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Abstract

A dynamic model has been adapted to a pilot anaerobic reactor fed diary manure. Both steady-state data
from online sensors and laboratory analysis and dynamic operational data from online sensors are used in
the model adaptation. The model is based on material balances, and comprises four state variables, namely
biodegradable volatile solids, volatile fatty acids, acid generating microbes (acidogens), and methane
generating microbes (methanogens). The model can predict the methane gas flow produced in the reactor.
The model may be used for optimal reactor design and operation, state-estimation and control. Also, a
dynamic model for the reactor temperature based on energy balance of the liquid in the reactor is adapted.
This model may be used for optimization and control when energy and economy are taken into account.
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1. Introduction

1.1. Anaerobic digestion of animal wastes

Anaerobic digestion (AD) of animal wastes can pro-
duce biogas with methane to be used as an energy
source, and a liquid effluent containing valuable nutri-
ents. Moreover, AD reduces methane emission, odours
and contaminants. AD bioreactors are effective as they
allow for relatively high load rates (feed rates) and
small reactor volumes. AD reactors may become un-
stable, i.e. a persistent decrease of gas production, be-
cause of inhibitory effects on methane-forming micro-
organisms due to large concentrations of volatile fatty
acids (VFA) and ammonia and too low pH. Instability
can also occur because of washout of microbes when
the feed (load) rate is too large.

Various theoretical and practical aspects of AD pro-
cesses are described in e.g. Tchobanoglous et al. (2003)
and Deublein and Steinhauser (2010). A presentation
of AD of animal wastes (dairy, beef, poultry, and swine)
is provided e.g. by Husain (1998).

1.2. Possible applications of mathematical
models

Foss Biolab, Haugen et al. (2012), is a pilot biological
plant at Foss dairy farm in Skien, Norway, for nutrient
and energy recovery from animal waste. The aims of
this paper are to adapt a dynamic mathematical model
of the anaerobic digestion (AD) processes of the reac-
tor in the plant able to predict the methane gas flow
produced in the reactor, and to adapt a dynamic model
able to predict the reactor temperature.

Possible applications of a mathematical model of the
AD processes in the reactor are as follows.

• Analysis of the dynamic and steady-state be-
haviour of the AD processes primarily based on
simulations. Using simulations can provide pro-
cess insight which would otherwise be practically
difficult to obtain.

• Optimal design and operation of a full-scale reac-
tor, i.e. designing optimal reactor size and calcu-
lating optimal feed rate according to proper opti-
mization criteria, Edgar et al. (2001).
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• Design of state estimators, also denoted soft-
sensors, which are algorithms calculating the state
of the process continuously, Simon (2006). The
most common state estimation algorithm is the
Kalman Filter which exists in different versions. A
state estimator is an essential part of model-based
predictive controllers, see below. It may also be
used as a soft-sensor on its own as a substitute for
real measurements.

• Model-based tuning of industry-standard PID con-
trollers (Proportional + Integral + Derivative),
Seborg et al. (2004), for biogas flow control to keep
the produced biogas flow at or close to a given set-
point.

• Design and implementation of model-based pre-
dictive controllers (MPCs), Grüne and Pannek
(2011), for biogas flow control.

Possible applications of a mathematical model of the
reactor temperature are:

• Optimal reactor design and operation taking en-
ergy and economy into account. A combination of
the AD process model and the reactor temperature
model will be necessary to solve this optimization
problem.

• Tuning a temperature controller for the reactor.

1.3. Outline of this paper

Section 2 gives a description of the pilot AD reactor
at Foss Biolab. Section 3 describes adaptation of a
dynamic mathematical model of the AD process to the
reactor. Section 4 describes mathematical modelling of
the reactor temperature. A discussion is given in Sec-
tion 5, and conclusions are given in Section 6. Nomen-
clature including abbreviations is given in Appendix
A. Laboratory analysis methods for relevant compo-
nents are described in Appendix B. For easy reference,
a summary of the modified Hill’s model adapted to the
pilot reactor is given in Appendix C.

MATLAB (by The MathWorks, Inc.) has been used
as computational tool for this paper.

2. The AD reactor

2.1. Overview

Figure 1 shows a Piping & Instrumentation Diagram
(P&ID) of the biological process plant at Foss dairy
farm. Input to the plant is dairy manure diluted
with 25% water and filtered, and outputs are fertil-
izer and biogas consisting of 70-75% methane. The

plant is monitored and controlled with a PC running
LabVIEW. The main parts of the plant are as follows
(numbers refer to Figure 1).

1. A reservoir for raw dairy manure with approxi-
mately 25% added water.

2. A sieve to separate the manure into two fractions
of similar total solid mass: > 70 % of the volume
is wetter fraction, and < 30 % is dryer fraction.
The dryer fraction is used for vermicomposting.

3. A high rate anaerobic digestion reactor fed filtered
cow manure as substrate for production of energy-
rich biogas that contains mainly methane. The
effective reactor volume is approximately 250 L.

4. A nitrification reactor of approximately 200 L fed
AD reactor effluent to produce liquid fertilizer and
pellets fertilizer from formed foam.

This paper concerns the AD reactor in the process
line.

The present reactor has been operational since April
2012, while a previous similar reactor was in operation
from August 2011 until April 2012.

2.2. Instrumentation

Below is a list of the instrumentation used with the AD
reactor depicted in Figure 1. The encircled numbers
refer to the diagram in Figure 1.

PC is a laptop PC running the computer program
for monitoring and control implemented in Lab-
VIEW. The PC is connected to sensors and actu-
ators via USB-based I/O-devices.

P2: A voltage controlled peristaltic pump which is
operated using pulse-width modulation (PWM)
with a fixed cycle time of 10 min.
There are several benefits of using PWM control
compared with analog control: The calibration of
the pump is needed only at one flow, namely the
maximum flow rate (i.e. the flow with PWM sig-
nal in the On state), and it is therefore easier to
obtain any flow (in average) within the minimum
and the maximum flow ranges. PWM may also
reduce blocking in the feed pipeline.

FT-1: AD reactor effluent flow sensor (home-made)
based on measuring the frequency of effluent
charging and discharging of a cup of fixed volume.

FT-2: Thermal biogas flow sensor.

The sensor output is normal litres of gas at NTP
(Normal Temperature and Pressure), i.e. temper-
ature 0 oC and pressure 1.013 bar.
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Figure 1: Piping & Instrumentation Diagram (P&ID)
of the biological process line of the pilot plant
at Foss Biolab, Skien, Norway. This paper
concerns the AD reactor.

The raw measurement signal from this sensor is
quite noisy with an observed standard deviation
of approximately 14 L/d (litres per day) which is
approximately 2% of the upper range limit (URL)
which is 720 L/d. To smooth the noise, a lowpass
filter with time-constant of 0.2 d is implemented
in the LabVIEW program.

CT-1: Infrared (IR)-based CH4 gas concentration
sensor.

To smooth the measurement signal from this sen-
sor, a first-order lowpass filter with time-constant
of 1 h (hour) is implemented in the LabVIEW pro-
gram.

CT-2: Infrared (IR)-based CO2 gas concentration
sensor.

The measurement signal is filtered with a lowpass
filter with time-constant of 1 h.

TT-1: Pt100 reactor temperature sensor.

Filter: Lowpass filter with time-constant of 10
min.

TT-2: Pt100 biolab room temperature sensor.

Filter: Lowpass filter with time-constant of 10
min.

TC-1: Reactor temperature controller which is op-
erated as an On-Off controller (i.e. thermostat
controller). The controller is an industrial stand-
alone temperature controller.

H-1: Electrical heater for the AD reactor which is
controlled using the built-in PWM option in TC-1.
The heater comprises an electrical resistor wound
around the reactor inside the thermal insulation
jacket.

2.3. Available data

Data used for model adaptation are offline-data from
laboratory analysis and online-data from sensors.

Samples for laboratory analysis have been taken reg-
ularly from the reactor since August 2011, following
sampling guidelines given by Esbensen and Paasch-
Mortensen (2010). A number of different variables
characterizing the reactor influent and effluent are an-
alyzed. Among these, concentration of volatile solids
(VS) and concentration of total volatile fatty acids
(VFA) are used for model adaptation in the present
study.

Online-data include feed flow (load rate), reactor
temperature, ambient (air) and feed temperature (as-
sumed to be the same and therefore measured with one
sensor), biogas flow, and methane gas concentration.
The latter two provide methane gas flow.

3. Adaptation of a mathematical
model to the AD reactor

3.1. Selection of dynamic model

Several dynamic mathematical models for AD pro-
cesses exist. Overviews of such models are given by e.g.
Gavala et al. (2003), Lyberatos and Skiadas (1999),
and Stromberg (2010).

3.1.1. Model selection criteria

For our purposes, cf. Section 1.2, a model is searched
for according to the following criteria:
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1. The model must be able to predict the produced
biogas. However, it is sufficient that methane gas
flow is predicted since the useful energy content of
the gas is related to the methane content only.

2. The model should be relatively simple since it is to
be used in a real-time implementation of a state es-
timator and a model-based controller. Relatively
simple models are preferable since they may be
easier to adapt and maintain.

3. The model should be able to represent the tem-
perature dependency of the dynamics of the AD
process. This is because the reactor may be
operated at different temperatures, although the
mesophile condition which is about 35oC is as-
sumed to give the optimal temperature condition
for the methane-producing micro-organisms, or
methanogens, Tchobanoglous et al. (2003). Op-
timality in terms of cost may imply a temperature
being different from 35oC.

3.1.2. Model candidates

A number of candidates of model for AD of dairy ma-
nure were considered in the light of the above criteria.
Below is a summarized characterization of these mod-
els.

• Andrews and Graef (1971):

– Model characteristics: The model is general,
and does not assume any particular type of
organic substrate. Substrate: Acetic acid.
Hydrolysis step is not included. Biological
reaction includes only convertion of volatile
acids to CO2 and CH4 by only one type of mi-
crobes, namely methanogenic microbes. pH
between 6 and 8 is assumed. Temperature 38
oC is assumed.

– State variables (there are five): Con-
centration of substrate; Concentration of
methanogens; Concentration of dissolved
CO2 in liquid phase; Partial pressure of CO2

in gas phase; Alkalinity.

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; Biogas flow as sum of these gas
flows.

• Hill and Barth (1977):

– Model characteristics: The model is general
for animal waste, and is validated using ex-
perimental data from reactors fed poultry
waste and swine waste. Hydrolysis step is
included. Model parameters are expressed as
Arrhenius-based functions of temperature.

– State variables (9): Concentration of volatile
matter; Concentration of soluble organics;
Concentration of volatile acids in the form of
acetate; Concentration of acidogens (“acid-
formers”); Concentration of methanogens
(“methane-formers”); Concentration of dis-
solved CO2 in liquid phase; Partial pressure
of CO2 in gas phase; Concentration of NH4

+

in liquid phase; Partial pressure of NH3 in gas
phase; Concentration of cations (other than
ammonia and hydrogen);

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; NH3 gas flow; Biogas flow as
sum of these gas flows.

• Hill (1983):

– Model characteristics: The model applies to
waste from poultry, beef, dairy, or swine with
two parameters – the biodegradability con-
stant and the acidity constant – being unique
for each of these wastes. Substrate: Volatile
solids (VS). A certain fraction of the fed VS
is assumed biodegradable. Hydrolysis step is
not included. Model is validated using ex-
perimental data with all four wastes men-
tioned above. Applicable temperature range
is 20oC – 60oC based on the temperature-
dependency of the maximum reaction rates
according to Hashimoto et al. (1981).

– State variables (4): Concentration of
biodegradable volatile solids (BVS); Concen-
tration of volatile fatty acids (VFA) as ac-
etate; Concentration of acidogens; Concen-
tration of methanogens;

– Gas predicted by the model: CH4 gas flow.

• Husain (1998):

– Model characteristics: Husain (1998) pre-
sented Hill’s model (1983) with more details
regarding chemical reactions. Husain also
changed some of the model parameter values,
and expressed the death rates of the acido-
gens and metanogens as VFA-based Monod
functions instead of relating the death rates
to the maximum reaction rates as Hill did.

– State variables (4) are as in Hill’s model.

– Gas predicted by the model as in Hill’s
model.

• Batstone et al. (2002):

– Model characteristics: This model is known
as ADM1 (Anaerobic Digestion Model No.
1). ADM1 is a general, complex AD model
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which describes biochemical and physico-
chemical processes. The biochemical steps
include disintegration, extracellular hydroly-
sis, acidogenesis, acetogenesis, and methano-
genesis. The physico-chemical equations de-
scribe ion association and dissociation, and
gas-liquid transfer.

In a representation of ADM1 in Rosen et al.
(2006) consisting of solely differential equa-
tions there are 35 state variables representing
various concentrations, and approximately
100 parameters.

Temperature-dependent parameters are ex-
pressed as Arrhenius-type functions of tem-
perature.

The ADM1 model is very stiff as the dy-
namics of pH and hydrogen are relatively
fast. The stiffness poses numerical chal-
lenges for implementation in e.g. MAT-
LAB/SIMULINK, Rosen et al. (2006). One
solution to the stiffness problem is to replace
the stiff state variables by algebraic states
calculated by a numerical solver at each sim-
ulation time step, Rosen et al. (2006), and
hence the model becomes a DAE model (dif-
ferential algebraic equations).

– State variables (35): Monosaccharides;
Amino acids; Long chain fatty acids; Valer-
ate; Butyrate; Propionate; Acetate; Hydro-
gen gas; Methane gas; Inorganic carbon; In-
organic nitrogen; Soluble inerts; Compos-
ites; Carbohydrates; Proteins; Lipids; De-
graders (seven) for sugar, amino acid, long
chain fatty acids, valerate & butyrate, pro-
pionate, acetate, and hydrogen; Particulate
inerts; Cations; Anions; Ion states (six) for
valerate, butyrate, propionate, acetate; bi-
carbonate, and ammonia; CH4 gas; CO2 gas;
H2 gas.

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; H2 gas flow; Biogas flow as
sum of these gas flows.

• Zaher et al. (2009):

– Model characteristics: The model applies to
dairy waste and includes hydrolysis, acido-
genesis, methanogenesis – hydrogenotrophic
and acetotrophic. The model is validated
against different real batch processes with
continuous mixing, operating at 35oC.

– State variables (15): Concentration of the
following microbial groups: Acidogens; Ace-
totrophic methanogens; Hydrogenotrophic

methanogens; Concentration of the follow-
ing materials: Biosolids (particulate sub-
strate); Degradable substrate (as sugars);
Volatile fatty acids (as acetate); Hydrogen;
Carbondioxide; Methane; Bicarbonate; Am-
monium; Phosphates; Moisture (water); Pro-
tons (H+); Cations.

– Gas predicted by the model: Biogas flow (the
individual gas components are however not
stated explicitly in Zaher et al. (2009).

3.1.3. Selection of the ultimate model

In the light of the criteria for model selection presented
in Section 3.1.1 Hill’s model, Hill (1983), is selected as
the ultimate model as it satisfies all the criteria and be-
cause it is simpler than comparable models, see below.
Support for this selection is found in the evaluations
of various AD models made by Stromberg (2010) and
Husain (1998) where they conclude favourably about
this model.

Brief evaluations of the other models presented
above in the light of our selection criteria are given
in the following.

The model by Andrews and Graef (1971) is not se-
lected because it is validated only at the fixed tempera-
ture 38oC. Also, we see it as drawback that it contains
only one type of microorganisms while two or more
types are very common in more modern models.

The model by Hill and Barth (1977) is attractive for
our purposes, but is not selected here because it is more
complicated than Hill’s model, Hill (1983). However,
this model may be selected in future projects.

The model presented by Husain (1998) is basically
the selected Hill’s model.

The ADM1 model, Batstone et al. (2002), is not se-
lected because it is very complex, and because numeri-
cal challenges may be expected in an online (real-time)
implementation of state estimators and model-based
controllers. Lyseng et al. (2012) adapted ADM1 quite
successfully to our pilot reactor in the AQUASIM sim-
ulation tool, Reichert (1998), however with poor pre-
dictions of produced biogas as the reactor temperature
was changed (simulated and measured experimental
gas production were clearly different).

The model by Zaher et al. (2009) is not selected here
because it is relatively complex, and the model param-
eters are not presented with any temperature depen-
dency. Also, it would be necessary to modify the model
originally made for batch AD processes to make it ap-
plicable to our bioreactor which has a continuous load
rate.
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3.2. Hill’s AD model

The reasons for selecting Hill’s model, Hill (1983), as
the ultimate model to be adapted to the pilot biore-
actor at Foss Biolab are given in Section 3.1. Hill’s
original model is presented in Section 3.2.1. A modi-
fied Hill’s model which is the model adapted to the AD
reactor at Foss Biolab is described in Section 3.2.2.

3.2.1. The original Hill’s model

Figure 2 shows the steps of the AD process on which
Hill’s model is based. The alphabetic identificators
used in Figure 2 refer to the model equations presented
in the present section.

Complex organic material

Soluble biodegradable 

organic material

Volatile fatty acids

Methane gas

Acidogens

Methanogens

C

B

D E

F

G

A

C

Hydrolytic

enzymes

Figure 2: The anaerobic digestion steps forming the ba-
sis of Hill’s model. The alphabetic indicators
refer to Hill’s model, eqs. (1)-(10). The sym-
bols resemble those in Zaher et al. (2009).

Hill’s model comprises eqs. (1)-(10) below, but a few
changes are made in the symbols to make the model
more readable and to have symbols which are in more
compliance with symbols in other AD models. The
differential equations stem from mass balances of the
pertinent components. Homogeneous conditions are
assumed.

The alphabetic identificators written in parentheses
in the following refer to the flow diagram in Figure 2.

Defining that portion of the raw waste which can
serve as substrate (A):

Sbvsin = B0Svsin (1)

Defining that portion of the biodegradable material
which is initially in the acid form (B):

Svfain
= AfSbvsin (2)

Mass balance of biodegradable volatile solids (C):

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µ 1

Y
Xacid (3)

Mass balance of VFA (D):

Ṡvfa = (Svfain − Svfa)
Ffeed

V

+µ 1−Y
Y Xacid − µc

1
Yc
Xmeth

(4)

Mass balance of acidogens (E):

Ẋacid =

(
µ−Kd −

Ffeed

V

)
Xacid (5)

Mass balance of methanogens (F):

Ẋmeth =

(
µc −Kdc −

Ffeed

V

)
Xmeth (6)

Methane gas flow rate (gas production) (G):

Fmeth = V µckmeth
1− Yc
Yc

Xmeth (7)

The reaction rates are as follows:

µ = µm
1

Ks

Sbvs
+ 1 +

Svfa

Ki

(8)

µc = µmc
1

Ksc

Svfa
+ 1 +

Svfa

Kic

(9)

The maximum reaction rates µm, µmc are functions of
the reactor temperature as follows, Hashimoto et al.
(1981):

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (10)

(20◦C < Treac < 60◦C)

The death rates are set to one tenth of the maximum
reaction rates:

Kd = 0.1µm (11)

Kdc = 0.1µmc (12)

Although Hill’s model is selected as the ultimate
model, we are motivated to implement a few changes
to the model as explained in Section 3.2.2.
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3.2.2. Modified Hill’s model

Differences from the original Hill’s model
In our study the following changes are made to the

original Hill’s model presented in Section 3.2.1. The
resulting model is referred to as “the modified Hill’s
model”.

• Parameters k1, k2, k3, and k5, replace the orig-
inal parameters (yields) 1/Y , (1 − Y )/Y , 1/Yc,
and kmeth(1 − Yc)/Yc. Parameters k1, k2 and k5

are estimated from experimental data, except k3

which is calculated from the parameter values in
the original Hill’s model.

• The Haldane functions in the reaction rates µ and
µc in Hill’s original model, eqs. (8) and (9), are
replaced with the simpler Monod functions:

µ = µm
Sbvs

Ks + Sbvs
(13)

µc = µmc
Svfa

Ksc + Svfa
(14)

This makes the calculations with the model in
the context of parameter estimation easier. Using
Monod functions is consistent with the compara-
ble model by Simeonov et al. (1996).

• The death rates, eqs. (11) and (12), are replaced
with constant parameters:

Kd = 0.02 [1/d] (15)

Kdc = 0.02 [1/d] (16)

which is in accordance with ADM1, Batstone et al.
(2002). This simplifies the model.

• In the original Hill’s model the retention time of
the biomass (here: acidogens and methanogens) is
equal to the hydraulic retention time (HRT):

Thr =
V

Ffeed
= HRT (17)

The retention time of the biomass is larger than
the hydraulic retention time in up-flow sludge bed
reactors such as applied here, where biomass is
retained by gravity, Tchobanoglous et al. (2003).
The retention time ratio b is here introduced. The
retention time of the biomass, which is denoted
the solids retention time (SRT), is assumed to be
b times the hydraulic retention time:

Tbr = bThr =
bV

Ffeed
=

V

Ffeed/b
= SRT (18)

where the term V/(Ffeed/b) expresses that the
biomass flow out of the reactor is smaller than the
flow of organic matter.

In the original Hill’s model it is implicitly assumed
that b = 1. Eq. (18) makes the model coherent
with the standard ADM1 model, Batstone et al.
(2002), in this respect though the SRT is repre-
sented differently (as an independent parameter)
in ADM1. Eq. (18) is in accordance with the rep-
resentation of SRT in e.g. Zaher et al. (2003) and
Bernard et al. (2001).

Model equations in the modified Hill’s model
Defining that portion of the raw waste which can

serve as substrate:

Sbvsin = B0Svsin (19)

Defining that portion of the biodegradable material
which is initially in the acid form:

Svfain = AfSbvsin (20)

Mass balance of biodegradable volatile solids:

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µk1Xacid (21)

Mass balance of total VFA (see comment below):

Ṡvfa = (Svfain − Svfa)
Ffeed

V

+µk2Xacid − µck3Xmeth

(22)

Mass balance of acidogens:

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (23)

Mass balance of methanogens:

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (24)

Methane gas flow rate (gas production):

Fmeth = V µck5Xmeth (25)

where the reaction rates, with Monod kinetics, are as
follows:

µ = µm
Sbvs

Ks + Sbvs
(26)

µc = µmc
Svfa

Ksc + Svfa
(27)

The maximum reaction rates µm, µmc are functions of
the reactor temperature as in the original Hill’s model,
eq. (10), repeated here for easy reference:

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (28)

(20◦C < Treac < 60◦C)
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Above it is assumed that VFA is total VFA con-
sisting mainly of propionate, butyrate, valerate, and
acetate, Batstone et al. (2002). Acetate is the main
VFA component, and it is used in aceticlastic methano-
genesis which is the main methane-generating pro-
cess. Methane is also generated in hydrogenotrophic
methanogenesis. Hydrogen is generated from vari-
ous components including the VFA components propi-
onate, butyrate and valerate. To include effects of the
hydrogenotrophic methanogenesis, Svfa in our model
represents total VFA and not only acetate.

Figure 3 shows an overall block diagram display-
ing the variables and parameters of the modified Hill’s
model eqs. (19)-(28).

Xacid

[g/L]

Sbvs

[g/L]

Svfa

[g/L]

Xmeth

[g/L]

Ffeed 
[L/d] Fmeth

[L/d]

Modified Hill’s AD process 
model

State variables

Input 
variables

Output
variable

V
[m3]

Parameters

Svs,in
[g/L]

k1, k2, k3, k5, Ks, 
Ksc, Kd, Kdc

Treac

[oC]

b
[d/d]

Figure 3: Overall block diagram with variables and pa-
rameters of the modified Hill’s model (19)-
(28).

In Section 3.3.3 about parameter estimation the
steady-state (or static) version of the dynamic model is
needed. The steady-state model is obtained by setting
the time-derivatives in the above differential equations
equal to zero.

3.3. Adaptation of modified Hill’s model
to the AD reactor

In the the following subsections, 3.3.1-3.3.3, the modi-
fied Hill’s model, eqs. (19)-(28), is adapted to the AD
reactor ADR2. In Section 3.3.1 are presented param-
eter values found in literature references or known by
design. In Section 3.3.2 values of some of the param-
eters are calculated from a laboratory test. In Sec-
tion 3.3.3 the remaining unknown parameters, and un-
known values of two of the state variables (namely the

methanogens and acidogens concentrations) in a perti-
nent steady-state operating point, are estimated from
time-series of laboratory data and time-series from on-
line sensors. In Section 3.3.4 the temperature depen-
dency of the estimated model is demonstrated.

3.3.1. Known parameters in modified Hill’s model

Table 1 shows parameters which are assumed to have
known values.

Table 1: Parameters with known values. (Units are
listed in Appendix A.2.)

k3 = 1
Yc

= 31.7 Hill (1983)

Kd = 0.02 Batstone et al. (2002)
Kdc = 0.02 Batstone et al. (2002)
kmeth = 0.5 Hill (1983)
Ksc = 3 Husain (1998)
V = 250 Reactor design

3.3.2. Parameters in modified Hill’s model
calculated from laboratory test

Parameters B0 and Af are found from a laboratory
test as described below. Their values are shown in
Table 2.

Table 2: Parameters assumed to have known values

Af = 0.69 g VFA/L
g BVS/L Cf. comment in text

B0 = 0.25 g BVS/L
g VS/L Cf. comment in text

• B0 defines the ratio between BVS and VS in the
feed:

Sbvsin = B0Svsin (29)

It is assumed that a proper value of B0 can be
found from the following specific long-term test.
At time t0 = July 12, 2011 a fresh sample of the
subtrate was put into an incubator having con-
stant temperature of 35 oC.

The biogas production was registered regularly
until time t1 = Sept. 25, 2011 which is the
time where the biogas production became virtually
zero. The VS concentration, here denoted Svsin ,
of the substrate was measured at times t0 and t1,
cf. Table 3.

Since the biogas production is zero at t1 it is con-
cluded that the biodegradable part of the sub-
strate is completely degraded at t1. Thus, in the
long-term test,

Sbvsin = Svsin (t0)− Svsin (t1) (30)
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Table 3: Long-term test to find parameter B0

Time Svsin Biogas prod.
t0 = July 12, 2011 29.25 Non-zero
t1 = Sept. 25, 2011 21.92 Zero

From eq. (29) the following value of B0 is ob-
tained:

B0 =
Sbvsin

Svsin

=
Svsin (t0)− Svsin (t1)

Svsin (t0)

=
29.25− 21.92

29.25
= 0.25

g BVS/L

g VS/L
(31)

• Af defines the ratio between VFA and BVS in the
feed:

Svfain = AfSbvsin (32)

It is assumed that a proper value of Af can be
found from the approximate steady-state operat-
ing point around June 10, 2012 which is used for
estimation of the model parameters (except pa-
rameter k5 which is estimated from dynamic re-
sponses) using the steady-state version of the dy-
namic model. The pertinent values needed to cal-
culate Af are shown in Table 4. From eqs. (29)
and (32),

Af =
Svfain

Sbvsin

=
Svfain

B0Svsin

(33)

=
5.23

0.25 · 30.4
= 0.69

g VFA/L

g BVS/L
(34)

Table 4: Data used to calculate parameter Af

Time Svsin Svfain

t0 = 10. June 2012 30.4 5.23

3.3.3. Estimation of unknown parameters and
variables in modified Hill’s model using real
data

Parameters and variables to be estimated
The following parameters and variables in the mod-

ified Hill’s model, eqs. (19)-(28), are to be estimated:

k1, k2, k5, Ks, b, Xacid, Xmeth. (35)

In the model k1, k2, k5, Ks, and b appear as param-
eters, while Xacid and Xmeth are state variables. It
is necessary to estimate Xacid and Xmeth since their
values are not known.

Identifiability

Before trying to estimate parameters and variables,
their structural identifiability should be determined,
Dochain and Vanrolleghem (2001). Structural identifi-
ability concerns the possibility to give a unique value
to the unknown parameters and variables, and this
property can be assessed with a number of alternative
methods, e.g. the method of Generating series which
is based on calculating Lie derivatives, or by analyzing
the uniqueness of the parameters of the Laplace based
transfer function of a linearized version of the (nonlin-
ear) model. However, for the estimation method used,
see below, the structural identifiability is obvious since
independent analytical expressions for the pertinent
parameters and variables using steady-state data are
obtained, except for one parameter, namely k5, which
is found by optimization using dynamic data. Hence
a rigorous structural identifiability assessment is not
necessary and therefore not accomplished here.

Method of parameter estimation
Yield-parameter k5 is a crucial model parameter

since it is directly related to the methane gas flow rate,
cf. eq. (25). It is decided to estimate k5 using nonlin-
ear least squares (NLS) estimation based on optimiza-
tion using iterated simulations of the modified Hill’s
model. The simulations are based on the explicit Eu-
ler method implemented with for-loops in MATLAB.
The optimization problem is to minimize the difference
between real (measured) and simulated Fmeth in the
least squares sense over a specific time interval which
is from t = 66 d to 95 d in Figure 4. (t = 0 corresponds
to April 19, 2012.)

The iterations (including simulations) are executed
automatically by the optimization solver.1

From t = 72.3 d the methane gas flow is being con-
trolled by a feedback controller manipulating the feed
pump. The noise in gas flow measurement seen in Fig-
ure 4 is due to blockings and power outages. Because
of the feedback control, this noise imposes noise in the
feed flow, via the controller.

Before each of these simulations is started (auto-
matically by the optimization solver) the six param-
eters/variables k1, k2, Ks, b, Xacid, and Xmeth are cal-
culated from the steady-state version of the dynamic
model (19)-(28) using steady-state operational data at
a specific operating point assuming intially that k5 has
a “guessed” value which is set equal to the value in eq.
(7) of Hill’s original model:

k5guess = kmeth
1− Yc
Yc

= 15.4 (36)

Table 5 shows values of inputs and states in the per-
tinent steady-state operation point which is t = 66 d
in Figure 4. (t = 0 = April 19, 2012.)

1The optimization solver is the lsqnonlin function in MATLAB.
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Figure 4: Upper plot: Measured feed flow. Lower plot:
Measured (blue) and simulated (red) methane
gas flow.

Table 5: Values of inputs and states in the steady-state
operation point (t = 66 d; t = 0 = 19. April
2012) used for model adaption. Units are
listed in Appendix A.2.

Variables Comments

Ffeed = 50 Applied by feed pump

Treac = 35 Sensor reading

Sbvsin = 32.4 Lab analysis

Sbvs = 5.81 Lab analysis

Svfa = 1.13 Lab analysis

Fmeth = 227.9 Sensor reading

The formulas for calculating the above mentioned
six parameters/variables, namely k1, k2, Ks, b, Xacid,
Xmeth, from the steady-state version of the dynamic
model (19)-(28) are given below.

• b is calculated from the steady-state version (i.e.
the time-derivative term is set to zero) of eqs. (24)
and (27) to give

b =
Ffeed

V

µmc
Svfa

Svfa+Ksc
−Kdc

(37)

• Ks is calculated from the steady-state version of
eqs. (23) and (26) to give

Ks = Sbvs

(
µm

Kd +
Ffeed

bV

− 1

)
(38)

• Xmeth is calculated from the steady-state version
of eq. (25) to give

Xmeth =
Fmeth

V µck5
(39)

• Xacid is calculated with

Xacid = ramXmeth (40)

Here, ram is (in the steady-state calculations) set
to

ram = 3.4 (41)

as it was observed in simulations for various
feed rates with the original Hill’s model with
parameters from Husain (1998) that the ra-
tio Xacid/Xmeth varied only slightly around 3.4.
However, this ratio is not necessarily 3.4 after the
estimation procedure is finished.

• k1 is calculated from the steady-state version of
eqs. (19) and (26) to give

k1 =
(Sbvsin − Sbvs)Ffeed

V µXacid
(42)

• k2 is calculated from the steady-state version of
eqs. (22), (26) and (27) to give

k2 =
µck3Xmeth − (Svfain

− Svfa)
Ffeed

V

µXacid
(43)

The simulations used in the optimization (to esti-
mate k5) are based on the dynamic model (19)-(28).
In the simulated model a lag of time-constant equal to

θlag = 0.2 d (44)

is included. This time-constant represents the lowpass
filter used in the real system at Foss Biolab to smooth
the noisy biogas flow measurement, cf. Section 2.2.

Figure 5 illustrates the estimation method used to
estimate the parameters/variables (35). In this figure,
p is the parameter to be estimated which is

p = k5 (45)

In Figure 5, the measured output (time series) is

ymeas = Fmethmeas
(46)

and inputs (time series) are

u = [Ffeed, Treac] (47)

The output of the optimization objective function f
(and this output is to be minimized) is the sum of

44



F. Haugen et al. “Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor”

Sum of 
squares

ymeas

Time series of 
inputs

Real system

Time series of 
simulated output

Simulator

popt

fmin ETE = e(1)2+...+e(N)2

E = ymeas - ysim

= [e(1),...,e(N)]

u

Time series of 
measured output

ysim

f(p) = ETE

p

Optimization solver iterates until popt is found.

pguess

Optimization solver
(finds solution to nonlinear optimization/minimization problems)

Time
series

Parameter calculation 
from steady-state 
data assuming p is 

known

Model parameters (incl. p)

Figure 5: The estimation of parameter vector p = k5 is
based on optimization (minimization) using
iterated simulations.

squares of prediction errors over the estimation time
interval:

f(M,p) = SSEepred (48)

=

N∑
k=1

[epred(tk)]
2

(49)

= ET
predEpred (50)

Epred is the time-series (vector) of prediction errors:

Epred = [epred(t1), . . . , epred(tN )]
T

(51)

where N is the number of time-steps in the estimation
time interval. In the present application, epred(tk) is

epred(tk) = Fmethmeas
(tk)− Fmethsim

(tk) (52)

where Fmethmeas
is measured reactor methane flow, and

Fmethsim
is simulated Fmeth.

In eq. (48), M represents the model comprising eqs.
(19)-(28).

The optimal (best) estimate of p is the value of p
which minimizes SSEepred :

pest = popt : min
p

SSEepred (53)

Results
In the time interval 80-95 d in Figure 4, the simu-

lated Fmeth based on the estimated model is plotted
together with real Fmeth. The simulation runs with
initial state equal to the real state at t = 66 d. In this
time interval the maximum difference between the sim-
ulated Fmeth and the real Fmeth is approximately 10
L/d while the maximum gas flow is approximately 235
L/d. It seems that the adapted modified Hill’s model
is able to predict the produced methane gas quite well.

Figure 6 shows in the upper plots real values (from
laboratory analysis) and simulated values of the state
variables Sbvs and Svfa together with the respective
real concentrations in the feed.
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Figure 6: Upper plots: Real values (from laboratory
analysis) and simulated values of the state
variables Sbvs and Svfa together with the
respective real concentrations in the feed.
Lower plots: Simulated values of the state
variables Xacid and Xmeth for which we do
not have laboratory analysis data.

The lower plots show simulated values of the state
variables Xacid and Xmeth for which no laboratory
analysis data are available.

Table 6 shows the values of the estimated variables
and parameters together with standard deviations (σ),
both absolute and relative, obtained with simulations
as described later in the present section.

Uncertainty of estimates in terms of standard
deviation

Uncertainty in the estimates can be expressed by
the variability of the estimates. The variability may
be calculated in a number of ways, e.g.:
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Table 6: Values of estimated variables and parameters,
and absolute and relative standard deviations
(σ). Units are listed in Appendix A.2. The
standard deviations are found from bootstrap-
ping simulations as described in the present
section.

Estimates Abs σ Rel σ [%]
b = 2.90 0.030 0.030·100

2.90 = 1.0
Ks = 15.5 0.24 1.5
k1 = 3.89 0.11 2.8
k2 = 1.76 0.058 3.3
k5 = 26.3 0.27 1.0
Xacid = 1.32 0.024 1.8
Xmeth = 0.39 0.0070 1.8

• Calculation of the covariance of the parameter es-
timation error from Fisher’s Information Matrix
which involves numerical or analytical calculation
of model output sensitivities (i.e. calulation of
partial derivatives, or linearization) with respect
to model parameters, Dochain and Vanrolleghem
(2001). With a complex model analytical sensi-
tivies may be calculated using computer tools for
symbolic mathematics.

A possible alternative way of calculating the pa-
rameter estimation error covariances is with the
calculation of so-called sigma points using the non-
linear model directly, without any linearization, as
in the Unscented Kalman Filter, Simon (2006).

• Bootstrapping with parametric simulation, Davi-
son and Hinkley (1997), which involves running a
large number of simulations where the pertinent
input data used in the estimation are varied ran-
domly according to an assumed probability dis-
tribution which (should) resemble the actual dis-
tribution of the real data used in the estimation.
(Bootstrapping with parametric simulation resem-
bles Monte Carlo simulations.) The parameter un-
certainty can then be assessed from the observed
variations of the estimates in the simulations typ-
ically in terms of standard deviation of the varia-
tion.

The method of bootstrapping is selected since this
method is relatively straightforward and applicable.

Table 7 lists three quantities used as input data in
the parameter estimation. These quantities are varied
randomly and independently in the bootstrapping sim-
ulations. These quantities represent the steady-state
operating point used in the parameter estimation, as
explained above in the present section. Table 7 shows
the pertinent standard deviations (σ) calculated from a

number of laboratory analysis data sets taken over sev-
eral weeks in the summer of year 2012. This time inter-
val includes the steady-state operating point, namely
day 66, see Figure 4). In the simulations it is assumed
that their probability distributions are Gaussian.

Table 7: Standard deviations of quantities which are
varied (randomly) in bootstrapping with
parametric simulation used to assess varia-
tions of estimated parameters.

σSvsin
[g/l] σSbvs

[g/l] σSvfa
[g/l]

0.253 0.256 0.0119

The resulting standard deviations of the estimates
found from the bootstrapping simulations are shown
in Table 6. Note that these standard deviatons express
only the variations in the estimates due to variations
in the three quantities given in Table 7. There are
several other factors which contribute to the (total)
uncertainty of the estimates, as model structure errors
and systematic measurement errors.

Sensitivity of estimates with respect to as-
sumptions

It is informative to assess the sensitivity of the esti-
mates with respect to assumptions for the estimation
method. The relative sensitivity of parameter p to pa-
rameter a is defined as

Sp,a =

∂p
p

∂a
a

≈
∆p
p0

∆a
a0

=

p1−p0

p0

a1−a0

a0

(54)

where p0 and a0 are nominal values. p0 is a parameter
shown in Table 6. a0 is a parameter shown in Table
2 or Table 5. p1 and a1 are respective values after a
change is made in a.

Table 8 shows relative sensitivities as found by per-
turbing parameters ai with a 10% positive additive
change and observing the corresponding change in the
estimated parameter p. For example, Sb,B0

= −0.62
in Table 8 means that a 10% additive increase in the
assumed value of B0 causes an additive change in the
estimated b of −0.62 · 10% = −6.2%.

Note that Xacid and Xmeth in Table 8 are actually
estimated values for the steady-state operating point,
and serve as initial values in the simulations which are
run as a part of the estimation of parameter k5 using
optimization. Thus the simulated responses in Xacid

and Xmeth varies with time, see Figure 6.

None of relative sensitivities shown in Table 8 has
extreme values. Hence it is concluded that the relative
sensitivities do not demand a change of the assumed
values of the pertinent a-parameters.
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Table 8: Relative sensitivities Sa,b

p ↓, a→ Svsin Af B0 Kd

b 0 0 0 0.30
Ks 0 0 1 0
k1 1.3 −1.5 −0.62 −0.066
k2 2.6 1.7 1.7 0.28
k5 −1.7 −1.5 −1.5 −0.066
Xacid 2.0 1.7 1.7 0.066
Xmeth 2.0 1.7 1.7 0.066

3.3.4. Temperature dependency

In the modified Hill’s model (as in the original model)
the reaction rates, eqs. (26) and (27), depend on the
reactor temperature Treac, cf. (28). In the model adap-
tion made in Section 3.3.3 Treac was kept constant at
35 oC. Simulations with modified Hill’s model, though
not shown here, indicate that a change in Treac gives
a dynamic response in Fmeth. We do not have exper-
imental results with varying Treac for reactor ADR2
which is used in the present study. However, exper-
imental results exist for reactor ADR1 which was in
use at Foss Biolab from August 17, 2011 until April
19, 2012. It is fair to assume that the temperature
dependency as expressed in Hill’s model holds equally
well for ADR2 as for ADR1 since the physical appear-
ances of the two reactors are similar and the operation
and feed (manure from the same dairy livestock) are
similar.

Figure 7 shows responses in Fmeth due to changes in
Treac and Ffeed for the reactor ADR1.

During the time period shown in Figure 7 both Treac
and the feed flow Ffeed were changed, but only the vari-
ations caused by the temperature change are of inter-
est here. The simulations are based on a mathematical
model adapted to ADR1 using the same method for
model adaptation as is used for model adaptation to
ADR2 as described in Section 3.3.3.

As seen in Figure 7, Treac was increased twice:

• At time t = 60.5 d: From approximately 24oC to
approximately 30oC.

• At time t = 67.5 d: From approximately 30oC to
approximately 35oC.

These temperatures are in the mesophilic range.
The changes were implemented as step-wise changes of
the temperature setpoint in the temperature controller
TC1, cf. Figure 1.

Since the simulated Fmeth and the real Fmeth plot-
ted in Figure 7 show similar responses, it can be con-
cluded that eq. (28) represents the temperature de-
pendency of the real reactor quite accurately, at least
in the mesophilic temperature range.

Figure 7: Reactor ADR1: Responses in Fmeth (middle)
due to changes in Treac (lower) and Ffeed

(upper).

4. Reactor temperature model

The reactor temperature Treac is actually a (dynamic)
state variable although it is assumed to be a parameter
in the modified Hill’s model, cf. eq. (28). In some sit-
uations it is useful to have a dynamic model describing
the dynamic behaviour of Treac, e.g. in optimization
of the reactor design and operation where energy and
economical cost are taken into account, and in model-
based tuning of a temperature controller for the reac-
tor. A dynamic model describing Treac is now derived
and adapted the model to the real bioreactor (ADR2).
Treac depends on a number of variables and param-

eters, e.g. the manipulated supplied power to the elec-
trical heater for the reactor, the temperature of the
reactor feed, the feed flow rate, etc. It is reasonable
to assume that Treac can be modelled with an energy
balance for the liquid of the reactor. Due to the mix-
ing which takes place in the reactor it is assumed that
there are homogeneous conditions in the reactor. The
energy balance can be written as

dTreac
dt

=
1

cρV
[Pheat

+ cρFfeed (Tfeed − Treac) (55)

+G (Troom − Treac)]

The liquid in the reactor is assumed having the same
thermal characteristics as water. All model parame-
ters in eq. (55) except the thermal conductivity G are
assumed known, cf. Table 9.
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Table 9: Assumed known parameters of reactor tem-
perature model.

c = 4200 J/(kg K)

ρ = 1000 kg/m3

V = 250 L

All variables and parameters in eq. (55) are assumed
to have SI units, although some are presented in dif-
ferent units in the present section.

Measured time series of all variables in eq. (55), i.e.
Treac, Pheat, Ffeed and Troom, are available. Ffeed is
constantly 55 L/d. Troom varies between 12.7 oC and
15.8 oC with mean value 13.7 oC. Tfeed is assumed to
be equal to Troom.
G is estimated from experimental data. Three alter-

native methods are applied:

1. Least squares (LS) method with static
model: By assuming that all variables, including
Treac, in eq. (55) have constant values, dTreac/dt
can be set to zero. Solving the resulting static
model for G gives

G =
−Pheat − cρFfeed (Tfeed − Treac)

Troom − Treac
(56)

from which G can be estimated with the LS
method.

2. LS method with dynamic model: The model
(55) is linear in the unknown parameter G:

G =
1

Troom − Treac
[cρV

dTreac
dt

(57)

− Pheat − cρFfeed (Tfeed − Treac)]

Here, dTreac/dt is calculated using simple numer-
ical differentiation2:

dTreac
dt

=
Treac(tk+1)− Treac(tk)

Ts
(58)

G is estimated from eq. (57) with the LS method.

3. Nonlinear least squares (NLS) method with
dynamic model and additional lag: It is as-
sumed that the original model (55) describes the
dynamic properties of Treac. It is also assumed
that there may be additional dynamic phenomena
due to energy capacitance in the heating element
(the coil) and in the reactor wall. Furthermore,
a measurement filter in terms of a discrete-time
algorithm resembling a time-constant system with
time-constant Tf = 600 s is actually in operation

2We used the diff function in MATLAB.

in the AD reactor. This filter also adds dynamics
to the temperature behaviour. To obtain a total
model able to represent these additional dynam-
ics, the original model (55) is augmented with the
following general “lag model” incorporating time-
constant dynamics:

dTreaclag

dt
=

(
Treac − Treaclag

)
θtemp

(59)

where θtemp [d] is a time-constant. One motivation
for this augmentation is the expectation that the
estimation of G in eq. (55) will be improved if also
θtemp in eq. (59) is estimated. Thus, both G and
θtemp are estimated. The measured temperature is
now represented with Treaclag

, while Treac is actu-
ally unknown which makes it difficult to apply the
ordinary LS method for estimation. Instead, NLS
estimation is used based on optimization using it-
erated simulations. The procedure is the same as
was used to estimate parameter k5 in the modified
Hill’s model, cf. Section 3.3.3. Therefore, Figure
5 applies, but with the following changes. The
measured output is

ymeas = Treacmeas (60)

and inputs (time series) are

u = [Pheat, Troom, Tfeed] (61)

where Troom = Tfeed. The prediction error,
epred(tk), is

epred(tk) = Treacmeas(tk)− Treaclagsim
(tk) (62)

where Treaclagsim
is simulated Treaclag

.

The model used in the iterated simulations exe-
cuted by the optimization function consists of the
differential equations (55) and (59).

The parameter vector to be estimated is

p =

[
G

θtemp

]
(63)

The following guessed (initial) parameter values
for the estimation are used:

pguessed =

[
Gguessed

θtempguessed

]
=

[
1.0 · 105 (J/d)K

1.0 d

]
(64)

The guessed value of Gguessed stems from some
calculations made with the previous AD reactor
(ADR1).
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Table 10: Results of estimation of G with different es-
timation methods

Method G θtemp SSE RMSE

[(J/d)/K] [d] [K2] [K]

1. LS static 1.88·105 – 23.4 0.38
2. LS dyn 2.11·105 – 18.7 0.34
3. NLS dyn&lag 1.96·105 0.023 11.1 0.26

Estimated parameters and performance indices with
the above three methods of estimation of G are shown
in Table 10.

To check the quality of the estimates, both SSE (sum
of squared error) which is defined by eq. (48), and
RMSE which is the Root Mean Squared Error index,
Varmuza and Filzmoser (2009), are calculated:

RMSE =

√√√√ 1

N

N∑
k=1

[epred(tk)]
2

(65)

SSE is the same function as is used to solve the NLS es-
timation problem, but it does not have the same unit as
the prediction error, e. RMSE resembles the standard
deviation, and it has the same unit as the preduction
error, e. Therefore, RMSE may be more useful than
SSE as a performance index for model validation, while
SSE is more useful in solving estimation (optimization)
problems since it is a square function, Varmuza and
Filzmoser (2009).

Figure 8 shows simulated Treac for three cases of pa-
rameter estimation, cf. Table 10, together with real
(measured) Treac, Pheat, and Troom = Tfeed. (The os-
cillations in Pheat are due to the On/Off control signal
from the temperature controller.) The respective time
intervals of the timeseries of data used for estimation
in the three cases are shown in the upper plot in Figure
8.

Notes to the plots in Figure 8:

• Around t = 161.4 d and 161.9 d the changes in the
measured Treac appears earlier than the changes
in Pheat assumed to cause the changes in Treac.
The sampling time is Ts = 15 min = 0.0104 d,
which is in the same range as of the periods of the
changes of Pheater.

• The simulated Treac is clearly larger than the mea-
sured Treac between t = 160.6 and 161.0 d. The
difference may be due to disturbances for which
the controller compensates by increasing the (av-
erage) Pheater. These disturbances are not due to
the observed reduction of Troom since the actual
values of Troom are used in the simulation. We can
not identify these disturbances, but they may be
unknown variations in Tfeed.
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Figure 8: Upper plot: Real (measured) and simu-
lated Treac, and time intervals for estimation
(marked ’o’). Middle plot: Real Pheat. Lower
plot: Troom = Tfeed.

The results shown in Table 10 and Figure 8 show no
large difference between the three estimation methods
used here, and all of the simulated responses of Treac
resembles quite well the measured Treac. Still, the best
result is obtained with the third method (NLS with
augmented dynamic model). Hence, the ultimate esti-
mated value of G is selected as

G = 1.96 · 105 (J/d)K (66)

The thermal time-constant, θthermal, can now be cal-
culated from the model (55). Using the pertinent nu-
merical values for the parameters,

θthermal =
cρV

cρFfeed +G
(67)

=
4200 · 1000 · 0.25

4200 · 1000 · 0.055 + 1.96 · 105
(68)

= 2.46 d (69)

In some applications of the thermal model derived in
the present section, for example in optimization of reac-
tor design and operation where thermal energy is taken
into account, it will be sufficient to use only the main
part of the model. The main part is given by eq. (55).
However, in temperature controller tuning more appro-
priate controller parameter values can be expected by
taking into account also the lag-model (59).
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5. Discussion

The modified Hill’s model which has been adapted to
the pilot bioreactor fed dairy manure is a relatively
simple model compared with alternative models since
the model does not contain neither ammonia, alkalin-
ity, nor pH as variables. These variables are more im-
portant in reactors fed manure from swine or poultry
because their values may have higher impact on the
stability of such reactors.

The modified Hill’s model is assumed to be suffi-
ciently accurate as a basis for optimal reactor design
and operation, state-estimation and control for a re-
actor fed dairy manure where the main output is the
produced methane gas flow. In applications requiring
a prediction of hydrogen or carbondioxide gas produc-
tion alternative models must be used.

The parameters B0 (biodegradability constant) and
Af (acidity constant) are estimated from data from
one experiment only. Ideally, more experimental data
should have been used.

In the original Hill’s model, Haldane functions are
used in the reaction rates. Instead, Monod functions
are used, mainly to simplify model adaptation. These
simplifications have support in some literature refer-
ences.

In the orignal Hill’s model, the solids residence time
and the hydraulic residence time were assumed to be
equal. In our study, this assumption caused prob-
lems with the model adaptation (results are not shown
here), while assuming different residence times, related
with a proportionality factor, worked well.

The dynamic model based on energy balance describ-
ing the temperature in the liquid phase of the biore-
actor assumes homogeneous conditions in the reactor.
A model with acceptable accuracy was adapted under
this idealized assumption. However, the model adap-
tation was improved by including an additional time-
constant lag in the model. This lag can be regarded as
a representation of inhomogeneous conditions, or spa-
tial variations, in the reactor.

6. Conclusions

A dynamic model has been adapted to a pilot anaero-
bic reactor fed dairy manure using steady-state and dy-
namic operational data. The model is a modification of
a model originally developed by Hill (1983). The model
is based on material balances, and comprises four state
variables, namely biodegradable volatile solids, volatile
fatty acids, acidogens, and methanogens. Simulations
compared with measured methane gas flow indicate
that the model is able to predict the methane gas flow
produced in the reactor.

The steady-state data used for the model adapta-
tion are feed flow (loading rate), reactor temperature,
methane gas flow, and laboratory analysis values of
influent and effluent VS and VFA concentrations at
one specific steady-state operating point. The dy-
namic data used are feed flow, reactor temperature and
methane gas flow over a time-interval of 15 days.

Also, a dynamic model for the reactor temperature
based on an energy balance of the liquid is adapted to
the pilot reactor. The model is able to predict the re-
actor temperature. A combination of this model and
the model of the the anaerobic processes can be useful
in optimization of reactor design and operation when
energy production and economical costs are taken into
account. Furthermore, this model can be used for tem-
perature controller tuning.
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A. Nomenclature

A.1. Abbreviations

AD = Anaerobic digestion

ADM1 = Anaerobic Digestion Model No. 1

ADR1 = Anaerobic digestion reactor 1 which was in
use at Foss Biolab from 17. August 2011 until 19.
April 2012

ADR2 = Anaerobic digestion reactor 1 which has
been in use at Foss Biolab from 19. April 2012

BVS = Biodegradable volatile solids

HRT = Hydraulic retention time

LS = Least squares

MPC = Model-based predictive control

NLS = Nonlinear least squares
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PWM = Pulse-width modulation

RMSE = Root mean squared error

SSE = Sum squared error

VFA = Volatile fatty acids

VS = Volatile solids

A.2. Nomenclature of model of AD
processes

The nomenclature is in alphabetical order.

Af [(g VFA/L)/(g BVS/L)] is acidity constant.

b [d/d] is retention time ratio.

B0 [(g BVS/L)/(g VS/L)] is biodegradability con-
stant.

Ffeed [L/d] is influent or feed flow or load rate, as-
sumed equal to effluent flow (constant volume).

Fmeth [L CH4/d] is methane gas flow.

k1 [g BVS/(g acidogens/L)] is a yield constant.

k2 [g VFA/(g acidogens/L)] is a yield constant.

k3 [g VFA/(g methanogens/L)] is a yield constant.

k5 [L/g methanogens] is a yield constant.

Ki [g VFA/L] is VFA inhibition constant for acido-
gens.

Kic [g VFA/L] is VFA inhibition constant for
methanogens.

Ks [g BVS/L] is Monod half-velocity constant for aci-
dogens.

Ksc [g VFA/L] is Monod half-velocity constant for
methanogens.

Kd [d−1] is specific death rate of acidogens.

Kdc [d−1] is specific death rate of methanogens.

µ [d−1] is reaction (growth) rate of acidogens.

µc [d−1] is reaction (growth) rate of methanogens.

µm [d−1] is the maximum reaction rate for acidogens.

µmc [d−1] is the maximum reaction rate for
methanogens.

σy is standard deviation of signal y.

Sp,a is relative sensitivity of parameter p with respect
to parameter a.

Svfa [g VFA/L] is concentration of VFA acids in re-
actor.

Svfain
[g VFA/L] is concentration of VFA in

biodegradable part of influent.

Sbvs [g BVS/L] is concentration of BVS in reactor.

Sbvsin [g BVS/L] is concentration of BVS in influent.

Svsin [g VS/L] is concentration of volatile solids in
influent.

Treac [◦C] is reactor temperature.

θbio [d] is time-constant of lag in methane gas re-
sponses.

V [L] is effective reactor volume.

Xacid [g acidogens/L] is concentration of acidogens.

Xmeth [g methanogens/L] is concentration of
methanogens.

Y [g acidogens/g BVS] is yield coefficient of acidogens.

Yc [g methanogens/g VFA] is yield coefficient of
methanogens.

A.3. Nomenclature of model of reactor
temperature

The nomenclature is in alphabetical order.

c [J/(kg K)] is specific heating capacity of reactor liq-
uid.

G [(J/d)/K] is thermal conductivity.

Pheat [J/d] is supplied power to electrical heater.

ρ [kg/m3] is density of reactor liquid.

Tfeed [oC] is temperature of reactor feed.

Troom [oC] is air (ambient) temperature.

θtemp [d] is time-constant of lag in temperature re-
sponses.

θtherm [d] is the thermal time-constant calculated
from the energy balance of the reactor.

V [m3] is effective volume of reactor liquid.

51



Modeling, Identification and Control

B. Laboratory analysis methods

Below is a description of the methods of laboratory
analysis of the components in the bioreactor influent
and effluent used in the mathematical modeling pre-
sented in this paper.

VS: Three parallel tests for each sample. The samples
are dried in an oven at 105◦C for approximately
one day. Then, the (dried) samples are combusted
in a furnace at 550◦C for 2 hours. The VS con-
centration in g/L is calculated as the weight lost
during the combustion divided by the sample vol-
ume.

VFAs: Two parallel tests for each sample. The
samples are centrifuged for 30 min, and then fil-
tered. The samples are diluted with deionized wa-
ter, then added to small vials together with formic
acid, capped, and stored in a refrigerator until
measurement is done. The VFA concentrations in
g/L are measured by a gas chromatograph (GC)
using three injections from each of the parallels.

Other components analyzed, but not used in the
modeling in this paper are tCOD, sCOD, ammonia,
TS, TSS, VSS, pH, and alkalinity (measured as cal-
cium carbonate).

C. Summary of modified Hill’s
model

For easy reference, the modified Hill’s model, eqs. (19)-
(28), adapted to the AD reactor ADR2 at Foss Biolab
in Section 3.3, is summarized in this appendix. The
modified Hill’s model is originally presented in Section
3.2.2. Nomenclature is defined in Appendix A. Param-
eter values are given in Table 11.

Defining that portion of the raw waste which can
serve as substrate:

Sbvsin = B0Svsin (70)

Defining that portion of the biodegradable material
which is initially in acid form:

Svfain
= AfSbvsin (71)

Mass balance of biodegradable volatile solids:

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µk1Xacid (72)

Mass balance of total VFA:

Ṡvfa = (Svfain
− Svfa)

Ffeed

V
+µk2Xacid−µck3Xmeth

(73)

Mass balance of acidogens:

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (74)

Mass balance of methanogens:

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (75)

Methane gas flow rate (gas production):

Fmeth = V µck5Xmeth (76)

where the reaction rates, with Monod kinetics, are as
follows:

µ = µm
Sbvs

Ks + Sbvs
(77)

µc = µmc
Svfa

Ksc + Svfa
(78)

where the maximum reaction rates are functions of the
reactor temperature as follows:

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (79)

(20◦C < Treac < 60◦C)

Table 11: Parameters in Hill’s model adapted to AD
reactor at Foss Biolab

Af = 0.69
b = 2.90
B0 = 0.25
k1 = 3.89
k2 = 1.76
k3 = 31.7
k5 = 26.3
Kd = 0.02
Kdc = 0.02
Ks = 15.5
Ksc = 3
V = 250

In analysis of reactor dynamics and stability and in
design of some types of state estimators and controllers
it may be necessary to define a proper steady-state
operation point. A steady-state operating point can be
found from e.g. a simulation by reading off the value
of the state variables at steady-state. One example of
a steady-state operating point is given in Table 12.
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