
Adapting Distributed Real-Time and Embedded
Pub/Sub Middleware for Cloud Computing

Environments�

Joe Hoffert��, Douglas C. Schmidt, and Aniruddha Gokhale

Vanderbilt University, VU Station B #1829, 2015 Terrace Place, Nashville, TN 37203
jhoffert@dre.vanderbilt.edu

Abstract. Enterprise distributed real-time and embedded (DRE) publish/
subscribe (pub/sub) systems manage resources and data that are vital to users.
Cloud computing—where computing resources are provisioned elastically and
leased as a service—is an increasingly popular deployment paradigm. Enterprise
DRE pub/sub systems can leverage cloud computing provisioning services to exe-
cute needed functionality when on-site computing resources are not available. Al-
though cloud computing provides flexible on-demand computing and networking
resources, enterprise DRE pub/sub systems often cannot accurately characterize
their behavior a priori for the variety of resource configurations cloud comput-
ing supplies (e.g., CPU and network bandwidth), which makes it hard for DRE
systems to leverage conventional cloud computing platforms.

This paper provides two contributions to the study of how autonomic con-
figuration of DRE pub/sub middleware can provision and use on-demand cloud
resources effectively. We first describe how supervised machine learning can con-
figure DRE pub/sub middleware services and transport protocols autonomically
to support end-to-end quality-of-service (QoS) requirements based on cloud com-
puting resources. We then present results that empirically validate how comput-
ing and networking resources affect enterprise DRE pub/sub system QoS. These
results show how supervised machine learning can configure DRE pub/sub mid-
dleware adaptively in < 10 µsec with bounded time complexity to support key
QoS reliability and latency requirements.

Keywords: Autonomic configuration, pub/sub middleware, DRE systems, cloud
computing.

1 Introduction

Emerging trends and challenges. Enterprise distributed real-time and embedded
(DRE) publish/subscribe (pub/sub) systems manage data and resources that are criti-
cal to the ongoing system operations. Examples include testing and training of exper-
imental aircraft across a large geographic area, air traffic management systems, and
disaster recovery operations. These types of enterprise DRE systems must be config-
ured correctly to leverage available resources and respond to the system deployment

� This work is sponsored by NSF TRUST and AFRL.
�� Corresponding author.

I. Gupta and C. Mascolo (Eds.): Middleware 2010, LNCS 6452, pp. 21–41, 2010.
c© IFIP International Federation for Information Processing 2010

22 J. Hoffert, D.C. Schmidt, and A. Gokhale

environment. For example, search and rescue missions in disaster recovery operations
need to configure the image resolution used to detect and track survivors depending on
the available resources (e.g., computing power and network bandwidth) [20].

Many enterprise DRE systems are implemented and developed for a specific com-
puting/networking platform and deployed with the expectation of specific computing
and networking resources being available at runtime. This approach simplifies develop-
ment complexity since system developers need only focus on how the system behaves
in one operating environment. Thus considerations of multiple infrastructure platforms
are ameliorated with respect to system quality-of-service (QoS) properties (e.g., re-
sponsiveness of computing platform, latency and reliability of networked data, etc.).
Focusing on only a single operating environment, however, decreases the flexibility of
the system and makes it hard to integrate into different operating environments, e.g.,
porting to new computing and networking hardware.

Cloud computing [6, 17] is an increasingly popular infrastructure paradigm where
computing and networking resources are provided to a system or application as a service
—typically for a “pay-as-you-go” usage fee. Provisioning services in cloud environ-
ments relieve enterprise operators of many tedious tasks associated with managing hard-
ware and software resources used by systems and applications. Cloud computing also
provides enterprise application developers and operators with additional flexibility by
virtualizing resources, such as providing virtual machines that can differ from the actual
hardware machines used.

Several pub/sub middleware platforms (such as the Java Message Service [16], and
Web Services Brokered Notification [14]) can (1) leverage cloud environments, (2) sup-
port large-scale data-centric distributed systems, and (3) ease development and deploy-
ment of these systems. These pub/sub platforms, however, do not support fine-grained
and robust QoS that are needed for enterprise DRE systems. Some large-scale dis-
tributed system platforms, such as the Global Information Grid [1] and Network-centric
Enterprise Services [2], require rapid response, reliability, bandwidth guarantees,
scalability, and fault-tolerance.

Conversely, conventional cloud environments are problematic for enterprise DRE
systems since applications within these systems often cannot characterize the utilization
of their specific resources (e.g., CPU speeds and memory) accurately a priori. Conse-
quently, applications in DRE systems may need to adjust to the available resources
supplied by the cloud environment (e.g., using compression algorithms optimized for
given CPU power and memory) since the presence/absence of these resources affect
timeliness and other QoS properties crucial to proper operation. If these adjustments
take too long the mission that the DRE system supports could be jeopardized.

Configuring an enterprise DRE pub/sub system in a cloud environment is hard be-
cause the DRE system must understand how the computing and networking resources
affect end-to-end QoS. For example, transport protocols provide different types of QoS
(e.g., reliability and latency) that must be configured in conjunction with the pub/-
sub middleware. To work properly, however, QoS-enabled pub/sub middleware must
understand how these protocols behave with different cloud infrastructures. Likewise,
the middleware must be configured with appropriate transport protocols to support the

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 23

required end-to-end QoS. Manual or ad hoc configuration of the transport and middle-
ware can be tedious, error-prone, and time consuming.
Solution approach → Supervised Machine Learning for Autonomous Configura-
tion of DRE Pub/Sub Middleware in Cloud Computing Environments. This pa-
per describes how we are (1) evaluating multiple QoS concerns (i.e., reliability and
latency) based on differences in computing and networking resources and (2) config-
uring QoS-enabled pub/sub middleware autonomically for cloud environments based
on these evaluations. We have prototyped this approach in the ADAptive Middleware
And Network Transports (ADAMANT) platform, which addresses the problem of con-
figuring QoS-enabled DRE pub/sub middleware for cloud environments. Our approach
provides the following contributions to research on autonomic configuration of DRE
pub/sub middleware in cloud environments:

• Supervised machine learning as a knowledge base to provide fast and predictable
resource management in cloud environments. Artificial Neural Network (ANN) tools
determine in a timely manner the appropriate transport protocol for the QoS-enabled
pub/sub middleware platform given the computing resources available in the cloud en-
vironment. ANN tools are trained on particular computing and networking configura-
tions to provide the best QoS support for those configurations. Moreover, they provide
predictable response times needed for DRE systems.

• Configuration of DRE pub/sub middleware based on guidance from supervised
machine learning. Our ADAMANT middleware uses the Adaptive Network Transports
(ANT) [10] to select the transport protocol(s) that best address multiple QoS concerns
for given computing resources. ANT provides infrastructure for composing and con-
figuring transport protocols using the scalable reliable multicast-based Ricochet trans-
port protocol [3]. Supported protocols such as Ricochet enable trade-offs between la-
tency and reliability to support middleware for enterprise DRE pub/sub systems in cloud
environments.

We have implemented ADAMANT using multiple open-source pub/sub middle-
ware implementations (i.e., OpenDDS(www.opendds.org) and OpenSplice(www.
openslice.org)) of the OMG Data Distribution Service (DDS) [18] specification.
DDS defines a QoS-enabled DRE pub/sub middleware standard that enables applica-
tions to communicate by publishing information they have and subscribing to informa-
tion they need in a timely manner. The OpenDDS and OpenSplice implementations of
DDS provide pluggable protocol frameworks that can support standard transport proto-
cols (such as TCP, UDP, and IP multicast), as well as custom transport protocols (such
as Ricochet and reliable multicast).

Our prior work [10,11] developed composite metrics to evaluate pub/sub middleware
with various ANT-based transport protocols based on differences in application param-
eters (e.g., number of data receivers and data sending rate). We also evaluated multiple
approaches for adapting to application parameter changes in a dedicated (i.e., non-cloud)
operating environment without regard to changes in computing or networking resources.
This paper extends our prior work by (1) evaluating pub/sub middleware in a cloud en-
vironment to take into account differences in computing and networking resources and

www.opendds.org
www.openslice.org
www.openslice.org

24 J. Hoffert, D.C. Schmidt, and A. Gokhale

(2) conducting empirical evaluations of an artificial neural network machine learning
tool with respect to timeliness and configuration accuracy.

We validated ADAMANT by configuring Emulab (www.emulab.net) to emulate
a cloud environment that allows test programs to request and configure several types
of computing and networking resources on-demand. We then applied several compos-
ite metrics developed to ascertain how ADAMANT supports relevant QoS concerns
for various Emulab-based cloud configurations. These metrics quantitatively measure
multiple interrelated QoS concerns (i.e., latency and reliability) to evaluate QoS mech-
anisms (such as transport protocols) used in QoS-enabled pub/sub DRE systems. Our
supervised machine learning tools use the results of these composite metrics to deter-
mine the most appropriate transport protocol to apply in the Emulab cloud environment.

Paper organization. The remainder of this paper is organized as follows: Section 2
describes a representative search and rescue application to motivate the challenges
that ADAMANT addresses; Section 3 examines the structure and functionality of
ADAMANT and the supervised machine learning technique it uses to guide the config-
uration process; Section 4 analyzes the results of experiments conducted to validate
ADAMANT in a cloud environment; Section 5 compares ADAMANT with related
work; and Section 6 presents concluding remarks.

2 Motivating Example - Search and Rescue Operations in the
Aftermath of a Regional Disaster

This section describes a representative enterprise DRE pub/sub application in a cloud
computing environment to motivate the challenges that ADAMANT addresses.

2.1 Search and Rescue Operations for Disaster Recovery

To highlight the challenges of configuring enterprise DRE pub/sub systems for cloud
environments in a timely manner, our work is motivated in the context of supporting
search and rescue (SAR) operations that leverage cloud infrastructure. These oper-
ations help locate and extract survivors in a large metropolitan area after a regional
disaster, such as a hurricane or tornado. SAR operations can use unmanned aerial ve-
hicles (UAVs), existing operational monitoring infrastructure (e.g., building or traffic
light mounted cameras intended for security or traffic monitoring), and (temporary)
datacenters to receive, process, and transmit data from various sensors and monitors to
emergency vehicles that can be dispatched to areas where survivors are identified.

These datacenters can be mobile (e.g., in truck trailers or large command-and-control
aircraft if roads are damaged) and brought into the disaster area as needed. More-
over, these datacenters can be connected to cloud infrastructure via high-speed satellite
links [12] since ground-based wired connectivity may not be available due to the disas-
ter. In particular, our work focuses on configuring the QoS-enabled pub/sub middleware
used by the temporary ad hoc datacenter for data dissemination.

Figure 1 shows an example SAR scenario where infrared scans along with GPS co-
ordinates are provided by UAVs and video feeds are provided by existing infrastructure

www.emulab.net

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 25

UAV providing infrared scan stream

Infrastructure camera providing video stream

Ad-hoc
datacenter

Rescue helicopter

Disaster
victims

Cloud computing
infrastructure

Fig. 1. Search and Rescue Motivating Example

cameras. These infrared scans and video feeds are then sent to a datacenter facilitated
by cloud infrastructure where the data are disseminated, received by fusion applica-
tions, and processed to detect survivors. Once survivors are detected, the SAR system
will develop a three dimensional view and highly accurate position information so that
rescue operations can commence.

A key requirement of data fusion applications within the datacenter is the tight tim-
ing bounds on correlated event streams such as the infrared scans coming from UAVs
and video coming from cameras mounted atop traffic lights. The event streams need to
match up closely so the survivor detection application can produce accurate results. If
an infrared data stream is out of sync with a video data stream, the survivor detection
application can generate a false negative and fail to initiate needed rescue operations.
Likewise, without timely data coordination the survivor detection software can gen-
erate a false positive thereby expending scarce resources such as rescue workers, res-
cue vehicles, and data center coordinators unnecessarily. The timeliness and reliability
properties of the data are affected by the underlying hardware infrastructure, e.g., faster
processors and networks can decrease latency and allow more error correcting data to
be transmitted to improve reliability.

SAR operations in the aftermath of a disaster can be impeded by the lack of com-
puting and networking resources needed for an ad hoc datacenter. The same disaster
that caused missing or stranded people also can diminish or completely eliminate lo-
cal computing resources. Cloud infrastructure located off-site can provide the needed
resources to carry out the SAR operations. Applications using cloud resources can be
preempted to support emergency systems such as SAR operations during national crises
much as emergency vehicles preempt normal traffic and commandeer the use of traffic
lights and roadways. The resources that the cloud provides, however, are not known a
priori. Thus, the effective QoS for the SAR operations are dependent on the computing
resources provided.

2.2 Key Challenges in Supporting Search and Rescue Operations in Cloud
Computing Environments

Meeting the requirements of SAR operations outlined in Section 2.1 is hard due to the
inherent complexity of configuring enterprise DRE pub/sub middleware based on the
computing resources the cloud provides. These resources are not known a priori and yet
the QoS of the system is affected by the specific resources provided. The remainder of

26 J. Hoffert, D.C. Schmidt, and A. Gokhale

this section describes four challenges that ADAMANT addresses to support the commu-
nication requirements of the SAR operations presented above.

Challenge 1: Configuring for data timeliness and reliability. SAR operations must
receive sufficient data reliability and timeliness so that multiple data streams can be
fused appropriately. For instance, the SAR operation example described above shows
how data streams (such as infrared scan and video streams) can be exploited by multiple
applications simultaneously in a datacenter. The top half of Figure 2 shows how secu-
rity monitoring and structural damage applications can use video stream data to detect
looting and unsafe buildings, respectively. The bottom half of Figure 2 shows how fire
detection applications and power grid assessment applications can use infrared scans to
detect fires and working HVAC systems, respectively.

Likewise, the SAR systems must be configured to best use the computing and
networking resources from the cloud to address data timeliness and reliability. These
systems must therefore (1) use transport protocols that provide both reliability and time-
liness and (2) know how these protocols behave in different computing and networking
environments. Sections 3.1 and 4.1 describe how ADAMANT addresses this challenge
by utilizing composite QoS metrics to measure both timeliness and reliability and in-
corporating transport protocols that configure the datacenter’s pub/sub middleware to
balance reliability and low latency.

Ad-hoc
datacenter

Looting
detection

Structural
assessment

Cameras providing video

UAVs providing infrared scans

SAR operations

Power grid
assessment

Fire
Detection

Fig. 2. Uses of Infrared Scans and Video Streams during Disaster Recovery

Challenge 2: Timely configuration. Due to timeliness concerns of DRE systems such
as SAR systems, the ad hoc datacenter used for SAR operations must be configured in a
timely manner based on the computing and networking resources provided by the cloud.
If the datacenter cannot be configured quickly, invaluable time will be lost leading to
survivors not being saved and critical infrastructure (such as dams and power plants)
not being safeguarded from further damage. During a regional or national emergency
any wasted time can mean the difference between life and death for survivors and the
salvaging or destruction of key regional utilities.

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 27

Moreover, applications and systems used during one disaster can be leveraged for
other disasters. Available computing and networking resources differ from one set of
disaster recovery operations to another. Depending on the available cloud resources,
therefore, the configuration times of ad hoc datacenters for SAR operations, for ex-
ample, must be bounded and fast to ensure appropriate responsiveness. Determining
appropriate configurations must also provide predictable response to ensure rapid and
dependable response times across different computing and networking resources. Sec-
tions 3.2 and 4.4 describe how ADAMANT addresses this challenge by utilizing an
artificial neural network machine learning tool to autonomically configure the datacen-
ter’s pub/sub middleware quickly and predictably.

Challenge 3: Accuracy of configurations. Since data timeliness and reliability is
related to the computing resources available and the configuration of the datacenter sup-
porting the SAR operations in a cloud as noted in Challenge 1, configuring the datacen-
ter must be done in an accurate manner. If the datacenter is incorrectly configured then
the timeliness and reliability of the data (e.g., the UAV scans and camera video used to
detect survivors) will not be optimal for the given computing resources. For critical op-
erations during disasters, such as rescuing survivors, the supporting SAR system must
utilize the available resources to their fullest extent. Sections 3.2 and 4.4 describe how
ADAMANT addresses this challenge by using the artificial neural network machine
learning tool to configure the datacenter’s pub/sub middleware accurately.

Challenge 4: Reducing development complexity. Regional and local disasters occur
in many places and at many different times. The functionality of applications used dur-
ing one disaster may also be needed for other disasters. A system that is developed
for one particular disaster in a particular operating environment, however, might not
work well for a different disaster in a different operating environment. SAR opera-
tions could unexpectedly fail at a time when they are needed most due to differences
in computing and networking resources available. Systems therefore must be devel-
oped and configured readily between the different operating environments presented
by cloud computing to leverage the systems across a wide range of disaster scenarios.
Section 3.2 describes how ADAMANT addresses this challenge by using an artificial
neural network machine learning tool to manage mapping the computing and network
resources and application parameters (e.g., data sending rate, number of data receivers)
to the appropriate transport protocol to use.

3 Overview of ADAMANT

This section presents an overview of the ADAptive Middleware And Network Transports
(ADAMANT) platform, which is QoS-enabled pub/sub middleware that integrates and
enhances the Adaptive Network Transports (ANT) framework to support multiple trans-
port protocols and the Artificial Neural Network (ANN) machine learning technology
to select appropriate transport protocols in a timely and reliable manner. ADAMANT
extends our prior work [10,11] by empirically evaluating (1) the QoS delivered by DDS
pub/sub middleware with respect to differences in computing and networking resources
provided by cloud environments and (2) the accuracy and timeliness of ANN-based
machine learning tools in determining appropriate middleware configurations.

28 J. Hoffert, D.C. Schmidt, and A. Gokhale

ADAMANT

SAR
Topic(s)

Adaptive Network Transport (ANT)
Protocols

Data
Writer

Data
Reader

Data
Reader

App
Publisher

App
Subscriber

Domain

…

Protocol Optimizer (ANN)

Key:
Control interaction between subsystems Assoc. between reader/writer and topic

DDS

1. ADAMANT queries
environment for resources.

2. Resource information
passed to ANN.

3. ANN selects appropriate protocol
in a timely manner & notifies ANT

Cloud Computing
Environment

ADAMANT
4. ANT configures the
protocol for the middleware

Fig. 3. ADAMANT Architecture and Control Flow

Figure 3 shows how ADAMANT works in a cloud environment (e.g., the ad-hoc
SAR datacenter) to deploy cloud resources. Since ADAMANT configures itself based
on the resources in a cloud, it must determine those resources autonomically when
the cloud environment makes them available. ADAMANT queries the environment for
hardware and networking resources using OS utilities.

For example, on Linux ADAMANT accesses the /proc/cpuinfo file to gather
CPU information and executes the ethtool program to query network characteris-
tics. ADAMANT combines this hardware information with other relevant application
properties (e.g., number of receivers and data sending rate) and sends it as input to the
ANN, which determines the appropriate protocol in a timely manner and passes this
information to ANT. ANT then configures the DDS middleware to use the appropriate
transport protocol. The remainder of this section describes the structure and functional-
ity of ADAMANT.

3.1 Adaptive Network Transports (ANT) Framework

The ANT framework supports various transport protocol properties, including multi-
cast, packet tracking, NAK-based reliability, ACK-based reliability, flow control, group
membership, and membership fault detection. These properties can be configured at
startup to achieve greater flexibility and support configuration adaptation.

The ANT framework originally was derived from the Ricochet [3] transport protocol,
which uses a bi-modal multicast protocol and a novel type of forward error correction
(FEC) called lateral error correction (LEC) to provide QoS and scalability properties.
Ricochet supports (1) time-critical multicast for high data rates with strong probabilistic
delivery guarantees and (2) low-latency error detection along with low-latency error
recovery. We included ANT’s Ricochet protocol and ANT’s NAKcast protocol, which
is a NAK-based multicast protocol supporting a timeout parameter for when to send
NAKs to the sender, with the evaluations done in this paper. These protocols have been
selected due to their support for balancing reliability and low latency [10].

/proc/cpuinfo
ethtool

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 29

The Ricochet protocol has two tunable parameters. The R parameter determines the
number of packets a receiver should receive before it sends out a repair packet to other
receivers. The C parameter determines the number of receivers that will be sent a repair
packet from any single receiver. These two parameters affect the timeliness, reliability,
and jitter of the data received as shown in Section 4.3. ANT helps address Challenge 1
in Section 2.2 by supporting transport protocols that balance reliability and low latency.

3.2 Artificial Neural Network Tools to Determine Middleware Configurations

Several machine learning approaches can be used to configure middleware autonom-
ically in a cloud computing environment. We selected ANN technology [11] due to
its (1) fast and predictable performance, (2) accuracy for environments known a pri-
ori (i.e., used for ANN training) and unknown until runtime (i.e., not used for ANN
training), and (3) low accidental development complexity. In particular, we chose the
Fast Artificial Neural Network (FANN)(leenissen.dk/fann) implementation due
to its configurability, documentation, ease of use, and open-source code. Section 4.4
shows the accuracy and timeliness of a neural network trained and tested using the data
collected from the experiments described in Section 4.3. In particular, neural networks
provide 100% accuracy for environments known a priori, high accuracy for environ-
ments unknown until runtime, and the low latency, constant time-complexity required
for DRE systems such as SAR operations.

The use of an ANN helps address Challenges 2 and 3 in Section 2.2 by providing
accurate, fast, and predictable guidance for determining an appropriate ADAMANT
configuration for a given cloud computing environment. An ANN also helps address
Challenge 4 in Section 2.2 by autonomically managing the mappings from the com-
puting and network resources available and the application parameters (e.g., data send-
ing rate, number of data receivers) to the appropriate transport protocols. An ANN
thus reduces the development complexity for configuring the pub/sub middleware ap-
propriately as compared to manual adaptation approaches (e.g., implementing switch
statements), which are tedious and error-prone [13].

4 Experimental Results

The section presents the results of experiments we conducted to empirically evaluate (1)
the effect of computing and networking resources on the QoS provided by ADAMANT
as measured by the composite QoS metrics defined in Section 4.1 and (2) the timeli-
ness and accuracy of an ANN in determining an appropriate ADAMANT configuration
given a particular cloud computing environment. The experiments include ADAMANT
with multiple aspects of the operating environment varied, (e.g., CPU speed, network
bandwidth, DDS implementation, percent data loss in the network) along with multiple
aspects of the application being varied as would be expected with SAR operations (e.g.,
number of receivers, sending rate of the data).

4.1 Composite QoS Metrics for Reliability and Timeliness

Our prior work [10, 11] on QoS-enabled pub/sub middleware performance for non-
cloud environments indicated that some transport protocols provide better reliability

leenissen.dk/fann

30 J. Hoffert, D.C. Schmidt, and A. Gokhale

(as measured by the number of network packets received divided by the number sent)
and latency for certain environments while other protocols are better for other envi-
ronments. We therefore developed several composite QoS metrics to evaluate multiple
QoS aspects simultaneously, thereby providing a uniform and objective evaluation of
ADAMANT in cloud computing environments. Our composite QoS metrics focus on
reliability and average latency, including the QoS aspects of (1) jitter (i.e., standard de-
viation of the latency of network packets), (2) burstiness (i.e., the standard deviation of
average bandwidth usage per second of time), and (3) network bandwidth usage.

Two of the composite QoS metrics we defined are ReLate2 and ReLate2Jit. ReLate2
is the product of the average data packet latency and the percent loss + 1 (to account for
0% loss) which implies an order of magnitude increase for 9% loss. This adjustment is
relevant for multimedia data in our SAR example based on previous research, e.g., if
average packet latency is 1,000 µs and the percent loss is 0 (i.e., no packets lost) then
the ReLate2 value is 1,000. Having 9% and 19% loss with the same average latency
produces the ReLate2 values of 10,000 and 20,000 respectively. ReLate2Jit is a product
of the ReLate2 value and the jitter of the data packets to quantify reliability, average
latency, and jitter.

We apply these metrics below to QoS-enabled DDS pub/sub middleware using vari-
ous transport protocols supported by ANT to train the ANN. The ANN is trained with
an understanding of how integration of middleware with each protocol affects the QoS
properties of reliability and latency given the variability of computing and networking
resources of a cloud environment.

4.2 Experimental Setup

We conducted our experiments using the Emulab network testbed, which provides on-
demand computing platforms and network resources that can be easily configured with
the desired OS, network topology, and network traffic shaping. We used Emulab due
to its (1) support for multiple types of computing platforms, (2) numbers of computing
platforms, and (3) support for multiple network bandwidths. The flexibility of Emulab
presents a representative testbed to train and test ADAMANT’s configurability support
for cloud computing environments.

As described in Section 2, we are concerned with the distribution of data for SAR
datacenters, where network packets are typically dropped at end hosts [4]. The ADA-
MANT software for the receiving data readers supports programmatically dropping
random data packets. We modified ADAMANT to drop packets based on the loss
percentage specified for the experiment.

Our experiments were configured with the following traffic generation models using
version 1.2.1 of OpenDDS and version 3.4.2 of OpenSplice. One DDS data writer sent
out data, a variable number of DDS data readers received the data. The data writer and
each data reader ran on its own computing platform and the data writer sent 12 bytes of
data 20,000 times at a specified sending rate. To account for experiment variations we
ran 5 experiments for each configuration, e.g., 3 receiving data writers, 50 Hz sending
rate, 2% end host packet loss, pc3000 computing platform, and 1Gb network bandwidth.

We configured ADAMANT with Ricochet and NAKcast to determine how well
it performs using these protocols. We modified NAKcast’s timeout value as well as

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 31

Table 1. Environment Variables Table 2. Application Variables

Ricochet’s R and C parameters as described in Section 3.1. Table 1 outlines the points
of variability provided by the cloud computing environment. We include the DDS im-
plementation in this table since some cloud computing environments provide hardware
and software resources. We include network loss in the table since the network charac-
teristics in cloud computing can be specified in an end-user license agreement, which
identifies the services that the cloud computing environment will provide and that con-
sumers accept. The middleware for the SAR operations can then be configured appro-
priately using this information.

Table 2 outlines the points of variability due to the SAR operations. In particular, we
varied the number of data receivers since only a few SAR applications might be inter-
ested in one data stream (e.g., for a localized area with fine-grained searching) while
many applications might be interested in a different data stream (e.g., for a broader area
with coarse-grained searching). Likewise, the sending rate might be high for SAR op-
erations that need high-resolution imaging for detailed searching while a lower sending
rate is sufficient for SAR operations where lower resolution imaging is sufficient for
more generalized searching.

For computing resources we used Emulab’s pc850 and pc3000 hardware platforms.
The pc850 platform includes an 850 MHz 32-bit Pentium III processor with 256 MB
of RAM. The pc3000 platform includes a 3 GHz 64-bit Xeon processor with 2 GB of
RAM. We used the Fedora Core 6 operating system with real-time extensions on these
hardware platforms to collect high resolution timings. The nodes were all configured in
a LAN configuration indicative of a datacenter.

4.3 Evaluating How Cloud Computing Resources Affect QoS

Below we analyze the results from experiments involving different cloud computing en-
vironments. We show experimental data where the selection of ADAMANT’s transport
protocol to support QoS differs based on the cloud computing environment. Information
in this section addresses Challenge 1 in Section 2.2 by characterizing the performance
of the transport protocols for various cloud computing environments.

Figures 4 and 5 show the results of experiments where we held constant the num-
ber of receivers (3), the percent loss (5%), and the DDS middleware (OpenSplice).
We varied the computing platform and the network bandwidth using the pc850 and
pc3000 platforms, and 100Mb and 1Gb LANs, respectively. We ran the experiments
using NAKcast with a NAK timeout setting of 50ms, 25ms, 10ms, and 1ms, and Ric-
ochet with R=4, C=3 and R=8, C=3. We only include NAKcast with a timeout of 1ms
and Ricochet R=4 C=3 since these were the only protocols that produced the best

32 J. Hoffert, D.C. Schmidt, and A. Gokhale

(i.e., lowest) ReLate2 values for these operating environments. Likewise, we ran the
ADAMANT experiments with sending rates of 10Hz, 25Hz, 50Hz, and 100Hz but only
show results for 10Hz and 25Hz since these highlight different protocols that produce
the lowest ReLate2 value.

Figure 4 shows two cases where the Ricochet protocol with R = 4 and C = 3 produces
the best (i.e., lowest) ReLate2 values for sending rates of both 10Hz and 25Hz when
using the pc3000 computing platform and the 1Gb network. Conversely, Figure 5 shows
how the NAKcast protocol with a NAK timeout set to 1 ms produces the best (i.e., low-
est) ReLate2 values for the same sending rates of 10Hz and 25Hz when using the pc850
computing platform and the 100Mb network. These figures show that by changing only
the CPU speed, amount of RAM, and network bandwidth, different protocols produce
a better ReLate2 value and therefore better support the QoS properties of reliability
and average latency. The SAR datacenter pub/sub middleware should therefore be con-
figured differently depending on the computing and networking resources that a cloud
computing environment provides. No single protocol performs best in all cases based
on the computing and networking resources.

7000

8000

9000

10000
pc3000, 1Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

3500

4500

1 2 3 4 5

Re
La

te
2

Va
lu

es

Experiment

NAKcast 0.001 25Hz
Ricochet R4C3 - 25Hz

Fig. 4. ReLate2: pc3000, 1Gb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 3 4 5

Re
La

te
2

Va
lu

es

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Fig. 5. ReLate2: pc850, 100Mb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

We decompose the ReLate2 metric into its constituent parts of reliability and aver-
age packet latency to gain a better understanding of how changes in hardware can affect
the QoS properties relevant to the ReLate2 metric. Figures 6 and 7 show the reliability
of the NAKcast 0.001 and Ricochet R4 C3 protocols. The reliability of the protocols
is relatively unaffected by differences in hardware and network resources as would be
expected. The percent network loss is held constant for these experiments and the dif-
ferences in hardware are not expected to affect how many packets are delivered reliably.

Figures 8 and 9, show that differences in computing speed and networking bandwidth
have an effect on the average latency of packet arrival. In particular, there is a wider gap
in the average latency times between the NAKcast and the Ricochet protocol when
faster computing and networking resources are used.

Since protocol reliability in these experiments is virtually constant, the difference
in NAKcast performing better in one environment and Ricochet performing better in
another stems from differences in average latency. With faster hardware and networks,
Ricochet’s average latency can overcome its lower reliability to perform better when re-
liability and average latency are both considered. Note that the graphs for the individual

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 33

59700

59750

59800

59850

59900

59950

60000

60050

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc3000, 1 Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKcast 0.001 - 25Hz

Ricochet R4 C3 - 25 Hz

Fig. 6. Reliability: pc3000, 1Gb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

59700

59750

59800

59850

59900

59950

60000

60050

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Fig. 7. Reliability: pc850, 100Mb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (
s)

Experiment

pc3000, 1 Gb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKcast 0.001 - 25Hz

Ricochet R4 C3 - 25 Hz

Fig. 8. Latency: pc3000, 1Gb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (
s)

Experiment

pc850, 100Mb LAN, 3 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

NAKCast 0.001 - 25Hz

Ricochet R4 C3 - 25Hz

Fig. 9. Latency: pc850, 100Mb LAN, 3 re-
ceivers, 5% loss, 10 & 25Hz

QoS property of average latency consistently show Ricochet performing better, while
the graphs consistently show NAKcast performing better for reliability. Only when the
QoS properties are combined in the ReLate2 metric is there a distinction between the
appropriate protocol based on the hardware resources.

Figures 10 and 11 show that the differences in hardware resources affect the protocol
to choose based on the ReLate2Jit metric which measures reliability, average packet

0.00

50000000.00

100000000.00

150000000.00

200000000.00

250000000.00

300000000.00

1 2 3 4 5

Re
La

te
2J

it
Va

lu
es

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Fig. 10. ReLate2Jit: pc3000, 1Gb LAN, 15 re-
ceivers, 5% loss, 10Hz

310000000.00

320000000.00

330000000.00

340000000.00

350000000.00

360000000.00

370000000.00

380000000.00

1 2 3 4 5

Re
La

te
2J

it
Va

lu
es

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Fig. 11. ReLate2Jit: pc850, 100Mb LAN, 15
receivers, 5% loss, 10Hz

34 J. Hoffert, D.C. Schmidt, and A. Gokhale

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (
s)

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Fig. 12. Latency: pc3000, 1Gb LAN, 15 re-
ceivers, 5% loss, 10Hz

0
2000
4000
6000
8000

10000
12000
14000
16000

1 2 3 4 5

Av
g.

 L
at

en
cy

 (
s)

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Fig. 13. Latency: pc850, 100Mb LAN, 15 re-
ceivers, 5% loss, 10Hz

latency, and the standard deviation of packet latency (i.e., jitter). The number of re-
ceivers is 15, the network percent loss is 5%, and the DDS middleware is OpenSplice.
We again varied the computing platform and the network bandwidth using the pc850
and pc3000 platforms and 100Mb and 1Gb LANs, respectively. The figures only in-
clude data for NAKcast with a 1 ms timeout and Ricochet R=4 C=3 both with a 10Hz
sending rate since, with this rate, the environment has triggered the selection of different
protocols based on the ReLate2Jit values.

Figure 10 shows Ricochet R=4 C=3 to consistently have the best (i.e., lowest) Re-
Late2Jit values when using pc3000 computers and a 1Gb network. Figure 11 shows
NAKcast with a timeout of 1 ms as most of the time (4 out of 5 experiment runs) hav-
ing the better ReLate2Jit value. We decompose the ReLate2Jit values to have a better
understanding of the differences.

Figures 12 and 13 show the average latency broken out from the ReLate2Jit values
above. These figures show that Ricochet R=4 C=3 consistently has the lowest aver-
age latencies regardless of the computing and network resources. Likewise, Figures 14
and 15 show that Ricochet R=4 C=3 consistently has lower jitter values across the dif-
ferent hardware. Figures 16 and 17 again show that NAKcast provides high reliability,
while Ricochet provides less reliability.

All figures for individual QoS properties (i.e., Figures 12 through 17) related to the
ReLate2Jit measurements in Figures 10 and 11 show fairly consistent results across dif-
fering hardware. When these QoS properties are combined into a single, objective value,
however, we are better able to distinguish one protocol from another thus highlighting
the advantages to using composite metrics.

4.4 Determining Appropriate Protocol with Artificial Neural Networks

Evaluating the Accuracy of Artificial Neural Networks. The first step to using an
ANN is to train it on a set of data. We provided the ANN with 394 inputs where an input
consists of data values outlined in Tables 1 and 2 plus the composite metric of interest
(i.e., ReLate2 or ReLate2Jit). We also provided the expected output, i.e., the transport
protocol that provided the best composite QoS value for ReLate2 or ReLate2Jit.

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 35

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

La
te

nc
y

St
d.

 D
ev

ia
tio

n
(

s)

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Fig. 14. Jitter: pc3000, 1Gb LAN, 15 re-
ceivers, 5% loss, 10Hz

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

La
te

nc
y

St
d.

 D
ev

ia
tio

n
(

s)

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz

Ricochet R4 C3 - 10Hz

Fig. 15. Jitter: pc850, 100Mb LAN, 15 re-
ceivers, 5% loss, 10Hz

297500

298000

298500

299000

299500

300000

300500

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc3000, 1Gb LAN, 15 rcvrs, 5% loss

NAKcast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Fig. 16. Reliability: pc3000, 1Gb LAN, 15 re-
ceivers, 5% loss, 10Hz

297500

298000

298500

299000

299500

300000

300500

1 2 3 4 5

Pa
ck

et
s R

ec
ei

ve
d

Experiment

pc850, 10Mb LAN, 15 rcvrs, 5% loss

NAKCast 0.001 - 10Hz
Ricochet R4 C3 - 10Hz

Fig. 17. Reliability: pc850, 100Mb LAN, 15
receivers, 5% loss, 10Hz

An example of one of the 394 inputs is the following: 3 data receivers, 1% network
loss, 25Hz sending rate, pc3000 computers, 1Gb network, OpenSplice DDS implemen-
tation, and ReLate2Jit as the metric of interest. Based on our experiments, the corre-
sponding output would be the NAKcast protocol with a NAK timeout of 1 ms. All the
394 inputs are taken from experiments that we ran as outlined in Section 4.

FANN offers extensive configurability for the neural network, including the number
of hidden nodes that connect inputs with outputs. We ran training experiments with the
ANN using different numbers of hidden nodes to determine the most accurate ANN.
For a given number of hidden nodes we trained the ANN five times. The weights of the
ANN determine how strong connections are between nodes. The weights are initialized
randomly and the initial values effect how well the ANN learns.

Figures 18 and 19 show the ANN accuracies for environment configurations that
were known a priori and environments that were unknown until runtime respectively.
The ANN was configured with different numbers of hidden nodes and a stopping error
of 0.0001 (i.e., an indication to the ANN that it should keep iterating over the data
until the error between what the ANN generates and the correct response is 0.0001).
Additional experiments were conducted with higher stopping errors (e.g., 0.01), but
lower stopping errors consistently produced more accurate classifications as expected.

36 J. Hoffert, D.C. Schmidt, and A. Gokhale

82
84
86
88
90
92
94
96
98

100
102

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Training Run

ANN Accuracy (known envs)

36 hidden nodes, 0.0001 error
24 hidden nodes, 0.0001 error
12 hidden nodes, 0.0001 error
6 hidden nodes, 0.0001 error

Fig. 18. ANN Accuracy for environments
known a priori

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
fo

r e
xc

lu
de

d
da

ta
 (%

)

Training Run

ANN Accuracy (10-fold cross-validation)

36 hidden nodes, 0.0001 error

24 hidden nodes, 0.0001 error

12 hidden nodes, 0.0001 error

6 hidden nodes, 0.0001 error

Fig. 19. ANN Accuracy for environments un-
known until runtime

Accuracy for environments known a priori was determined by querying the ANN
with the data on which it was trained. Since we know the answer we gave to the ANN
when it was trained we check to make sure the answer matches the ANN’s response.
Over the 10 training runs shown in Figure 18 the highest number of 100% accurate
classifications was generated using 24 hidden nodes (i.e., 8).

Accuracy for environments unknown until runtime is determined by splitting out the
394 environment configurations into mutually exclusive training and testing data sets.
This approach is referred to as n-fold cross-validation where n is the number of mutually
exclusive training and testing data sets [15]. The value of n also determines the amount
of data excluded from training and used only for testing.

We used 10-fold cross-validation which indicates 10 sets of training and testing data
where for each fold the training and testing data are mutually exclusive and the training
data excludes 1/10 of the total data. As shown in Figure 19 the ANN with 24 hidden
nodes and a stopping error of 0.0001 produced the highest average accuracy of 89.49%.
We conducted our timings tests using this ANN since it provided the highest number of
100% accurate classifications for environments known a priori and the highest accuracy
for environments unknown until runtime.

Evaluating the Timeliness of Artificial Neural Networks. As described in Challenge
2 in Section 2.2, the datacenter for the SAR operations needs to have timely configu-
ration adjustments. We now provide timing information based on the ANN’s respon-
siveness when queried for an optimal transport protocol. Timeliness was determined
by querying the ANN with all 394 inputs on which it was trained. A high resolution
timestamp was taken right before and right after each call made to the ANN.

Figures 20 and 21 show the average response times and standard deviation of the
response times, respectively, for 5 separate experiments where for each experiment we
query the ANN for each of the 394 inputs. The figures show that the ANN provides
timely and consistent responses. As expected, the response times on the pc850 platform
are slower than for the pc3000.

Inspection of the ANN source code confirmed experimental results that the ANN
provides fast and predictable responses for both environments known a priori and

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 37

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Ti
m

e
(

s)

Experiment

Average ANN Response Times

pc3000

pc850

Fig. 20. ANN average response times

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5

Ti
m

e
(

s)

Experiment

Std Deviation ANN Response Times

pc3000

pc850

Fig. 21. Standard deviation for ANN response
times

unknown until runtime. When queried for a response with a given set of input values,
the ANN loops through all connections between input nodes, hidden nodes, and output
nodes. The number of nodes and number of connections between them were determined
previously when the ANN was trained. With a high level of accuracy, predictability, and
minimal development complexity, ANNs provide a suitable technique for determining
ADAMANT configurations.

5 Related Work

This section compares our work on ADAMANT with related R&D efforts.

Support for adaptive middleware. Ostermann et al. [19] present the ASKALON
middleware for cloud environments that is based on middleware for grid workflow
application development but enhanced to leverage clouds. ASKALON provides an in-
frastructure that allows the execution of workflows on conventional grid resources but
that can adapt on-demand to supplement these resources with additional cloud resources
as needed. In contrast to ADAMANT, however, ASKALON does not address the adap-
tive configurability needs of enterprise DRE systems in elastic clouds.

Gridkit [8] is a middleware framework that supports reconfigurability of applications
dependent upon the condition of the environment and the functionality of registered com-
ponents. Gridkit focuses on grid applications which are highly heterogeneous in nature.
In contrast to ADAMANT, however, Gridkit does not address timely adaptation, nor
does it focus on discovering and leveraging the elastic provisioning of cloud resources.

David and Ledoux have developed SAFRAN [7] to enable applications to become
context-aware themselves so that they can adapt to their contexts. SAFRAN provides
reactive adaptation policy infrastructure for components using an aspect-oriented ap-
proach. The SAFRAN component framework, however, provides only development sup-
port for maintaining specified QoS. The adaptive policies and component implementa-
tion are the responsibility of the application developer. Moreover, SAFRAN does not
address timely configuration of components across the elastic resources of cloud com-
puting. In contrast, ADAMANT provides a middleware implementation that adapts to
the cloud resources presented to it.

38 J. Hoffert, D.C. Schmidt, and A. Gokhale

Machine learning in support of autonomic adaptation. Vienne and Sourrouille [23]
present the Dynamic Control of Behavior based on Learning (DCBL) middleware that
incorporates reinforcement machine learning in support of autonomic control for QoS
management. Reinforcement machine learning not only allows DCBL to handle un-
expected changes but also reduces the overall system knowledge required by the sys-
tem developers. In contrast to ADAMANT, however, DCBL focuses only on a single
computer, rather than scalable DRE pub/sub systems. Moreover, reinforcement learn-
ing used by DCBL can have non-constant and even unbounded time complexities unlike
ADAMANT which provides fast and predictable decision making.

RAC [5] uses reinforcement learning for the configuration of Web services. RAC au-
tonomically configures services via performance parameter settings to change the ser-
vices’ workload and also to change the virtual machine configurations. Due to RAC’s
use of reinforcement learning, its determination of an appropriate response is unbounded
due to online exploration of the solution space and modification of decisions while the
system is running. In contrast, ADAMANT uses ANN machine learning to provide fast,
predictable complexity decision making.

Tock et al [21] utilize machine learning for data dissemination in their work on Mul-
ticast Mapping (MCM). MCM hierarchically clusters data flows so that multiple topics
map to a single session and multiple sessions are mapped to a single reliable multicast
group. MCM manages the scarce availability of multicast addresses in large-scale sys-
tems and uses machine learning for adaptation as user interest and message rates change
during the day. MCM is designed only to address the scarce resource of IP multicast ad-
dresses in large-scale systems, however, rather than timely adaptation based on available
resources as done with ADAMANT.

Infrastructure for autonomic computing. Grace et al. [9] describe an architecture
metamodel for adapting components that implement coordination for reflective middle-
ware distributed across peer devices. This work also investigates supporting reconfigu-
ration types in various environmental conditions. The proposed architecture metamodel,
however, only provides proposed infrastructure for autonomic adaptation and reconfigu-
ration and does not directly provide an adaptation implementation as ADAMANT does.

Valetto et al. [22] have developed network features in support of service awareness to
enable autonomic behavior. Their work targets communication services within a Session
Initiation Protocol (SIP) enabled network to communicate monitoring, deployment, and
advertising information. As an autonomic computing infrastructure, however, this work
does not directly provide an implementation unlike ADAMANT.

6 Concluding Remarks

Developers of systems which use DRE pub/sub middleware face several configuration
challenges for cloud computing environments. To address these challenges, this paper
presented the structure, functionality, and performance of ADAptive Middleware And
Network Transports (ADAMANT). ADAMANT is pub/sub middleware that uses super-
vised machine learning to autonomously configure cloud environments with transport
protocols that enhance the predictability of enterprise DRE systems.

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 39

The results in this paper empirically showed how computing hardware environments
affect QoS for these systems and how ADAMANT configures the system based on the
computing resources provided at startup in a fast and accurate manner while reducing
development complexity over manual adaptation approaches. We selected ANNs to de-
termine appropriate configurations since they provide (1) the highest level of accuracy
possible for known environments, (2) better than random or default guidance for en-
vironments not known until runtime, and (3) the timing complexity required for DRE
systems. The following is a summary of lessons learned from our experience evaluating
ADAMANT’s configuration performance in various cloud environments:

• Computing resources affect which QoS mechanism provides the best support
Differences in CPU speed and network bandwidth affect the choice of the most appro-
priate QoS mechanism. For certain computing environments, one transport protocol pro-
vided the best QoS; for other environments a different transport protocol was best. We
leveraged this information to select the appropriate protocol for given computing re-
sources. We are investigating other machine learning techniques that provide timeliness
and high accuracy to compare with ANNs.

• Fast, predictable configuration for DRE pub/sub systems can support dynamic
autonomic adaptation. ADAMANT can accurately and quickly configure a DRE pub/-
sub system at startup in cloud environments. Some systems, however, run in operating
environments that change during system operation. The ADAMANT results have mo-
tivated future work on autonomic adaptation of middleware and transport protocols to
support QoS in turbulent environments. Fast, predictable configuration can be used to
adapt transport protocols to support QoS while the system is monitoring the environ-
ment. When the system detects environmental changes (e.g., increase in number of re-
ceivers or increase in sending rate), supervised machine learning can provide guidance
to support QoS for the new configuration.

• Composite QoS metrics should be decomposed to better understand behavior
of the system. A change in the values from composite QoS metrics can be caused by
changes in any of the individual QoS concerns or any combination of the concerns. The
composite QoS metrics provide a higher level of abstraction for evaluating QoS and, as
with any abstraction, details which might be important can be obfuscated. The composite
QoS metrics we use are fairly easy to decompose as shown by Figures 4–9 in Section 4.3,
although the more QoS properties that are composed the more decomposition is needed,
which is hard, tedious, and time-consuming.

• Exploring a configuration space for trade-offs requires a disciplined approach
with analysis to guide the exploration. Depending on the number of dimensions in-
volved in the search space there can be many configurations to explore. In this paper
we had multiple variables, e.g., CPU speed, RAM, network bandwidth, update rate, %
packet loss, number of data readers, NAKcast’s timeout value, and Ricochet’s R value.
Since the number of potential experiments was large, we found it helpful to make coarse-
grained adjustments for initial experiments. We would then analyze the results to guide
areas of refinement to find trade-offs between transport protocols.

40 J. Hoffert, D.C. Schmidt, and A. Gokhale

All ADAMANT source code and documentation and its supporting ANN tools
is available as open-source at www.dre.vanderbilt.edu/˜jhoffert/
ADAMANT.

References

1. Global Information Grid. The National Security Agency,
www.nsa.gov/ia/industry/gig.cfm?MenuID=10.3.2.2

2. Net-Centric Enterprise Services. Defense Information Systems Agency,
http://www.disa.mil/nces/

3. Balakrishnan, M., Birman, K., Phanishayee, A., Pleisch, S.: Ricochet: Lateral Error Correc-
tion for Time-Critical Multicast. In: NSDI 2007: Fourth Usenix Symposium on Networked
Systems Design and Implementation, Boston, MA (2007)

4. Balakrishnan, M., Pleisch, S., Birman, K.: Slingshot: Time-Critical Multicast for Clustered
Applications. In: The IEEE Conference on Network Computing and Applications (2005)

5. Bu, X., Rao, J., Xu, C.Z.: A Reinforcement Learning Approach to Online Web Systems
Auto-configuration. In: The 29th IEEE International Conference on Distributed Computing
Systems., pp. 2–11. IEEE Computer Society, Washington (2009)

6. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and Emerging
IT platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future
Generation Computer Systems 25(6), 599–616 (2009)

7. David, P.C., Ledoux, T.: An Aspect-Oriented Approach for Developing Self-Adaptive Frac-
tal Components. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 82–97.
Springer, Heidelberg (2006)

8. Grace, P., Coulson, G., Blair, G.S., Porter, B.: Deep Middleware for the Divergent Grid. In:
Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 334–353. Springer, Heidelberg
(2005)

9. Grace, P., Coulson, G., Blair, G.S., Porter, B.: A Distributed Architecture Meta-model for
Self-managed Middleware. In: Proceedings of the 5th Workshop on Adaptive and Reflective
Middleware (ARM 2006), p. 3. ACM, New York (2006)

10. Hoffert, J., Gokhale, A., Schmidt, D.: Evaluating Transport Protocols for Real-time Event
Stream Processing Middleware and Applications. In: Proceedings of the 11th International
Symposium on Distributed Objects, Middleware, and Applications (DOA 2009), Vilamoura,
Algarve-Portugal (November 2009)

11. Hoffert, J., Schmidt, D.C., Gokhale, A.: Adapting and Evaluating Distributed Real-time and
Embedded Systems in Dynamic Environments. In: Proceedings of the 1st International Work-
shop on Data Dissemination for Large scale Complex Critical Infrastructures (DD4LCCI
2010), Valencia, Spain (April 2010)

12. Ibnkahla, M., Rahman, Q., Sulyman, A., Al-Asady, H., Yuan, J., Safwat, A.: High-
speed Satellite Mobile Communications: Technologies and Challenges. Proceedings of the
IEEE 92(2), 312–339 (2004)

13. Kavimandan, A., Narayanan, A., Gokhale, A., Karsai, G.: Evaluating the Correctness and
Effectiveness of a Middleware QoS Configuration Process in Distributed Real-time and Em-
bedded Systems. In: Proceedings of the 11th IEEE International Symposium on Object-
oriented Real-time distributed Computing (ISORC 2008), Orlando, FL, USA, pp. 100–107
(May 2008)

14. Lin, Q., Neo, H.K., Zhang, L., Huang, G., Gay, R.: Grid-based Large-scale Web3D Col-
laborative Virtual Environment. In: Web3D 2007: Proceedings of the Twelfth International
Conference on 3D Web Technology, pp. 123–132. ACM, New York (2007)

www.dre.vanderbilt.edu/~jhoffert/ADAMANT
www.dre.vanderbilt.edu/~jhoffert/ADAMANT
www.nsa.gov/ia/industry/gig.cfm?MenuID=10.3.2.2
http://www.disa.mil/nces/

Adapting Distributed Real-Time and Embedded Pub/Sub Middleware 41

15. Liu, Y.: Create Stable Neural Networks by Cross-Validation. In: IJCNN 2006: Proceedings
of the International Joint Conference on Neural Networks, pp. 3925–3928 (2006)

16. Menth, M., Henjes, R.: Analysis of the Message Waiting Time for the FioranoMQ JMS
Server. Distributed Computing Systems. In: 26th IEEE International Conference on ICDCS
2006, pp. 1–1 (2006)

17. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-Clouds: Managing Performance Interference
Effects for QoS-Aware Clouds. In: Proceedings of EuroSys 2010, Paris, France, pp. 237–
250 (April 2010)

18. Object Management Group: Data Distribution Service for Real-time Systems Specification,
1.2 edn. (January 2007)

19. Ostermann, S., Prodan, R., Fahringer, T.: Extending Grids with Cloud Resource Management
for Scientific Computing. In: 10th IEEE/ACM International Conference on Grid Computing,
pp. 42–49 (13-15, 2009)

20. Shankaran, N., Koutsoukos, X., Lu, C., Schmidt, D.C., Xue, Y.: Hierarchical Control of Mul-
tiple Resources in Distributed Real-time and Embedded Systems. Real-Time Systems 1(3),
237–282 (2008)

21. Tock, Y., Naaman, N., Harpaz, A., Gershinsky, G.: Hierarchical Clustering of Message Flows
in a Multicast Data Dissemination System. In: Proceedings of Parallel and Distributed Com-
puting and Systems, PDCS 2005 (November 2005)

22. Valetto, G., Goix, L.W., Delaire, G.: Towards Service Awareness and Autonomic Features in
a SIP-Enabled Network. In: Autonomic Communication, pp. 202–213. Springer, Heidelberg
(2006)

23. Vienne, P., Sourrouille, J.L.: A Middleware for Autonomic QoS Management Based on
Learning. In: Proceedings of the 5th International Workshop on Software Engineering and
Middleware, pp. 1–8. ACM, New York (2005)

	Adapting Distributed Real-Time and Embedded Pub/Sub Middleware for Cloud Computing Environments
	Introduction
	Motivating Example - Search and Rescue Operations in the Aftermath of a Regional Disaster
	Search and Rescue Operations for Disaster Recovery
	Key Challenges in Supporting Search and Rescue Operations in Cloud Computing Environments

	Overview of ADAMANT
	Adaptive Network Transports (ANT) Framework
	Artificial Neural Network Tools to Determine Middleware Configurations

	Experimental Results
	Composite QoS Metrics for Reliability and Timeliness
	Experimental Setup
	Evaluating How Cloud Computing Resources Affect QoS
	Determining Appropriate Protocol with Artificial Neural Networks

	Related Work
	Concluding Remarks
	References

