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Construction, maintenance and retrofitting of complex engineering objects like factories or plants calls for matching their model and actual state that are 

inevitably different. The paper presents a generic method for tailoring the computer aided design (CAD) model of such objects to their state given in 

terms of measured 3D, high resolution point clouds. The workflow includes efficient storage of massive measurement data, segmentation of a 

triangulated mesh-based CAD model into features, matching and adapting the features to the data. The method is demonstrated in a real-world setting, 

using the CAD model and point cloud data of an industrial plant. 
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1. Introduction 

This work is aimed at matching two different spatial 

geometrical representations of the same engineering object. 

Specifically, complex artefacts are studied whose intended design 

captured by a 3D computer aided design (CAD) model is not 

necessarily the same as their actual state that can be assessed by 

some dimensional measurement. Differences between model and 

reality are common for engineering objects with relatively long 

life-cycle, like equipment in production or power plants, whose 

original design is under unceasing change in time, from the very 

beginning of their construction. However, even deliberate 

changes are rarely documented by modifying the corresponding 

model, let alone the effects of accidental events [1]. Tailoring the 

model to reality time and again is though essential when 

monitoring the progress of construction projects and registering 

what has (or has not) been built according to schedule or 

specifications. Operations and maintenance (OM) can make more 

informed decisions by using a model that captures the up-to-date 

status of the object. When retrofitting or de-constructing complex 

industrial objects, a correct model of the work environment can 

facilitate both safety and efficiency. Finally, as presented by 

Bernard et al., technical heritage can be brought back in time by 

means of digital reconstruction methods [2]. 

Hence, the overall objective of this research was to develop 

appropriate methods for monitoring the state of complex 

constructed industrial objects by optical measurement technology, 

as well as matching this information with the 3D CAD model of 

the object under study. The comparison should primarily identify 

those elements of the reference model that can be recognized in 

the measurement data. Further on, in case of differences between 

reality and the model, elements and their relations in the model 

have to be adapted to their perceived status.  

Both analysis of the state-of-the-art [3]-[6] and preliminary 

experiments led to the conclusion that in the actual problem 

domain where typically fine resolution measurements have to be 

taken of relatively large objects having complex structure, 3D 

scanning using laser technology is superior to recording 2D visual 

information. Result of such scanning is a data set of points on the 

surface of the object, commonly referred to as point cloud.  

While in various branches of engineering methods of 

recognizing 3D objects by means of optical measurement or 

computer tomography [7] methods are being intensively 

investigated, there are severe technology gaps when it comes to 

integrating sensor data of different sources [8], to working with 

complex geometry, and especially to handling objects with 

internal structure where measurement is burdened by clutter and 

occlusion [3]. In such cases, human involvement is still essential 

in the recognition or reconstruction process [1]-[5]. Recently, in 

the field of production engineering, Stark et al. have investigated 

segmentation, parts and structure identification methods in 

support of reverse engineering 3D assembly models from 

scanned data [9]. As an addition to the general recognition 

workflow, a contact graph of parts joined in an assembly is 

generated in the course of a semi-automated process. Recognition 

normally goes through the phases of registering point cloud(s), 

generating a triangulated surface mesh from tessellation of the 

points, noise filtering, subdividing the point data into smaller 

segments, and extracting volumetric entities or features that 

capture design intent in the reconstructed model [3][10]. 

Methods like curvature tensor-based region growing [11], 

random walks over topological neighborhood [12], or spin images 

[6] can be used for decomposing point clouds or meshes into 

segments that fit surfaces typical to engineered objects, such as 

planes, cylinders, or torus sections. Though, the main concern of 

this work is comparing the actual status of measurands to their 

reference model. Hence, segmentation can be driven by design 

intent embedded in the model, while for adapting model elements 

methods of dimensional metrology can be borrowed [7][8].  

2. Problem statement 

The measurement and model adaptation method had to meet a 

number of generic requirements. First, neutral representation 

should be used for the reference CAD model. Hence, CAD models 

will be given in Standard Tessellation Language (STL) format that 

is a triangular mesh representation of a 3D surface geometry. 

Finally, compared to actual recognition techniques used in the 

practice, increased accuracy and significant reduction of 

processing time are taken as key performance criteria. 
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The input data of the problem at hand are as follows: 

 The CAD reference model of the object is given in terms of its 

STL representation that captures the object’s polytope 

geometry as tessellated triangles.  

 As measurement data, a point cloud in 3D is provided as a set 

of points characterized by their spatial coordinates. The 

points, even if measured from different locations, are all 

registered in the common space of the CAD reference model. 

The point cloud may contain several hundred million points.  

The expected, automatically generated results of the optical 

recognition technique are the following: 

 Well-defined, individual elements of the CAD reference 

model and their interconnections (like a subsystem of pipes). 

 The classification of these elements according to the result of 

matching: whether they could be found within tolerance, 

found with changed geometry, partially found, partially 

found with changed geometry, or, after all, not found in the 

measurements. 

 Modification of the parameters of those elements that have 

been found with changed geometry. 

Performance of the recognition method is evaluated in terms of 

(1) the ratio of the correctly recognized elements, and its (2) 

required total processing time. Note that reverse engineering of 

those elements that are not included in the reference model but 

could be recognized in the measured point cloud is out of the 

scope of the above problem statement and is subject of future 

research. 

3. Workflow of CAD model to point cloud matching 

The problem statement implies conflicting challenges whose 

resolution calls for the balanced applications of principles well-

known in production engineering, too. First, the charge of using a 

straightforward, robust and uniform representation for CAD 

modelling like STL is that the model does not contain any explicit 

structural information. At the same time, because of the large size 

of the data to be processed and the complexity of the calculations 

involved, it is essential to apply the principle of “divide and conquer” and decompose both the CAD model and the point cloud 

into smaller segments. Hence, there is a need of recognizing in the 

CAD model local features, together with their properties and 

relations. Decomposition should facilitate not only the matching 

of features to appropriate subsets of the measured points, but 

also the parallelization of such computations. This is the key to 

exploiting the potential of general purpose computation on 

graphics processing units (GPGPU).  
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Figure 1. Workflow of the CAD model recognition process. 

Finally, the large size of datasets requires calculations to be 

performed over point cloud data that are indexed according to the 

special features of the problem at hand. The recognition workflow 

consists of the phases shown in Figure 1. Pre-processing involves 

the standard transformation of a CAD model from a proprietary 

format into polytope (STL) geometry, as well as the efficient 

storage of massive measurement data. So as to support efficient 

queries, so-called spatial indexing [13] is used. These pre-

processing steps are not elaborated here; instead, focus is set to 

further phases of the workflow in the sequel. 

4. CAD model decomposition and feature recognition 

4.1 Decomposing polytope geometries 

The first step in feature recognition is to decompose the 

complete polytope CAD model into a set of subcomponents. The 

subcomponents are also polytope geometries but they contain 

less faces, moreover their bounding boxes are much smaller than 

that of the whole object model. If the original model is considered 

an assembly, than the subcomponents are the parts of this 

assembly. Even though the STL format in general does not store 

any topological information but only a “soup of triangles”, 

fortunately, one may exploit that the STL representation of the 

complex object have been generated by a CAD system using 

manifold geometric models. In such models the volumes are well 

defined: (1) each edge belongs to two faces, (2) each face is 

surrounded by a loop of edges, (3) faces meet each other only in 

common edges and vertices, and finally, (4) there is material only 

on one side of a face, meaning that the faces’ normal vectors are pointing always in the “outward” direction.  

Hence, the CAD system implicitly defines the topologies of the 

manifold models as they are exported into mesh representation. 

These topologies can be recognized and extracted by making use 

of face adjacency graphs (FAG). Nodes of the face adjacency graph 

are faces given as triangles, while there is an edge between any 

two nodes that represent adjacent triangles. The assembly 

composed of parts is represented by a set of disconnected FAGs, 

while the FAG of any such part may contain connected 

components characteristic to some particular object. For instance, 

Figure 2 shows the mesh model and the corresponding FAG of a 

cuboid object. 

 

Figure 2. Face adjacency graph of a manifold polytope object (cuboid). 

4.2 Recognizing typical CAD features 

The tessellated triangles define the object in terms of its 

polytope geometry. The goal of feature recognition is to 

decompose this model into such smaller entities of specific local 

topological and geometrical characteristics that facilitate the 

matching of the model to the measured points. Since this process 

involves both extensive computations and manual modifications, 

such features have to have also accepted semantics in the 

application domain. In the case study the method was applied to 

recognizing a plant (for details see Sect. 6.2) consisting of pipes, 

bent pipe segments and containers. Consequently, the respective 



features have been cylinders, torus sections and cuboids. (Note that Lübke et al. use similar features for separating measured 

points in the domain of micro deep-drawing [14]). The CAD 

model of an engineering object may also contain symbolic 

elements – like, in a plant model cone and full torus is used for 

representing a valve – but these have to be excluded from the 

matching process because they have no corresponding 

measurement data.  

Features are defined in terms of some local properties of their 

polytope geometries. A cylinder feature contains two circular 

planar faces, where the vector connecting the center of the two 

circular faces is parallel to the opposing normals of the faces, and 

the radii of the two planar faces are equal. A torus section feature 

has circular planar faces, where the normal vectors of the circular 

faces are not parallel to each other, but the radii of the two planar 

faces are equal. A cuboid feature contains six planar faces, each 

given by four vertices. Further on, the six faces are defined with 

eight different vertices, and the adjacent edges are perpendicular 

to each other.  

Definitions of features are expressed in feature recognition 

procedures that are applied to every FAG of the object under 

study. For cylinder features it is first checked whether the FAG 

contains any planar faces, i.e., connected triangles with opposite 

face normal within a pre-defined tolerance range. Next, circularity 

is checked: outer loops are calculated and a circle is fitted on the 

vertices. Whenever circles are found, by taking their radius and 

the center points of the planar faces, the conditions of the 

cylinder as defined above can be checked. Torus section feature is 

recognized in a similar way, but unlike to the cylinder its position 

and orientation is not fully defined by the center points of the two 

circular faces. In this case a reference coordinate system is 

calculated and assigned to the torus section feature. (For lack of 

space, details of this as well as of the cuboid recognition 

procedure are not given here.) Figure 3 presents the stages and 

results of the cylinder and torus section recognition processes. 

 

 
Figure 3. Recognition steps of cylinder (a) and torus section (b) features, 

with extracted parameters. 

4.3 Determining feature connectivity  

Local entities as they are features cannot be handled entirely in 

separation because they are interacting with each other. 

Interactions are specific to the domain and the feature types. For 

instance, in the plant recognition domain under particular study 

connectivity of the cylinder and torus section features is 

important information because it refers to a subsystem of bended 

pipes. Hence, taking only the potential target features, a feature 

connectivity graph is created where nodes are features and edges 

represent neighborhood relations. Two features are considered 

neighbors if the distance between their start and end points is 

within a given tolerance range. Figure 4 provides a closer look of 

a recognized connected subsystem of bended pipes.  

 

Figure 4. Connected pipe subsystem: details of recognized bended pipes. 

 
5. Matching CAD features to point cloud data 

The goal of feature matching is to decide whether the 

recognized CAD features exist or not in the measurements, and if 

they exist, what are their real parameters, positions and 

orientations. Feature matching is based on the assumption that 

the local, measured points in the vicinity of a CAD feature hold 

basically sufficient information for answering these questions. 

Hence, the feature matching algorithm proceeds by matching 

each feature with the subset of points that fall within the offset 

bounding box of the feature at hand.  

5.1 Feature points based on distance calculation 

The set of selected points of the bounding box query may 

contain so-called feature points, i.e., points related to the CAD 

feature, but further on also points that belong to other features or 

even to objects that are not included in the reference model. On 

the other hand, due to limited visibility, the set of scanned points 

might give only partial information about the surface of an object. 

However, given the kind of measurand – or, better to say, the type 

of CAD feature – the existence of this object can be deduced. 

Accordingly, a CAD feature is recognized if the majority of the 

selected points within its bounding box are feature points. Note 

that this definition applies for partially scanned features, too. The 

degree of match is defined as follows: there is given a feature f in 

an arbitrary position and orientation, a set of n selected points 

within the bounding box of f, and a tolerance ε. The degree of 

match is then characterized by the number of points with distance 

to the surface of f less than ε. This distance is calculated in a 

feature specific way: for a cylinder given with its center line and 

radius r, feature points are within the r±ε range of the center line. 
For torus section the definition is similar, but the points should be 

within r±ε range of the arc connecting the endpoints (see Figure 

5). For cuboids, the degree of match is given as the number of 

points whose minimal distance from any of the faces of the cuboid 

are within the ±ε range. 

       

Figure 5. Distance calculation for cylinder (a) and torus section (b). 

Next, the matching algorithm optimizes the position and 

orientation of the feature in such a way that it maximizes the 

degree of match. This is done by iterative search, with feature 

specific operators. For a cylinder, the start and end points of the 

center line are varied until the maximal number of points gets 

within tolerance. Adjoining torus sections can next be found in 

the feature connectivity graph, whose circular faces are adjusted 

to those of the cylinders, and again, local search looks for the 

most fitting radius parameter value. Figure 6 shows the reference 

(green) and optimized (orange) posture of a cylinder, together 

with the distance distribution calculated for 100000 points.  



 

Figure 6. Matching and adapting cylindrical feature: Distance distribution 

for reference and optimized posture. Non-feature points are in red color. 

5.2 Point labelling and feature classification 

As a result of feature matching, within the local bounding box of 

any feature each point can be labelled as (1) feature point, (2) 

inner non-feature point, or (3) outer non-feature point. This 

labelling, in turn, is used to evaluate the result and to provide a 

final classification of features in light of the actual point cloud 

data. Specifically, result of matching needs an engineering 

interpretation because the CAD features may (or may not) match 

to the point cloud in different ways, depending on the amount, 

quality and distribution of data. Hence, the following 

classification has been introduced: 

 Found: the point cloud available provides sufficient evidence 

for the existence of the feature in the real environment (see 

Figure 7a). 

 Found with changed geometry: The point cloud provides 

sufficient evidence for the existence of the feature. However, 

there are considerably many inner points; hence the 

reference CAD model only approximates reality. 

 Partially found: The point cloud gives some evidence for the 

existence of the feature, but due to some reasons (changes in 

the reference geometry, occlusion) this is weak. Such 

recognized features have relatively many outer points. 

 Partially found with changed geometry: The point cloud data 

provides some evidence for the existence of the feature, 

some segments of it can even be identified, however, only 

with changed geometry. Features recognized this way have 

relatively many inner and outer points (see Figure 7b). 

 Not found: The point cloud data provides no sufficient 

evidence for the existence of the feature because it cannot be 

found within the bounding volume using the point cloud. 

So as to make the above classification scheme operational, a 

finer distinction for evaluating the quality of matching has to be 

made: supposing that matching of a feature resulted in N feature 

points, I inner non-feature points and O outer non-feature points, 

the matching ratio R is defined as R=N/(N+I+O). On the other 

hand, the matching ratio without inner non-feature points, S is 

calculated as S=N/(N+O). By using thresholds for the values of R 

and S, the above classification rules can be declared as presented 

in Table 1. 

Table 1. Classification rules 

Classification Condition 

Found R > 80% 

Found with changed geometry R ≤ 80% ∧ S > 80% 

Partially found 40% < R ≤ 80% 

Partially found with changed geometry R ≤ 40% ∧ S > 40% 

Not found N < 1000 ∨ S ≤ 40% 

          

Figure 7. Examples of featured classified as found (a) and partially found 

with changed geometry (b). Non-feature points are in red color. 

6. Experimental results 

6.1 Implementation 

The methods presented above have been implemented on top 

of an Oracle database system that was dedicated to store and 

handle point cloud data on a very large scale. So as to speed up 

bounding box queries, special octree-based spatial indexing 

scheme has been applied [13]. All the algorithms have been 

implemented by using Mathematica v8. The tests have been run 

on a virtual server machine with 6 core Intel Xeon X5650 2,67 

GHz processor and 6 GB RAM. 

 

6.2 Industrial case study 

The workflow and the algorithms have been tested in a real-life 

setting, for matching the CAD model of a pure water equipment 

plant to laser scanned point cloud data. The industrial partner 

provided the CAD reference model in form of an STL file that 

contained 188616 vertices and 375540 faces. The 3D measured 

point cloud was collected in an area of ca. 6000 x 6000 x 4500 

mm by a phase-based laser scanner from 25 different locations. 

The measured and registered dataset of the target plant consisted 

of ca. 250 million points and required storage space (as text files) 

of ca. 15 GB. Thanks to spatial indexing, the bounding box query – 

a basic procedure applied in several phases of the workflow – 

became extremely fast (1-2 sec/query in the whole dataset). A 

sample of measured point cloud is shown in Figure 8. 

 

Figure 8. 3D measured point cloud of the pure water equipment. 

In the feature recognition phase, with an accuracy tolerance ε 
set to 5 mm, altogether 463 cylinder, torus section, and cuboid 

features have been automatically identified (see also Table 2). A 

closer inspection has shown that all the non-recognized 

subcomponents of the CAD model had been full torus and cone 

geometries representing symbolic valves. The total processing 

time of feature recognition in the CAD model was 220 sec. After 

finding the features their connectivity graph has been built by 

exploiting information of connected feature pairs. Figure 9 

depicts the feature connection graph of the whole plant where the 

longer chains represent continuous bended pipe segments. 



 

Figure 9. Feature connectivity graph of the whole plant. 

The overall results of matching features to the point cloud are 

summarized in Table 2. All in all, less than 5% of the features 

have not been found. Individual analysis exposed some reasons of 

failed recognition: the original feature was removed in the 

meantime, some features were included or replaced by other 

ones not in the reference model, some were densely surrounded 

by points belonging to other features, or simply, due to 

obstructed visibility, there were too few measured points to 

identify them. As for cylindrical features, Figure 10 shows color-

coded results of matching, with found (green), partially found 

(orange) and not found (red) pipe segments. The total time of 

matching cylinder features took 180 minutes, while torus section 

features were matched in 105 minutes. Cuboid features have 

been completely recognized, hence all of them are depicted in 

green color in Figure 11. The total time of matching cuboid 

features was 30 minutes.  

Table 2. Summarized classification results for the main feature types. 

 cylindrical torus section cuboid 

Classification # % # % # % 

Found 137 45 58 42 15 83 

Found with chgd. geometry 46 15 7 5 3 17 

Partially found 92 30 69 50 0 0 

Part. found with chgd. geo. 13 4 0 0 0 0 

Not found 19 6 4 3 0 0 

Total 307 100 138 100 18 100 

 

Figure 10. Results of matching cylindrical features. 

 

Figure 11. Results of matching cuboid features. 

7. Conclusions and future work 

The presented CAD model matching method takes widely 

supported input in form of mesh models, works also for partially 

measured objects, and for any type of features. The only 

precondition of its application is to have an appropriate distance 

function for assessing the degree of match between a feature and 

its respective point cloud data. Tolerance of matching can be 

adjusted, so the method is capable of handling noisy data. 

Computations in the most intensive phase of the workflow can be 

parallelized and implemented by using GPGPU technology. 

As core of the workflow a novel feature recognition method has 

been developed that uses the face adjacency graph as its only 

input. The method is generic, neutral, and is able to work on very 

large graph structures as well. Since it cuts across the interfacing 

problem of different CAD systems, it has wide application 

potential. For instance, a precursor of this recognition method 

was also applied in a manufacturing process planning research 

for identifying volume primitives to be removed by distinct 

machining operations (see [15]). 

Future work is aimed at improving the accuracy of registration 

by means of segmentation based methods [16], reducing 

processing time by parallelization, as well as identifying those 

elements of the real, complex object that are not modelled in the 

reference CAD model but have traces in the measured data. This 

reverse engineering task is accomplished by informed guesses. 

Once having a hypothetical model of a feature, the method 

presented above can be applied for assessing its existence.  
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