0.28 93.85 ±0.07 93.90 ±0.14

HellaSwag 39.45 ±0.20 38.11 ±0.14 38.28 ±0.37

SocialIQA 60.95 ±0.15 62.41 ±0.11 62.23 ±0.73

CosmosQA 59.32 ±0.24 60.01 ±0.02 60.65 ±0.34

SciTail 94.44 ±0.81 93.90 ±0.16 93.82 ±0.49

Argument 76.83 ±0.21 77.65 ±0.34 77.64 ±0.56

CSQA 57.83 ±0.23 58.91 ±0.57 58.88 ±0.40

BoolQ 77.14 ±1.10 75.66 ±1.25 76.07 ±0.54

MRPC 86.13 ±1.59 85.16 ±0.52 85.58 ±0.32

SICK 87.50 ±0.14 86.20 ±0.00 85.70 ±0.42

RTE 70.68 ±4.57 71.04 ±1.62 69.16 ±1.59

CB 87.85 ±2.94 86.07 ±3.87 84.28 ±4.79

Mean 76.39 76.05 75.73

Table 3: Mean and standard deviation results (development sets) for each of the 16 datasets and reduction factors

{2, 16, 64} for ST-A. Each model is initialized with BERT-base (Devlin et al., 2019) weights. The datasets are

ordered by their respective training dataset size. Dashed horizontal lines separates datasizes {> 40k,> 10k,> 5k}
respectively.

Dataset Head Full ST-A2 ST-A16 ST-A64 F. w/ ST-A16 ST-A
Houlsby
16

MultiNLI 56.84 86.42 85.56 86.06 85.86 86.20 86.57
QQP 71.40 91.07 90.88 ±0.07 90.27 89.39 ±0.63 90.28 90.66
SST 81.86 ±0.21 94.29 ±0.22 93.71 ±0.29 93.80 ±0.23 93.35 ±0.43 93.67 ±0.13 94.17 ±0.15

Winogrande 51.93 66.77 51.27 ±0.78 65.58 ±0.53 62.43 66.01 ±0.47 63.46 ±6.38

IMDB 85.40 96.00 95.70 95.78 ±0.13 95.80 95.78 ±0.19 95.68 ±0.26

HellaSwag 41.16 63.53 61.09 ±0.08 61.57 ±0.14 61.18 ±0.21 61.52 ±0.07 61.21 ±0.37

SocialIQA 46.87 69.44 69.24 70.14 ±0.40 70.21 70.13 ±0.11 70.78 ±0.17

CosmosQA 41.88 ±0.29 68.52 ±0.49 68.01 ±0.94 68.76 ±0.53 68.62 ±0.55 68.64 ±0.04 69.18 ±0.34

SciTail 49.57 94.47 94.24 94.59 ±0.64 94.32 94.44 ±0.09 94.09 ±0.39

Argument 66.22 ±0.62 78.04 ±0.42 78.60 ±0.34 78.50 ±0.45 78.53 ±0.59 77.98 ±0.24 78.42 ±0.44

CSQA 41.37 ±0.34 65.81 ±0.59 66.11 ±0.60 66.30 ±0.38 64.03 ±0.27 66.52 ±0.18 67.53 ±0.70

BoolQ 62.17 81.89 80.86 ±0.86 80.83 ±0.27 80.17 ±0.25 80.86 ±0.15 81.11 ±0.54

MRPC 68.38 ±0.00 89.11 ±0.93 89.11 ±0.51 88.72 ±0.71 87.10 ±1.67 89.65 ±0.50 89.17 ±1.06

SICK 56.40 86.60 84.80 85.40 ±0.32 85.40 85.76 ±0.26 85.88 ±0.46

RTE 55.81 ±2.92 72.34 ±11.02 61.80 ±12.47 75.30 ±0.61 73.86 ±1.55 78.79 ±1.12 78.56 ±1.54

CB 59.64 ±11.05 90.00 ±1.60 87.14 ±6.85 89.28 ±2.82 81.07 ±4.82 92.86 ±3.79 89.64 ±3.87

Mean 58.05 81.08 78.63 80.83 79.52 81.41 81.18

Table 4: Mean and standard deviation results of models initialized with RoBERTa-base (Liu et al., 2019b) weights.

Performances are measured on the development sets of the 16 datasets for the different architectural setups.

The datasets are ordered by their respective training dataset size. Dashed horizontal lines separate datasizes

{> 40k,> 10k,> 5k} respectively. Head indicates training only a classification head on top of fixed RoBERTa

weights. For Full training we fine-tune all weights of RoBERTa. Single-Task adapters (ST-A) is the training of

independently trained adapters for each task, using the architecture illustrated in Figure 5, indices {2, 16, 64}
indicate the reduction factor. Fusion w/ ST-A show the results of AdapterFusion using the respective pretrained

adapters. ST-A
Houlsby
16

shows the results of ST-A with with architecture proposed by Houlsby et al. (2019).


