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ABSTRACT
With the increase in the number of people communicating
through internet, there has been a steady increase in the
amount of text available online. Most such text is differ-
ent from the standard language, as people try to use var-
ious kinds of short forms for words to save time and ef-
fort. We call that noisy text. Part-Of-Speech (POS) tag-
ging has reached high levels of accuracy enabling the use of
automatic POS tags in various language processing tasks,
however, tagging performance on noisy text degrades very
fast. This paper is an attempt to adapt a state-of-the-art
English POS tagger, which is trained on the Wall-Street-
Journal (WSJ) corpus, to noisy text. We classify the noise
in text into different types and evaluate the tagger with re-
spect to each type of noise. The problem of tagging noisy
text is attacked in two ways; a) Trying to overcome noise as
a post processing step to the tagging b) Cleaning the noise
and then doing tagging. We propose techniques to solve the
problem in both the ways and critically compare them based
on the error analysis. We demonstrate the working of the
proposed models on a Short Message Service (SMS) dataset
which achieve a significant improvement over the baseline
accuracy of tagging noisy words by a state-of-the-art En-
glish POS tagger.

Keywords
POS tagging, noisy text, natural language processing, noisy
text analytics, Part-of-Speech, adapting, NLP, robust to-
wards noise

1. INTRODUCTION
Noise can be defined as any kind of difference in the sur-

face form of an electronic text from the original, intended
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or actual text [16]. The distortion of words in short messag-
ing service (SMS) and online forums like twitter, chat and
discussion boards is essentially because the recipient can un-
derstand the message even if longer words are represented
in short forms, thereby reducing the time and effort of the
sender. Since not all internet users are native English speak-
ers, we find foreign language words which are transliterated
into English. This is another added complexity in online
text.

Off-the-shelf language processing systems fail to work on
noisy text due to several reasons, linguistic creativity being
the major one. The very idea of seen and unseen words be-
comes totally different on these types of texts. For example,
a word in the training data can appear in the test data in a
different form. This means, each of the different words in the
text may not be actually different, which makes the overall
learning difficult. Considering the increase in the computer
mediated communication (CMC) [15] across years, and the
change in the language being used by the internet popu-
lation, there is an urgent need to develop text processing
systems that can deal with the noise in the text.

We attempt to do Part-Of-Speech (POS) tagging, the ba-
sic syntactic processing step in many high level text pro-
cessing techniques like Named Entity Recognition (NER),
Parsing and Question Answering (QA). A tagger for noisy
text can be used in many practical applications on online
text such as sentiment analysis on product reviews[3], online
translation of text (emails, tweets) and information extrac-
tion [3, 2].

In this paper, the problem of tagging noisy text is attacked
in two ways; a) Trying to overcome noise by correcting the
tags of noisy words in a post processing step after tagging
b) Cleaning the noise in the given sentence and then do-
ing tagging. We propose techniques to solve the problem in
both the ways and compare them based on the results and
error analysis. We demonstrate the working of the proposed
models on an SMS dataset which achieve a significant im-
provement over the baseline accuracy of tagging noisy words
by Stanford POS tagger, which performs near state-of-the-
art for English.

The rest of the paper is arranged as follows: Section 2
gives the related work on noisy text and parts-of-speech tag-
ging. Section 3 explains the decisions taken before proposing
the techniques, the data that is used and the tagger which is
used as the baseline. The techniques are explained in section



4, followed by the experiments and results in section 5. We
present a detailed error analysis in section 6 and conclude
in section 7.

2. RELATED WORK
Part-Of-Speech (POS) tagging is a well studied problem

in computational linguistics and natural language process-
ing over the past few decades. This can be inferred from
the state-of-the-art POS tagging accuracies not only of En-
glish, but also most of the other languages, which are near
95%, English being at 97.32%[23]. The high accuracy of
trained POS taggers made them usable on-the-fly in many
of the high level text processing techniques in natural lan-
guage processing, information extraction and related areas.

POS taggers for English have been developed using several
supervised learning techniques, most of which use graphi-
cal models like hidden markov models (HMM) [5], maxi-
mum entropy models (MEM)[22, 27, 26], conditional ran-
dom fields (CRF)[17]. [8] and [23] use perceptron learning
while the later used bidirectional sequence classification and
achieved the state-of-the-art for the task. With different ma-
chine learning models reaching near state-of-the-art making
the choice of the methods unimportant, handling unknown
words has become the only prominent problem for English
POS tagging in the last few years.

Many attempts were made to deal with the problem of
tagging unknown words. [19] used a SVM based classifier
framework to tag the unknown words in a post-processing
step which can use the POS tags of known words in the
data (context), making the prediction accurate. [29] uses
various morphological features to find the correct tag of an
unknown word, as there is a clear dependence between the
tags and suffixes. In the problem of tagging noisy text, a
large number of input noisy words would be unknown words
as the tagger model which was obtained on a regular English
corpus will not be able to correlate the short forms with
their regular counterparts. However, the short forms are
not completely unknown as their properties can be incurred
from their regular counterparts once the words are related.

This work also finds its roots in spelling correction re-
search, which assumes the input to be noisy. Recent spelling
correction approaches have used statistical language models
and stochastic finite state automata as a generative model
for spelling errors [6]. Statistical models of pronunciation
have also been used to improve such models [28]. [7] utilizes
hand corrected training data consisting of original SMS and
the corresponding expanded and corrected messages. From
the hand generated parallel corpora of SMS and conven-
tional language, a HMM is learned that mimics the SMS
language generation. [24] investigated techniques for map-
ping non-standard words to standard but the focus of their
technique was also on supervised learning. Their technique
involved hand tagging of non-standard words with tags rep-
resenting the type of corruption encountered and then learn-
ing to tag unknown words by the inferred type of corruption.
Corrections were generated from the predicted tags. How-
ever, annotating non-standard words with their tags for the
above two approaches is not straight forward, which we’ll
discuss in the later sections. [1] uses clustering to map non-
standard words with their corresponding dictionary words
using three character strings from the word as well as the
context as features. This technique does not need annotated
data.

[13] does parsing on a tree bank by adding noise to the
data automatically. This work deals two types of noise, real
word errors and un-grammatical sentences. [9] report inter-
esting results on POS tagging of conversational speech. [4]
does machine translation on texts having misspellings. They
integrated the task of correcting the input text in the MT
system using a character level confusion network. [12] is, to
our knowledge, the first step towards evaluating the exist-
ing syntactic processing tools on noisy text. However, they
don’t give any automated methods to solve the problem of
processing noisy text. [14] has annotated some tweets with a
POS tagset developed for online texts [20] and has given pre-
liminary tagging results using a CRF based model built on
the annotated tagset. Instead of building a separate tagger
for noisy text, we aim to adapt the existing state-of-the-art
tagger for regular text to noisy text, with an intention of
developing models that are robust towards these deviations
of the text from the regular form.

3. ARRIVING AT THE PROBLEM
This section discusses various issues related to the data,

approaches and goals in tagging noisy text.

3.1 Tagging noisy text
POS tagging for regular English has achieved reasonably

high accuracy by using supervised learning techniques on
large annotated datasets. But, we don’t have a sufficiently
large noisy data annotated with POS tags for training a
model. Though the problem of tagging noisy text may seem
to be a problem of not having training data at first, on
a closer look at it, having a noisy training data is not the
cure. For example, in one corpus we found tomorrow written
in 28 different ways ranging from tom, 2moro, morrow, to
the actual. Creating a labeled dataset comprising of all the
variants is impossible. A word in a noisy training data may
occur in the test data in a different or distorted form. In
such a case, that word is still a noisy word for a regular
supervised tagger.

Another issue with creating noisy training data is that sev-
eral forms of the same word appear sharing the context along
with its distortions, increasing the sparsity. Hence, even if
we have a noisy training data the learner requires some way
of handling both sparsity while training and identifying the
corresponding regular words while testing. Keeping this in
mind, we attempt to adapt a state-of-the-art tagger trained
on regular English (Wall Street Journal corpus [18]) (WSJ)
text to noisy text, which leaves us the challenge of identify-
ing the relatedness of different forms of a word while tagging,
leaving the problem of handling sparsity in training for fu-
ture work.

3.2 Evaluation
Due to the lack of standardization till now, evaluating a

POS tagged noisy data also involves taking some important
decisions. First of all, it is not trivial to annotate the noisy
text, which is not only distorted at word level, but also at
the structural level. For example, I and am get merged
to form im, for which the decision of which POS tag to
assign is tricky. [20] proposed a universal tagset suitable for
annotating online texts. However, we don’t annotate our
data with these tags as we use a tagger trained on the WSJ.

On the other hand, our goal is not to build a machine
learning system which works for the noisy text. The goal



is to make the existing systems robust towards noise, i.e.,
developing system which can neglect the noise in the text,
like humans. So, we decided to do a relative evaluation
instead of manually annotating noisy text. We annotated
each noisy word with the parallel regular word, whose output
when given to a state-of-the-art POS tagger is considered as
the gold-standard POS tag for that noisy word (like [10]).
This is a fair assumption, considering the state-of-the-art
accuracy of POS tagging on regular english text. Further,
for merged words like asap described above, the output of
the tagger is evaluated against the word that best denotes
rhe meaning of the phrase (soon in as soon as possible).

3.3 Classifying the Noise
We first look into the nature of noise in CMC. For this

we study a dataset of 847 SMEes from a publicly available
SMS corpus used in [7]. This dataset contains a word aligned
parallel corpus of noisy SMSes and their respective standard
English forms. The SMS texts were manually translated to
their standard English form and automatically aligned at
the word level using a heuristic algorithm by the authors of
[7]. The dataset contains only those text that were written
completely in English (no code switching). Out of the 847
SMSes, 80% is used here as the development set, on which
all the results in this paper are reported. There are around
18,000 tokens (words) in the translated standard text out of
which around 2,000 are distinct. On average there are 80
characters in the SMS text for every 100 characters in the
corresponding standard English text.

There are a lot of studies about different types of noise
in CMC data in English, Arabic, German, Japanese and
Swedish. The readers are referred to [7, 25] and the refer-
ences therein, for the common trends in word compression
and/or distortion.

After grouping similar kinds of noise and leaving some
of the insignificant types, we classified the noise into four
types. We used a simple algorithm to classify the noise of
each noisy word based on comparison with the corresponding
regular word. Table 1 below shows the four types of noise
and examples of each type.

Table 1: Table showing different classifications of
noise with examples.

Noise Type Examples
Character Deletion yest for yesterday

ello for hello
u for you

hrdr for harder
Phonetic Substitution den for then

4 for for
fink for think
john for John

Abbreviations lol for laughing out loud
tb for text back

Dialectical Usage im for I am
gonna for going to

Character deletion corresponds to dropping of characters
from the regular word whereas phonetic substitution may
involve substitution of characters by similar sounding char-
acters or digits. Abbreviations are the short forms in which

each character corresponds to a word in the actual regular
phrase. Dialectical usage is merging two words to form a
new word based on the local usage of English. We distin-
guish dialectical usage from abbreviations as abbreviations
are in general fixed and known to everyone whereas dialec-
tical usage is a create word formation process which leads
to an open class of different words, based on several factors
like region and style (of language) of the SMS sender.

3.4 Tagger
We use the Stanford POS tagger [26], which is a maxi-

mum entropy based tagger. It models the sequence of words
in a sentence as a bi-directional dependency network, which
considers the lexical and tag context on both the sides to
tag the current word. The tagger learns a log-linear condi-
tional probability model from tagged text, using a maximum
entropy method. Such a model is exponential with the para-
metric form:

p(t|h) =

K∏
j=1

expλjfj(h, t)

∑
t
′
εT

K∏
j=1

expλjfj(h, t
′
)

(1)

The model assigns a probability for every tag t in the
tagset T given a word and its context h, which is usually de-
fined as the sequence of several words and tags both preced-
ing and succeeding the word, where f1....fK are the features
used while learning. The best tag sequence for a given word
sequence is found using a variant of Viterbi algorithm. The
feature functions fj used for the best accuracy on regular
English text are given in Table 2.

Table 2: Features used for baseline in Stanford POS
tagger.

Feature Description
BF < t0, w0 >, prefix, suffixes(w0)
TSF < t0, t−1 >,< t0, t−1, t−2 >,

< t0, t−1, t+1 >,< t0, t+1 >
< t0, t+1, t+2 >

LF < t0, w−1 >,< t0, w+1 >
MF < t0, w0, t−1 >,< t0, w0, t+1 >

< t0, w−1, w0 >,< t0, w0, w+1 >
UWF isCapital(C), hasHyphen(H)

hasNumber(N), conjunction(CHN)
allCaps, isCapinContext

BF: Basic Features
TSF: Tag Sequence Features

LF: Lexicalized Features
MF: Mixed Features

UWF: Unknown Word Features

Please refer to [27, 26] for the description of all the above
features.

Note that the development data is not annotated with
POS tags (as described in section 3.2). We evaluate the
model’s output by comparing it with the same model’s out-
put on the parallel regular text. This evaluation makes sense
as our goal to develop systems which can neglect the noise in
the text, like humans. In case of abbreviations and dialecti-
cal usage, the output tag is evaluated against the output of



the dominant word in the group of words, which can possi-
bly substitute the place of the abbreviation. Table 3 below
shows the accuracy of tagging on the development set de-
scribed in Section 3.1. Each row corresponds to a certain
kind of noise. The second column gives the coverage of that
kind of noise in the test set, while the third column gives
the accuracy.

Table 3: Accuracy of the baseline tagger w.r.t. noise
type along with the coverage

Noise Type Coverage Accuracy
Character Deletion 14.8 11.5
Phonetic Substitution 15.1 14.5
Abbreviations 2.2 5.4
Dialectical Usage 2.0 16.1
Noisy Words 34.2 12.74
Clean Words 65.8 91.2
Overall 100 64.45

Noisy Words in the first column of the second part of
table 3 gives the combined accuracy of all the types of noisy
words. Clean Words denotes all the words that are common
to WSJ and the noisy dataset, which amount to around
65% of data. Note that, apart from a huge drop in the
accuracy of noisy words (12.74) there is also considerable
drop in the accuracy of clean words (from around 97% to
91.2%1). This can be attributed to the domain difference
between the WSJ and the dataset and also to the noisy
context while tagging the clean words. More analysis of the
results is given in section 6. These results are provided here
to show that there is a drastic drop in the accuracies when
the noisy words percentage in the current dataset is around
35%.

4. TECHNIQUES
We consider two ways of dealing with the noise in tagging:

a) Overcoming noise as a post processing step to tagging b)
Cleaning the noise and then doing tagging. Section 4.1 in-
troduces the technique in which the tagger’s output is post-
processed to deal with the noisy words whereas in section 4.2
we pre-process and clean the data before giving to the tag-
ger.

4.1 Unknown word probability estimation
(UWPE)

If we try to adapt a WSJ trained POS tagger to noisy text,
the immediate consequence is the increase in the number
of unknown words. Almost all the distorted words become
unknown words for the tagger. Hence, we take an assump-
tion that the unknown words for the tagger model are noisy
words2. We modified the baseline tagger’s code to output an
additional cue unk for all the words which are not present in
the tagger’s model, so that the post-processing can be done
only on those words. Also, as shown in Table 3, words which
are not noisy are 65% in the development set and are tagged

1Comparing 91.2% with the mean POS tagging accuracy of
97% is not fair, but it is discussed to show that the effect of
noise is also on the clean words.
2then can be distorted to den, which is probably not an un-
known word for the tagger. Currently, we are not handling
this. However, we observed very few cases like this.

Figure 1: Noisy word tnk and its possible tags

Figure 2: Sample clusters given by the algorithm

with an accuracy of 91.2%. On the other hand, noisy words
are tagged with a mere 12.74% accuracy. Keeping this in
mind, we intend to correct the tags of the unknown words
for the tagger, in a post-processing step after tagging. We
try to estimate the probability of giving a tag to a particular
noisy word from the tags of the dictionary words which are
possibly the noisy word’s regular forms.

Figure 1 above explains this with the help of an example
noisy word tnk. The idea is to predict the tag of word tnk,
from the tags of word tank and thank, which are recognized
to be its possible regular English forms.

We find the words which are the possible dictionary words
for a noisy word by using a clustering that takes into account
the noisy word as well as its context. We use the cluster-
ing technique proposed by [1] for non-standard words on the
combined data of SMS and 0-18 sections of WSJ. We use a
simplified HMM that is factorized in a way that leads to ef-
ficient training operated by clustering vectorial data instead
of expensive dynamic programming. Clustering is based on
cosine similarity between two words represented by the fre-
quencies of sub-sequence strings from the word as well as
the contextual words. As we can see in Table 3, most of the
noise in our case is character deletion and phonetic substitu-
tion. Using this approach for the mapping model performs
well because of the use of both sub-sequences in the noisy
word as well as in a window of 4 on either side as features.

The output of the clustering is a predefined number of
clusters having a mixture of noisy as well as dictionary words.
Some example clusters are shown in Figure 2.

We use both the nearness between the noisy word and
a dictionary word and the probability of assigning different
tags to that dictionary word to estimate the probability of
a specific tag becoming the correct tag of a specific noisy
word. This can be seen in the following equation.



p(ti|nw, h′) =

C∑
j=1

p(ti|rwj , h′) ∗ p(rwj |nw)

∑
tkεT

C∑
j=1

p(tk|rwj , h′) ∗ p(rwj |nw)

(2)

nw = current noisy word
rwi = each regular (dictionary) word
h′ = history excluding the current word

C = cluster size
T = POS tagset, ti is a particular POS tag

where C is a set of dictionary words which are in the same
cluster of the noisy word nw. In this way we introduce
a random variable regular word (rw) between two random
variables noisy word (nw) and POS tag (t). The denomi-
nator in the above equation is for normalization, which is
the sum of numerator over all the tags. This can be ig-
nored while tagging as what we actually need is maximum
of all such emission probabilities, which is unaffected by the
denominator. h′ is used here instead of h for history to dis-
tinguish it from the history used in equation 1. Note that h′

contains the tags of the dictionary words which are already
predicted by the tagger. This probability estimation can be
used given any model which can provide p(t|rw, h′) and any
model which can provide p(rw|nw). As mentioned earlier,
we use Stanford tagger to get p(t|rw, h′). We use the Lev-
enshtein’s distance between the soundexes3 of two words to
get p(rw|nw). We compute the soundex codes for each of
the dictionary words in a cluster and the noisy word, and
take the normalized edit distance of each dictionary word
soundex with the noisy word, as shown in Equation 3 be-
low. Each cluster may contain the synonyms of the expected
dictionary words and also some misleading dictionary words.
The use of soundex instead of just the lexical item is aimed
to avoid all those misleading words in the same cluster, as
the noisy words and the corresponding regular word sound
similar.

p(rw|nw) =
LD−1(S(rw), S(nw))∑

rw′εC(nw)

LD−1(S(rw′), S(nw))
(3)

where LD is the inverse Levenshtein’s distance function, S is
the soundex and C(nw) is the set of dictionary words in the
cluster of the noisy word nw. Since Levenshtein’s distance is
inversely correlated to the closeness between two words, the
inverse of Levenshtein’s distance is considered in equation 3.

This technique is similar to unsupervised tagging, where
we cluster words in an unsupervised way and assign tags
later. The working of the technique is demonstrated in Fig-
ure 3 below.

The dotted lines show the path which is less probable
whereas the normal line shows the paths which are highly
probable. In Figure 3a, when tnk is used for tank, if we use
a mapping model which considers the context, p(tank|tnk)
will be higher. Also, any tagger model that considers the
context should prefer NN instead of a V B thereby lead-
ing to the path tnk → tank → NN . It works in a similar

3http://en.wikipedia.org/wiki/Soundex

way when tnk is used for thank in Figure 3b. Since this is
a post-processing technique, dictionary words which consti-
tute around 65% of the words are already tagged and used
as context while predicting the noisy word’s tag.

Figure 3: Probability estimation demo for the noisy word
tnk

4.2 Tagging After Correction (TAC)
In this technique, we first come up with the best possible

regular sentence RS for a given noisy sentence NS and then
tag it using WSJ trained Stanford tagger. This is shown in
the figure below.

Figure 4: TAC flowchart

To obtain the regular sentence, we combine the clustering
method discussed above with language modelling. We use
the WSJ trained Stanford tagger model to find all the un-
known words in a given sentence. As assumed in the UWPE
technique, we consider them as noisy words and get the clus-
ters by performing clustering on the combined data of SMS
and 0-18 sections of WSJ, using the same technique [1] as
in UWPE.

Input: Sentence S with n words
noisy words k
For each noisy word nw
regularWords[nw] = regWordsFromCluster(nw);

Permutations RS =
allPermutations(S, regularWords)

bestProb = −1;
bestS = null;
for each sentence S′ in RS :

prob =
∏n
i=1 trigramProb(Wi−2,Wi−1,Wi)

if prob > bestProb;
bestProb = prob
bestS = S′

StanfordTagger.tag(bestS)

TAC Pseudocode

Once we get the possible regular words (by clustering) for
each noisy word in the sentence, we generate all the permu-
tations of possible regular sentences, substituting different
combinations of regular words in place of the noisy words.
We apply a trigram based language model trained on 0-18



sections of WSJ to assign probability based on the trigrams
for each of those regular sentences and select the best one
as the regular sentence for the given noisy sentence. This is
shown in the above pseudocode.

regularWords is the array in which the regular words in
the same cluster of the noisy word are stored. Wi in the
trigramProb() function denotes the word at position i in
the given sentence. We back-off to bigram probabilities and
unigram probabilities in order to smooth the trigram prob-
abilities obtained over 0-18 sections of WSJ. The features
used for tagging in the Stanford tagger are those used for
the baseline setup described in section 3.4.

5. EXPERIMENTS AND RESULTS
We use the dataset explained in Section 3.1 for the ex-

periments. We divided the dataset of size 847 SMSes into
development and test sets of 80% and 20% sizes respec-
tively. Since we intend to do a lot more studies, all the
experiments described in the paper are performed on the
development set. Stanford tagger model with the feature
setting explained in section 3.4 is considered as baseline for
our experiments. Even in the UWPE and TAC techniques
explained in sections 4.1 and 4.2 , the tagger model is the
same as that used in the baseline. Differences between the
techniques come from the way we deal with noise in both
the techniques.

In the UWPE technique , experiments were done by vary-
ing the number of clusters from 500 to 2500, increasing 500
in each iteration. With small number of clusters, many
unwanted words like different morphological variations of
dictionary words and synonyms will fall into the cluster of
a noisy word making the disambiguation between different
dictionary words in the cluster difficult. On the other hand,
if we use large number of clusters, the clusters miss even
the relevant dictionary words for each noisy word. Our ex-
periments with different number of clusters demonstrated
this behavior clearly, giving the best performance at 1500
clusters.

Different soundex versions are also tried to get the word
similarity in UWPE. Simple soundex4 gives almost the same
code if the first part of the words is the same (as in work and
worked). Hence, to distinguish between different morpho-
logical variants of a dictionary word, we used several vari-
ants5 of soundex like reverse soundex, DM soundex, meta-
phone and double metaphone. The best results were ob-
tained when 1500 clusters and double metaphone [21] are
used in UWPE.

Our primary goal in doing TAC is to see how the UWPE
technique is able to tolerate noise by comparing it with a
simple technique which opts for cleaning the noise before
actually tagging it. The number of clusters parameter while
doing TAC was also set to 1500 similar to UWPE. It is sur-
prising to see TAC performing better than UWPE with a
very simple formulation. More sophisticated techniques sim-
ilar to [4] for English noisy to English regular text transla-
tion can be tried to correct the input before tagging.Table 4
below shows the accuracy comparison between the baseline,
UWPE and TAC techniques.

4http://en.wikipedia.org/wiki/Soundex#Rules
5http://en.wikipedia.org/wiki/Soundex#Soundex variants

Table 4: Accuracy comparison for Baseline, UWPE,
and TAC

Noise Type Baseline UWPE TAC
No Noise 91.2 90.7 91.3
Character Deletion 11.5 40.4 42.7
Phonetic Substitution 14.5 14.3 16.2
Dialectical Usage 16.1 8.6 9.4
Abbreviation 5.4 0.8 0.8
Overall 64.45 68.05 69
Overall Noisy Words 12.74 24.32 26.26

UWPE: Unknown Word Probability Estimation
TAC: Tagging After Correction

6. ANALYSIS
As we can see from Table 3, the overall baseline tagging

accuracy is 64.45%, which is around 30% drop from the usual
POS tagging accuracies. The difference between the overall
accuracy and the accuracy of the noisy words (which is a
mere 12.74%) is also quite high.

One more observation is that the accuracy of the words
which are not noisy (regular words) dropped from 97.32% to
91%. There are at least three reasons for this decrease: a)
The context of the regular words being noisy, b) Word and
structure level distortion of SMS text, several function words
are dropped in informal settings and c) the domain change
between the WSJ corpus and the SMS text. At this point,
we cannot make any comment on how much percentage of
this drop is because of the noisy context, structure and how
much is because of the change in the domain from WSJ.

Coming to the accuracy of the noisy words in the baseline,
we did a further evaluation to know where actually the errors
are. As expected, it turned out that most of the confusions
are with the foreign word (FW) tag, which is preferred if
a word is an unknown word for the tagger model and none
of the rare word features (cf. [26]) help in tagging. An-
other major confusion is with the common noun (NN) tag,
which is also expected, as the taggers are built to give nouns
for unknown words (open class tags). Proper noun (NNP)
has very low recall of 2.6%. This is because of the lack of
capitalization for proper nouns in the noisy text.

As there would be a tendency of giving foreign word (FW)
tag to most of the unknown words, the precision of FW tag
is the lowest. Apart from NN, JJ and FW tags, which are
given for most of the unknown words, precision of the tags
is usually more than the recall, which means that the tagger
is biased to a set of tags (NN, JJ, FW), since there are no
explicit cues for the tagger to identify the tag. Conjuncts,
prepositions, determiners and ‘to‘ are tagged very efficiently,
which might be because of the less distortion of those classes
by virtue of their smaller length. Table 5 below shows a
comparison for top 7 confusion pairs (sorted) in baseline
with UWPE and TAC. It is evident that there is a consistent
reduction in the confusions compared to baseline in case of
UWPE and TAC, with TAC outperforming UWPE almost
all the time. This phenomenon is more outstanding in case
of present participles (VBG).

Note that the abbreviations and dialectic usages are evalu-
ated w.r.t. the output of the dominant word in the expanded
regular phrase. For example, asap which is the abbreviation
of as soon as possible was evaluated against the output of
the word soon which is the dominant of all, and can closely



Table 5: Top confusions between tags
Correct Predicted Baseline UWPE TAC
NN FW 438 324 129
PRP NN 436 101 100
PRP FW 422 150 116
NNP NN 327 344 440
NNP FW 319 287 139
VBG FW 266 237 25
VBP NN 196 244 164

substitute asap in a sentence. The low accuracy for abbre-
viations and dialectical usage can be attributed to the loss
of even the limited context that exists in case of the other
kinds of noise. This can be seen in Figure 6. The noisy
word and the corresponding word in the expanded phrase
with which the output would be compared are in bold. The
context is highlighted with a rectangle on the both sides of
the words. The words in bold grey in the context in case of
regular sentences are missing from their noisy counterparts
because of merging. One can see that there is a clear dif-
ference in the contexts and one can’t expect the tagger to
perform similarly in a totally misleading context.

Figure 6. Context loss in abbreviations, dialectical usage.

The drop in the accuracies of abbreviations and dialectical
usage below the baseline in case of both UWPE and TAC is
because of the clustering used in both the approaches. Clus-
tering is currently being done based on character differences
of a noisy word with other regular words, which would group
abbreviations and dialectical usages with other smaller regu-
lar words instead of their actual regular phrases (like aint in
cluster (6)). Focused clustering that uses only the beginning
letters of each word in a phrase will perform better in the
case of dialectical usage while abbreviations should be dealt
with a rule based post processor, as the list of abbreviations
is fixed.

Compared to the abbreviations and dialectical usage, char-
acter deletion and phonetic substitution noise should be
tagged better, as there is at least some context without loss.
Though there is an improvement in the accuracy of char-
acter deletion noise, the accuracy of phonetic substitution
noise was not improved significantly by any model. This
can be either due to the bias in the clustering towards char-
acter deletion or due to the failure of soundex to capture
the phonetic variation for SMS text. This is also observed
in the clusters that are formed (can be seen in figure 2).
They contain very few phonetic variants. Also, cluster (1)
gives many morphological variations of a single dictionary
word which ideally we want to eliminate using the soundex.

TAC, being simple and not very optimized, performed bet-
ter than UWPE consistently across all the types of noise. It

shows that the tagger is unable to tolerate the noise in the
context while tagging text in UWPE. We observed a huge
decrease in the confusion of tags with FW tag in case of
TAC, as the tagger works on clean text. Having said that,
it should be noted that the clean sentences obtained with
TAC are not perfect most of the time. Often many function
words are dropped which makes it difficult for the tagger.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we tried to adapt a state-of-the-art regular

English trained tagger to noisy text, with a goal of making
the model robust towards the noise. In that process, we com-
pared two paradigms for tagging noisy text, i.e., correcting
the tags of noisy text in a post-processor and tagging the
text once it is corrected/cleaned in a pre-processing step.
We proposed techniques for each of the paradigms and com-
pared them on an SMS dataset. Both the approaches gave
around 3.5% improvement in the overall tagging accuracy
and nearly 13.52% improvement on the accuracy of noisy
words. Direct tagging techniques fell short of TAC because
of the tagger’s inability to tolerate noise.

Phonetic substitution, which is a major part of the noise
was not handled properly by any of the proposed techniques.
The clustering model needs to be improved to distinguish the
variations in phonetic substitution from character deletion,
by using some kind of phonetic similarity.

The fact that the noisy sentences are unstructured is a
problem that might be affecting the tagger as well as the
language model that is being used in the methods proposed
in this paper. Though this might be a potential reason for
lower accuracy when the tagger is being adapted to noisy
text, trying to make the tagger output those dropped words
along with their tags is very hard. We would like to consider
this in future. In this respect, like [11, 13], we intend to
create artificial data (which mimics the natural noisy text)
from regular data, which will also help us in doing better
analysis as well as evaluation. We also intend to extend the
ideas in this work to other types of noisy texts like tweets
for which the annotation, features and basic results were
explored by [14] using the universal POS tagset [20].
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