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Abstract—Graphics processing units (GPUs) have become an
attractive option for accelerating scientific computations as a
result of advances in the performance and flexibility of GPU
hardware, and due to the availability of GPU software develop-
ment tools targeting general purpose and scientific computation.
However, effective use of GPUs in clusters presents a number
of application development and system integration challenges.
We describe strategies for the decomposition and scheduling of
computation among CPU cores and GPUs, and techniques for
overlapping communication and CPU computation with GPU
kernel execution. We report the adaptation of these techniques
to NAMD, a widely-used parallel molecular dynamics simulation
package, and present performance results for a 64-core 64-GPU
cluster.

I. INTRODUCTION

GPU-accelerated algorithms have demonstrated speedups
of 10- to 100-fold, resulting in significant improvements
to overall application performance, including several recent
applications in molecular modeling [1], [2], [3], [4], [5]. Such
impressive performance gains present a software development
challenge in that it is seldom practical and never desirable
to completely restructure a major legacy application for a
novel technology, no matter how promising. While the role
of the GPU as an adjunct to a traditional processor allows
the progressive porting of the most expensive operations, the
beast must be fed work in large chunks to amortize startup
overhead. Furthermore, a successful acceleration effort for a
parallel application will place greater strain on communication,
comparable to dropping a generation back in interconnect
technology.

In this paper, we review GPU technology and the CUDA
programming system and their impact on high-performance
clusters, describe their application to the widely-used message-
driven parallel molecular dynamics program NAMD, and re-
port performance results and insights from a GPU-accelerated
cluster.

A. GPU Hardware Overview

Graphics processing units have become a ubiquitous com-
ponent of modern computers due to the increasing sophis-
tication of video games and windowing systems. Modern
GPUs are massively parallel programmable devices designed
for extremely high computational throughput, achieved by
multiplexing tens of thousands of threads onto hundreds of
processing units—an ideal match to the needs of computer

graphics workloads. Unlike mainstream processor architec-
tures, GPUs dedicate very little die area to caches, instead
spending the majority of their logic on arithmetic units and
hiding memory latency with multithreading. GPUs use mul-
tiple SIMD processing cores to achieve high arithmetic unit
density by reducing the area taken for control logic while also
mitigating the impact of branch divergence. To keep arithmetic
hardware productive, GPUs use multiple independent high-
bandwidth memory systems working together in concert. GPU
memory systems typically include a large high-latency global
memory, a small cached constant memory, and a large spatially
cached read-only “texture” memory with multidimensional ad-
dressing, hardware filtering and interpolation. The availability
of additional features such as shared access register files,
additional read/write memory caches, and support for atomic
memory operations vary by GPU make and model.

AMD and NVIDIA have begun producing GPUs tailored
for computing applications. State-of-the-art compute-oriented
GPUs achieve aggregate floating point performance levels ap-
proaching one half teraflop, have on-board memory capacities
of up to 2 GB, and bandwidth up to 100 GB/sec. Current
GPUs support PCI Express 2.0 x16 host interfaces, providing
bidirectional host-GPU communication bandwidths of up to
6.4 GB/sec. Many recent GPUs also provide hardware support
for asynchronous DMA transfers, allowing applications to
overlap GPU computations with host-GPU data transfers.
These new compute-oriented GPUs have also been customized
for use in data center and high performance computing en-
vironments where high reliability, thermal monitoring, fault
detection, and high density rack mount form factors are a
necessity. NVIDIA has begun producing external 1U rack
mount accelerators, containing four GPUs and an indepen-
dent power supply, that can be cabled to one or two host
machines. While first generation GPU computing products
were restricted to single precision floating point arithmetic,
both AMD and NVIDIA are now shipping GPUs with double
precision arithmetic and significantly increased floating point
performance.

B. GPU Computing with CUDA

GPU software development tools have evolved rapidly in
the past several years, closely tracking advances in GPU hard-
ware architecture towards increased flexibility. The earliest
applications of GPUs for computation were based on the
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use of existing graphics software interfaces for programmable
shading. In these early efforts, computations were performed
by “drawing” results to off-screen display buffers and reading
them back to the host encoded in an output image. This model
of GPU computing was soon superseded with higher level
programming abstractions such as the stream programming
model implemented in BrookGPU [6] and Sh [7]. Stream pro-
gramming was a more appropriate abstraction for GPU-based
computation than the existing graphics programming interfaces
and was the basis for early GPU acceleration successes in com-
putational biology [8], [9], [10]. Subsequent to BrookGPU,
Sh, and other research efforts, several commercially supported
general purpose GPU development toolkits have become avail-
able, in particular CUDA [11], RapidMind [12], and more
recently Brook+ [13]. These development tools expose more
of the GPU hardware capabilities, have expanded the range
of supported GPU devices, provide CPU-based emulation and
debugging, and some can also generate code for execution
on multicore CPUs, decreasing the time required to develop
kernels that run on both GPU and CPU hardware [14].

The work described in this paper is based on the CUDA
GPU programming toolkit developed by NVIDIA. A full
overview of the CUDA programming model is beyond the
scope of this paper but it is worth mentioning a few of
its key characteristics to improve the clarity of subsequent
discussions. Nickolls et al. provide a detailed discussions
of the CUDA programming model in [15]. A number of
successful molecular modeling applications using CUDA are
described in [1], [2], [3], [5]. The CUDA programming model
decomposes work into grids of thread blocks that are con-
currently executed by a pool of SIMD multiprocessors. Each
thread block contains up to 512 threads, which are executed
by the processing units within a single multiprocessor. Since
each multiprocessor executes instructions in a SIMD fashion,
each thread block is executed by running groups of threads,
known as warps, in lockstep. Future CUDA-compatible GPUs
may contain many times the number of multiprocessors in
current GPUs. The virtualization of processing resources pro-
vided by the CUDA programming model allows applications
written with existing GPUs to scale up with future hardware
designs. Well-written CUDA programs should be able to run
unmodified on future hardware, automatically making use of
increased processing resources.

The release of CUDA 1.1 introduced new programming
interfaces with improved support for asynchronous kernel ex-
ecution and new features allowing host-GPU DMA operations
to proceed concurrently with kernel execution on appropriate
hardware. The CUDA 1.1 streaming API allows applications to
queue host-GPU DMA operations and GPU kernel invocations
into one or more “streams.” As long as the stream queue is not
full, control is immediately returned to the caller after opera-
tions are added to the queue. Operations in stream queues are
processed one at a time in first-in-first-out order. Experiments
with CUDA 1.1 and a range of contemporary device drivers
revealed that the maximum number of operations that could
be queued without blocking the CPU ranged from 16 to 24

depending on the model of GPU. This had turned up as a
potential performance limiter in some of our previous work us-
ing asynchronous kernels [5]. Recently released device drivers
(version 177.67) have increased the asynchronous queue size
substantially to well over 100, completely eliminating blocking
behavior for many common cases. Since operations within a
stream are processed asynchronously, the host CPU is free to
continue with other work while the GPU continues processing
the active streams. Host code can explicitly synchronize with
a stream and wait for completion or poll the status of a
stream periodically without blocking. Asynchronous host-GPU
DMA operations have one additional requirement that host
buffers must be located in “pinned” memory regions that are
marked non-pageable to the host operating system by the
cudaMallocHost() routine.

In addition to the asynchronous streaming interfaces,
CUDA 1.1 added an event recording API that applications
can use to check the progress of individual operations within
asynchronously executing streams. The event management
interface allows event tags to be generated and inserted into a
stream. As operations within the stream are processed, events
inserted within the stream are recorded with timestamps.
This information can be used to track execution progress in
streams containing many operations, and to determine the
execution time of individual operations within the stream.
Timing information can subsequently be used to predict time
of stream completion, to assist with scheduling additional work
on the GPU. The asynchronous stream and event management
interfaces provided in CUDA 1.1 address shortcomings of the
original CUDA interface for message-driven parallel programs,
and they form the basis for several of the key NAMD perfor-
mance improvements that will be described below.

C. GPU Cluster Considerations

With the introduction of GPUs tailored for computing
applications, it has become practical to begin building clusters
containing GPUs for accelerating scientific computations. The
earliest published work in this area began before compute-
oriented GPUs and software development tools were available.
Fan et al. describe a GPU-accelerated cluster that achieved an
application speedup of 4.6 vs. a CPU cluster for a large parallel
flow simulation based on a lattice Boltzmann model [16].
Since then, GPUs have evolved significantly, most notably
with peak GPU GFLOP ratios relative to CPUs increasing
substantially from the factor of 6.6 reported by Fan et al. in
2004 to over a factor of ten in early 2008. Current ratios of
GPU memory bandwidth vs. CPUs are still close to the factor
of ten they reported.

Recent work by Göddeke et al. explores the scalability,
price/performance, power consumption, and compute density
for FEM simulations running on the 160 node “DQ” GPU
cluster at Los Alamos National Laboratory [17]. Using previ-
ous generation Quadro FX 1400 GPUs, Göddeke et al. doubled
performance with only a 20% increase in power consumption
relative to a CPU based cluster. They estimate a similarly ben-
eficial performance/power ratio for a hardware configuration



based on a Quadro FX 4500, yielding a tripling of performance
with only a 30% increase in power consumption. Their results
indicate a continuing trend of improved price/performance and
performance/Watt ratios for GPU accelerated clusters.

The work by Fan et al. and Göddeke et al. predates the
availability of compute-oriented GPU devices, multi-GPU-
capable host systems, and recent software-based performance
improvements and asynchronous execution capabilities that
became available in CUDA 1.1. It is likely that they would
achieve even better results with current generation GPU hard-
ware and software. In the present work, we have leveraged
these capabilities to achieve an approximate doubling in per-
formance over our previous results [1], [2], as will be described
further below.

While GPUs have been shown to provide worthwhile perfor-
mance acceleration yielding benefits to both price/performance
and performance/Watt, several areas of GPU hardware and
software could still be improved in pursuit of even higher
performance, higher reliability, and widespread adoption. One
potential issue with deploying clusters consisting of multi-
GPU nodes involves the interaction between node and pro-
cessor assignment performed by batch queuing systems, and
the selection and allocation of GPU devices by applications. At
present, queuing systems and message passing infrastructure
are unaware of the existence of GPUs and other accelerators,
as is the host operating system. Applications cannot simply
assume a one-to-one mapping of CPU cores to GPU devices
unless the cluster was specifically built that way. Applications
must determine for themselves how many GPUs to allocate,
and users must select node/CPU core allocation parameters
for their jobs to avoid allocating CPUs lacking a matching
GPU that might otherwise sit idle during a run. This lack of
GPU/accelerator awareness can pose a problem if unrelated
jobs are executed on a node, as multiple processes may attempt
to use the same GPUs. The addition of special “exclusive
open” or device reservation APIs for GPU programming
toolkits could alleviate some of these problems. In practice,
these complexities can be avoided by designing GPU clusters
with a simple one-to-one CPU core to GPU mapping, and only
allowing allocation of entire nodes at a time.

Another complication involved in utilizing clusters with
multiple GPUs per node involves the interaction between host-
GPU DMA operations and hosts with non-uniform memory
architecture (NUMA). None of the existing GPU programming
toolkits provides a means of mapping GPUs, memory alloca-
tions, and CPU cores accounting for the topology of the PCI
express buses and NUMA memory system. This is a concern
since performance penalties occur for DMA operations to/from
remote memory pools associated with a different CPU, as
a result of multiple CPU interconnect traversals. Presently,
applications must determine the correct assignment of GPUs
to CPU cores, complicated by underlying batch queuing and
message passing systems used to launch jobs.

A potential interoperability problem that exists with user-
mode DMA mechanisms used by accelerator devices, and
networking equipment involves the lack of standardization of

software interfaces for “pinning” pages of virtual memory
to physical pages. User-mode message passing libraries and
accelerators use pinned memory to increase DMA perfor-
mance by eliminating the need for intermediate buffers, or
to pin and unpin regions of memory on-the-fly. The use
of pinned memory buffers can allow a well-written code to
achieve zero-copy message passing semantics via RDMA. The
lack of a standard mechanism for managing virtual memory
pinnings among user-mode accelerator and message passing
libraries can create problems at runtime, often resulting in data
corruption or deadlock as memory pinnings created by one
user-mode subsystem are silently removed by another. Early
experiments with simple MPI codes sending and receiving
messages directly from pinned memory regions allocated using
cudaMallocHost() brought this potential interoperability
problem to light. While individual vendors could work to-
gether to make their products interoperable, this is a problem
that needs to be solved for all networking and accelerator
products that make use of user-mode DMA, and one that
would benefit from standardization. A further refinement
would involve the development of a standard mechanism for
performing DMA and RDMA operations directly between
accelerator devices, bypassing the host entirely. Such an inter-
face could conceivably allow RDMAs from one GPU device
directly to another GPU on a different host, greatly reducing
the number of host-device copies involved in exchanging data.

Detection and recovery from hardware errors is a signifi-
cant concern for long running simulations, particularly those
running on hardware configurations containing thousands of
cores. Glosli et al. describe the successful use of application-
assisted error recovery in a 2.8 CPU-millennia molecular
dynamics simulation of the Kelvin-Helmholtz instability on
up to 212,992 CPU cores of the BG/L machine at Lawrence
Livermore National Laboratory [18]. Sheaffer et al. recently
reported on the problem of detecting and correcting soft
errors on GPUs, using various hardware and software redun-
dancy techniques [19]. They point out that soft error rates
for arithmetic units are expected to increase significantly
over the next several generations of GPU hardware. Existing
GPU programming environments lack mechanisms to inform
applications of uncorrected soft errors, so applications must
presently attempt to detect errors themselves. Scientific codes
that are expected to execute for millions of processor hours
often contain internal self-consistency checks, but these usu-
ally only detect errors of significant magnitude, potentially
leaving small errors undetected. Once errors are detected,
restarting from a checkpoint presents an additional chal-
lenge. GPU software interfaces operate largely in user-mode,
avoiding kernel context switch overhead that would reduce
performance. This streamlined interface makes it difficult for
GPU device drivers to save and restore the full GPU hardware
and application state. For graphics applications this is not a
significant problem since graphics libraries can be made to
cache state internally and re-send this information on demand,
such as when a windowing system redraw event occurs. Due to
their generality, GPU computing applications as a whole don’t



have a well-defined minimal state vector to save and restore
and GPU programming toolkits don’t currently provide check-
point/restart interfaces. As such, GPU accelerated applications
must perform application-level checkpointing for themselves.
Though a system-level mechanism for checkpointing GPU-
accelerated applications isn’t provided presently, it may be a
future possibility as this problem has been solved for other
hardware with user-mode interfaces, such as InfiniBand [20].

D. NAMD and Charm++

NAMD1 [21], [22] is a highly scalable parallel program
for the molecular dynamics simulation of large biomolecular
systems. Distributed free of charge since 1995 [23], [24],
NAMD is recognized as the leading software for running such
simulations on large parallel machines, having demonstrated
scaling to thousands of processors in a 2002 paper [25] that
received a Gordon Bell Award. More recently, a 100-million-
atom NAMD simulation was specified as a model problem for
the NSF Track 1 petascale solicitation and as an acceptance
test for the resulting Blue Waters machine. Applications of
NAMD range from simulations of small proteins on microsec-
ond timescales [26] to large protein aggregates (e.g., viruses)
for more modest times [27].

NAMD is based on the Charm++ parallel programming
system and runtime library2 [28], [29] developed by the
Parallel Programming Laboratory at the University of Illinois.
Charm++ supports a “message-driven object” programming
style where the computation is decomposed into objects that
interact by sending messages to other objects on either the
same or remote processors. Messages are asynchronous and
one-sided; a particular method is invoked on an object when-
ever a message arrives for it. This programming style effec-
tively hides communication latency and is naturally tolerant
of the system noise of a machine [30], [31], [32]. Charm++
also supports processor virtualization [33], which allows each
algorithm to be written for an ideal number of parallel objects
that are then dynamically distributed among the actual number
of processors on which the program is run.

In a molecular dynamics simulation, a collection of atoms
interact through a set of forces based on atomic physics
and quantum chemistry. Forces calculated based on atomic
coordinates at one timestep are used to update the coordinates
for the following timestep, producing a trajectory at the rate
of one microsecond per billion steps. Since the forces for each
step must be calculated in series, only a single complete force
calculation is available for parallelization at a time.

The parallel decomposition strategy used by NAMD treats
the simulation cell (the volume of space containing the
atoms) as a three-dimensional patchwork quilt, with each
patch of sufficient size so that only the 26 nearest-neighboring
patches are involved in bonded, van der Waals, and short-
range electrostatic forces. More precisely, the patches fill the
simulation space in a regular grid and atoms in any pair of

1http://www.ks.uiuc.edu/Research/namd/
2http://charm.cs.uiuc.edu/research/charm/

non-neighboring patches are separated by at least the “cutoff”
distance at all times during the simulation. The patches contain
dynamic data about each atom, such as coordinates and forces.
Each hydrogen atom is stored on the same patch as the
atom to which it is bonded, and atoms are reassigned to
patches at regular intervals. The number of patches varies
from one to several thousand and is determined by the size
of the simulation, independent of the number of processors.
Additional parallelism may be generated through options that
double the number (and halve the size) of patches in one or
more dimensions.

When NAMD is run, patches are distributed as evenly as
possible, keeping nearby patches on the same processor when
there are more patches than processors, or spreading them
across the machine when the number of patches is equal to, or
fewer than the number of processors. A larger number (roughly
14 per patch) of compute objects, responsible for calculat-
ing atomic forces due to interactions either within a single
patch or between neighboring patches, are then distributed
across the processors. The distribution scheme attempts to
minimize communication by grouping compute objects tied
to the same patches together on the same processor, which is
often the home processor of neither patch. Near the beginning
of the simulation, and periodically (every several thousand
timesteps), a load balancer measures the amount of work
performed by each compute object, and uses the measured
data to redistribute compute objects in order to balance the
workload between processors.

II. ADAPTING NAMD TO GPU CLUSTERS

When CUDA was first announced in November 2006 we
began an immediate evaluation of the technology for NAMD
and other applications in molecular modeling3 [1]. While the
GPU provides an incredible leap in single-node performance,
distributed memory parallelism is still required for most
simulations. Attaining good parallel scaling is actually more
challenging when GPUs are employed, as a formerly compute-
bound application is now dominated by communication and
previously negligible overhead.

In accelerating NAMD with CUDA, we sought to preserve
the parallel structure of the existing code to the greatest extent
possible. A naive approach would have simply replaced the
force calculation of each individual compute object with an
equivalent CUDA kernel invocation. This would have resulted
in poor performance due to both the overhead of the kernel
invocation and the difficulty of extracting sufficient parallelism
from a single patch-pair to engage all of the GPU multipro-
cessors. Instead, a single compute object was created within
each NAMD process to aggregate all of the assigned patch-
pair calculations for the GPU. On receiving atomic coordinate
data from all of the assigned patches, this object uses only a
small number of CUDA library calls and kernel invocations to
copy the data to the GPU, calculate all of the required forces,
and copy the results to the CPU. Only short-range nonbonded

3http://www.ks.uiuc.edu/Research/gpu/



forces are calculated on the GPU; long-range electrostatic and
bonded forces and coordinate updates remain on the CPU.

A. GPU Force Calculation Kernel

Each thread block in our kernel invocation calculates the
forces on the atoms in one patch due to atoms in either the
same or a neighboring patch. Thus, every patch-internal or
patch-pair compute object corresponds to one or two CUDA
thread blocks, respectively. The kernel copies the atoms from
the first patch in the assigned pair to block-local shared
memory and loads the atoms from the second patch into
thread-local registers. All threads iterate in unison over the
atoms in shared memory, accumulating forces for the atoms in
registers only, which are then written to GPU global memory.
Since the forces between a pair of atoms are equal and
opposite, the number of force calculations could be cut in
half, but the extra coordination required to sum forces on the
atoms in shared memory outweighs any savings.

NAMD uses constant memory to store a compressed lookup
table of bonded atom pairs for which the standard short-range
interaction is not valid. This is efficient because the table fits
entirely in the constant cache and is referenced only for a
small fraction of pairs. The texture unit is used to interpolate
the short-range interaction from an array of values, which fits
entirely in the texture cache. The dedicated hardware of the
texture unit can return a separate interpolated value for every
thread faster than the potential function could be evaluated
analytically. A more complete description of the nonbonded
kernel may be found in [1].

We note that the nonbonded force calculation as imple-
mented on the GPU is much less work-efficient than the CPU
version. This is because forces are only calculated between
pairs of atoms within a cutoff distance. While searching only
neighboring patches reduces the complexity of the search to
linear time in the number of atoms, over 90% of tested pairs
will fall outside of the cutoff distance. Given the 32-way SIMD
control structure of the GPU, most threads will be idle while a
few perform the actual force calculation. NAMD on the CPU
employs other methods for increasing the performance of the
pair search, such as testing the distances between heavy atoms
before considering their bonded hydrogens, and reusing a list
of atoms found within an extended cutoff distance for several
steps. Neither method maps well to NAMD on the GPU, yet
a factor of ten speedup compared to the CPU is still observed.

B. Overlapping GPU and CPU Execution

Although the nonbonded force calculation is greatly ac-
celerated, the runtime of the GPU kernel is still a limiting
factor on performance. Therefore, overlapping GPU and CPU
execution can provide an easy performance gain. Of greater
impact in parallel runs, the effectiveness of message-driven ex-
ecution for the communication-intensive particle-mesh Ewald
(PME) long-range electrostatics calculation may be affected
by the long-running GPU calculation. One source of NAMD’s
parallel efficiency is the dynamic overlap of the multi-stage
PME communication with nonbonded force calculation. This
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Fig. 1. Separation of GPU workload into remote and local force calculations
to allow overlap of GPU calculation with force communication. Boxes
represent local patches present on and remote patches accessed by a single
process. Arrows represent calculation of forces on atoms in the patch pointed
to due to atoms in the patch pointed from. GPU force calculations for remote
patches (light arrows) are performed and the forces returned to the CPU before
force calculations for local patches (dark arrows) are started, allowing local
force calculations to overlap with the exchange of forces between nodes.

is accomplished by prioritizing PME messages and slicing the
other calculations thin enough that PME work is processed
almost immediately. A long-running GPU call on any one
processor can therefore significantly delay all of the other
processors.

CUDA 1.0 allowed very limited asynchronous execution
through its serialized API, busy-waiting for any transfer from
the GPU. The CUDA 1.1 streaming API queues memory
transfers and kernel invocations for asynchronous execution
and allows probing for completion. With this API, the CUDA
compute object returns once the GPU operations have been
queued, allowing PME and other calculations to proceed on the
CPU. By using an existing Charm++ API to insert a periodic
probe for GPU completion into the Charm++ message loop,
we ensure that nonbonded forces are processed nearly as soon
as they are complete.

Overlap efficiency is still sensitive to the relative priorities
of different messages and calculations. CPU-only NAMD
prioritizes PME-related messages first, followed by coordinate
exchange, force calculation, and finally force return. With
nonbonded forces moved to the GPU, slightly overloaded
or otherwise late-starting processors would be tied up by
a backlog of PME messages, not receiving coordinates and
starting the GPU calculation until PME was completed. By
increasing the priority of coordinates and GPU invocation
above that of PME, all processors effectively overlap GPU
execution with PME and other force calculations.
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Fig. 2. Time sequence of CPU and GPU activity in a single process, showing
overlap of GPU calculation and data transfer with both CPU calculation and
communication. Generating and communicating results for remote patches
(lighter color) is prioritized over local patches (darker color) on both the
CPU and the GPU. Boxes with arrows show communication of coordinates
(x) and forces (f) with the GPU and other processes. Collected forces are used
to update local atom coordinates for the next timestep.

C. Overlapping GPU Execution and Communication

As described above, PME communication is readily over-
lapped with force calculation on the GPU. The remaining
communication is the return of forces calculated on the GPU
to patches on other processors. CPU-only NAMD prioritizes
compute objects returning forces to off-processor patches
before purely local calculations. Purely local calculations
may begin before off-processor coordinates are received, and
continue after off-processor forces have been sent.

Using this same prioritization on the GPU is impractical
because a running purely local kernel could not be interrupted
when the higher priority work was ready to execute. As an
alternative, we recall that separate thread blocks are used to
calculate forces for each of the patches in a patch-pair compute
object. Therefore, although a compute object may require
coordinates from both an on-processor and an off-processor
patch, the forces returned to the two patches may be calculated
on the GPU at different times.

Thus we divide the GPU force calculation into two separate
kernel invocations, as illustrated in Figs. 1 and 2. When
coordinates from all required on-processor and off-processor
patches are available these are copied to the GPU as above.
The force kernel is first invoked on the GPU to calculate only
forces on atoms from off-processor patches. After the resulting
forces are copied to the CPU, the CUDA stream continues
with a second force kernel invocation for on-processor patches
while a CUDA event timer probe in the Charm++ message
loop triggers the overlapped communication of forces to off-
processor patches.

III. PERFORMANCE AND SCALING RESULTS

Experiments were performed on the NCSA GPU cluster,4

consisting of 16 Hewlett Packard xw9400 workstations each
with two dual core 2.4 GHz Opteron 2216 processors and
8 GB of memory (2 GB/core). Each node hosts two external

4http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Fig. 3. Timeline of one timestep for four processes of GPU-accelerated
NAMD as shown by the Charm++ performance analysis and visualization tool
Projections. Colored bars indicate activity while descending white lines show
message generation. Notable features, from left to right: coordinate update
and network coordinate sends (red), network coordinate receipt and compute
object queuing (teal), GPU data preparation and stream launch (magenta),
remote and local CPU work (blue), CPU idle (white), GPU remote force
notify and network sends (magenta), network force receipt (orange), CPU
idle (white), GPU local force notify (very small magenta), coordinate update
and network coordinate sends for following timestep (red).

NVIDIA QuadroPlex model IV units containing two Quadro
FX 5600 GPUs each, resulting in 4 GPUs per node with a
cumulative total of 64 GPUs across the entire cluster. The
QuadroPlex units are functionally equivalent to the more
recent compute-specific Tesla D870 product in terms of their
behavior and performance as compute accelerators. Although
the cluster also contains Nallatech FPGA accelerators, they
were not used for the work described in this paper. The cluster
uses an SDR InfiniBand interconnect, consisting of a 24-
port Cisco (Topspin) model TS-120 InfiniBand switch, with
Mellanox Technologies MT25204 InfiniHost III Lx adapters
installed in each node with a PCIe x4 electrical interface.
The cluster software environment consisted of 64-bit RedHat
Enterprise Linux Server 5.1, NVIDIA CUDA 1.1, Intel C/C++
10.0, and MVAPICH2 version 0.9.8-15 [34]. Due to a hard-
ware failure only 15 nodes (60 cores, 60 GPUs) were available
for our tests. NAMD is capable of running on any number
of processors, so we were able to obtain performance results
using all of the remaining nodes.

The Charm++ performance analysis and visualization tool
Projections5 [35] was used to verify the overlapping of CPU
and GPU execution and communication. A typical timestep is
shown in Fig. 3, demonstrating the interleaving of CPU com-
putation with network and GPU communication. Given visual
confirmation that overlap was occurring as expected, we ran
performance and strong scaling tests for two benchmarks, the
large but increasingly typical “STMV” system [27] (Table I)
and the smaller “ApoA1” system [25] (Table II). The local and
remote blocks/GPU listed in the table are the number of thread
blocks for the local and remote kernel invocations. As one
would expect, the ratio of remote to local work increases with
processor count. Half-sized patches were used for the smaller
ApoA1 system to ensure a sufficient number of blocks to keep

5http://charm.cs.uiuc.edu/research/parallel perf/



TABLE I
GPU-ACCELERATED NAMD PERFORMANCE ON 1.06M-ATOM “STMV”

BENCHMARK (12 Å CUTOFF WITH PME EVERY 4 STEPS).

CPU Cores & GPUs 4 8 16 32 60

GPU-accelerated performance

Local blocks/GPU 13186 5798 2564 1174 577

Remote blocks/GPU 1644 1617 1144 680 411

GPU s/step 0.544 0.274 0.139 0.071 0.040

Total s/step 0.960 0.483 0.261 0.154 0.085

Unaccelerated performance

Total s/step 6.76 3.33 1.737 0.980 0.471

Speedup from GPU acceleration

Factor 7.0 6.9 6.7 6.4 5.5

TABLE II
GPU-ACCELERATED NAMD PERFORMANCE ON 92K-ATOM “APOA1”

BENCHMARK (12 Å CUTOFF WITH PME EVERY 4 STEPS).

CPU Cores & GPUs 4 8 16 32 60

GPU-accelerated performance

Local blocks/GPU 2802 1131 492 216 98

Remote blocks/GPU 708 624 386 223 136

GPU s/step 0.051 0.027 0.015 0.008 0.005

Total s/step 0.087 0.048 0.027 0.018 0.013

Unaccelerated performance

Total s/step 0.561 0.284 0.146 0.077 0.044

Speedup from GPU acceleration

Factor 6.4 5.9 5.4 4.3 3.4

the GPU busy, allowing the GPU runtime per step to scale
down to the 10 ms range. Figure 4 demonstrates that the ratio
of atom and processor count primarily determines simulation
performance, as our two benchmarks yield overlapping curves
both with and without GPU acceleration.

As would be expected, parallel scalability is worse for
the faster, accelerated code than for the slower CPU-only
version. The GPU can do nothing to accelerate inter-node
communication, and thus as communication increases with the
number of processors the ratio of GPU to total s/step drops
and the impact of the GPU fades. This results in a degradation
of the acceleration factor from a peak of 7.0 for STMV on a
single node to a low of 3.4 for ApoA1 on the complete cluster.
Tuning of formerly irrelevant CPU-bound critical-path code
should increase the achieved acceleration factor somewhat.
The performance improvement obtained is certainly useful,
for 8 GPUs nearly match the performance of 60 CPU cores.
Early results from running the STMV simulation on an 8-
node cluster of pre-production GT200-based GPUs (running
at a reduced clock rate) yielded an overall acceleration factor
of 9.0, with an overall runtime of 0.370 s/step and a GPU
runtime of 0.180 s/step. The 8 pre-production GT200 GPUs
match the performance of 72 CPU cores.
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Fig. 4. NAMD performance as a function of atoms per core or GPU. The
overlapping curves for large (STMV, 1.06M atoms) and small (ApoA1, 92K
atoms) simulations both with and without GPU acceleration demonstrate that
the ratio of atoms to processors is a primary factor in observed performance.

IV. DISCUSSION

The overlapped GPU execution pattern we have described
for NAMD can be adapted for use in other parallel programs.
Message-driven execution can be emulated in purely SPMD
message-passing interfaces such as MPI through the use of a
message polling and dispatch loop. In such an implementation
a main event loop continuously polls for incoming messages,
dispatching them to handler routines based on the incoming
message tag [30]. Asynchronous GPU I/O and kernel invo-
cations can be incorporated into this type of event loop by
periodically polling for GPU asynchronous event completion
status in the main event loop. By timing and storing the aver-
age execution time for a particular GPU kernel, a predictive
strategy can be used to avoid polling GPU completion status
too frequently, polling the GPU only when approaching the
predicted execution time.

Figure 3 shows significant idle time when the CPU has
completed all of its available work and is waiting for results
from the local GPU. Many of these results are in fact already
calculated but are not transferred to the CPU until the kernel
invocation has completed for the entire grid. Refining the
partitioning of the GPU force calculation from two classes
(remote forces and local forces) currently to a series of kernel
invocations on smaller grids, alternating with data transfers,
would allow the CPU to stay busy as results would begin
to flow from the GPU much earlier. Splitting these fine-
grained kernel invocations into a pair of independent streams
would further increase efficiency by allowing the GPU to
overlap data transfer in one stream with calculation in the
other. Since CUDA kernel invocations do not overlap, for
these techniques to be effective the force calculation kernel
must provide enough blocks that dividing them among several
invocations does not cause excessive loss of efficiency. The



block counts in Tables I and II suggest that this is will only
be the case for small GPU counts or very large simulations.

An alternative approach would be to have a single long-
running kernel invocation generate result sets in a prioritized
order and have the CPU poll GPU memory to determine when
result sets are ready to transfer. This may be acceptable when
the CPU is otherwise idle, but if the CPU has other duties
then either CPU-based tasks will be slowed by the overhead
of frequently polling the GPU or pending data transfers may
back up while the CPU is otherwise engaged. It is unfortunate
that it is not possible to write directly to CPU memory or
otherwise transfer data off of the GPU from within a CUDA
kernel, which would greatly reduce demands on the CPU from
this approach.

To better accommodate fine-grained message-driven execu-
tion we suggest several enhancements to the CUDA model.
The GPU execution model of CUDA is simple: run a single
kernel invocation for all blocks of the specified grid until
completion. Multiple processes and multiple streams within
a process share a physical GPU through coarse first-in first-
out queuing, giving the bulk of the resources to the most
aggressive program. The more refined behavior of the GPU
when actually drawing to the screen suggests that the hardware
is more flexible than CUDA exposes. The monolithic grid
invocation should be extended with a block-granularity work
queue. In this model a single kernel invocation would be
passed groups of independent blocks in many small stages,
interspersed with data transfers to be completed before or
after all following or preceding blocks had been executed. This
would allow the continuous streaming of data through the GPU
at a much finer level than currently feasible. Additionally, by
letting the programmer assign priorities to groups of blocks
or perhaps only entire streams, the GPU could be kept busy
at all times without delaying urgent calculations.

V. CONCLUSION

The ultimate goal for any accelerator technology is to
turn a parallel application into a serial one with sufficient
total performance. More realistically, a successful accelera-
tor will simply change the performance-limiting factor from
computation to communication. The latency tolerance and
overlap capability of a message-driven programming style
are therefore of particular value for accelerated applications,
but only if sufficient work can be aggregated to keep the
accelerator busy. We have provided in this paper an example of
an application benefiting from this novel programming style,
resolving issues that will likely arise in the acceleration of
many other legacy programs. We have also proposed several
improvements and extensions to GPU programming interfaces
that would allow these techniques to be more efficiently
implemented and improve the usability of GPU-accelerated
clusters in general.
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