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Abstract

The development of a heuristic to solve an optimisation problem in

a new domain, or a specific variation of an existing problem domain, is

often beyond the means of many smaller businesses. This is largely due

to the task normally needing to be assigned to a human expert, and such

experts tend to be scarce and expensive. One of the aims of hyper-heuristic

research is to automate all or part of the heuristic development process

and thereby bring the generation of new heuristics within the means of

more organisations. A second aim of hyper-heuristic research is to ensure

that the process by which a domain specific heuristic is developed is itself

independent of the problem domain. This enables a hyper-heuristic to

exist and operate above the combinatorial optimisation problem “domain

barrier” and generalise across different problem domains.

A common issue with heuristic development is that a heuristic is of-

ten designed or evolved using small size problem instances and then as-

sumed to perform well on larger problem instances. The goal of this the-

sis is to extend current hyper-heuristic research towards answering the

question: How can a hyper-heuristic efficiently and effectively adapt the

selection, generation and manipulation of domain specific heuristics as

you move from small size and/or narrow domain problems to larger size

and/or wider domain problems? In other words, how can different hyper-

heuristics respond to scalability issues?

Each hyper-heuristic has its own strengths and weaknesses. In the

context of hyper-heuristic research, this thesis contributes towards under-

standing scalability issues by firstly developing a compact and effective

heuristic that can be applied to other problem instances of differing sizes in



a compatible problem domain. We construct a hyper-heuristic for the Ca-

pacitated Vehicle Routing Problem domain to establish whether a heuris-

tic for a specific problem domain can be developed which is compact and

easy to interpret. The results show that generation of a simple but effective

heuristic is possible.

Secondly we develop two different types of hyper-heuristic and com-

pare their performance across different combinatorial optimisation prob-

lem domains. We construct and compare simplified versions of two ex-

isting hyper-heuristics (adaptive and grammar-based), and analyse how

each handles the trade-off between computation speed and quality of the

solution. The performance of the two hyper-heuristics are tested on seven

different problem domains compatible with the HyFlex (Hyper-heuristic

Flexible) framework. The results indicate that the adaptive hyper-heuristic

is able to deliver solutions of a pre-defined quality in a shorter computa-

tional time than the grammar-based hyper-heuristic.

Thirdly we investigate how the adaptive hyper-heuristic developed in

the second stage of this thesis can respond to problem instances of the

same size, but containing different features and complexity. We investi-

gate how, with minimal knowledge about the problem domain and fea-

tures of the instance being worked on, a hyper-heuristic can modify its

processes to respond to problem instances containing different features

and problem domains of different complexity. In this stage we allow the

adaptive hyper-heuristic to select alternative vectors for the selection of

problem domain operators, and acceptance criteria used to determine whether

solutions should be retained or discarded. We identify a consistent differ-

ence between the best performing pairings of selection vector and accep-

tance criteria, and those pairings which perform poorly.

This thesis shows that hyper-heuristics can respond to scalability is-

sues, although not all do so with equal ease. The flexibility of an adaptive

hyper-heuristic enables it to perform faster than the more rigid grammar-

based hyper-heuristic, but at the expense of losing a reusable heuristic.
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Chapter 1

Introduction

Determining how to solve an optimisation problem in a new domain, or a

specific variation of an existing problem domain, is a task normally as-

signed to a human expert. In the commercial world, such experts are

in short supply and the cost of hiring one is beyond the means of many

smaller businesses. Consequently the search for better means of solving

new optimisation problem domains rarely moves beyond the boundaries

of large corporate organisations and academia. Smaller organisations are

often left to satisfy their needs using established rule-of-thumb (heuristic)

methods and off-the-shelf solvers such as those supplied within standard

spreadsheet software packages (e.g. Microsoft Excel).

When given the task of solving an optimisation problem in a new do-

main, a human expert will often draw on his or her experience and look

for similarities between the new problem domain and an existing problem

domain capable of being solved with an established algorithm or heuris-

tic. If a comparable existing problem domain can be identified, then the

first attempt at solving the problem in the new domain is often to modify

an established algorithm or heuristic to accommodate the different aspects

of the new problem domain. Alternatively, the new problem definition is

relaxed to match an existing problem domain, which can be solved and

the solution repaired to satisfy the aspects of the new problem domain.

1



2 CHAPTER 1. INTRODUCTION

This process can be time consuming and result in a complex set of oper-

ators that are specific to the problem domain. Any modification to the

problem definition may require the whole process to be repeated from the

beginning.

Traditional methods of solving combinatorial optimisation problems

use algorithms and heuristics, such as a branch-and-bound algorithm [29]

or meta-heuristic search, e.g., tabu search [34]. In general, these meth-

ods achieve good results but often require detailed domain information

and can be complex and time consuming to design and execute. A hyper-

heuristic is useful where a more general (domain independent) method is

required. A common problem when applying heuristics to an optimisa-

tion problem is that they often perform well on some problem instances,

but poorly on others. Helping to identify which heuristic to apply to a

particular problem instance is one of the objectives of hyper-heuristic re-

search. The hyper-heuristic requires only outline knowledge of the prob-

lem domain and is particularly useful when dealing with specific varia-

tions to common optimisation problems.

1.1 Hyper-heuristics

The term hyper-heuristic was defined by Cowling et al. [22] as “heuris-

tics to choose heuristics”. Ochoa et al. [71] note that the focus in hyper-

heuristic research is to adaptively find a solution method rather than pro-

ducing a solution for the particular problem instance at hand. They repeat

the observation by Ross [76] that the difference between hyper-heuristics

and (meta-)heuristics is that it is the search space of heuristics, rather

than the search space of problem solutions, that is traversed. Burke et

al. [14] classify hyper-heuristics into two broad categories, those which se-

lect heuristics and those which generate new heuristics by recombining the

component operators of one or more existing heuristic(s) (see Figure 1.1).

Both categories offer a means to automate the development of heuristics
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Figure 1.1: The conceptual relationship between a hyper-heuristic, heuris-

tic and operators

to solve problem instances in new problem domains or variations of exist-

ing problem domains. Several cross-domain hyper-heuristics have been

successfully designed, including those developed by Misir et al. [64] and

Sabar et al. [80].

One of the more common hyper-heuristics is Genetic Programming

(GP) [44], which is capable of evolving solutions to complex problems

and can handle mathematical, logical and operational values with equal

ease. By adding a grammar (Grammar Guided Genetic Programming

(GGGP) [58]) it is possible to reduce the likelihood of generating semanti-

cally meaningless output.

A hyper-heuristic should be suitable for use on any combinatorial op-

timisation problem domain. To ensure the required level of domain inde-

pendence is preserved, we focus the main work in this thesis on hyper-

heuristics which comply with the HyFlex [70] (Hyper-heuristic Flexible)

framework specifications. For detailed analysis we use a Vehicle Routing

Problem (VRP) domain. The VRP was introduced in 1959 by Dantzig and

Ramser [24] and has wide application in transportation and logistics.
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1.2 Motivation and Research Questions

The motivation for this research is to reduce the need for scarce, and often

expensive, human experts who are currently required when selecting or

generating heuristic methods for new, larger or more complex combinato-

rial optimisation problems. There are potential benefits to industry if an

efficient and effective method of solving specific variations to common op-

timisation problem domains can be automatically evolved in a reasonable

development and implementation time and cost.

A common issue with heuristic development is that a heuristic is of-

ten designed or evolved using small size problem instances and then as-

sumed to perform well on larger problem instances. The goal of this the-

sis is to extend current hyper-heuristic research towards answering the

question: How can a hyper-heuristic efficiently and effectively adapt the

selection, generation and manipulation of domain specific heuristics as

you move from small size and/or narrow domain problems to larger size

and/or wider domain problems? In other words, how can different hyper-

heuristics respond to scalability issues?

A problem instance or domain presents scalability issues when the

combination of computational time limit, instance size and/or domain

complexity requires a hyper-heuristic to alter its default strategy for se-

lecting, generating and manipulating the low-level operators or heuris-

tics in order to deliver a solution within the specified computational time

limit. Ultimately the effectiveness of a hyper-heuristic is constrained by

the computational time limit and the quality of the unseen low-level oper-

ators and heuristics for it to manage. Performance of the hyper-heuristic

should therefore be gauged by the degree to which the hyper-heuristic

makes effective use of the available computational time rather than the

solution the domain specific heuristics and operators deliver.

A hyper-heuristic is provided with only limited knowledge of the prob-

lem domain. If this were not the case, then the hyper-heuristic would be
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similar to a meta-heuristic and become customised for the specific problem

domain. The limited domain knowledge may be restricted to the quantity

and broad category of the low-level operators, without any data structure

level detail of what action each operator performs or how. Some existing

hyper-heuristic frameworks, such as HyFlex (Hyper-heuristic Flexible) [70]

only allow the hyper-heuristic to extract minimal runtime performance

data about each operator and heuristic, requiring the hyper-heuristic to

make decisions based on incomplete information.

1.3 Research Approach

We break our investigation into scalability into three stages and develop or

adapt suitable hyper-heuristics for each stage. The hyper-heuristics we de-

velop for the second and third stages of this thesis comply with the more

restrictive HyFlex framework [70] which provides a clearer definition of

the information which may flow across the domain barrier between the

hyper-heuristic and the low-level problem domain. HyFlex [70] was de-

veloped for the first Cross-domain Heuristic Search Challenge (CHeSC)

[69] in 2011. The goals of each stage and the hyper-heuristics we develop

are:

1. To develop and use a hyper-heuristic to generate a “compact” heuris-

tic capable of delivering “good” solutions to a range of Capacitated

Vehicle Routing Problem (CVRP) instances of different sizes. To achieve

this we develop a grammar-based hyper-heuristic using Grammati-

cal Evolution (GE) [78], to generate heuristics for the CVRP domain.

This stage is described in Chapter 4.

2. To develop and compare the relative performance, on seven com-

binatorial optimisation problem domains, of simplified versions of

two existing hyper-heuristics. The two hyper-heuristics use very dif-

ferent approaches. One generates new heuristics using a training
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set of instances for off-line learning, while the other selects opera-

tors (heuristics) using an on-line learning approach. This stage is

described in Chapter 5. The two hyper-heuristics used are:

(a) A grammar-based hyper-heuristic using a generic Grammar Guided

Genetic Programming (GGGP) method [57]. This is a simplified

version of the hyper-heuristic developed by Sabar et al. [80].

(b) A simplified version of the adaptive hyper-heuristic designed

by Misir et al. [64] which won the first CHeSC [69] in 2011.

This hyper-heuristic uses a single operator selection vector and

a new solution is only accepted if its objective value is at least

as good as the solution it will replace.

3. To investigate the impact that different features of a problem instance

have on the effectiveness of a hyper-heuristic (i.e. scalability). We ex-

tend the options available to the adaptive hyper-heuristic described

above by increasing the number of operator selection vectors and so-

lution acceptance criteria available to it. This final stage is described

in Chapter 6.

Although the hyper-heuristics we implement in the second and third

stages are capable of generating solutions in any HyFlex [70] compatible

problem domain, we use a Vehicle Routing Problem (VRP) domain and in-

stances for detailed testing and analysis before demonstrating the domain

independence of the hyper-heuristic on other domains. The VRP has wide

ranging application in the transport and logistics industry. Generating a

good solution, and possibly several alternatives, to a VRP instance can

have significant operational and cost benefits to the industry.

The Capacitated Vehicle Routing Problem (CVRP) [24, 87] contains a

single depot holding a fleet of identical vehicles. A set of customers, each

at a known location and with a known demand, are to be serviced. The

objective is to service all customers while travelling the shortest possible
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total distance. Each customer must be serviced only once (split deliveries

across multiple routes are not permitted), and the capacity of each vehicle

must not be exceeded at any time. This type of problem is relatively easy to

understand, but is nevertheless a NP-hard [46] combinatorial optimisation

problem.

1.4 Contributions

In the context of hyper-heuristic research, this thesis contributes towards

understanding scalability issues in three stages:

1. To develop a compact and effective heuristic that can be applied to

other problem instances of differing sizes in a compatible problem

domain. This will demonstrate whether a single heuristic can han-

dle scalability issues, or whether different heuristics are required for

different sized problems. This stage is detailed in Chapter 4 and

summarised in the following articles which have been published, or

accepted for publication:

(a) “Hyper-heuristics, Grammatical Evolution and the Capacitated

Vehicle Routing Problem” [55]. This paper was accepted as a

poster for the Genetic and Evolutionary Computation Confer-

ence (GECCO) in 2014.

(b) “Developing a Hyper-heuristic using Grammatical Evolution

and the Capacitated Vehicle Routing Problem” [54]. This pa-

per was accepted for publication in the proceedings of the 10th

Simulated Evolution and Learning (SEAL) conference in 2014.

2. To compare the performance of two different types of hyper-heuristic

across seven different combinatorial optimisation problem domains:

(a) A grammar-based hyper-heuristic which generates a new reusable

heuristic from the component parts (operators) of other heuris-
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tics. This hyper-heuristic extends the outcomes from the first

stage of this thesis.

(b) An adaptive hyper-heuristic which dynamically selects oper-

ators from a set of candidates, and develops (on-line) a cus-

tomised heuristic for an unseen problem instance. The hyper-

heuristic is provided with only minimal detail about the opera-

tors within the problem domain.

This will establish whether some types of hyper-heuristic respond to

scalability issues better or worse than other types of hyper-heuristic.

This stage is detailed in Chapter 5 and summarised in the paper “A

Comparison between Two Evolutionary Hyper-heuristics for Com-

binatorial Optimisation” [53]. This paper was accepted for publica-

tion in the proceedings of the 10th Simulated Evolution and Learning

(SEAL) conference in 2014.

3. To investigate how the adaptive hyper-heuristic developed in the

second stage of this thesis can respond, with different computational

budgets, to problem instances of the same size, but containing dif-

ferent features and complexity. During this stage we identify which

of 48 possible pairings of the key components used by the adap-

tive hyper-heuristic perform well, and which perform poorly. This

stage is detailed in Chapter 6 and summarised in the paper “Hyper-

heuristic Operator Selection and Acceptance Criteria”. This paper

has been submitted to the 15th European Conference on Evolution-

ary Computation in Combinatorial Optimisation (EvoCOP, 2015).

In this thesis we provide a review of relevant literature in Chapter 2 fol-

lowed by an illustration of how we develop a hyper-heursitic and CVRP

problem domain containing a set of relevant operators (heurisitic compo-

nents) in Chapter 3. Chapters 4, 5 and 6 detail the three stages outlined

above, including the experimental results and performance comparisons.
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This is followed by overall conclusions and recommendations for further

research in Chapter 7.
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Chapter 2

Literature Review

This thesis combines three components: the vehicle routing problem, hyper-

heuristics, and grammar guided genetic programming. This chapter re-

views the literature for each component.

2.1 Combinatorial Optimisation

Many complex everyday problems involve finding an optimal solution in

a large, but finite, solution space. Combinatorial optimisation [18] oper-

ates on the domain of those optimisation problems, in which the set of fea-

sible solutions is discrete, or can be reduced to discrete, and in which the

goal is to find the best solution. Combinatorial optimisation is concerned

with the study of effective algorithms and heuristics for solving such prob-

lems by intelligently exploring the solution space. In many cases, exhaus-

tive search is not feasible for all but the smallest examples. Many such

problems, but not all, are NP-hard [31] problems to solve.

2.1.1 Vehicle Routing Problem

The VRP was introduced in 1959 by Dantzig and Ramser [24], and Lenstra

and Rinnooy Kan [46] showed this to be a NP-hard [31] combinatorial op-

11
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timisation problem. The problem domains that are collectively referred to

as VRP have been well studied and come in many variations. They have

wide ranging application in transportation and logistics.

The aim when solving a VRP is to allocate each customer’s delivery to

a vehicle route such that the solution achieves a minimum cost of servicing

all customers. A VRP includes constraints on the capacity of each vehicle,

and/or the duration or distance a vehicle may travel. Further features may

be added, such as time windows for servicing a particular customer [82],

or allowing multiple depots or interchanges to be considered.

Capacitated Vehicle Routing Problem

One of the simplest variations of VRP is the Capacitated Vehicle Routing

Problem (CVRP) [87]. Informally, the CVRP domain can be expressed in

the following way. A supplier needs to deliver goods to a number of cus-

tomers at different locations. Each customer requires a known quantity

of goods from the supplier which must be delivered in a single load. To

transport the goods, the supplier operates a fleet of identical vehicles. The

customer deliveries must be allocated to vehicles such that (a) each cus-

tomer is visited exactly once, (b) each vehicle’s capacity is never exceeded,

and (c) the aggregate distance travelled by all vehicles is as short as possi-

ble.

In general, a solution for any problem in a VRP domain will consist of

a set of vehicle routes, each starting and ending at the depot and visiting

a particular sequence of customers. A typical solution to a CVRP instance

is given in Table 2.1 and illustrated in Figure 2.1.

Other forms of Vehicle Routing Problem Domains

More complex variations of VRP domains include:

1. Pick-up and delivery [1] where goods may need to be transported in

either direction between the supplier and the customer or between
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Route Customer sequence (and demand) Distance (and Load)

1 1, 7 (4), 2 (11), 3 (7), 6 (21), 8 (8), 10 (5), 1 112 (56)

2 1, 11 (6), 9 (1), 4 (8), 5 (14), 12 (12), 14 (13), 1 102 (54)

3 1, 17 (21), 20 (25), 22 (7), 15 (3), 1 77 (56)

4 1, 13 (13), 16 (9), 19 (9), 21 (18), 18 (10), 1 84 (59)

Total 375 (225)

Table 2.1: Example CVRP solution. Four routes, starting and ending at

the depot (node 1) and visiting selected customers in the sequence shown.

Each customer is visited exactly once. Demand (load) shown in brackets.

Vehicle capacity is 60. The solution is illustrated in Figure 2.1.

one location and another.

2. Time windows for delivery [82, 9] where a customer must be visited

between specified times of the day.

3. Multiple depots and/or satellite facilities [1] where deliveries may orig-

inate from any one of several sources or vehicles replenished mid-

route.

4. Split deliveries [1] where a delivery for a customer may be divided

and delivered by more than one vehicle.

5. Interchanges [1] where deliveries in transit may be transferred from

one vehicle to another at designated locations. This includes multi-

modal transportation problems (e.g. train→ ship→ truck).

6. Non-homogeneous vehicles [1] where the fleet of vehicles have different

capacities and/or capabilities (e.g. refrigerated or bulk liquid trans-

porters).

7. Open vehicle routing [1] where a vehicle ends its route at the last cus-

tomer to be serviced.
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Figure 2.1: Illustration of a 4-route solution to CVRP instance E-n22-k4 [1]

shown in Table 2.1 with a total distance of 375.

8. Capacitated arc routing [60, 59] where the demand is linked to the arcs

between locations rather than the location (customer).

2.1.2 Other Combinatorial Optimisation Domains

The HyFlex [70] framework used in the second and third stages of this the-

sis contain implementations of other combinatorial optimisation problem

domains. These include:

1. Bin packing, where the problem is to assign a set of objects to bins,

each with a fixed capacity, while minimising the number of bins re-

quired [56].

2. Travelling salesman, where a single minimum cost route between
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locations is required [47].

3. Permutation flow shop is a special type of flow shop scheduling

problem in which the processing order of the jobs on the machines

is the same for each subsequent step of processing (i.e., job B cannot

leapfrog ahead of job A later in the sequence if job A was processed

ahead of job B early in the sequence). The problem is to sequence

the jobs to minimise idle and wait times [84].

4. Maximum satisfiability (MAX-SAT), where the problem is to deter-

mine the maximum number of clauses of a given Boolean formula in

conjunctive normal form that can be made true by an assignment of

truth values to the variables of the formula [3].

5. Personnel scheduling, where the problem is to create a roster subject

to various constraints [16, 7].

2.1.3 Algorithms and Heuristics for VRP

Cordeau [19], Gendreau et al. [32], Goel and Gruhn [36] and Shaw [81] de-

scribe a range of heuristics and meta-heuristics for VRP instances. Their

work extends the earlier survey by Laporte [45], who describes six algo-

rithms and four heuristics suitable for solving VRP instances. Solving a

VRP instance involves a trade-off between computation speed and achiev-

ing the best possible solution. Only relatively small CVRP instances are

able to be solved optimally in reasonable computation time (e.g. using

branch-and-bound [29]). Consequently heuristics are used to find the best

solution possible in the computation time available. In this context, a

heuristic is a sequence of operators which develop a solution that is not

necessarily an optimal solution, nor guaranteed to be feasible.

There are three established approaches to generating solutions to a

CVRP.
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Figure 2.2: Operation of Clarke and Wright Savings heuristic merging two

routes into one.

1. Construction heuristics. Solutions are built iteratively by inserting and

recombining customer deliveries until no further additions are pos-

sible. This approach does not attempt to further improve a solution

once built. Typical examples include:

(a) Clarke and Wright Savings (CWS) [17]. This method initially

creates out-and-back routes between the depot and each cus-

tomer. The heuristic combines routes (providing load feasibility

is preserved) in a descending order of cost savings, s (see Figure

2.2). The formula used is:

Max sji = d0i + dj0 − dji

such that 0 is the depot; i is the first, and j the last, customer

serviced on two different existing routes; dij is the distance be-

tween customers i and j.

(b) Matching based heuristic methods [25, 2] which are similar to

CWS but use a different method of calculating the savings value.

(c) Multi-route improvement heuristic methods [85, 43] which swap

or rotate customer deliveries between routes.
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A construction heuristic builds a solution step-by-step by selecting

and inserting a customer delivery into a route. The selection criteria

is typically based on some easy to measure feature of the customer

(e.g. nearest/farthest unallocated customer to the depot, or customer

with the largest demand). Insertion usually entails examining the ex-

isting routes with available capacity and finding the route and place

the customer can be serviced with the smallest incremental distance

to the current (partial) solution.

2. Two-phase. Solutions are developed in two phases in a cluster-first,

route-second (or vice versa) process. With this approach, customers

are grouped based on some criterion and provisionally assigned to a

route constructed from the set of customers in the group. Customers

are moved or exchanged between routes until a terminating condi-

tion is reached. Typical examples include:

(a) Fisher and Jaikumar [30] heuristic which uses a solution to a

generalised assignment problem to form clusters.

(b) The Sweep [33] heuristic which clusters deliveries based on the

polar co-ordinates of the customer relative to the depot.

(c) The Petal Method [79] which is an extension of the Sweep method.

3. Meta-heuristics. Various methods referred to as meta-heuristics have

been developed over the last 40 years. Blum and Roli [8] describe

meta-heuristics as strategies that guide the search process with the

goal to efficiently explore the adjacent and/or wider solution space

in an attempt to find near-optimal solutions. In general, these achieve

good results but require a degree of problem specific information

and are often complex and time consuming to design and execute.

A particularly successful meta-heuristic for solving VRP with time

windows [82] is the variation of the Tabu Search heuristic [34] devel-

oped by Cordeau et al. [20] who add a simple exchange mechanism
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to the search process.

There are a number of variations to Tabu Search [34, 35]. In its ba-

sic form, Tabu Search moves from a trial solution to another trial

solution by identifying and evaluating the best move from a list of

candidate moves. To prevent the search from doubling-back or loop-

ing, a move that would restore a previous trial solution is blocked

(made “tabu”) from being added to the list of candidate moves for a

specified number of iterations.

Iterated Local Search (ILS) [48] iteratively alternates between apply-

ing an operator (a “kick”) which mutates the current solution, and

a local search which attempts to improve the mutated solution. The

ILS iterations continue until a pre-defined stopping condition is reached,

e.g., a time limit. Walker et al. [88] add an adaptive process to a basic

ILS which they call Adaptive Iterated Local Search. Their adaptive

process uses a learning mechanism to select the mutation and local

search operations from a set of candidate operators. The greater the

improvement achieved by the operators in a defined number of pre-

vious iterations, the more likely those operators will be selected at

the start of the next iteration.

Alternative approaches combine the selected features of multiple so-

lutions in an attempt to arrive at a better solution. Such a method is pro-

posed by Nagata and Bräysy [66]. They use a crossover technique they call

edge assembly crossover. They report good results using the technique but

only demonstrate it on problems with unit demands and parent solutions

with the same number of routes.

A general heuristic for a standard CVRP and four variations (with

time-windows, multiple depot, non-homogeneous vehicles, and open rout-

ing (see Section 2.1.1)), is proposed by Pisinger and Ropke [73]. They

firstly reformulate the respective problems into a format they call Rich

Pickup and Delivery Problem with Time Windows. Then an adaptive large
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neighbourhood search [75] is applied in cycles using neighbourhoods de-

fined by the selected combination of ruin and recreate operators. The ruin

and recreate process repeats until no further improvements are found or a

pre-defined time limit is reached.

2.2 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field of artificial intelligence that

borrows ideas from, and is inspired by, natural evolution and adapta-

tion [90]. EC covers a number of techniques based on evolutionary pro-

cesses and natural selection, including Ant Colony Optimisation, Evolu-

tion Strategy, Genetic Algorithms, Genetic Programming, Learning Clas-

sifier Systems, and Particle Swarm Optimisation. This thesis only makes

use of Genetic Programming as described below.

2.2.1 Genetic Programming

Genetic Programming (GP) [44, 74] is a population based technique and an

extension of both Genetic Algorithms (GA) [21] and automatic program-

ming. The aim of GP is to build computer programs that are not expressly

designed and programmed by human beings [52]. Individuals within the

population compete for survival by adapting as best they can to the en-

vironmental conditions. Each individual is assessed and given a fitness

score which determines its relative strength to its peers. This in turn in-

creases or decreases the individual’s chance of survival. Copying natural

selection, crossovers between individuals, mutation and death are part of

the process of adaptation (see Figure 2.3). For each generation, individ-

uals within the previous generation are selected for breeding or, through

elitism, transferred unchanged into the new generation. Breeding selec-

tion is often done by a tournament selection or roulette wheel process,

whereby a predetermined number of individuals are randomly selected,
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weighted by fitness. Crossover and/or mutation is performed on the se-

lected individuals as illustrated in Figure 2.3. The process can be a com-

putationally cheap method that is capable of dealing with many problems,

providing there is a means of determining the individual’s fitness [51]. An

advantage GP has over GA is in its ability to handle individuals of differ-

ent lengths.

2.2.2 Grammar Guided Genetic Programming

Manrique et al. [52] describe Grammar Guided Genetic Programming

(GGGP) [57] as an extension of traditional GP by employing context-free

grammars (CFG) (see the green shaded box in Figure 2.4) to generate pos-

sible solutions to a problem as sentences. GGGP uses the grammar to

provide a formal definition of the syntactic problem constraints and uses

a derivation tree (see Figure 2.5) for each sentence to encode the solutions.

In doing so the likelihood of invalid individuals being generated is re-

duced.

Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary computation technique pi-

oneered by Ryan et al. [78]. A key feature of GE is the separation between

the search engine and the problem. This enables different classes of prob-

lem to be solved using the same search engine, and conversely, an alterna-

tive engine can be employed to create and evolve a ‘genotype’. The linking

element is a grammar relevant to the class of problem, e.g., CVRP, which

is applied through a mapper to the output of the search engine. Defining

a good grammar requires a degree of inspiration and experimentation as

the structure and content of the grammar can influence the quality of the

result, much in the way the grammar of a natural language defines the

richness of that language.

The mapping process is illustrated in Figure 2.4. Each integer in the
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Figure 2.3: Illustration of GP single point crossover and mutation oper-

ations on tree-based individuals. The crossover operator takes a branch

from each parent and swaps them to produce two new children. The mu-

tation operator randomly transforms individual elements into a new ele-

ment.
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Figure 2.4: A GE linear genotype mapped with a generic Backus Naur

form grammar [67] using modular arithmetic. The elements of the geno-

type are mapped in sequence until a complete sentence is produced.

linear genotype is taken in turn and mapped to the appropriate rule in

the grammar. For example, the first integer, 15, is mapped to the first rule

in the grammar, <Heuristic>, which has three elements. Using modular

arithmetic, 15 mod 3 leaves a remainder of 0, meaning the first element

<A1> (a non-terminal) is selected. The second integer in the genotype is

mapped to the <A1> rule (2 elements) meaning <B1><B2> is selected.

The process continues in a depth-first search until all non-terminals are

resolved.
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Figure 2.5: A derivation tree created by the example shown in Figure 2.4.

McKay et al. [57] note that GE belongs to a wider family of Grammar

Guided Genetic Programming (GGGP) approaches [89] which emerged in

the mid 1990s. They note that in GE the genotype is linear, as opposed to

the tree structure used in both standard Genetic Programming (GP) [44]

and other grammar based GP. The linear genotype enables a range of the-

ory and practice applicable to Genetic Algorithms and Evolution Strate-

gies to be employed. The benefits of GGGP over standard GP include the

ability of the grammar to restrict the search space and reduce the likeli-

hood of generating semantically meaningless output.

Over the last decade there has been research into the benefits and chal-

lenges of using GE. Rothlauf and Oetzel [77] have investigated the map-

ping of the genotype to the output (phenotype) in GE and find geno-

type neighbours in the population do not correspond well with pheno-

type neighbours produced by the grammar, a phenomenon they refer to as

a low degree of locality. The consensus among researchers, notably in the
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Figure 2.6: The effect of GE Single Point Crossover on a derivation tree.

The crossover point between D and E in the linear genotype (left) cuts

across three branches of the derivation tree (right).

works of Rothlauf et al. [77, 86], is that there needs to be a close correlation

(high locality) between genotype neighbours and phenotype neighbours

for an efficient search process. Sub-Tree crossover and Sub-Tree mutation

[37] are regarded as the best means of achieving this in GE. This requires a

reverse mapping of the phenotype to the genotype to ensure a crossover is

only performed between compatible points. Thorhauer and Rothlauf [86]

note that the single point crossover operation (see Figure 2.3) has a very

different effect when applied in GE than when applied in standard GP, re-

sulting in GE crossovers involving, on average, half of the tree structure

as illustrated in Figure 2.6.

Another known feature of GE is redundancy in both the encoding and

length of the genotypes. GE uses variable length integer (or bit) strings

(codon strings) which are mapped with the grammar using modular arith-

metic. This means numerous different encodings will map to the same

sentence in the grammar. Also, since the length of genotype can be longer

(possibly by a considerable amount) than that needed by the grammar

mapper, the population may comprise of many different individuals who

only differ from each other in the unused portion of the genotype.

The use of tree-adjunct or tree-adjoining grammars [38] as suggested

by McKay et al. [57] and Murphy et al. [65] may remedy some of these
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issues, although the technique does not scale well and a grammar such as

the one we use in Chapter 4 would generate an unmanageable number of

tree elements.

2.3 Hyper-heuristics

As noted in Section 1.1 on page 2, more recent research has looked at

hyper-heuristics, which Cowling et al. [22] define as “heuristics to choose

heuristics”. Ochoa et al. [71] note that the focus in hyper-heuristic re-

search is to adaptively find a solution method rather than producing a solu-

tion for the particular problem instance at hand. They repeat the observa-

tion by Ross [76] that the difference between hyper-heuristics and (meta-

)heuristics is that it is the search space of heuristics, rather than the search

space of problem solutions, that is traversed. However the delineation be-

tween heuristics (rules-of-thumb), meta-heuristics (heuristics employing

some form of solutions exploration strategy [8]) and hyper-heuristics can

become blurred since both meta-heuristics and hyper-heuristics are also

heuristics. In this thesis we treat heuristics and meta-heuristics the same

way, and reserve the term hyper-heuristic to mean heuristics to choose

heuristics [22].

A hyper-heuristic can be used to dynamically manage the low-level

problem domain as the problem instance is being solved (on-line learning),

or to develop a heuristic using a separate set of training instances (off-line

learning), and apply the resulting heuristic to the problem instance to be

solved.

Burke et al. [14] note that one aim of hyper-heuristic research is to

provide a general solver for different problem domains. Such a hyper-

heuristic is independent of the problem specific domains on which it op-

erates. A hyper-heuristic which achieves this independence is referred to

as existing and operating above the domain barrier. Another aim of hyper-

heuristic research is to reduce the need for human experts by partially au-
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tomating the process which develops and manipulates the low-level (do-

main specific) operators and heuristics which generate and search through

candidate solutions of a problem instance. The desired result from the

hyper-heuristic is either a reusable heuristic for the problem domain, or a

process which dynamically manipulates low-level operators while solving

a given problem instance. The hyper-heuristic needs to deliver a good so-

lution in a reasonable computation time to a problem instance in any given

problem domain. In this respect, the terms good and reasonable are context

sensitive.

Different hyper-heuristic search methods, including the impact of scal-

ability issues, are studied by Keller and Poli [39, 40, 41]. They conclude

that using GP to develop a (meta-)heuristic from the component parts of

low-level heuristics achieves good outcomes with problem instances of

different sizes. Burke et al. [11] study the benefits of adding a memory

mechanism to the heuristic design for the one-dimensional bin packing

problem to enable basic data (e.g., minimum piece size seen so far) to be

stored and recalled as the solution is evolved.

Burke et al. [14] classify current hyper-heuristic approaches into one of

two types:

1. Selection of one or more heuristics from a small collection of can-

didate heuristics. The hyper-heuristic first selects the appropriate

heuristic(s) and then endeavours to adjust whatever parameters the

selected heuristic(s) require to produce a good solution. The param-

eter settings may be dynamically adjusted for the problem instance

(on-line learning) or fixed for all instances within a problem domain

based on experience from solving a training set of problem instances

(off-line learning).

2. Generation of new heuristics by recombining the operators (or com-

ponents) of existing heuristics. An on-line learning process adjusts

the operator combinations as well as setting any parameters. An on-
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line learning process can also be applied to a set of training instances

to determine a reusable sequence of one or more heuristics and any

relevant parameters. The evolved sequence of heuristics is stored for

future application on unseen problem instances in the same prob-

lem domain. If application of the heuristic does not involve further

training (e.g. parameter modification), this two-stage combination

of training and application is usually referred to as off-line learning.

Heuristics evolved in this manner are essentially a recombination of

a sequence of operators.

Cross-domain hyper-heuristic approaches have been successfully de-

signed by Misir et al. [63, 64], and Sabar et al. [80] to solve small scale

timetabling, bin packing and vehicle routing problem instances of compa-

rable complexity. The hyper-heuristic designed by Misir et al. [64] com-

plies with the HyFlex (Hyper-heuristic Flexible) framework [70] specifi-

cations. Drake et al. [26] develop a hyper-heuristic which constructs initial

solutions to a set of small VRP instances and then modifies the solutions

using low-level heuristics within a variable neighbourhood search frame-

work. The mixed quality of the results from this latter work illustrates

the challenges faced in choosing the appropriate number and mix of can-

didate heuristics when using a hyper-heuristic to select or develop new

heuristics. Misir et al. [62] also investigate the impact that the choice of

candidate heuristics has on the effectiveness of the hyper-heuristic and ar-

rive at a similar conclusion.

Misir et al. [61] summarise some of the various evolutionary and learn-

ing methods employed by hyper-heuristic researchers. One of the more

common methods is Genetic Programming [44], which is capable of evolv-

ing solutions to complex problems and can handle mathematical, logical

and operational elements with equal ease. By adding a grammar (Gram-

mar Guided Genetic Programming [58]) it is possible to reduce the likeli-

hood of generating semantically meaningless output. This is particularly

useful when evolving sequences of operators containing logical or oper-
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ational elements. Burke et al. [14, 10] note that in some respects GP can

be regarded as a hyper-heuristic approach to select or generate heuristics.

Sabar et al. [80] use GP in this way.

Different applications of hyper-heuristic approaches and problem types

are contained in Burke et al. [15] (bin packing using Genetic Program-

ming); Kendall and Li [42] (competitive travelling salesman problem us-

ing game theory); and Ochoa et al. [71] (timetabling using a graph based

hyper-heuristic approach).

Kendall and Li [42] solve the Competitive Travelling Salesman Problem

(CTSP) for two competing salesmen, by providing a selection of five low-

level construction operators relevant to the CTSP. These are chosen in a

sequence determined by applying Game Theory [68].

Misir et al. [61, 64] develop a hyper-heuristic which generalises across

six optimisation problem domains, including vehicle routing. Their work

was initially undertaken for the First Cross-domain Heuristic Search Chal-

lenge (CHeSC) [69] in 2011, which they won by a comfortable margin

against 19 other entrants. The organisers of CHeSC provided the hyper-

heuristic framework (HyFlex [70]). The approach by Misir et al. [61, 64]

consists of repeating a multi-step process until a pre-determined time limit

has expired.

Misir et al. [62] subsequently investigated the impact that different

sets of low-level operators have on the performance of the hyper-heuristic.

Their hyper-heuristic and subsequent research influences the direction of

this thesis. Burke et al. [13] propose a hyper-heuristic approach using

Genetic Programming [44] to generate new heuristic methods from opera-

tors (or components) of existing methods. Hyper-heuristic research using

the Grammatical Evolution [78] variation of GGGP is described in work

by Bader-el-Den and Poli [5] and Bader-el-Den, Poli and Fatima [6]. In

both cases the problem domain was timetabling and the hyper-heuristic

approach used Genetic Programming to generate heuristics.

Two recent works, both using Grammatical Evolution, have a strong
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influence on this thesis. Firstly, the hyper-heuristic used by Drake et al.

[26] initially constructs a solution to a VRP instance and then seeks to im-

prove the solution using a variable neighbourhood search framework. The

grammar used is very detailed and many low level operators and param-

eters are defined in the grammar. Their work illustrates the many chal-

lenges faced when applying a hyper-heuristic. They show that the correct

choice of candidate low-level operators and the structure of the grammar

are both critical to the outcome.

The second work influencing this thesis is that of Sabar et al. [80]. Their

work focuses on using a hyper-heuristic approach to develop a general

solver capable of solving a variety of combinatorial optimisation prob-

lems including timetabling and VRP. Low-level operators, containing a

choice of local search operations, acceptance criteria and adaptive mem-

ory parameters are selected and combined to form templates. The hyper-

heuristic approach evolves these templates into heuristics relevant to the

problem domain. This study also discovered that improved results can be

obtained if the evolution process improves multiple solutions in parallel.

In the first and second stages of this thesis we follow the example of

Burke et al. [12, 13] and generate new heuristics from the operators (or

components) of existing heuristics. Examples of grammars we have used

to achieve this are given in Section 4.2 on page 55, and Section 5.2 on page

74. Burke et al. [12, 13] study the evolution of local search methods which

define neighbourhoods and efficiently traverse the search space. While

application of their evolved methods did not find the best known solutions

to the bin packing problems sampled, the technique was shown to work

well.

Summary

In this chapter we have reviewed the relevant literature relating to com-

binatorial optimisation problems (vehicle routing problems in particular),
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genetic programming (Grammatical Evolution and grammar-guided GP

in particular) and hyper-heuristics. We have discussed the different types

(selection and generation) of hyper-heuristic and their application in pre-

vious research. In Chapter 3 we discuss the functional requirements of

software applications to create hyper-heuristics and to solve generic com-

binatorial optimisation problem domains. We then develop and imple-

ment the applications, which are detailed in Chapters 4, 5 and 6.



Chapter 3

Constructing a Problem Domain

and Hyper-heuristic

In this chapter we discuss the features of generic problem domains and

hyper-heuristics compatible with the HyFlex [70] framework. We illus-

trate the features of a problem domain by constructing a Capacitated Ve-

hicle Routing Problem domain. Construction of different types of hyper-

heuristic are illustrated in Chapters 4, 5 and 6. The hyper-heuristic and

problem domain are linked by the domain barrier which acts as an inter-

face between the two parts (see Figure 3.1).

3.1 Generic Problem Domain

The problem domain contains all the necessary tools to solve a problem

instance compatible with that domain, but lacks the knowledge on how

to arrive at the best solution. A problem domain needs to provide the

following functions to enable compatible problem instances to be solved

under the guidance of the hyper-heuristic.

1. The ability to load and interpret a problem instance.

2. To store a set of operators (heuristic components) which can con-

31
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Figure 3.1: High level overview of the linkage between a hyper-heuristic

and a problem domain.

struct or manipulate an interim solution to create a new solution.

The set should be sufficient in number and diversity to support a

variety of actions.

3. The ability to apply an operator to a solution and evaluate the result.

4. To store data relating to the number of times each operator is used

while solving a particular problem instance, and the operator’s exe-

cution time.

5. To generate and store an initial (small) population of solutions.

6. To add or remove a solution from the population of solutions.



3.2. HYFLEX FRAMEWORK 33

7. To calculate a fitness value for a solution and compare it to other

solutions. This includes applying any penalty for incomplete or in-

feasible solutions.

8. To output details of the best solution held in the population of solu-

tions on demand.

In general terms, the hyper-heuristic will instruct the problem domain

to apply a particular operator to a selected solution from the population of

solutions. Most operators work on a single (primary) parent solution, but

some, e.g., a crossover operator, may require a secondary parent solution

as well. The problem domain applies the operator and calculates the fit-

ness of the resulting solution. The hyper-heuristic will decide whether to

retain or discard the new solution based on acceptance criteria determined

by the hyper-heuristic. If the solution is to be retained, then it replaces:

1. The primary parent solution if the new solution is strictly better than

the primary parent solution, or if the primary parent solution is not

the best solution found so far.

2. A randomly chosen solution (other than the best solution found so

far) otherwise.

The secondary parent solution (if used) is not altered. A single version

of the best found solution so far is always preserved in the population

regardless of the acceptance criteria. Should multiple solutions be equally

good as the best solution found so far, then only the first best solution

found is preserved. All other equally good solutions may be replaced by

new, possibly inferior, solutions. Figure 3.2 illustrates this process.

3.2 HyFlex Framework

The HyFlex (Hyper-heuristic Flexible) framework [70] was originally de-

veloped in 2011 for the First Cross-domain Heuristic Search Challenge
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Figure 3.2: An overview of the contents of a generic problem domain and

application of an operator to a solution.

(CHeSC) [69]. The framework includes six in-built optimisation problem

domains (see Section 2.1.2 on page 14), to which we add a standard Ca-

pacitated Vehicle Routing Problem (CVRP) [87] domain:

1. Maximum satisfiability (MAX-SAT)

2. One-dimensional bin packing

3. Permutation flow shop

4. Personnel scheduling

5. Travelling salesman problem (TSP)

6. Capacitated vehicle routing with time windows

7. Standard CVRP (added domain)
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Associated with each in-built problem domain is a set of between 8 and

15 unseen low-level operators (heuristics). Each set contains at least one

operator belonging to each of the four defined operator types: mutation,

ruin-recreate, local search and crossover. A crossover operator swaps parts of

one solution with another solution in an attempt to create a better solution.

Each operator can use (if appropriate) the two HyFlex parameters α

and β, where (0 ≤ α, β ≤ 1 ). The Intensity of Mutation parameter, α,

affects the scale of any mutation or ruin operation, e.g., 0.5 would mean

half the current solution would be altered by an operator using this pa-

rameter. The Depth of Search parameter, β, defines a range or number of

repetitions an operator will undertake to find an improved solution in a

single execution of the operator.

Each operator is only visible to the hyper-heuristic to the extent al-

lowed by the HyFlex [70] specifications. Operator visibility is restricted

to the following properties:

1. Operator Type. A mandatory attribute of each operator contained

within a HyFlex problem domain. There are four defined operator

types:

(a) Mutation operators add or reposition an element in a solution.

Operators of this type would generally only involve simple ma-

nipulations requiring a short computational time which is only

marginally affected by the size of the problem instance.

(b) Ruin-Recreate operators destroy a segment of an existing solu-

tion, chosen by the operator implementation, and then rebuild

the segment to form a new solution. These operators are more

complex than a mutation operator and typically require a longer

computational time. The computational time may vary substan-

tially depending on the size of the problem instance.

(c) Local Search operators define and search a solution neighbour-

hood for improvements. These operators generally apply a de-
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gree of logic to the search so can be expected to have a higher

chance of improving a solution than the other operator types.

However, the computational time may be much longer, and

could escalate polynomially (or worse) as the problem instance

size increases.

(d) Crossover operators combine elements of two current solutions

to form a new solution. The computational time of a crossover

operator varies but is often similar to a ruin-recreate operator.

2. Uses Intensity of Mutation. An indicator to show whether this op-

erator uses the global Intensity of Mutation, α, parameter.

3. Uses Depth of Search. An indicator to show whether this operator

uses the global Depth of Search, β, parameter.

4. Call Record. The number of times the operator has been executed

during a run is calculated and is visible to the hyper-heuristic on

demand.

5. Call Time Record. The aggregate of the execution time of each oper-

ator during a run is recorded and is visible to the hyper-heuristic on

demand.

3.3 Capacitated Vehicle Routing Problem Domain

We now detail the design of the operators and the management of the

population of solutions in our new HyFlex [70] compatible CVRP domain.

The domain we have designed includes the ability to easily add or remove

individual operators, although we do not use this feature in this thesis.
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3.3.1 Operator Design

For the CVRP domain we modify the twelve low-level operators proposed

by Walker et al. [88] for a CVRP-with-time-windows domain, by remov-

ing the time window elements from each operator. There are 4 mutation,

2 ruin-recreate, 4 local search and 2 crossover operator types (see Section

3.2). Other than each operator’s label, type and the use of two global pa-

rameters, α and β, the details of the operators described in this section are

invisible to the hyper-heuristic.

1. Mutation Operators [M]. All mutation operators move or exchange

randomly selected customers. The resulting routes are not necessar-

ily feasible.

(a) Swap within route [M0]. A route is randomly selected. Two

adjacent customers in that route are randomly selected and their

delivery sequence swapped within the route.

(b) Move within route [M1]. A route, and two adjacent customers

in that route, are randomly selected and the pair randomly moved

to elsewhere (not necessarily adjacent) in the delivery sequence

within the route.

(c) Move to another route [M2]. Two routes are randomly selected.

A customer from the first route is randomly selected and in-

serted into the least-cost position in the delivery sequence of the

second route. The operator does not check the modified route

for load feasibility.

(d) Swap between routes [M3]. Two routes are randomly selected.

One customer from each of the two routes is randomly selected

and the two customers swapped between the routes. Each cus-

tomer replaces the other in the sequence of deliveries. The op-

erator does not check the modified routes for load feasibility.
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2. Ruin-recreate Operators [R]. Both ruin-recreate operators destroy a

segment of the current solution and reinsert the displaced customers

into the solution in the best possible location. Reinsertion positions

are restricted to those which result in a feasible route. Both operators

use the Intensity of Mutation, α, parameter.

(a) Band ruin [R0]. A customer, i, is randomly selected. An addi-

tional n customers, where n is the number of customers in the

problem instance multiplied by the Intensity of Mutation (α) pa-

rameter (rounded up), are also selected by choosing customers

with a y-axis coordinate closest to i (see Figure 3.3). The set of

n+1 customers are removed from their current routes and rein-

serted in a random order into the route and delivery sequence

which provides the least incremental cost of insertion, while re-

taining load feasibility. A new route is created if necessary.

(b) Ring ruin [R1]. A customer, i, is randomly selected. An addi-

tional n customers (where n is the number of customers in the

problem instance multiplied by the Intensity of Mutation (α) pa-

rameter (rounded up)) are also selected by choosing customers

with a distance from the depot closest to the distance between

the depot and i (see Figure 3.4). The set of n + 1 customers are

removed from their current routes and reinserted in a random

order into the route and delivery sequence which provides the

least incremental cost of insertion, while retaining load feasibil-

ity. A new route is created if necessary.

3. Local Search Operators [S]. All local search operators use the depth

of search, β, parameter. We use the four search operators designed

by Walker et al. [88] although none are traditional local search oper-

ators.

(a) Move if better [S0]. Two routes are randomly selected. A cus-

tomer from the first route is randomly selected and inserted into
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Figure 3.3: Illustration of the zone affected by a band-ruin operator [R0]

based on customer number 9 and an Intensity of Mutation, α, value of 0.28

the least-cost position in the delivery sequence of the second

route. If the modified second route is infeasible due to overload-

ing, then a single customer (randomly selected from customers

with demand ≥ excess load) may be displaced from the second

route to restore load feasibility. The displaced customer, if any,

is reinserted into the least-cost feasible route and delivery se-

quence, or a new route created if necessary. If the new solution

is better than the original solution then the process terminates.

Otherwise the process is repeated for up to n iterations, where n

is the number of customers in the problem instance multiplied

by the Depth of Search, β, parameter (rounded up).

(b) Swap if better [S1]. Two routes are randomly selected. One
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Figure 3.4: Illustration of the zone affected by a ring-ruin operator [R1]

based on customer number 9 and an Intensity of Mutation, α, value of

0.28

customer from each of the two routes is randomly selected and

the two customers swapped between the routes. Each customer

replaces the other in the sequence of deliveries. The resulting

routes may not be feasible. If the new solution is feasible and

better than the original solution then the process terminates.

Otherwise the process is repeated for up to n iterations, where n

is the number of customers in the problem instance multiplied

by the Depth of Search, β, parameter (rounded up). This oper-

ator is similar to the Swap Between Routes operator [M3], but

will make up to n attempts to find an improved solution.

(c) 2-opt exchange [S2]. Two routes are randomly selected and
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each route is reversed with 0.5 probability. The tails of the two

routes are swapped from randomly chosen positions. If the new

solution is feasible and better than the original solution then the

process terminates. Otherwise the process is repeated for up to

n iterations, where n is the number of customers in the prob-

lem instance multiplied by the Depth of Search, β, parameter

(rounded up).

(d) Move to best [S3]. Two routes are randomly selected. A cus-

tomer from the first route is randomly selected and inserted into

the least-cost position in the delivery sequence of the second

route. If the new solution is feasible and better than the orig-

inal solution then the process terminates. Otherwise the pro-

cess is repeated for up to n iterations, where n is the number of

customers in the problem instance multiplied by the Depth of

Search, β, parameter (rounded up).

4. Crossover Operators [X]. Crossover operators combine parts of two

parent solutions to produce a single new solution.

(a) Random combine [X0]. Calculates a value, v = (0.5+α)
2

(per

Walker et al. [88]), where α is the Intensity of Mutation param-

eter. Creates a new solution from two solutions by taking indi-

vidual routes, with probability of v, from the first solution. Then

routes from the second solution are added providing there is

no duplication of customer deliveries. Any customers not con-

tained in the new solution are inserted in random order into the

least-cost route and delivery sequence (or a new route created)

in the new solution.

(b) Largest combine [X1]. Ranks routes from two solutions based

on the number of customer deliveries in the route. Creates a

new solution by iteratively adding the ranked routes (largest

number of customers first, ties broken randomly) providing no
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customer deliveries are duplicated. Any customers not con-

tained in the new solution are inserted in random order into the

least-cost route and delivery sequence (or a new route created)

in the new solution.

There are no operators belonging to the other operator type.

3.3.2 CVRP Solution Generation

The problem domain generates and stores a small population of solutions.

Sabar et al. [80] observe that developing multiple solutions in tandem im-

proves the diversity of the population of solutions, and thereby reduces

the likelihood of the solution development process stalling. The nature

and effect of stalling is discussed further in Section 6.3.1 on page 94. The

size of the population is determined by the hyper-heuristic and is a bal-

ance between solution diversity and the dilution of computational effort

across multiple solutions. If only a single solution is held in the popula-

tion, then the crossover operators are unable to work correctly and may

simply return the parent solution. At the other end of the scale, a large

population requires an increase in the time and effort directed towards

improving multiple solutions, some of which may be incapable of becom-

ing the best solution.

The CVRP domain we developed generates new solutions by firstly

calculating the aggregate demand from all customers, and dividing the ag-

gregate by the vehicle capacity (rounding up) i.e. routesmin =
⌈∑

demand
capacity

⌉

.

This provides the minimum possible number of routes required. The min-

imum number of empty routes are created and customers are then ran-

domly assigned to a route. Some of the resulting routes may be overloaded

and therefore infeasible. Infeasible routes are heavily penalised when the

solution fitness evaluation is made to enable all solutions to be evaluated

and to encourage retention of feasible solutions.

In the CVRP domain we have developed, feasibility penalties include:
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1. Unallocated customer: the cost of an out-and-back route from the

depot to the customer is added to the fitness value.

2. Overloaded route: A manually set penalty plus the cost of out-and-

back routes from the depot to each customer allocated to the route is

used for the fitness value instead of the total distance of the route.

3. Duplicated customer: A manually set penalty. This situation should

not occur with the implementation described above.

3.4 Developing a Hyper-heuristic

In this section we describe the requirements to develop a hyper-heuristic

compatible with the HyFlex [70] framework. To be effective, a hyper-

heuristic needs to be independent of the problem domain. If the hyper-

heuristic is not independent of the domain then it should more accurately

be described as a meta-heuristic [14].

As discussed in Section 2.1.3 on page 15, Burke et al. [14] classify

hyper-heuristics into two broad categories; those which select a heuristic

from a set of candidate heuristics, and those which generate a new heuris-

tic from the operators (components) of existing heuristics. In practise a

hyper-heuristic may perform both selection and generation functions at

different stages of the process.

3.4.1 Domain Independence

In this thesis we take “domain independence” to include the following

features:

1. The hyper-heuristic is linked to the problem domain by an interface

(domain barrier, see Figure 3.1) through which only limited standard

information may flow. This means the problem domain and hyper-

heuristic can be changed without affecting the other.
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2. The hyper-heuristic is responsible for controlling the development

of a solution to a problem instance by manipulating the operators

(heuristic components) within the problem domain. However, the

hyper-heuristic has:

(a) Only outline knowledge of the function each operator performs.

It has no knowledge of how the operator performs its function.

(b) No knowledge about the problem instance size or features.

(c) No knowledge of the quality of the interim solution other than

a single fitness value provided by the evaluation function con-

tained within the problem domain application. The problem

domains we use in this thesis seek to minimise the solution fit-

ness.

(d) Has no means of identifying whether an optimal solution has

been achieved.

The HyFlex [70] framework described in Section 3.2 provides a def-

inition of what information may flow across the domain barrier consis-

tent with our description above. There is an assumption that the prob-

lem domain application is fit-for-purpose and contains a sufficient num-

ber and diversity of operators. Some operators may perform simple add or

move functions without applying any logic, while others may be complex

heuristics capable of generating a solution to a problem instance on their

own. The performance of a hyper-heuristic is constrained by the available

computational time, the problem domain complexity and the problem in-

stance size. Since the hyper-heuristic has minimal knowledge about the

problem domain and instance, and the computational time limit is usually

a manually set parameter, the hyper-heuristic faces a difficult challenge.

Given these constraints, the performance of a hyper-heuristic should

be measured on the basis of how efficient it is at using the available com-

putational time. Although the ultimate goal is to enable a problem do-

main to deliver the best possible solution, it is unreasonable to compare
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the quality of a hyper-heuristic to other algorithms and heuristics based

on the solution value alone.

3.4.2 Computational Time

Setting the computational time limit is a trade-off between solution qual-

ity and speed. When dealing with a new problem domain, or previously

unseen problem instance, it is difficult to know an appropriate setting. In

part, progress towards achieving a “good” solution is dependent on the

quality of the operators built into the problem domain application. These

may be limited in their ability to manipulate a solution or require excessive

computational time to execute.

A further factor is that the initial solution(s) from which computation

begins are controlled by the problem domain and unknown to the hyper-

heuristic. This may vary from an empty or randomly generated solution

to one which has used an established heuristic to develop a solution of

reasonable quality. Further development of the solution(s) from these dif-

ferent starting positions may proceed at widely differing rates.

In the case of an empty or randomly generated solution, a hyper-heuristic

can be expected to make significant improvements in the early stages of

the computation. As time elapses, however, further improvements be-

come harder to find and an increasingly large number of operator appli-

cations fail to make progress. The hyper-heuristic should ideally respond

to this situation and we discuss this further in Section 6.3.1 on page 94.

3.4.3 Population of Solutions

Having a population of solutions means the computational time must be

divided between different solutions, thereby reducing the time spent work-

ing on the “best” solution.

Research by Sabar et al. [80] identified that working on a small number

of solutions in tandem achieves a better quality of solution than trying to
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improve only a single solution. When using the HyFlex [70] framework, it

is preferable for there to be a population of at least two solutions to enable

the crossover type of operator to function correctly (see Section 3.2). An

upper bound on the number of solutions in the population is a trade-off

between maintaining diversity and dividing the available computational

time across multiple solutions. In this thesis we use a population of six

solutions, which is consistent with the population size used by Sabar et al.

[80].

Working with a small number of solutions gives the benefit of focusing

computational effort. This increases the number of attempts to improve a

particular solution, and can enable a more thorough search for improve-

ments. It also avoids wasting time and effort improving solutions which

may be clones of the best found solution, or be so poor that considerable

effort is required to improve them.

Working with multiple solutions enables diversity. This can be use-

ful when a particular solution is unable to be improved further using the

operators available in the problem domain. Improving an alternative so-

lution from the population may lead to a new best found solution, and

unblock the development of better solutions. However, each solution de-

velopment requires a share of the computational time which can become

too thinly spread if the population of solutions is excessive.

Summary

In this chapter we have described the requirements for a generic hyper-

heuristic and problem domain compatible with the HyFlex [70] frame-

work, and illustrated construction of a new CVRP domain. In the next

chapter we illustrate development of a heuristic using a grammar-based

hyper-heuristic.



Chapter 4

Developing a Compact and

Effective Heuristic

In this chapter we discuss the first stage of this thesis which has the goal

of using a hyper-heuristic to generate a compact and effective heuristic for

a problem domain with only deterministic operators. The hyper-heuristic

developed for this stage uses the Grammatical Evolution (GE) [78] varia-

tion of a grammar guided genetic programming (GGGP) [89] approach. A

detailed description of how GE and GGGP work is outside the scope of

this thesis. Section 2.2.2 on page 20 gives some background to the relevant

aspects of GE and GGGP applicable to this research.

4.1 Hyper-heuristic with Grammatical Evolution

The grammar based hyper-heuristic (GEgrammarHH) used in the first

stage of this thesis is developed using Grammatical Evolution (GE) [78].

The concept behind GE, and some of the challenges faced when using it,

are discussed in Section 2.2.2 on page 20. In this section we will confine

our discussion to the development and application of the grammar and

hyper-heuristic used in this chapter.

GEgrammarHH uses a loosely defined interface (domain barrier) be-

47
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tween the hyper-heuristic and the Capacitated Vehicle Routing Problem

(CVRP) [87] domain built specifically for this stage. In this respect, it

differs significantly from the second grammar-based hyper-heuristic de-

scribed in Section 5.2 on page 74 and the adaptive hyper-heuristics de-

scribed in Chapters 5 and 6, which conform to the more rigid HyFlex

[70] framework specifications. The hyper-heuristic and CVRP domain

described in this chapter were implemented in the GEVA (Grammatical

Evolution in Java) [72] application and our own additional Java program.

One of the aims of this stage is to assess the suitability of GE as a hyper-

heuristic, since there are already several reports of using GE for this pur-

poses in the literature (see Section 2.2.2 on page 20).

The CVRP domain used with this hyper-heuristic is described in Sec-

tions 4.1.1 and 4.1.2. This domain is different from that described in Sec-

tion 3.3 on page 36, although it could be adapted to conform to the HyFlex

[70] framework specifications. Additionally, this CVRP domain contains

only deterministic operators. This means a heuristic applied to a particu-

lar CVRP instance will always generate the same solution.

Each heuristic consists of four distinct elements:

1. A strategy which defines how the heuristic is to be developed.

2. A sequence of one or more operators (excluding a search operator)

to construct or modify the current partial solution.

3. A search operator to improve the current partial solution.

4. The number of times the whole sequence of operators (including the

search operator) is repeated to deliver a complete and feasible solu-

tion. We refer to each repetition of the sequence of operators as a

cycle.

Table 4.1 details the process a generated heuristic will perform with

GEgrammarHH.
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4.1.1 GEgrammarHH Strategy

The GEgrammarHH enables a choice of strategy when developing a CVRP

solution. This is set by the strategy element which defines how the solu-

tion is initialised and developed. We include two basic strategies to be

employed when developing a heuristic.

1. Build Strategy: A heuristic developed using a build strategy starts

with an empty solution and routes are iteratively developed. All cus-

tomers are initially placed in a pool of unallocated customers until

selected for placement into the current partial solution. Build oper-

ators are used to select and place customers into the solution in a

chosen sequence. The placement of customers is such that feasibility

of the solution is preserved.

The strategy may optionally specify that a number of routes be ini-

tialised by placing one customer in each route. We refer to this as

seeding. The method of selection and number of customers allocated

during seeding is determined by a parameter of the chosen strategy.

2. Improve Strategy: An improvement strategy starts with a complete

(i.e. all customers are allocated to a route) and feasible, but possi-

bly sub-optimal, solution developed using a fast heuristic. We use

individual out-and-back routes from the depot to each customer, al-

though any fast heuristic (e.g. the CWS heuristic [17] ) could be used

to develop a starting solution.

4.1.2 GEgrammarHH Operators

An operator manipulates the current partial solution. Application of some

operators may result in a customer being returned to the pool of unallo-

cated customers.

A successful heuristic need not necessarily be intuitive, so a range of

build, modify and destroy operators are enabled with few constraints on
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Table 4.1: Algorithm for GEgrammarHH

T ← set strategy (build or improve)

k ← randomly select number of operators

if T is build then

i← select initial seeding method

si
0
← initialise (partial) solution

for n← 1 to k do

optypen ← select build or improve operator

oprepeatn ← select number of repetitions

opparamn ← select parameter

end

end if

else if T is improve then

s0 ← initialise (complete) solution (out-and-back routes)

for n← 1 to k do

optypen ← select improve operator

oprepeatn ← select number of repetitions

opparamn ← select parameter

end

end if

searchtype ← select local search operator

searchparam ← select parameter(s)

r ← 0

while (r < 1) or (sr < sr−1) or (sr is incomplete) then

increment r

sr ← sr−1

for n← 1 to k do

sr ← sr+ execute optypen

end

sr ← sr+ execute searchtype

evaluate sr

repeat

return sr−1

end
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the selection of an operator or the number of times it is executed. The

operators described below, including the search operators, are all deter-

ministic. Consequently, application of a generated heuristic will always

produce the same result on a particular problem instance. This is a differ-

ent approach than that taken with the operators designed for the CVRP

domain described in Section 3.3 on page 36, which use random selection

of elements.

The CVRP domain contains a set of operators which fall into three cat-

egories:

1. Build operators. These operators are applied to an empty or par-

tial solution. An unallocated customer is selected and inserted into

a route and location providing the route remains feasible and the in-

cremental distance travelled by all vehicles as a result of the insertion

is minimised. If insertion cannot be made into an existing route, then

a new route is created. The selection of an unallocated customer uses

one of the following criteria:

(a) Cheapest: the customer who can be inserted at least incremen-

tal cost.

(b) Largest Demand: the customer with the largest demand.

(c) Farthest: the customer farthest from the depot.

(d) Nearest: the customer nearest the depot.

(e) Remotest: the customer farthest away from the depot or any

allocated customer.

In event of ties in the selection process, the customer nearest the de-

pot or with the largest demand (as applicable) is chosen. A build

operator has two parameters:

• How many times execution of the operator is repeated.
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• Whether replacement of an existing customer in a route is per-

mitted when considering insertion of a new customer into that

route. A replaced customer is blocked from being reinserted

in the same route for the remaining repetitions of the current

operator. However the customer may be reinserted by another

operator or by the same operator in a later cycle.

2. Improve operators. These operators perform similar functions to

the mutation and ruin-recreate operators described in Section 3.3.1

on page 37. The following operators are enabled:

(a) Merge Best Saving: This operator iteratively takes two routes

in the order stored within the problem domain (oldest unmod-

ified route first) and concatenates them by linking the last cus-

tomer in the first route to the first customer in the second route.

During the iterative process the same two routes in opposite or-

der are considered, but the direction of a route is never reversed.

If the route is load feasible, and the saving in distance is greater

than any other feasible pairing (best-improving), the merger is

accepted.

(b) Merge Next Nearest: This operator selects two routes in the

same way the Merge Best Saving operates. If the route is load

feasible, and the distance between the two newly linked cus-

tomers is shorter than any other feasible pairing, the merger is

accepted.

(c) Split Routes: The longest route in the current solution is di-

vided into two. In this thesis the division point is arbitrarily set

(to simplify the grammar), but the operator is capable of receiv-

ing a parameter to determine the division point. If all routes

contain fewer customers than specified by the division point,

then this operator has no effect.
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(d) Redo Route: The route which has remained unaltered for the

longest is discarded, and the customers returned to the pool of

unallocated customers.

(e) Remove Lowest Demand: The allocated customer with the small-

est demand is returned to the pool of unallocated customers.

3. Search operators. Three search operators are implemented. We limit

the search operator to one execution per cycle to keep the computa-

tional time within reasonable bounds.

(a) 2 opt: This search, designed by Croes [23] works on each route

in turn and iteratively reverses a segment of the route. The ex-

change is accepted if a shorter route is achieved as a result, oth-

erwise it is discarded. The search terminates best improving

solution.

(b) 3 exchange: This is similar to 2 opt and iteratively reverses one

or both of two adjacent segments of the route. The exchange is

accepted if a shorter route is achieved as a result, otherwise it is

discarded.

(c) Iterated Local Search: This is a deterministic variation of the

Iterated Local Search designed by Lourenço et al. [48]. The op-

eration of this search is described in Section 4.1.3. While this

search proved successful on the CVRP instances we tested, the

data structure and our implementation of the search means it

does not scale well and the computational time becomes exces-

sive on CVRP instances larger than 100 customers in size.

4.1.3 Deterministic Local Search

Table 4.2 describes the operation of the deterministic iterated local search

algorithm we have developed. The operator requires two parameters to
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Table 4.2: Algorithm for Deterministic Iterated Local Search

let N be the set of customers allocated to a route in the current solution

range← parameter sets the range of search

pair each i and j ∈ N where distancei,j ≤ range

sort pair(i, j) by ascending distancei,j

while queue of pair(i, j) is not empty

let Ra and Rb be the routes containing i and j respectively

if Ra 6= Rb then Ra ← concatenate Ra, Rb (depot will appear twice) and Rb removed

swap positions of i and j in Ra

improve Ra using either 2opt [23] or 3 exchange

if depot appears in intermediate position within Ra, divide Ra into two routes

if better feasible routes result, update current solution.

repeat

return solution

determine the range of search and whether to use 2 opt [23] or 3 exchange

in the second stage. An example is given below.

1. In the example shown in Figure 4.1, we consider the pairing of cus-

tomers 4 and 6 as part of an iterated local search using a 3 exchange

operator. The depot is numbered 0. The two routes are initially

(0, 1, 2, 6, 0) and (0, 4, 7, 5, 3, 0).

2. These are concatenated to create a route (0, 1, 2, 6, 0, 4, 7, 5, 3, 0).

3. The positions of customer 4 and 6 are swapped, producing

(0, 1, 2, 4, 0, 6, 7, 5, 3, 0).

4. Adjoining segments are individually reversed to search for a better

solution. The iteration with the segments (0, 1, 2, | 4, 0, | 6, 7, 5, 3, | 0)

produces (0, 1, 2, 0, 4, 3, 5, 7, 6, 0).
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Figure 4.1: Example of the operation of the local search used with GEgram-

marHH. Two routes before and after the iterated local search improve-

ments. Other routes and customers omitted for clarity.

5. The route is split into two routes at the position of the interim depot

producing [0, 1, 2, 0] and [ 0, 4, 3, 5, 7, 6, 0]. Evaluation of these two

routes gives a better solution than the original solution, so the new

solution is retained.

4.2 GE Grammar

We use GE to select the operators and their respective parameters. To

achieve this we define a grammar that maps the linear output of the ge-

netic programming search engine (the genotype) to a syntactically correct

and semantically meaningful sequence of operators.

The only element of a heuristic that is not specified in the grammar

is the number of cycles. Instead, the sequence of operators (up to a pre-

defined maximum number of cycles) are repeated until a cycle ends with:

1. Build Strategy: a solution in which all customers are allocated to a



56CHAPTER 4. DEVELOPING A COMPACT AND EFFECTIVE HEURISTIC

Table 4.3: Grammar used to develop heuristics for the GEgrammarHH.

<strategy> ::= build, <seed>, <num>,0 ; <action1> <search>;

<strategy> ::= improve, 0, 0; <action2> <search>;

<action1> ::= <build>; | <build>; <action1> | <build>; <action2>

<action2> ::= <improve>; | <improve>; <action2>

<build> ::= <select>,<num>,<replace>

<improve> ::= <improve1>,<num> | <improve2>

<improve1> ::= mergeBestSavings |mergeNextNearest

<improve2> ::= splitRoutes, 1, <num> | redoRoute, 1

<improve2> ::= removeLowestDemand, 1

<search> ::= 2opt | 3exc | iterated-local-search,<num>, 0, <optType>

<select> ::= cheapest | largestDemand | farthest | nearest | remotest

<seed> ::= blank | seedcheapest | seedfarthest | seednearest

<num> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

<replace> ::= 0 | 1

<optType> ::= 2 | 3

route.

2. Improve Strategy: no improvements have been made to the solution

during the last cycle.

The grammar is structured so a strategy is specified as the first element.

Thereafter selected operators, and any required parameters, are added in

sequence, terminating with a search operator. The Backus Naur form [67]

grammar we use is detailed in Table 4.3.

A typical heuristic from the mapper takes the following form:

build, seedfarthest, 10, 0; mergeBestSavings, 9, 0; cheapest, 5, 1; iterated-local-

search, 8, 0, 3;

The heuristic is passed to the problem domain which interprets and

processes it (illustrated in Section 4.3). If a complete solution is not achieved
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within the pre-defined maximum number of cycles, the distance is set to

∞. The total distance of the solution (fitness) is passed back to the hyper-

heuristic.

We adopt the requirement that applying a given heuristic to a partic-

ular CVRP instance will always generate the same solution. To this end,

all random number generation occurs within the GE search engine and is

passed as a parameter(s) with each operator. This includes the local search

operator which follows a deterministic sequence when seeking improve-

ments.

4.3 Example of CVRP Solution Construction

Construction of a CVRP solution from an empty solution (build strategy)

is illustrated in Figures 4.2 through 4.6. This method uses a heuristic gen-

erated by a grammar-based hyper-heuristic described in Table 4.3. They

are different operators to those described earlier in Section 3.3.1 on page

37.

1. seedfarthest, 10, 0. The first operator initialises the solution by cre-

ating out-and-back routes to the ten (per the parameter) customers

who are the farthest from the depot. An illustration of the result is

shown in Figure 4.2. This operator is applied only once during the

development of the solution.

2. mergeBestSavings, 9, 0. The ten routes created in the previous step

are connected together by iteratively concatenating two routes, pro-

viding a feasible route is created. A maximum of nine (per the first

parameter) concatenations are made. The pairs are linked in a se-

quence determined by the size of the saving made by the merger.

This and the preceding operator are the two operators exhaustively

used in the Clarke and Wright Savings heuristic [17] (see Section 2.1.3
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Figure 4.2: Development of a solution to E-n22-k4.vrp [1] problem in-

stance. The solution is initialised by the operator seedfarthest, 10, 0 by cre-

ating out-and-back routes to the ten customers farthest from the depot.

on page 15). An illustration of the result from the application of this

operator is shown in Figure 4.3.

3. cheapest,5,1. Five (per the first parameter) unallocated customers

are added to the interim solution. Customers are selected on a min-

imum cost of insertion basis (cheapest). The second parameter indi-

cates that an existing customer can be displaced from a route if the

insertion of the new customer into that route would otherwise make

the route infeasible. Displacement is only allowed if the resulting

route has a lower cost than before. In the event there is a choice of

customers to displace, the one whose removal creates the least cost

route is selected. Once displaced, the customer cannot be returned

to the same route for the remaining iterations of this operator. In the
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Figure 4.3: In a maximum of nine steps, the ten previous routes are merged

to produce three feasible routes.

example illustrated in Figure 4.4 customers 9, 11, 15, 17 and 18 are

inserted and customers 21 and 22 displaced.

4. iterated-local-search, 8, 0, 3. A local search operator (described in

Section 4.1.3) is applied to the interim solution. In this example no

improvements are made to the solution shown in Figure 4.4.

Since there are still eight unallocated customers, the solution is incom-

plete. The heuristic therefore makes another cycle, iteratively applying

operators 2, 3 and 4 in each cycle until a cycle ends with a complete solu-

tion. In this example the application of operators 2 and 3 in the third cycle

add all the remaining customers to the solution (see Figure 4.5). This is the

first complete solution and has a total route distance of 493.

The local search operator is applied and improves the solution to that

shown in Figure 4.6. The heuristic halts as the solution is now complete
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Figure 4.4: The results of the insertion of five new customers (9, 11, 15, 17

and 18) using the cheapest, 5, 1 operator. The second parameter permits

displacement of customers and customers 21 and 22 are returned to the

pool of unallocated customers.

(route distance 375). Feasibility has been maintained throughout the de-

velopment process.

4.4 Experiment Design

We use 30 replications for each of 40 CVRP instances developed by Augerat

et al. and Eilon et al. [1, 4, 28]. These instances (from the A and E pre-

fix instances) range in size from 32 to 101 customers (see Tables 4.5 and

4.6) and some contain a variety of features including remote depots, clus-

tering of customers, asymmetric and/or non-Euclidean distances. These

instances have been used by other researchers due to their “difficult” na-

ture. We perform six sets of experiments using the combinations of GE
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Figure 4.5: All customers are allocated to a route during Cycle 3. This

figure shows the interim solution prior to the final application of the local

search operator.

population and generations shown in Table 4.4. We test different numbers

of GE generations (between 10 and 1,000) and population size (between

40 and 100). Additionally we test different combinations of crossover and

mutation functions (see Section 4.5.1).

Each set of experiments is repeated twice, firstly using an on-line learn-

ing process to dynamically customise the heuristic for the problem in-

stance being solved, and secondly using off-line learning with a different

set (from B prefix instances of Augerat et al. [1, 4]) of six problem instances

for training, and applying the resulting heuristic to the 40 CVRP instances.

During training the fitness of the heuristic is the aggregate of the distances

for each of the six training instances.

In order to evaluate the quality of the generated heuristics, the solu-

tions generated by the best heuristic from each set of experiments are com-
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Figure 4.6: The final solution to E-n22-k4.vrp [1] problem instance.

pared to the “best” solution [1] for each problem instance.

4.5 Stage 1 Results

The results from our sixth set of experiments with GEgrammarHH are

shown in Tables 4.5 and 4.6 and compared to the “best” results avail-

able from [1]. Since some of the published solutions use different dis-

tance rounding rules, we have recalculated the published solutions to en-

sure consistency with the two decimal place rounding of distances used in

these experiments. The labelling of the test instances [1] can be identified

as being from the set produced by Augerat et al. [4] (prefixed A) or Eilon

et al. [28] (E), with n nodes (n−1 customers plus a depot) and a minimum

of k routes required, i.e. k =
⌈∑

demand
capacity

⌉

.

Since generation of a CWS heuristic [17] from individual operators is

enabled by the grammar, the solution generated by the CWS heuristic
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Table 4.4: Grammatical evolution parameter settings. Crossover and mu-

tation functions: single point crossover (SPX), sub-tree crossover (STX),

integer flip mutation (IFM) and sub-tree mutation (STM). Average num-

ber of operators (NumOps) in a heuristic excludes initialisation and search

operators. Quality =
∑

distancebestHeuristic∑
distancebestPublished

Experiment Set 1 2 3

GE Population 60 100 80

GE Generations 1000 500 100

Crossover rate 0.8 0.9 0.8

Mutation rate 0.2 0.1 0.1

Crossover SPX+IFM SPX+IFM STX+STM

+ Mutation STX+STM

Average NumOps 41.3 29.2 16.0

Quality (on-line) 102.3% 102.4% 101.5%

Quality (off-line) 105.2% 104.1% 103.8%

Most common cheapest cheapest farthest

operators nearest farthest cheapest

Least commom redoRoute redoRoute redoRoute

operators splitRoutes mergeNextNearest mergeNextNearest

Experiment Set 4 5 6

GE Population 40 40 40

GE Generations 250 25 10

Crossover rate 0.75 0.8 0.9

Mutation rate 0.25 0.1 0.1

Crossover SPX+IFM STX+STM STX+STM

+ Mutation STX+STM

SPX+STM

Average NumOps 19.1 11.3 5.4

Quality (on-line) 101.7% 101.0% 100.8%

Quality (off-line) 104.0% 102.4% 101.7%

Most common cheapest nearest cheapest

operators nearest largestDemand farthest

Least commom redoRoute redoRoute redoRoute

operators splitRoutes splitRoutes splitRoutes
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Table 4.5: Results (part 1) from on-line learning and off-line learning ex-

periments compared to published best solution [1] (recalculated to ensure

rounding consistency). Results from applying the CWS heuristic (see Sec-

tion 2.1.3 on page 15) shown for comparison.

CVRP CWS CWS+2opt Off-line On-line Best

A-n32-k5 843.69 830.67 787.08 787.08 787.81

A-n33-k5 712.05 712.05 668.66 662.11 662.76

A-n33-k6 776.26 776.02 742.69 742.69 742.69

A-n34-k5 810.41 810.41 780.94 780.94 780.94

A-n36-k5 828.47 828.47 810.37 802.13 802.13

A-n37-k5 707.81 695.42 672.47 672.47 672.59

A-n37-k6 976.61 976.61 958.66 950.85 952.22

A-n38-k5 768.13 766.22 734.18 733.95 734.18

A-n39-k5 901.99 901.99 828.99 828.99 828.99

A-n39-k6 863.08 863.07 835.25 833.20 833.20

A-n44-k7 976.04 972.94 945.44 938.18 938.18

A-n45-k6 1006.45 1006.45 954.47 949.56 944.88

A-n45-k7 1199.98 1199.10 1149.88 1147.28 1147.28

A-n46-k7 939.74 939.74 918.13 917.72 918.13

A-n48-k7 1112.82 1103.99 1074.34 1074.34 1074.34

A-n53-k7 1099.45 1083.81 1020.15 1012.25 1013.31

A-n54-k7 1201.20 1187.67 1177.88 1171.68 1171.68

A-n55-k9 1099.84 1098.41 1100.81 1074.96 1074.46

A-n60-k9 1421.88 1410.70 1360.59 1355.80 1355.80

A-n61-k9 1102.23 1094.49 1051.25 1048.35 1039.08



4.5. STAGE 1 RESULTS 65

Table 4.6: Results (part 2) from on-line learning and off-line learning ex-

periments compared to published best solution [1] (recalculated to ensure

rounding consistency). Results from applying the CWS heuristic (see Sec-

tion 2.1.3 on page 15) shown for comparison.

CVRP CWS CWS+2opt Off-line On-line Best

A-n62-k8 1352.81 1348.53 1303.68 1302 .42 1294.28

A-n63-k9 1687.96 1684.02 1638.08 1633.94 1622.14

A-n63-k10 1352.48 1343.59 1322.92 1319.05 1313.74

A-n64-k9 1486.92 1481.90 1428.14 1415.61 1400.83

A-n65-k9 1239.42 1239.03 1192.70 1184.66 1181.69

A-n69-k9 1210.78 1205.98 1176.37 1165.99 1165.99

A-n80-k10 1860.94 1858.98 1792.40 1769.91 1766.50

E-n13-k4 290.00 290.00 290.00 290.00 290.00

E-n22-k4 388.77 388.77 375.28 375.28 375.28

E-n23-k3 621.09 582.93 568.56 568.56 568.56

E-n30-k4 534.45 517.41 505.01 505.01 505.01

E-n31-k7 1263.00 1263.00 1213.00 1205.00 1205.00

E-n33-k4 843.10 842.80 837.67 837.67 838.72

E-n51-k5 584.64 584.64 524.81 524.61 524.61

E-n76-k7 738.13 733.96 693.73 687.60 687.60

E-n76-k8 794.74 785.63 744.25 740.66 740.66

E-n76-k10 907.39 902.09 841.42 836.53 837.36

E-n76-k15 1054.60 1054.32 1051.63 1035.81 1035.81

E-n101-k8 889.00 883.97 832.06 828.84 828.84

E-101-k14 1139.07 1137.91 1108.58 1095.15 1095.15
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should, if discovered by the search engine, represent an upper bound on

generated solutions.

Tables 4.5 and 4.6 show that it is possible to apply a GE-based hyper-

heuristic to select operators to generate a heuristic for a CVRP instance

that delivers a high quality solution. The hyper-heuristic can work with

both construction and improvement strategies. The results show that it

is possible to develop a heuristic using off-line learning that can generally

deliver better quality solutions than the CWS heuristic for the range of

problem instances used in these experiments. However, the CWS heuristic

followed by 2-opt will produce a reasonable result that cannot be consis-

tently matched or beaten by any single heuristic discovered using on-line

learning. The strength of the on-line learning lies in developing a cus-

tomised heuristic that produces a better quality solution (compared to off-

line learning) to a specific problem instance. Applying the best outcome

from a small number of general heuristics developed using off-line learn-

ing improves the overall quality of solutions, but still falls short of what

can be achieved by generating a customised heuristic for a specific CVRP

instance.

Table 4.4 indicates that some of the operators, such as the splitRoutes

and redoRoute, can be simplified or omitted. This table also shows that re-

ducing the number of GE generations leads to the resulting heuristic con-

tains significantly fewer operators. When using 1,000 GP generations, the

resulting heuristic can contain a sequence of up to 200 operators, whereas

limiting the run to 10 generations means a heuristic rarely contains more

than a dozen operators. The heuristics with only a few operators prove

to be just as effective as those with numerous operators indicating that

increasing the number of operators in a sequence does not necessarily im-

prove performance.
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4.5.1 Crossover and Mutation Operators in GE

As part of the experimentation with GEgrammarHH we also examine

a number of parameter settings used by GE during the generation of a

heuristic. In Section 2.2.2 on page 20 we identify several different ways to

perform crossover and mutation in GE. When using the sub-tree crossover

and mutation operators recommended by Manrique et al. [21, 52], we ob-

serve an early and rapid decline in the diversity of the population (see

Figure 4.7). A lack of diversity in the population makes it harder for the

search engine to deliver better solutions to those already found.

In our fourth set of experiments (with 250 generations) we compare

three different combinations of crossover and mutation operators to ob-

serve any change in the performance of the hyper-heuristic and quality of

the solutions. As illustrated in Figure 4.7 the performance of these oper-

ators is quite different although all eventually arrived at similar solutions

despite the diversity (or lack thereof) in the population. The difference be-

tween the operators lies in the speed of execution and the average fitness

of the current population.

Figure 4.7 illustrates the difference in the performance of the crossover

and mutation operators by measuring the average fitness of the individu-

als in the population in the first 100 generations (of 250) of a typical exam-

ple (CVRP instance A-n37-k6.vrp [1]). The upper line records the average

fitness from using single point crossover and intFlip mutation operators.

This results in a wider variance in the fitness of the individuals in the pop-

ulation compared to sub-tree crossover and sub-tree mutation operators

(lowest line). The population created by the latter combination rapidly

converges towards the best fitness found so far and thereafter shows little

diversity. The hybrid single point crossover and sub-tree mutation com-

bination retains diversity in the population for longer, but then converges

on the best fitness found so far.
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Figure 4.7: Comparison between Sub-Tree and Single Point crossover and

Sub-Tree and IntFlip mutation operators. Showing average population fit-

ness per generation on the A-n37-k6.vrp [1] problem instance. Population

size = 80.

4.5.2 Identifying Neighbouring Solutions

If, as discussed in Section 2.2.2 on page 20, high locality is a desirable fea-

ture, then we need to be able to define what makes two solutions in GE

(i.e., heuristics) neighbours. With hyper-heuristics the elements used are

operators to be processed rather than the raw data of the problem instance

to be solved. If we were solving a CVRP instance directly we could iden-

tify neighbouring solutions by the similarity of routes or commonality of

arcs between customers.

With a hyper-heuristic, the sequence of operators and parameters can-

not be easily identified as neighbours. A minor change to the sequence of

operators, or a parameter, will likely result in a radically different solution

when the heuristic is applied to a problem instance. It is therefore inap-

propriate to refer to a sequence of operators as neighbours simply because
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they appear similar. This raises the question of whether the feedback from

the fitness evaluation of each member of the population needs to be more

complex than a single numeric score and, if so, how should the search

engine interpret such feedback.

4.6 Stage 1 Conclusions

Although we have not investigated further, improvements to the compu-

tational time may be possible when solving larger instances by interpret-

ing the number of repetitions of each operator relative to the problem in-

stance size rather than as an absolute number. This should reduce the

number of times the computationally slower search operator is called.

Elements of the hyper-heuristic search process show scope for consid-

erable improvement. The decision to use GE has provided challenges, in-

cluding many of those discussed in Section 2.2.2 on page 20. While we

have achieved good results using GE it is difficult to avoid the impres-

sion that the search process is not as efficient as it could be. This inef-

ficiency may lie in the nature of the feedback provided from the fitness

evaluation function. A CVRP contains two interdependent sub-problems:

vehicle loading and travel distance. The single score based on distance

alone does not adequately assist the search engine. Further, as identified

by Rothlauf and Oetzel [77], the low degree of locality between genotype

and phenotype may hinder an efficient search process. Applying the pro-

posed hyper-heuristic using GE on the CVRP reveals there are a number of

barriers to achieving high locality, which we discussed in Section 4.5.2. For

this reason, our second grammar based hyper-heuristic (see Section 5.2 on

page 74) uses a generic Grammar Guided Genetic Programming (GGGP)

approach [89].
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Summary

In this chapter we have demonstrated that it is possible to generate both

a general and an instance-specific heuristic for CVRP instances using a

hyper-heuristic and GE. However, GE is possibly not a good choice of

method as a hyper-heuristic and therefore in the following chapters we

will apply a more fundamentally sound GGGP method. In the second

stage of this thesis we compare the performance of two different hyper-

heuristics when applied to multiple problem domains. We modify the

hyper-heuristic developed for the experiments described in this chapter

to conform to the HyFlex [70] framework and use a more generic gram-

mar.



Chapter 5

Performance Comparison of

Different Hyper-heuristics

In this chapter we investigate the second stage of this thesis in which

we compare the performance of two different types of hyper-heuristic

on seven different problem domains. The two hyper-heuristics are cho-

sen as representative examples of hyper-heuristics at the opposite ends

of the selection-generation spectrum [14]. Both hyper-heuristics are com-

patible with the HyFlex [70] framework (see Section 3.2 on page 33). As

discussed in Section 2.3 on page 25, hyper-heuristics can be classified into

those which select an operator or heuristic from a set of candidate opera-

tors, and those which generate a new heuristic from the operators (compo-

nents) of other heuristics. A hyper-heuristic can be used to dynamically

manage the low-level problem domain as the problem instance is being

solved (on-line learning), or to develop a heuristic using a separate set of

training instances (off-line learning), and apply the resulting heuristic to

the problem instance to be solved.

In this stage we create two simplified versions of existing hyper-heuristics.

These are described in Sections 5.1 and 5.2. The first is an adaptive hyper-

heuristic which selects operators dynamically using on-line learning. The

second generates a heuristic using off-line learning, and the heuristic is

71
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then applied to the problem instance to be solved. The second hyper-

heuristic requires a training phase to generate the heuristic, and we inves-

tigate whether the additional time used for training results in a reduced

computational time when the heuristic is applied to a problem instance to

be solved.

5.1 Adaptive Hyper-heuristic (AdaptiveHH)

An adaptive hyper-heuristic (AdaptiveHH) is similar to a meta-heuristic,

and manipulates the unseen low-level operators to find a solution to a

single problem instance. AdaptiveHH is only suitable for on-line learning

since the process is dynamically customised for a given problem instance.

The original multi-phase adaptive approach by Misir et al. [64], and

the modifications made for this thesis, are as follows:

1. Operator Selection Probability Vector. Selection of operators is

based on a probability vector. In the first phase, all operators have

an equal chance of being randomly selected at each iteration. After

a defined number of iterations, or time limit, AdaptiveHH starts a

new phase and the probability vector is recalculated and normalised

based on each operator’s success rate, ri, in the previous phase:

ri =
number of improving solutionsi

operator callsi

The modified vector improves the chances of operators with a higher

success rate being selected during the new phase. Misir et al. [64]

use more complex formulae to recalculate the vector, incorporating

operator execution time and time remaining. We introduce time

weighted performance measures in the third stage of this thesis (see

Chapter 6). The selection probability of an operator which consis-

tently fails to improve the solution is gradually reduced to a speci-

fied minimum (which may be zero).
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2. Operator Selection and Execution. To facilitate the crossover oper-

ator type (see Section 3.2 on page 33), which uses two parent solu-

tions, a small population of solutions is maintained at any one time.

Initially the population consists of, say, 6 solutions generated using

the unseen construction method defined for the relevant problem do-

main. An operator is selected and applied to a solution in the current

population of solutions. Misir et al. [64] use the best solution found

so far as the primary parent solution whereas we randomly select a

parent solution from the population at each iteration.

3. Reinitialisation. If no improved solutions are achieved for a speci-

fied number of iterations (i1) then the parameters α, β (see Section 3.2

on page 33) are increased in steps of 0.025. If no improved solutions

are achieved for a larger specified number of iterations (i2, where

i2 ≫ i1), then the population of solutions (other than the best found

so far) is reinitialised using the construction method defined for the

relevant problem domain. The reinitialisation process also resets the

parameters α and β to the defined minimum values.

4. “Relay” Hybridisation. Misir et al. [64] include a step which selects

and executes operators in pairs. We omit this step in the interests of

simplicity.

5. Adaptive Move Acceptance. In the event no improving solutions

are found for a defined number of iterations, Misir et al. [64] incor-

porate a step which enables selection of a solution other than the best

found so far as the primary parent solution for the next iteration. We

omit this step as it is unnecessary when randomly selecting the pri-

mary parent solution.

The hyper-heuristic is repeated until a pre-determined time limit or

early termination condition (i.e. attainment of a target value) is reached.
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5.2 HyFlex Compatible Grammar Based Hyper-

heuristic

The second hyper-heuristic we describe in this chapter is based on the

grammar guided GP [89] approach taken by Sabar et al. [80] which uses

GP [44] in the manner described by Burke et al. [10]. The grammar guided

genetic programming (GGGP) [89, 57] hyper-heuristic (GrammarHH) is a

generation approach using on-line learning during training and no learn-

ing when applied to a new problem instance, i.e., it is a generation ap-

proach with off-line learning. GrammarHH evolves a single heuristic,

with parameter values, suitable for solving comparable problem instances.

We use a separate set of six different sized problem instances for training.

GrammarHH develops a reusable heuristic which can be applied to

any problem instance in the same domain. The GP population consists

of low-level heuristics evolved from component operators in one of the

sequences in the “language” defined by the domain independent gram-

mar (see Table 5.1). Each heuristic consists of one or more operators from

the mutation and/or ruin-recreate operator types (see Section 3.2 on page

33) which are applied in sequence. This is followed by a search operator

which may be preceded or succeeded by a crossover operator. This design

is similar to the general structure of the heuristics developed in stage one

of this thesis.

GrammarHH is implemented in Java using the HyFlex HyperHeuris-

tic [70] template which defines the data structures and methods the hyper-

heuristic requires to interface with a HyFlex compatible problem domain.

GGGP is implemented as strongly-typed GP within the ECJ [49, 50] Java

software package. When evaluating a member of the GGGP population,

the evaluation code we have added to the ECJ application creates a Gram-

marHH object containing the heuristic created from the grammar. Gram-

marHH implements the heuristic on the unseen problem domain and re-

turns the solution value (fitness) to the ECJ application.
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Table 5.1: Grammar used with GrammarHH on the CVRP domain. The

HyFlex parameters, α and β, are set by the < global > production rule.

LHS Options

< heuristic > < global >< alter >< localsearch >

< global > < range >< range >

< alter > < mutate > | < mutate >< alter >

< localsearch > < search > | < search >< crossover > |

< crossover >< search >

< range > 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |

0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8

< mutate > m0 | m1 | m2 | m3 | r0 | r1

< crossover > x0 | x1

< search > s0 | s1 | s2 | s3

Each type of operator in the grammar is identified by a letter prefix fol-

lowed by a identification number. For convenience, and to avoid use of

modular arithmetic, the < mutate >, < crossover > and < search > rules

in the grammar are customised for each problem domain to match the

number of operators of each operator type. A domain independent gram-

mar can be generated by omitting this customisation and using modular

arithmetic to map the selected rule to the operator.

Tournament selection is used at each new GP generation to choose the

heuristics on which GP crossover and mutation operators are to be applied

to create the next generation. Sabar et al. [80] used Grammatical Evolu-

tion [78] to manage the GP process, whereas we use a generic Grammar

Guided Genetic Programming (GGGP) [89, 57] approach.

During the training phase we apply the evolved heuristic to the same

six problem instances used for training during the experiments in stage

one (see Section 4.4 on page 60). The fitness value is the aggregate of the
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individual solution distances. The evolved heuristic is repeatedly applied

to each test problem instance until a time limit or early termination condi-

tion is reached.

In these experiments with GrammarHH, only improving or equally

good solutions are accepted, whereas Sabar et al. [80] include a choice

of eight different acceptance criteria. We repeat training 30 times and

store every generated heuristic that delivers a fitness on the six training

instances within a specified target threshold (within 1.5% of the aggregate

of the best found solutions to each instance).

5.3 Experiment Design

The experiments with GrammarHH were conducted in parallel with Adap-

tiveHH to measure the comparative performance of the two hyper-heuristics.

There is no literature which compares a generation hyper-heuristic and a

selection hyper-heuristic on the same problem domain. Our aim is to learn

about their relative strengths and weaknesses.

We measure the speed of each hyper-heuristic in finding (if possible) a

solution equal to, or better than, one of two targets set at 0.5% and 1.5%

above the best solution found during the stage one experiments (see Chap-

ter 4) on each of 58 CVRP instances [1]. These instances are the 40 CVRP

instances used in stage one from the A and E prefix instances (see Section

4.4 on page 60) together with 18 B prefix instances of Augerat et al. [1, 4]

(in addition to the 6 instances used for training in both stages one and

two). The instances range in size between 32 and 262 customers. Due to

the small number of instances in the six in-built HyFlex domains, we do

not extend the speed-to-target test to those domains.

Both hyper-heuristics will endeavour to select the best performing op-

erators from an unseen set of operators applicable to the problem do-

main. The problem domains we use contain between 8 and 15 operators.

We analyse the frequency with which each operator is selected by Adap-
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Table 5.2: Parameters used for experiments.

Parameter AdaptiveHH GrammarHH

Time limit 2 mins. 2 mins.

Parameter value range 0.2 ≤ α, β ≤ 0.8 0.2 ≤ α, β ≤ 0.8

Parameter adjustment threshold 500 calls n/a

Parameter increment on threshold 0.025 n/a

No progress reinitialisation 10,000 calls 10,000 calls

Hyflex Solution Population 6 6

GP Heuristic Population n/a 25

GP Generations n/a 8

GP Crossover probability n/a 0.8

GP Mutation probability n/a 0.2

tiveHH in the seven problem domains using fixed two minute runs. In the

case of the CVRP domain, we also compare the frequency with the num-

ber of times the operator is selected as part of a “good” heuristic generated

by GrammarHH.

After some preliminary experimentation we use the parameter settings

shown in Table 5.2. Based on the results from the stage one experiments,

the GP population size and number of generations are set at the values

shown.

5.4 Results and Discussion

We evaluate performance of the operator selection process and the attain-

ment of the solution target values. Our experiments described in Chapter

4 established a best found solution (bfs) for each CVRP instance (minimi-

sation objective) and target values established, being bfs + 0.5% and bfs +

1.5%.
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5.4.1 Operator selection and performance

We compare the number of times a particular operator is called, its relative

success rate, and failed run rate (i.e. zero improving solutions in a run)

when using AdaptiveHH and GrammarHH. We conduct this experiment

using a maximum computation time of 2 minutes per run to achieve two

target solution values. If, during the run, improving solutions cease to

be achieved for 10,000 consecutive operator executions, the population of

solutions (other than the best solution found so far) is reinitialised. The

run continues with a fresh set of solutions, generated using the unseen

construction method defined for the problem domain.

We observe each operator’s average execution time but, unlike Misir et

al. [64], we do not use the execution time to adjust the operation selection

vector. In the CVRP domain the local search operators have an execution

time approximately 36 times longer, and the ruin-recreate and crossover op-

erators approximately 12 times longer, than the mutation operators on the

problem instances used in these experiments.

Table 5.3 records the results from AdaptiveHH across 1,920 runs (30

repetitions × 64 CVRP instances (58 + 6 GrammarHH training instances))

with the CVRP problem domain using a maximum computation time of

2 minutes per run. We record a success against an operator each time the

operator delivers an improved solution when executed (which may not be

on the best solution to date). A failed run is recorded against an operator

if the operator fails to deliver a single improved solution during the entire

run.

The GrammarHH selection results in Table 5.3 are based on the num-

ber of times an operator is contained in the 47 different heuristics that

achieved a fitness within a defined threshold (aggregate of best found in-

stance solutions +1.5%) during training.

A total of 724.7 million operator executions were made during the 1,920

runs with AdaptiveHH when allowing a maximum computation time of

2 minutes per run. A run was terminated early if the current solution for
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Table 5.3: CVRP Domain: Operator call (selection) and execution record.

Operators described in Section 3.3.1. Runs: 1,920 (30 runs × 64 instances).

Total operator calls (AdaptiveHH): 724.7 million. A failed run is recorded

if an individual operator fails to deliver a single improved solution during

an entire run.

Operator Calls per Failed AdaptiveHH GrammarHH

(see 3.3.1) Improvement Run Call Rate Selection

M1 10,669 54.9% 3.0% 5.8%

M2 18,117 83.9% 0.9% 1.9%

M3 14,332 42.4% 3.6% 6.7%

M4 18,028 85.6% 0.7% 4.8%

R1 6,727 0.5% 16.1% 15.4%

R2 5,926 0.7% 17.6% 10.6%

S1 4,280 2.5% 16.4% 13.5%

S2 9,688 38.1% 4.4% 8.6%

S3 6,360 20.2% 9.5% 8.6%

S4 6,610 13.6% 8.3% 4.8%

X1 6,572 7.9% 14.0% 13.5%

X2 20,586 0.6% 5.4% 5.8%

the CVRP instance was within a target value of 0.5% above the best solu-

tion found during the experiments in the first stage of this thesis. Overall

computation time for the 1,920 runs was 30.5 hours.

Comparable operator call results for the six in-built Hyflex problem

domains (see Section 3.2 on page 33), grouped by operator type, are shown

in Table 5.4. The in-built domains each contain 10 or 12 problem instances.

Each problem instance is solved 30 times using different random number

generator seeds. The data is therefore based on 300 or 360 runs for each

domain.
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Table 5.4: Low-level operator type performance across 300 or 360 runs us-

ing AdaptiveHH on in-built HyFlex [70] domains. A failed run is recorded

if an individual operator fails to deliver a single improved solution during

an entire run. Note that the in-built crossover operator in the Bin Packing

domain fails to capture usage data.

Domain Operator Number Call Calls per Failed

Type Ops. Rate improvement Run

CVRP+TW mutation 3 22.5% 299 29.3%

ruin-rec. 2 20.2% 503 1.7%

search 3 39.3% 69 6.2%

crossover 2 18.0% 229 0.0%

TSP mutation 5 7.7% 34,482 99.6%

ruin-rec. 1 1.0% ∞ 100%

search 3 87.1% 5,881 46.0%

crossover 4 4.2% 75,578 99.9%

MaxSAT mutation 5 62.4% 88 6.3%

ruin-rec. 1 3.2% 1,508 81.9%

search 2 28.3% 84 0.0%

crossover 2 6.1% 2,565 89.2%

Bin Packing mutation 3 n/a 146 39.7%

ruin-rec. 2 n/a 113 11.0%

search 2 n/a 56 1.5%

crossover 1 n/a n/a 35.3%

Flow Shop mutation 5 8.4% 62,472 99.8%

ruin-rec. 2 16.9% 770 81.0%

search 4 68.0% 1,265 5.9%

crossover 4 6.7% 20,305 99.7%

Psnl Sched mutation 1 8.9% ∞ 100%

ruin-rec. 3 25.9% 9 76.6%

search 5 36.8% 2 34.5%

crossover 3 28.4% ∞ 100%
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5.4.2 Speed to Target Solution

We assess the speed at which each hyper-heuristic reaches (if possible)

two target solution values for each of 58 CVRP instances ranging in size

between 32 and 262 customers. A maximum time of 2 minutes is allowed

to achieve the target value, after which the run is classified as out of time.

Each instance is run 30 times, and the time to reach (if possible) a solution

equal to, or better than, the two target values recorded. The two target

values are based on the best solution to each CVRP instance found during

the stage one experiments. GrammarHH uses the best performing heuris-

tic obtained from the training phase. The results are shown in Table 5.5.

5.4.3 Discussion

Because AdaptiveHH adjusts the probability of an operator being selected

based on its performance, selections become biased towards operators

which have a higher success rate. Table 5.3 illustrates that both hyper-

heuristics select operators in roughly the same proportion. However, Adap-

tiveHH uses the full range of operators during each run, whereas Gram-

marHH uses only one generated heuristic (of 47) containing a small sub-

set of operators. The low success rate of mutation operators is offset by

the relative speed of execution. However, some mutation operators have

a very high failed run rate meaning additional calls of this type of op-

erator may not achieve improving solutions regardless of the number of

calls made. By comparison, the two ruin-recreate type operators in the

CVRP domain have a relatively high success rate and a very low failed

run rate, suggesting additional calls of either of these two operators might

achieve improved solutions faster. The call rate shown in Table 5.3 illus-

trates that AdaptiveHH has progressively biased the selection towards the

ruin-recreate operators and the first of the local search operators.

Table 5.4 illustrates that operators of a particular type do not perform

consistently across domains and in some cases individual operators may
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Table 5.5: Time to achieve (if possible) target solution on 58 CVRP in-

stances run 30 times. Maximum 2 minute time limit. Target based on

best found solution (bfs) to each instance during preliminary test runs.

Time Adaptive Grammar Adaptive Grammar

(seconds) bfs + 0.5% bfs + 0.5% bfs + 1.5% bfs + 1.5%

0→ 1 491 266 726 453

1→ 5 150 192 228 311

5→ 10 93 98 104 138

10→ 20 91 94 101 122

20→ 30 43 47 60 50

30→ 60 71 77 92 91

60→ 120 99 87 88 102

out of time 702 879 341 473

≤ 5 secs.(all) 37% 26% 55% 44%

.. small inst. 79% 62% 94% 79%

.. mid size inst. 48% 35% 68% 62%

.. large inst. 6% 4% 26% 20%

out of time (all) 40% 51% 20% 27%

.. small inst. 11% 23% 1% 8%

.. mid size inst. 34% 47% 15% 20%

.. large inst. 71% 77% 40% 50%

have a very high failed run rate (100% in some cases). This leaves some do-

mains with only a few productive operators, e.g., the Flow Shop domain.

The challenge for the hyper-heuristic is to quickly identify and focus on

applying those operators which perform well. The call rate results in Ta-

ble 5.4 indicate that AdaptiveHH has, in general, successfully identified

the best performing operators and biased selection accordingly.

Generally, AdaptiveHH outperforms GrammarHH in both speed and

number of times the target value is attained. This relative performance
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between the two hyper-heuristics is consistent across all sizes of problem

instances. Repeat experiments using the next three best heuristics devel-

oped during GrammarHH training achieve similar outcomes. Allowing

more computational time enables some out-of-time runs to achieve the

target value.

Overall, knowledge gained during the training phase of GrammarHH

(i.e. which domain-specific operators are productive) does not improve

the computation speed compared to AdaptiveHH when working on a

problem instance to be solved. The computational time expended during

the training phase is therefore not recovered. There is evidence that the

flexibility of AdaptiveHH outperforms the more rigid structure of Gram-

marHH when applied to new problem instances. This is possibly due to

the variable performance of the mutation operators, which periodically

fail for the entire run. In such cases, AdaptiveHH applies alternative op-

erators, whereas GrammarHH is unable to adjust its approach. However

the difference in performance may also be due to numerous factors rang-

ing from the structure and content of the GrammarHH grammar to the

arbitrary setting of the parameters both hyper-heuristics require. The fit-

ness function used during training may also have biased the heuristic’s

fitness evaluation towards larger problem instances.

Deciding whether to terminate a run early, or allow execution to con-

tinue until the time limit is reached, is a trade-off between speed and qual-

ity. In this stage we use attainment of a target value to trigger early termi-

nation. However it may not always be possible to specify a realistic tar-

get when dealing with previously unseen problem instances. As shown

in Table 5.5, some runs find a “good” solution in under 1 second. With

AdaptiveHH at least one (in some cases, all) of the thirty runs with each

instance attained the target solution within one second with 50 of the 58

CVRP instances.
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5.5 Stage 2 Conclusions

These experiments indicate that both hyper-heuristics can successfully ma-

nipulate unseen low-level operators in different problem domains to de-

liver solutions of a reasonable quality. Table 5.4 shows that operators can

vary substantially in effectiveness and efficiency, requiring the operator

selection process to respond to domain specific factors. The stage two ex-

periments show the flexibility of AdaptiveHH outperforms the more rigid

structure of GrammarHH in both computational speed and solution qual-

ity.

With hindsight, there appears to be a good case for including the op-

erator execution time in the operator selection vector adjustment process

when using AdaptiveHH. Also, increasing the number and range of choice

of Operator Selection Vectors and Solution Acceptance Criteria may also

provide opportunities for better performance.

Summary

In this chapter we have compared the performance of two hyper-heuristics

of contrasting design. As discussed, extending AdaptiveHH to provide a

wider choice of Operator Selection Vectors and Solution Acceptance Crite-

ria may improve the ability of the hyper-heuristic to respond to scalability

issues. We investigate this in the third stage of this thesis, which is de-

scribed in Chapter 6.



Chapter 6

Managing Scalability with an

Adaptive Hyper-heuristic

As discussed in Chapter 5, we show that an adaptive hyper-heuristic can

be a successful approach when applying an evolutionary computation

method to solving combinatorial optimisation problems. By using a pair-

ing of an operator (heuristic) selection vector and solution acceptance cri-

teria, an adaptive hyper-heuristic can manage development of a “good”

solution within an unseen low-level problem domain in a commercially re-

alistic computational time. However not all selection vectors and solution

acceptance criteria pairings deliver competitive results when faced with

differing problem instance features and computational time limits. In this

stage of this thesis we use pairings of six different operator selection vec-

tors and eight solution acceptance criteria, and monitor the performance

of the adaptive hyper-heuristic when applying each pairing to a set of 50

CVRP instances we have created. The problem instances are all the same

80-node size (79 customers + 1 depot), but with different features. Our re-

sults show that a few pairings of operator selection vector and acceptance

criterion perform consistently well, while others require a longer compu-

tational time to deliver competitive results. We also investigate some of

the features of a problem instance that may influence the performance of

85
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the selection vector and acceptance criterion pairings.

The adaptive hyper-heuristic, AdaptiveHH2, described in this chap-

ter is an enhanced version of the adaptive hyper-heuristic described in

Chapter 5. With AdaptiveHH2 we provide multiple choices for Operator

Selection Vector and Solution Acceptance Criteria. Conceptually, Adap-

tiveHH2 iteratively selects and applies an unseen operator from the prob-

lem domain. The resulting solution is then retained or discarded based on

the acceptance criteria specified by AdaptiveHH2. AdaptiveHH2 requires

a number of parameters which set the computation time, the number of

intermediate decision points (phases), and the choice of operator selection

vector and acceptance criterion to use (see Figure 6.1). The two main com-

ponents of AdaptiveHH2 are:

1. The Operator Selection Vector. This vector is used to select the next

operator to apply. The vector is updated at the start of each phase

based on the performance of the operator in the preceding phase(s).

It determines the probability of each operator being selected and ap-

plied to the current solution.

2. The Solution Acceptance Criteria. Once an operator modifies a so-

lution to create a new solution, the hyper-heuristic needs to decide

whether to accept (retain) or discard the new solution.

6.1 Operator Selection Vector Design

AdaptiveHH2 operates for a specified time limit which is broken down

into a specified number of phases of equal duration. The operator selec-

tion vector is updated at the end of each phase. The choice of selection

vector and acceptance criterion is fixed at the beginning of the run and is

not altered during the run. The selection vector consists of an array of op-

erators, each with a probability of selection. In the initial selection vector

(regardless of type) all operators have an equal probability of selection.
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Figure 6.1: Overview of how an adaptive hyper-heuristic interacts with a

low-level problem domain across the domain barrier.

We follow the example of Misir et al. [64] and allow some of the selec-

tion vectors described below to exclude operators for one or more phases

(i.e. the selection probability is zero). The number of phases an unsuc-

cessful operator is excluded is based on a performance penalty. The first

time an operator is excluded, the performance penalty is set to one. This

means the operator is readmitted to the selection vector at the end of the

next phase (i.e. one phase exclusion) with a probability of 0.01 prior to nor-

malisation. If the operator is immediately excluded again during the vec-

tor update process at the end of the readmission phase, the performance

penalty, and hence the number of exclusion phases, is increased by one.

Should the operator be readmitted and survive the vector update process

into the succeeding phase, then the performance penalty is reset to one.

The AdaptiveHH used during the second stage of this thesis (see Chap-
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ter 5) used only the Basic Selector [BS]. In this stage of this thesis we exam-

ine the relative performance of the 48 different pairings of operator selec-

tion vector and solution acceptance criteria described below and in Section

6.2. The operator selection vectors are of our own design, but use compo-

nents of the single selection vector used by Misir et al. [64].

1. [FS] Fixed Selector: The initial vector is not altered during the run,

so provides a benchmark against which other selection vectors can

be measured. All operators have an equal probability of selection

regardless of performance.

2. [BS] Basic Selector: Updates probabilities by evaluating the success

rate of each operator, ri, since the start of the run:

ri =
number of improvementsi

number of callsi

This vector does not exclude operators and sets a minimum proba-

bility of selection as 0.01 prior to normalisation.

3. [P1] Phase Selector (1): Updates probabilities by evaluating the suc-

cess rate of the each operator, ri, in the most recent phase:

ri =
number of improvementsi

number of callsi

During the update process a threshold is set equal to 1
3

of the success

rate of the best performing operator, rbest, in that phase. If ri ≥
rbest
3

it is included in the selection vector for the next phase with a proba-

bility of ri, minimum 0.01, prior to normalisation. Operators where

ri <
rbest
3

are excluded from the vector for the number of phases de-

termined by their performance penalty.

4. [P2] Phase Selector (2): Updates probabilities by evaluating the suc-

cess rate of the each operator, ri, in the most recent phase:

ri =
number of improvementsi

number of callsi
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This vector does not exclude operators and sets a minimum proba-

bility of selection at 0.01 prior to normalisation. It differs from [BS]

in that this selection vector only considers performance during the

most recent phase.

5. [T1] Time Weighted Phase Selector (1): The time weighted selec-

tor uses a time weight, wi, to penalise slower operators. This is cal-

culated using the average operator execution time, averageOpT ime,

during the preceding phase:

wi =

√

averageOpT imei

averageOpT imefastest

The time weighted success rate of each operator, ri, in the most recent

phase is evaluated:

ri =
number of improvementsi

wi × number of callsi

During the update process a threshold is set equal to 1
3

of rbest. If

ri ≥
rbest
3

it is included in the selection vector for the next phase with

a probability of ri, minimum 0.01, prior to normalisation. Opera-

tors where ri <
rbest
3

are excluded from the vector for the number of

phases determined by their performance penalty.

6. [T2] Time Weighted Phase Selector (2): Calculation of the time weight,

wi, and success rates, ri, are identical to that described for [T1]. For

this selector all ri are ranked highest to lowest, including those ex-

cluded from the selection vector (ri = 0). A threshold, T , is set equal

to the ri of the operator ranked NumberOfOperators
2

(T may be zero). If

ri ≥ T , it is included in the selection vector for the next phase with a

probability weighting of 1
rank

, prior to normalisation.



90CHAPTER 6. MANAGING SCALABILITY WITH AN ADAPTIVE HYPER-HEURISTIC

6.2 Acceptance Criteria Design

Each application of an operator takes a current solution and modifies it to

create a new solution. The new solution is then considered for acceptance

into the small population of solutions. If the new solution is not accepted

then it is discarded. If the new solution is at least as good as the solution it

will replace, then it is automatically accepted into the population of solu-

tions regardless of the acceptance criteria specified by the hyper-heuristic.

The following eight acceptance criteria are those proposed by Sabar et al.

[80] with minor modifications. As far as possible we have retained the

labels and arbitrary values proposed by Sabar et al. [80] and only made

changes which are necessary to satisfy HyFlex framework [70] constraints.

In all cases, the new solution is compared to the solution it will replace (if

accepted) in the population of solutions.

1. [IO] Improving or Equal Only: Only improving (better objective

value) or equally good solutions are accepted. All other solutions

are discarded.

2. [AM] Accept Move: All new solutions are accepted.

3. [SA] Simulated Annealing: Non-improving solutions are accepted

with a probability e−δ/t, where δ is the change in the objective value

between the old and new solutions. The “temperature”, t, is 0.5 ×

Sbest × 0.85phase−1, where Sbest is the current best solution objective

value [83]. The probability of a non-improving solution being ac-

cepted decreases as (a) the change in objective value increases and

(b) as time progresses.

4. [MC] Exponential Monte Carlo: Non-improving solutions are ac-

cepted with a probability e−δ, where δ is the change in the objective

value between the old and new solutions. The probability of a non-

improving solution being accepted decreases as the change in objec-

tive value, δ, increases.



6.3. EXPERIMENTAL DESIGN 91

5. [RR] Record to Record Travel: Non-improving solutions are accepted

if the new solution has an objective value less than or equal to 1.03×

Sbest, where Sbest is the current best solution objective value [27].

6. [GD] Great Deluge: Non-improving solutions are accepted if the

new solution has an objective value less than or equal to

(1 + 0.85phase−1)× Sbest

where Sbest is the current best solution objective value [27]. The prob-

ability of a non-improving solution being accepted decreases as time

progresses.

7. [NA] Naı̈ve Acceptance: Non-improving solutions are accepted with

0.5 probability.

8. [AA] Adaptive Acceptance: Non-improving solutions are accepted

with a probability 1− 1
C

, where C > 0 is a counter which increments

every 10,000 consecutive operator calls without an improvement in

the objective value of the best solution found so far. The counter

is reset to 1 each time an improved best solution objective value is

found. The probability of a non-improving solution being accepted

increases when the search for better solutions reaches a plateau and

new best found solutions become harder to find.

6.3 Experimental Design

We test the effectiveness of AdaptiveHH2 by rating each solution gener-

ated against the best solution objective value achieved within the compu-

tational time limit. We use different pairings of operator selection vector

and acceptance criterion. There are 48 possible pairings of operator selec-

tion vector (6) and solution acceptance criteria (8). Parameters also set the

rules about how AdaptiveHH2 responds if progress towards improving

the current solution is stalled.
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These experiments use the CVRP domain described in Section 3.3 on

page 36, which is compatible with the HyFlex [70] framework. We create

50 random 80-node (79 customers + 1 depot) problem instances requiring

a minimum of between 3 and 19 routes. Each problem instance is ran-

domly created using an 80×80 grid. Each instance contains three nodes at

fixed locations (see Figure 6.2), one of which is the depot, and the other 77

nodes at randomly generated locations. Vehicle capacity is fixed at 1,000

units and each customer’s demand is a randomly generated integer with

an upper bound ranging from 5% to 45% (randomly set for each instance)

of the vehicle capacity, with a minimum demand of 1 unit.

The size of the population of solutions is set at six. The hyper-heuristic

is only provided with the number of operators of each operator type and

has no knowledge of the actual function each operator performs.

We seek to determine:

1. Whether there are particular pairings of operator selection vector

and acceptance criterion which consistently perform well or poorly

compared to other pairings in arriving at a “good” solution within

a short computational time. We examine how each pair affects the

frequency with which each operator type is selected.

2. Whether the location of the depot in relation to the customers in-

fluences the consistency and quality of the solutions. To this end

we take a problem instance (see Figure 6.2) and relocate the depot

by swapping the grid coordinates of the depot with one of two cus-

tomers highlighted. The problem instance is otherwise unchanged.

The alternative depot locations are chosen so that the depot is geo-

graphically: (a) central, (b) off-centre, and (c) remote.

3. Although we use CVRP instances of the same size, the differing cus-

tomer demand values mean solutions require a minimum number of

routes ranging from 3 to 19. We examine the influence the number
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Figure 6.2: Randomly generated 80-node problem instance on an 80 × 80

grid, showing the 3 alternative depot locations (highlighted).

of routes has on the performance of the operator selection vector and

acceptance criterion pairings.

We compare the quality of the results from 30 replications on a set of

50 randomly generated 80 node CVRP instances. We rate individual so-

lutions against the best solution found during the batch of runs (typically

1,440 runs, being 30 replications of 48 pairings) using the following for-

mula (lower ratings are better).

ratingi =

(

100× (solutioni − solutionbest)

solutionbest

)2

This provides an indication of the relative performance of each pair com-

pared to its peers.

We conduct 25-phase (see Section 5.1 on page 72) experiments using

three different depot locations on 50 CVRP instances. We measure perfor-

mance of each pair using computational time limits of 1, 5, 15, 30, 60, 120
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and 300 seconds. AdaptiveHH2 includes a reinitialisation mechanism we

have designed if no improving solutions are found for 10,000 consecutive

operator calls (see Section 6.3.1). It also contains an early termination con-

dition (see Section 6.3.1) should there still be no improvements to the best

found solution for two consecutive phases. The purpose of this mecha-

nism is to allow processing to be halted when the hyper-heuristic detects

there is a very low likelihood of making further improvements to the best

found solution so far.

6.3.1 Stalling

The best found solution may reach a state where no further improvements

have been made for a considerable number of operator applications. We

refer to this phenomenon as stalling. Assuming sufficient computational

time is allowed, the rate at which the best found solution is improved

will gradually diminish and eventually stall. This may, of course, be due

to the best found solution being an optimal solution. Unfortunately, the

hyper-heuristic has no means of knowing when an optimal solution has

been reached. However, the lack of further improvements may also be due

to solution development becoming stuck at a particular solution which is

beyond the ability of the operators to break free from. This is commonly

referred to as “local optima”, but note that the local optima is only defined

with respect to the operators available. The hyper-heuristic has no means

of knowing the cause of the stalling, and must therefore apply a single set

of actions in response.

For the hyper-heuristics conforming to the HyFlex [70] framework spec-

ifications we have followed the example of Misir et al. [64] and develop a

multi-stage approach, repeating each stage multiple times before moving

onto the next stage. The stages we have developed are:

1. Global parameter adjustment: The hyper-heuristic can instruct the

problem domain to adjust the global α and β parameters (see Section
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3.2 on page 33). This will adjust the performance of the operators that

use either or both those parameters although the appropriate size of

the required change is difficult to predict. This adjustment may be

sufficient to enable an operator to create a new solution which di-

rectly or indirectly enables progress towards improving the current

best found solution. In this thesis we set the threshold to trigger an

adjustment in the global parameters every 500 consecutive operator

calls without any improving solution.

2. Reinitialise solutions: If no further improvements to the best found

solution occur from adjusting the global parameters, the next option

is to reinitialise the population of solutions, other than the best found

solution so far. This is a more drastic change which discards all but

one of the current solutions. It can, however, provide the large scale

change that may be able to overcome the cause of the stalling. Less

drastic options include adding rather than replacing solutions in the

population of solutions. In this thesis we set the threshold to trig-

ger a reinitialisation at 10,000 consecutive operator calls without any

improving solution.

3. Change operator selection vector and/or solution acceptance cri-

terion: If both the preceding stages fail (or as an alternative to reini-

tialisation), then the operator selection vector and/or solution accep-

tance criterion can be replaced during an interim phase update. We

omit this feature in AdaptiveHH2, but it is a recommended option

in future research.

4. Early termination: If all these adjustment attempts fail, then the

hyper-heuristic should consider terminating the computation and re-

turn the current best found solution.

Since the hyper-heuristic has no detailed knowledge of the problem

domain, nor of the problem instance size and features, there is no
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means of determining the best computational time to allow. Conse-

quently a manually specified computational time limit may be exces-

sive or insufficient to arrive at a “good” solution. When faced with a

previously unseen problem instance, it may be very difficult to man-

ually estimate the appropriate computational time to allow. Conse-

quently there is a tendency to err on the side of caution, and specify

a generous computational time limit. However, in a commercial en-

vironment, a “good” solution may be required as soon as possible

and unnecessary computational effort may be costly. We therefore

include in the design of AdaptiveHH2 a mechanism that terminates

the computation regardless of the computational time still available.

Setting the appropriate threshold to trigger early termination is dif-

ficult. This thesis focuses on appropriate criteria for the operators

contained within the CVRP domain we have created. Further work

is required to adjust these parameters and modify the criteria for a

generic problem domain. In this thesis we enable early termination

if either a target objective value (which may be set to zero) is reached

or if no improvements to the objective value of the best found solu-

tion are found for N consecutive operator calls, P phases, or T time.

6.4 Results and Discussion

Tables 6.1 to 6.4 and Figure 6.3 show the results for all pairings from the

batches using a 60 second computational time limit for each depot loca-

tion. Table 6.5 shows results from the five best and five worst performing

pairings identified in Tables 6.1 and 6.2. Widely differing customer de-

mand values mean the 50 CVRP instances require a minimum of between

3 and 19 routes to service all customers. Tables 6.3 and 6.4 compare the

performance of pairings on problem instances where the minimum num-

ber of routes is small (3–5 routes), medium (6–13 routes) and large (14–19

routes). Table 6.5 shows the change in performance over different compu-
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Figure 6.3: Comparison of acceptance criteria and selection vector per-

formance during 60 seconds runs shown in Table 6.1. Lower ratings are

better.

tational time limits. In Table 6.5 the performance is measured against the

best solution found in any batch for each CVRP instance and depot loca-

tion. Early terminations only affect the data when allowing a 300 seconds

computational time limit. A negligible number (<0.1%) of early termina-

tions occurred with a 120 second time limit, and none with the shorter

time limits.

Tables 6.1 and 6.2 illustrate the difference in performance when the de-

pot is at different locations. While all pairings provide better results when

the depot is located centrally compared to off-centre, the better perform-

ing pairings generally show improving performance when the depot is

moved even further away from the centre. In contrast, the poorer per-

forming pairings generally show neutral to worsening results the farther

the depot is located from the geographic centre. This highlights that the

size of the problem instance is not the only factor influencing the perfor-

mance of the hyper-heuristic.
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Table 6.1: Part 1: Average rating of each selection vector and acceptance

criteria pair over 3 depot locations × 30 replications × 60 seconds runs on

50 randomly generated CVRP instances (80 nodes, 3 depot locations (see

Figure 6.2)). Lower ratings are better. Best five performing pairings in

bold; five worst in italics. Also see Table 6.2.

Accept. Select. Central Off-cen. Remote Avge. Std.

Criteria Vector Depot Depot Depot Rating Dev.

IO FS 10.33 12.35 13.02 11.90 13.62

IO BS 10.09 12.50 13.04 11.88 13.53

IO P1 9.96 12.29 12.99 11.75 13.50

IO P2 10.09 12.29 12.96 11.78 13.38

IO T1 9.60 11.21 11.99 10.93 12.50

IO T2 9.74 11.63 12.50 11.29 12.85

AM FS 9.01 11.89 10.61 10.51 12.42

AM BS 8.09 11.09 10.02 9.73 11.37

AM P1 8.19 11.74 10.79 10.24 12.27

AM P2 7.51 11.57 10.72 9.93 11.97

AM T1 6.25 10.17 8.86 8.43 10.84

AM T2 7.35 10.78 9.48 9.20 10.95

SA FS 6.81 9.25 9.13 8.40 10.31

SA BS 5.93 8.56 8.94 7.81 10.36

SA P1 7.19 10.34 10.36 9.30 11.52

SA P2 6.74 9.65 10.02 8.80 10.74

SA T1 5.59 8.06 7.83 7.16 9.60

SA T2 6.10 8.80 8.77 7.89 10.35

MC FS 9.75 10.96 12.38 11.03 12.54

MC BS 11.02 13.03 14.70 12.92 14.28

MC P1 11.92 14.34 15.87 14.04 15.28

MC P2 13.49 16.35 17.36 15.73 17.04

MC T1 11.77 15.01 15.37 14.05 15.60

MC T2 9.99 11.05 12.49 11.18 12.96
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Table 6.2: Part 2: Average rating of each selection vector and acceptance

criteria pair over 3 depot locations × 30 replications × 60 seconds runs on

50 randomly generated CVRP instances (80 nodes, 3 depot locations (see

Figure 6.2)). Lower ratings are better. Best five performing pairings in

bold; five worst in italics. Also see Table 6.1.

Accept. Select. Central Off-cen. Remote Avge. Std.

Criteria Vector Depot Depot Depot Rating Dev.

RR FS 6.77 9.46 9.76 8.66 10.88

RR BS 6.50 9.25 9.63 8.46 10.76

RR P1 7.73 11.30 11.91 10.31 12.27

RR P2 9.21 13.85 14.29 12.45 14.21

RR T1 9.29 13.05 13.16 11.83 13.55

RR T2 6.55 9.30 10.17 8.68 11.01

GD FS 7.66 9.33 9.81 8.93 11.14

GD BS 6.47 7.98 9.22 7.89 10.29

GD P1 8.15 10.35 11.00 9.83 11.92

GD P2 7.57 9.82 10.69 9.36 11.31

GD T1 6.15 8.74 8.42 7.77 10.32

GD T2 6.72 8.49 8.88 8.03 10.33

NA FS 6.71 9.66 8.99 8.45 10.61

NA BS 5.96 8.68 8.11 7.59 10.01

NA P1 6.38 9.63 9.04 8.35 10.51

NA P2 6.33 9.35 8.86 8.18 10.20

NA T1 4.58 7.60 6.95 6.37 8.88

NA T2 5.88 8.64 8.22 7.58 9.84

AA FS 8.58 10.60 9.92 9.70 11.58

AA BS 8.08 9.48 9.51 9.03 10.85

AA P1 8.28 10.31 9.96 9.52 11.55

AA P2 8.12 10.74 10.49 9.78 11.91

AA T1 7.04 9.93 9.26 8.75 11.29

AA T2 7.62 9.55 9.39 8.85 11.04
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Table 6.3: Comparison (part 1) of average rating of each selection vector

and acceptance criteria pair on CVRP instances requiring a small (15 in-

stances), medium (18 instances) and large (17 instances) minimum num-

ber of routes. Lower ratings are better. Best five performing pairings in

bold; five worst in italics. Also see Table 6.4.

Acceptance Selection 3-5 6-13 14-19 Average Std.Dev.

Criteria Vector routes routes routes Rating

IO FS 8.58 12.58 13.64 11.90 13.62

IO BS 8.20 12.52 13.93 11.88 13.53

IO P1 8.30 12.56 13.43 11.75 13.50

IO P2 8.04 12.39 13.92 11.78 13.38

IO T1 7.57 11.60 12.73 10.93 12.50

IO T2 8.18 11.79 13.07 11.29 12.85

AM FS 6.13 12.42 11.60 10.51 12.42

AM BS 5.65 11.45 10.84 9.73 11.37

AM P1 5.88 12.00 11.49 10.24 12.27

AM P2 6.37 12.12 10.07 9.93 11.97

AM T1 6.23 10.56 7.59 8.43 10.84

AM T2 5.40 10.79 10.25 9.20 10.95

SA FS 5.91 9.00 9.60 8.40 10.31

SA BS 5.67 8.59 8.54 7.81 10.36

SA P1 6.44 10.02 10.63 9.30 11.52

SA P2 6.16 9.38 10.15 8.80 10.74

SA T1 6.30 8.25 6.53 7.16 9.60

SA T2 5.49 8.67 8.81 7.89 10.35

MC FS 7.65 11.84 12.66 11.03 12.54

MC BS 8.24 14.16 15.03 12.92 14.28

MC P1 9.56 15.27 16.03 14.04 15.28

MC P2 11.55 16.90 17.56 15.73 17.04

MC T1 11.84 15.99 13.45 14.05 15.60

MC T2 7.78 11.97 12.84 11.18 12.96
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Table 6.4: Comparison (part 2) of average rating of each selection vector

and acceptance criteria pair on CVRP instances requiring a small (15 in-

stances), medium (18 instances) and large (17 instances) minimum num-

ber of routes. Lower ratings are better. Best five performing pairings in

bold; five worst in italics. Also see Table 6.3.

Acceptance Selection 3-5 6-13 14-19 Average Std.Dev.

Criteria Vector routes routes routes Rating

RR FS 6.57 9.09 9.76 8.66 10.88

RR BS 5.76 8.84 10.09 8.46 10.76

RR P1 6.94 10.65 12.50 10.31 12.27

RR P2 7.94 12.97 15.29 12.45 14.21

RR T1 9.51 12.80 12.47 11.83 13.55

RR T2 6.05 8.87 10.46 8.68 11.01

GD FS 5.78 10.03 10.05 8.93 11.14

GD BS 5.18 8.83 8.86 7.89 10.29

GD P1 5.83 10.96 11.57 9.83 11.92

GD P2 6.40 10.20 10.63 9.36 11.31

GD T1 6.41 9.01 7.35 7.77 10.32

GD T2 5.40 8.77 9.18 8.03 10.33

NA FS 5.76 9.82 8.89 8.45 10.61

NA BS 5.30 8.71 8.01 7.59 10.01

NA P1 5.93 9.55 8.78 8.35 10.51

NA P2 6.57 8.91 8.56 8.18 10.20

NA T1 5.84 7.43 5.54 6.37 8.88

NA T2 5.30 8.77 7.93 7.58 9.84

AA FS 6.32 11.08 10.66 9.70 11.58

AA BS 5.94 9.94 10.31 9.03 10.85

AA P1 6.56 10.53 10.60 9.52 11.55

AA P2 6.72 10.99 10.71 9.78 11.91

AA T1 6.60 10.14 8.75 8.75 11.29

AA T2 6.14 9.74 9.88 8.85 11.04
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As shown in Tables 6.1 and 6.2, some pairings, such as [SA][T1] and

[NA][T1], consistently perform better than other pairings. The pairings

using the [MC] and [IO] acceptance criteria generally perform poorly and

require a longer computational time to achieve results competitive with

the better performing pairings

A possible cause of this difference is the diversity in the population of

solutions. Pairings using the [IO] acceptance criterion, and to a lesser ex-

tent [MC], work with a smaller diversity of interim solutions compared to

other forms of acceptance criteria. This means that time and effort are not

lost on improving low quality solutions that may never become the best

solution in the current population of interim solutions. This is a useful

trait if the computational time limit is very short, since effort is directed

towards improving a better quality solution. On the other hand, accept-

ing only improving or equally good solutions can cause the population

of solutions to stagnate and eventually become clones of the best found

solution. Once this stage is reached the crossover operators become inef-

fective and there is a tendency for the process to stall. The hyper-heuristic

has a mechanism to reinitialise the population of solutions in the event

of stalling, but this is only effective if the selection vector and acceptance

criterion pairing can avoid regenerating the same set of solutions.

Tables 6.1 and 6.2 also confirm that there is an inter-dependency be-

tween the operator selection vector and the acceptance criterion and it is

insufficient to separately evaluate each, even though they carry out dif-

ferent functions. An increase in the number of routes (see Tables 6.3 and

6.4 ) as well as the relative location of the depot are influencing factors as

well. However, Tables 6.1 to 6.4 also show that the relative performance

of operator selection vector and acceptance criterion pairings compared to

other pairings is not greatly altered by the number of routes or depot loca-

tion. A better performing pairing will consistently deliver higher quality

solutions than poorer performing pairings regardless of the depot location

or the minimum number of routes.
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Table 6.5: Average rating of five best and five worst performing pairings

from Tables 6.1 and 6.2 on 50 CVRP instances × 3 depot locations × 30

replications, when allowing a different computational time limit (in sec-

onds). All ratings are measured against the best solution to each instance

(and depot location) found during any of the seven batches.

Accept. Select. 1sec. 5sec. 15s 30s 60s 120s 300s

NA T1 45.27 18.85 12.39 9.25 6.88 5.37 4.07

SA T1 48.08 20.47 14.14 10.52 7.72 5.88 4.28

NA T2 888.03 22.97 13.96 10.81 8.19 6.34 4.67

NA BS 57.72 19.90 13.79 10.89 8.19 6.16 4.49

GD T1 47.08 22.33 14.97 11.27 10.55 6.40 4.63

RR P2 46.62 25.11 18.92 15.88 13.29 10.72 8.16

MC BS 60.19 23.67 18.64 16.06 13.73 11.77 9.69

MC P1 52.42 29.00 21.62 18.00 14.85 12.35 9.93

MC T1 54.62 28.95 21.95 18.82 14.88 12.03 9.83

MC P2 51.74 30.51 23.19 20.01 16.62 13.53 10.96

Table 6.5 shows the performance of each pair improves with a longer

computational time limit, but not all improve at the same rate. The [NA][T2]

pair performs poorly with the 1 second computational time limit but well

with longer time limits, indicating a minimum time limit (or number of

operator calls) per phase is necessary for some pairings before the opera-

tor selection vector update process can be effective. In these experiments

the improvement in the performance of the better performing pairings ap-

pears to be reaching a plateau with a 300 second time limit. However,

the poorer performing pairings show a non-trivial improvement in per-

formance between 120 and 300 seconds time limits, suggesting a longer

computational time may produce further improvements.

Table 6.6 illustrates how different pairings of operator selection vector
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Table 6.6: Average number of operator calls, success rate (ri, as defined in

Section 6.1) and mix of operator type selection between the six selection

vectors (SV) and the Naı̈ve Acceptance [NA], Exponential Monte Carlo

[MC] and Improving or Equal Only [IO] acceptance criteria (AC) during

experiments using a 60 seconds computational time limit. Best performing

pairings (from Tables 6.1 and 6.2) in bold, worst in italics.

AC SV Number Success Mutation Ruin- Local Crossover

calls Rate Recreate Search

NA FS 236,900 11.82% 33.34% 16.66% 33.33% 16.67%

NA BS 168,900 8.12% 12.65% 15.44% 47.01% 24.89%

NA P1 138,300 5.53% 5.86% 10.41% 54.29% 29.44%

NA P2 231,000 4.71% 4.40% 3.57% 29.40% 62.63%

NA T1 749,400 5.78% 2.34% 2.88% 3.53% 91.24%

NA T2 187,500 6.82% 17.08% 14.81% 45.22% 22.89%

MC FS 220,800 1.43% 33.36% 16.64% 33.34% 16.66%

MC BS 253,600 2.38% 7.11% 5.71% 30.27% 56.91%

MC P1 246,100 2.54% 3.41% 2.61% 30.81% 63.17%

MC P2 269,600 2.70% 3.30% 1.64% 23.59% 71.47%

MC T1 821,400 2.73% 1.68% 0.84% 1.68% 95.80%

MC T2 323,800 1.79% 51.81% 11.63% 22.07% 14.49%

IO FS 229,900 0.16% 33.32% 16.66% 33.35% 16.67%

IO BS 196,100 0.14% 18.31% 18.28% 39.00% 24.41%

IO P1 201,000 0.15% 25.29% 18.55% 35.22% 20.94%

IO P2 191,800 0.16% 22.32% 18.20% 33.23% 26.25%

IO T1 512,100 0.18% 34.95% 8.69% 8.55% 47.81%

IO T2 373,200 0.16% 56.22% 12.51% 18.85% 12.41%
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and acceptance criterion affect the frequency with which particular oper-

ator types are called. The number of calls illustrates how the more ag-

gressive of the two time weighted selection vectors, [T1], biases operator

selection towards the faster mutation and crossover operators and away

from the slower local search operators. The second time weighted selec-

tion vector, [T2], maintains are more balanced selection approach. The

Fixed Selector [FS] reflects the 4:2:4:2 balance between the four operator

types in the CVRP domain.

The time-weighted selectors favour the faster mutation operators at

the expense of the slower search operators. This is a trade-off between

speed and quality. Table 6.6 shows that a large number of operator calls

is not critical to the quality of the solution. This table also illustrates the

lower number of calls made to crossover type operators when the [IO]

acceptance criteria is used, reflecting the reduced effectiveness of these

operators in this situation. In contrast the time weighted selector [T1] al-

most exclusively uses the crossover operator with both the Naı̈ve Accep-

tance [NA] and Exponential Monte Carlo [MC] acceptance criteria. With

[NA], the resulting solutions are among the best, while with [MC] they

are among the worst. This can be explained by the difference in the di-

versity of the population of solutions, as reflected in the relative operator

call success rates. However other factors such as parameter values and the

number of early terminations (42% during 300 seconds time limit) due to

best found solutions no longer improving, may also influence the differ-

ence in overall solution quality.

6.5 Stage 3 Conclusions

These experiments show that the performance of an adaptive hyper-heuristic

is influenced by the choice of operator selection vector and solution accep-

tance criterion pairing. However, the relative performance of each pairing

is not greatly changed by different features of the problem instance. As
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noted by Sabar et al. [80], maintaining a small population of solutions

provides a greater diversity of solutions. This in turn reduces the likeli-

hood of stalling, and so minimises the adverse effects of drastic changes

such as reinitialisation. We have used a number of manually set parame-

ter settings, particularly in relation to the mechanisms we have designed

to handle stalling and early termination of the computation. While the

chosen parameters appear to work satisfactorily, there is scope for further

research into this aspect of the AdaptiveHH2 design.

When comparing the results in Tables 6.1 to 6.5 we deduce the follow-

ing about the operator selection vector and acceptance criteria pairings.

1. Generally perform well:

(a) Time Weighted Phase Selectors [T1] and [T2] with the Naı̈ve Ac-

ceptance [NA] criterion. The time weighted operator selection

vectors bias selection of operators towards the faster operators.

Slower operators are either excluded (with [T1]) or the prob-

ability of selection greatly reduced (with [T2]). Consequently

relatively few operators are employed during a single phase.

In contrast, the [NA] acceptance criterion accepts more non-

improving solutions than most other acceptance criteria. This

combination of concentrated application of a few fast operators

on a moderately diverse set of solutions seems to work well.

(b) Time Weighted Phase Selector (1) [T1] with Simulated Anneal-

ing [SA] acceptance criterion. This combination allows more

non-improving solutions to be admitted to the population in the

early stages of computation, but progressively moves towards

accepting only improving or equally as good solutions.

2. Generally perform poorly:

(a) Any operator selection vector with the Exponential Monte Carlo

acceptance criterion [MC]. Further research is required to fully
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understand why pairings using the [MC] acceptance criterion

consistently perform poorly. Preliminary investigations indi-

cate the lack of diversity in the population of solutions hinders

the ability of the preferred operators to work effectively.

(b) Any operator selection vector with the Improving or Equal Only

acceptance criterion [IO]. The lack of diversity in the population

of solutions is the most likely cause of the poorer performance

of pairings using the [IO] acceptance criterion. Since the [IO]

acceptance criterion was used in stage one of this thesis (see

Chapter 5), the performance of both of the hyper-heuristics may

improve further, in absolute terms, if a different acceptance cri-

terion is used.

Further research is recommended in the following areas:

1. Enabling the hyper-heuristic to change the choice of operator selec-

tion vector and/or solution acceptance criterion at an interim phase

update.

2. Investigating performance using problem instances of different sizes

and in different domains.

3. Determining a good number of phases, and whether each phase should

be limited by time or by number of operators calls (or a combination

of both).

4. The design and parameters for the mechanisms to handle stalling

and early terminations.

Summary

In this chapter we have investigated different pairings of operator selec-

tion vector and solution acceptance criteria and established that some pair-

ings perform better than others. We also show that the number of operator
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calls does not influence the solution quality, indicating quality over quan-

tity generally leads to better outcomes. In the next chapter we summarise

the research done in this thesis and suggest areas for further research.



Chapter 7

Conclusions

The goal of this thesis, outlined in Section 1.2 on page 4, is to extend cur-

rent hyper-heuristic research towards answering the question: How can a

hyper-heuristic efficiently and effectively adapt the selection, generation

and manipulation of domain specific heuristics as you move from small

size and/or narrow domain problems to larger size and/or wider domain

problems, i.e., managing scalability?

The subject is too large to adequately cover in a single Masters thesis,

so, as detailed in Section 1.3 on page 5, we have investigated three aspects

of hyper-heuristic scalability:

1. In the first stage of this thesis we investigate whether a single heuris-

tic can handle scalability issues, or if different heuristics are required

for different sized problems. We conclude that it is possible for a

hyper-heuristic to evolve a heuristic for a specific problem domain

that can deliver “good” solutions to problem instances of different

sizes and containing different features. While the data structures

and design of the CVRP domain used in the first stage of this the-

sis limit the effectiveness of the local search heuristic on larger size

problem instances, we conclude that this is not as a result of the

hyper-heuristic design. The deterministic local search we developed

is effective, but its implementation in the CVRP domain is inefficient

109
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and the computational time becomes excessive on large sized prob-

lem instances.

2. In the second stage of this thesis we establish whether some types

of hyper-heuristic respond to scalability issues better or worse than

other types of hyper-heuristic. We conclude that hyper-heuristics

do not handle scalability issues equally well. The flexibility of the

adaptive hyper-heuristic enables better performance than the more

rigid structure of the grammar based hyper-heuristic, even though

the grammar we use generates a heuristic similar in structure to the

successful heuristics created in stage one.

We also note that the grammar-based hyper-heuristic using off-line

learning provides a compact and easily understood heuristic, which

is useful if a reusable heuristic is required. The adaptive hyper-

heuristic dynamically customises the development of a solution for

a given problem instance, so is closer in approach to the grammar-

based hyper-heuristic using on-line learning. We also conclude that

both hyper-heuristics used during the second stage of this thesis can

be readily applied to different problem domains.

3. In the third stage of this thesis we investigate how the adaptive hyper-

heuristic developed in the second stage responds to problem instances

of the same size, but containing different features and complexity.

We also apply different computational budgets to monitor the ef-

fect of the computational time limit on scalability issues. During this

stage we identify which of 48 possible pairings of the key compo-

nents used by the adaptive hyper-heuristic perform well, and which

perform poorly. We enhance the adaptive hyper-heuristic to enable

a wider choice of operator selection vector (SV) and solution accep-

tance criteria (AC). Analysis of quality of solutions obtained when

using different pairings of SV and AC (Tables 6.1 and 6.2 on pages 98

and 99) show some pairings perform better than others. However,
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as shown with the [NA][T2] AC:SV pairing in Table 6.5 on page 103,

an AC:SV pairing which generally performs well can produce very

poor results if the computational time limit, or one of the parameters,

is not set at a good value.

7.1 Contributions

This thesis contributes to the general understanding of scalability issues

when using hyper-heuristics. Each stage of this thesis contributes as fol-

lows:

1. Stage 1 differs from previous research (see Section 2.3 on page 25)

in that we only use deterministic low-level operators to manipulate

solutions to CVRP instances. We show that competitive results can

be achieved in this way.

2. Stage 2 contributes by building and comparing two hyper-heuristics

of contrasting design, and learning some of their respective strengths

and weaknesses across seven different problem domains. A compar-

ative performance analysis of this nature has not been previously

researched. We show that the adaptive hyper-heuristic we devel-

oped can consistently deliver better results than the grammar-based

hyper-heuristic.

3. Stage 3 shows that scalability issues can arise from different features

of the problem instance and the computational budget, and that in-

stance size is not the only cause of scalability issues. This thesis con-

tributes by learning how 48 different pairings of operator selection

vector and solution acceptance criteria perform with different com-

putational budgets.
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7.2 Recommendations for Further Research

As stated at the beginning of this chapter, the subject of scalability is very

large and completion of this thesis opens further questions for future re-

search. Some recommendations for future research arise as a result of the

work done for this thesis:

1. Deterministic Local Search Operator: If the implementation of the

local search operator can be modified to streamline (a) identification

of nearest neighbours and (b) evaluation of swaps, then this search

operator may be very effective. Implementation of this search as an

option within the CVRP domain operators described in Section 3.3.1

on page 37 would enable better evaluation of the value of this search

operator.

2. Validation of Operator Selection Vector and Solution Acceptance

Criteria Pairings: Further experiments using different problem in-

stance sizes and different problem domains would establish whether

the better performing pairings identified in the stage three experi-

ments continue to perform well, or whether other pairings can before

better in certain circumstances.

3. Computational Time Limit: In this thesis we manually specified the

maximum computational time limit. If the hyper-heuristic is to be

truly independent of the low-level problem domain and instance,

then the hyper-heuristic needs to be able to determine an appropri-

ate computational time and not rely on a manually set parameter.

This is an area which would require considerable further research

to be effective. We have provided an early termination mechanism

in AdaptiveHH2, but further work is required on this to make the

mechanism suitable for generic problem domains. The early termi-

nation parameters we have set are relevant to the CVRP domain we

have used, but may be too large or too small for other domains.
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4. Changing Selection Vector and Acceptance Criteria: As suggested

in Section 6.3.1 on page 94, and illustrated in Table 6.5 on page 103,

an adaptive hyper-heuristic may be able to avoid some performance

issues if it were allowed to change the operator selection vector and

solution acceptance criteria pair during a phase update process. Do-

ing this may be a more effective way of overcoming solution devel-

opment stalling than simply reinitialising the solutions.

5. Grammar-guided Parameter Setting: While we have shown that a

hyper-heuristic can handle scalability issues, there remain a large

number of manually and arbitrarily set parameters. Future research

could establish which of these parameters are critical to the quality

of the outcome. Can these parameters be set using an automated

method? Although we have identified an adaptive hyper-heuristic

performs better than one developed using grammar based genetic

programming (GGGP), there is scope for a GGGP approach to be

taken to set the various parameters for the adaptive hyper-heuristic.

Setting and adjusting the HyFlex [70] global parameters, α and β, is

particularly problematic, and there is scope for a GGGP approach to

be taken towards defining rules to initialise and update these global

parameters.

6. Time-weighted Operator Selection Vectors: Further research into

the performance of the time-weighted operator selection vectors (see

Section 6.1 on page 86) on problem instances of different sizes would

enable appropriate adjustments to be made to the arbitrary thresh-

olds set with these vector types. Again, this may be a situation where

a GGGP approach may help adjust or design new operator selection

vectors.

7. Recreating and Improving Established (Meta-)heuristics: Can a grammar-

based hyper-heuristic evolve or describe an established meta-heuristic

from component parts? For example, can a hyper-heuristic recreate
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Tabu Search [34], Iterated Local Search [48] or Simulated Annealing

[83]?

8. Identifying Scalability Issues: Since the hyper-heuristic has no knowl-

edge of the problem instance size or features, how can the hyper-

heuristic identify and adapt to instances with different features?

9. Domain Memory: A hyper-heuristic may be required to repeatedly

develop heuristics to solve almost identical problem instances. How

can the hyper-heuristic use prior knowledge to help deliver a “good”

heuristic in the shortest time possible? How can the trade-off be-

tween the value of knowledge and the cost of storing and retrieving

information be managed?

10. Transfer Learning: Can a heuristic developed for one problem do-

main be successfully applied to problem instances in another do-

main, e.g., VRP→ VRP with pick-up and delivery [73]?
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[33] GILLET, B., AND MILLER, L. A heuristic algorithm for the vehicle

dispatch problem. Operations Research 22 (1974), 340–349.



BIBLIOGRAPHY 119

[34] GLOVER, F. Tabu search: Part I. ORSA Journal on Computing 1, 3

(1989), 190–206.

[35] GLOVER, F. Tabu search: Part II. ORSA Journal on Computing 2, 1

(1990), 4–32.

[36] GOEL, A., AND GRUHN, V. A General Vehicle Routing Problem. Elsevier

Science, Germany, 2006.

[37] HARPER, R., AND BLAIR, A. A structure preserving crossover in

grammatical evolution. In Proceedings of the IEEE Congress on Evolu-

tionary Computation (2005), vol. 3, pp. 2537–2544.

[38] JOSHI, A., AND SCHABES, Y. Tree-adjoining grammars. Handbook of

Formal Languages, Beyond Words 3 (1997), 69–123.

[39] KELLER, R., AND POLI, R. Self-adaptive hyperheuristic and greedy

search. In Proceedings of the IEEE World Congress on Computational In-

telligence (June 2008), pp. 3801–3808.

[40] KELLER, R., AND POLI, R. Subheuristic search and scalability in a hy-

perheuristic. In Proceedings of the 10th Annual Genetic and Evolutionary

Computation Conference (GECCO) (2008), pp. 609–610.

[41] KELLER, R., AND POLI, R. Toward subheuristic search. In Proceedings

of the IEEE World Congress on Computational Intelligence (June 2008),

pp. 3148–3155.

[42] KENDALL, G., AND LI, J. Competitive travelling salesman problem:

A hyper-heuristic approach. Journal of the Operational Research Society

64, 2 (2013), 208–216.

[43] KINDERWATER, G., AND SAVELSBERGH, M. Vehicle routing: Han-

dling edge exchanges. In Local Search in Combinatorial Optimization

(Chichester, England, 1997), E. Aarts and J. Lenstra, Eds., Wiley.



120 BIBLIOGRAPHY

[44] KOZA, J. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

[45] LAPORTE, G. The vehicle routing problem: An overview of exact

and approximate algorithms. European Journal of Operational Research

59 (1992), 345–358.

[46] LENSTRA, J., AND RINNOOY KAN, A. Complexity of vehicle routing

and scheduling problems. Networks 11 (1981), 221–227.

[47] LIN, S., AND KERNIGHAN, B. An effective heuristic algorithm for

the traveling-salesman problem. Operations Research 21, 2 (Mar - Apr

1973), 498–516.
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