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The availability of Markov chain Monte Carlo (MCMC) estimation in user-friendly structural equation 

modeling (SEM) programs such as Mplus (Muthén & Muthén, 1998–2017), Amos (Arbuckle, 2012), and 

the R (R Core Team, 2018) package blavaan (Merkle & Rosseel, 2018) has contributed to the increasing 

popularity of Bayesian SEM (BSEM; Muthén & Asparouhov, 2012; Song & Lee, 2012). Model-fit 

evaluation for BSEM has therefore become a topic of recent debate. In a frequentist framework, the 

exact fit of an SEM is tested with the chi-square statistic, typically complemented by reporting at least 

one index of approximate fit (Brown, 2006; Hu & Bentler, 1999; Kline, 2016). These familiar fit 

measures have not traditionally been provided as standard output in BSEM software. Building on the 

recent proposal of a Bayesian approximate fit measure (Hoofs, van de Schoot, Jansen, & Kant, 2018), 

we propose several approximate chi-square-based fit indices for BSEM that are calculated from a 

Bayesian analog of the chi-square statistic. 

Hoofs et al. (2018) were motivated to define a fit index for BSEM for the same reason that motivated 

the development of numerous fit indices for SEM: to supplement a test of exact fit with a descriptive 

measure of approximate fit, which they noted is especially useful when large samples provide great 

power to detect trivial misspecifications. We were motivated to extend their ideas by defining fit 

measures that would behave consistently with the familiar fit measures in SEM, so we begin by 

considering the case of models with noninformative priors, in which case Bayesian and frequentist 

estimation routines provide asymptotically equivalent results. 

Although it is also of interest to employ fit indices in the more general case, in which priors may be 

weakly or strongly informative, there are still advantages to fitting an SEM in a Bayesian framework 

that do not involve the incorporation of prior information. First, more complex (even intractable) 

models can be fit in a Bayesian framework that are not feasible with standard estimation routines 

based on covariance structure analysis, such as models that are nonlinear either in the latent 

variables (e.g., including polynomial or interaction terms among latent variables) or in the 

parameters or that account for complex dependencies among observations—examples of such BSEM 

applications can be found in Congdon (2009), van der Lans, van den Bergh, and Dieleman (2014), 

and Song and Lee (2006). The blavaan package, in particular, allows users to easily specify a basic SEM 

in lavaan (Rosseel, 2012) model syntax, then edit the automatically generated syntax from a general 

Bayesian modeling program to include features unavailable in standard SEM software (e.g., by 

specifying a beta regression for a proportion outcome). Second, models can be fit to smaller samples 

without violating an asymptotic assumption. Third, rather than relying on normal-theory confidence 

intervals (CIs) derived from the delta method for functions of parameters (e.g., indirect effects are 

products of direct effects), estimated posterior distributions can be used to calculate complex 

functions of parameters without assuming they must also have normal sampling distributions, yielding 

more robust credible intervals (the Bayesian analog of CIs; Y. Yuan & MacKinnon, 2009). Chi-square-

based fit indices are very complex functions of model parameters, and most have unknown sampling 

distributions, so defining fit indices for BSEM allows access to intervals that can quantify uncertainty 

due to sampling error. Fourth, 95% credible intervals for model parameters have a more intuitive 

probabilistic interpretation than a 95% CI (Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016). 



Fifth, Bayesian inference has multiple advantages over frequentist inference, even in simpler 

applications, such as the direct inference about the parameters of interest (θ) instead of inferring 
about a null hypothesis (related to the unintuitive interpretation of CIs); by conditioning on the data, 

the accuracy of a credible interval is not identified with the long-run behavior of the estimator 

(Kruschke, 2010); and frequentist inferential procedures tend to result in misinterpreting the p value 

and overestimating its information about the “significance” of a result (Matthews, 2001). Efron 

(1986), Matthews (2001), Wagenmakers, Lee, Lodewyckx, and Iverson (2008), and Kruschke 

(2010) provide details about the comparison of Bayesian and frequentist inference. 

Thus, we consider it meaningful to define fit indices for BSEM at least in the limited case of 

noninformative priors (and not just in the case of very large samples; Hoofs et al., 2018), in which case 

decades of research on fit indices in SEM might also be relevant at least for this subset of BSEMs. As 

noted by van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, and Depaoli (2017) in their review of 

25 years of Bayesian psychological science, only 12.6% of published articles reported the ability to 

specify priors as a motivating factor for using Bayesian methods. Because 31.1% of publications failed 

to report information about their priors at all (van de Schoot et al., 2017), it is difficult to discern how 

many BSEM publications have solely used noninformative priors since Scheines, Hoijtink, and 

Boomsma (1999) proposed their estimation, but 8.4% of publications using Bayesian methods seemed 

to imply that the authors relied on software packages’ default priors (typically 
noninformative; Arbuckle, 2012; Merkle & Rosseel, 2018; Muthén & Muthén, 1998–2017). So despite 

the popularity of small-variance priors proposed by Muthén and Asparouhov (2012) to account for 

trivial model misspecifications, we posit that it is not unreasonable to assume that BSEM is also 

commonly applied with noninformative priors. 

We begin by reviewing some frequentist measures of model fit as well as fit measures currently 

provided by BSEM software. We then propose how to adapt familiar SEM fit measures for BSEM and 

compare our proposal with that of Hoofs et al. (2018). We present results from a simulation study 

designed to compare our proposed BSEM fit indices with their frequentist counterparts under 

maximum likelihood estimation (MLE) in various conditions, after which we enumerate important 

issues for further investigation—namely, the effects of missing data and informative priors. Using the 

well-known Holzinger and Swineford (1939) data set, we verify our expectations about these effects in 

the section Illustrative Examples, which demonstrate the importance of future Monte Carlo research 

into these issues. Our online OSF materials include R syntax to replicate these example analyses, which 

also show how to obtain the proposed fit indices with the R package blavaan (Merkle & Rosseel, 2018). 

Frequentist Fit Measures 

The Chi-Square Statistic 

The chi-square test statistic is calculated from the discrepancy function used to obtain parameter 

estimates when fitting a hypothesized model to data. Because SEMs were traditionally developed as 

analyses of covariance structure, most discrepancy functions available in SEM software (Kline, 2016) 

are based on comparing the sample covariance matrix S with the model-implied covariance matrix ∑(θ̂) (or simply Σ̂). The most commonly implemented is the maximum likelihood discrepancy function: 



𝐹ML = log|Σ̂| − log|𝐒| + 𝑡𝑟𝑎𝑐𝑒(𝐒Σ̂−1) − 𝑝 + (�̅� − μ̂)𝑇Σ̂−1(�̅� − μ̂). (1) 

where p is the number of variables in the model, 𝐱  is the vector of sample means, and μ̂ is the vector of 

model-implied means. The corresponding statistic is calculated as χML2 =  𝑁 ×  𝐹ML. 

More generally, χML2 is a likelihood ratio test (LRT) statistic, calculated by plugging the nth 

observation’s (perhaps incomplete) data vector yn into the multivariate normal log-likelihood (ℓ) 

function: ℓ𝑛 = − 𝑝2 log(2π) − 12 log|Σ| − 12 (𝐲𝑛 − μ)𝑇Σ−1(𝐲𝑛 − μ), (2) 

using model-implied μ ̂and Σ̂ derived from estimated model parameters in place of μ and Σ above. 
Summing yields the log-likelihood of the hypothesized model (MH),  ℓH − ∑ ℓ𝑛𝑁𝑛=1 . (3) 

Similarly, using the observed sample statistics x ̄and S in place of μ and Σ above yields the log-likelihood 

(ℓS) of the saturated model (MS). The LRT statistic for MH is also called its deviance from MS: 𝜒ML2 = −2(ℓH = −ℓS), (4) 

which is distributed as a chi-square random variable with 𝑑𝑓 =  𝑝∗  −  𝑞, where 𝑝∗ is the number of 

nonredundant sample moments and q is the number of estimated parameters. In analyses of 

covariance structure only, 𝑝∗ = 𝑝(𝑝+1)2  , whereas 𝑝∗ = 𝑝(𝑝+3)2  in mean and covariance structure (MACS) 

models. 

MLE assumes the observed variables are multivariate normally distributed in order for the test statistic 

to be asymptotically distributed as a chi-square random variable. Other discrepancy functions can be 

applied and multiplied by N to calculate a model-fit statistic. Some discrepancy functions (e.g., 

unweighted least squares) allow the normality assumption to be relaxed (Browne, 1984). Robust 

corrections have also been developed to adjust the ML test statistic to be more approximately chi-

square distributed when assumptions are violated (Savalei, 2014). 

Regardless of the discrepancy function (or whether a robust correction was applied), the chi-square 

statistic tests the null hypothesis of exact model fit (H0: the hypothesized model perfectly represents 

the true data-generating process). Because theoretical models are, by necessity, merely 

approximations of reality (MacCallum, 2003), the H0 of exact fit is often considered a priori to be false. 

Because researchers typically cannot reasonably expect to retain H0 in practice, the chi-square test is 

often of limited general or practical interest (West, Taylor, & Wu, 2012). 

Furthermore, the power of the chi-square test to detect small (even negligible) inconsistencies with H0 

increases with N. To assess whether a model’s misspecification is of any practical importance (i.e., 
whether predicted values are close enough to observed values to be useful in practice), several 

methodologists have proposed indices of approximate fit to complement the chi-square significance 

test, functionally similar to providing measures of practical significance to complement significance 

tests in other contexts (e.g., Cohen’s d to complement a t test). Most proposed fit indices make use of 



the chi-square value by adjusting it or comparing it with another model’s chi square, for example, to 
correct for model complexity, number of parameters, or overfitting. So the chi-square statistic has long 

remained the focus of overall model fit in SEM, even if indirectly. 

Non-Centrality-Based Fit Indices 

When H0 is false, the model-fit test statistic follows a noncentral chi-square distribution, with 

noncentrality parameter λ. When H0 is true, λ = 0 and the expected value of chi square is its degrees of 
freedom (𝑑𝑓), whereas the expected value of a noncentral chi square is the sum of its 𝑑𝑓 and λ. Thus, 
the difference between a model’s chi-square statistic and 𝑑𝑓 is a sample estimate of the model’s 
noncentrality parameter: �̂� =  𝜒2 −  𝑑𝑓. Several fit indices are based on a rescaling of �̂�; we present 

the most popular ones below. 

Each 𝑑𝑓 represents a restriction on how estimated model parameters can reproduce the observed 

sample moments x ̄and S. Thus, greater 𝑑𝑓 implies a more parsimonious model, which might therefore 

deviate even more from the true data-generating process—referred to as approximation 

discrepancy (MacCallum, 2003). Steiger and Lind (1980) proposed expressing model misfit as an 

average across the number of restrictions the model made. To express this average misfit per 𝑑𝑓 in the 

metric of the discrepancy function (FML), �̂� is divided by N as well as 𝑑𝑓: RMSEA = ε̂   = √max [0, �̂�𝑑𝑓×𝑁] = √max [0, 𝜒𝑀𝐿2 −𝑑𝑓𝑑𝑓×𝑁 ] = √max [0, 𝐹ML𝑑𝑓 − 1𝑁]
. (5) 

Note that the population root mean square error of approximation (RMSEA; ε) is independent of 
sample size: RMSEApop = ε = √𝐹ML𝑑𝑓 . (6) 

Unlike most fit indices, the RMSEA has a known sampling distribution (Browne & Cudeck, 1992), so a CI 

can be provided to test null hypotheses about specific population values of RMSEA (MacCallum, 

Browne, & Cai, 2006). Higher values of RMSEA correspond to worse fit. Common interpretations are 

that RMSEA < .05 indicates close fit and RMSEA > .10 indicates poor fit, with varying intermediate 

values proposed to indicate acceptable levels of approximate fit (Browne & Cudeck, 1992; Hu & 

Bentler, 1999; MacCallum, Browne, & Sugawara, 1996). 

McDonald (1989) also proposed dividing �̂� by N but also exponentiated to express misfit in terms of 

likelihood rather than log-likelihood. Taking the reciprocal (i.e., a negative exponent) results in an index 



that measures goodness (rather than badness) of fit, with a theoretical upper bound of 1 indicating 

excellent model fit, Mc = 𝑒 − 12 ( �̂�𝑁). (7) 

Steiger (1989) proposed another goodness-of-fit index as a function of �̂� (again, divided by N to express 

misfit in the metric of the discrepancy function) and the number of variables p,  Γ̂ = 𝑝𝑝+2 �̂�𝑁. (8) 

Like McDonald’s (1989) centrality index (Mc), values of “gamma-hat” (Γ̂) approaching 1 indicate better 

fit. Maiti and Mukherjee (1990) described this as an unbiased estimator of the population goodness-of-

fit index (GFI; Jöreskog & Sörbom, 2006). An adjusted version (Γ̂𝑎𝑑𝑗) is less likely to be positively biased 

in small samples, although Hu and Bentler (1998) and Fan and Sivo (2007) showed that Γ̂ is already 

very independent of sample size,  Γ̂𝑎𝑑𝑗 = 1 − 𝑝∗𝑑𝑓 (1 − Γ̂). (9) 

Incremental Fit Indices 

Incremental fit indices are based on the idea that there is a continuum between a worst-fitting (but still 

theoretically defensible) baseline model (M0; typically an independence model, in which all 

correlations are fixed to zero) and the best-fitting model (MS; represented by the saturated model, in 

which all observed covariances are freely estimated). A hypothesized model (MH) should lie 

somewhere between these two extremes, and incremental fit indices indicate where along the 

continuum MH is located. Values closer to zero indicate MH is closer to the poor-fitting M0, and values 

closer to 1 indicate MH is closer to the perfect-fitting MS. This allows nonnested hypothesized models 

to be compared, so long as they are both nested within the same MS (true by definition) and the same 

specified M0 is nested within all competing models (Bentler & Bonett, 1980; Widaman & Thompson, 

2003). 

The earliest incremental fit index was proposed by Tucker and Lewis (1973) as a reliability index to 

assist selecting the number of factors in exploratory factor analysis. Bentler and Bonett (1980) later 

referred to the Tucker-Lewis index (TLI) as the nonnormed fit index (NNFI) because its values can fall 

outside the 0 to 1 range (e.g., TLI > 1 when 𝜒𝐻2
 <  𝑑𝑓𝐻),  

TLI = NNFI = χ02𝑑𝑓0− χH2𝑑𝑓Hχ02𝑑𝑓0−1 , (10) 

where the subscripts “H” and “0” indicate to which model the chi-square and 𝑑𝑓 belong. Bentler and 

Bonett also proposed a normed fit index (NFI) that is bound to a 0 to 1 scale, 



NFI = χ02−χH2χ02 . (11) 

Although NFI has the advantage over TLI of being restricted to a 0 to 1 scale, NFI is unfortunately 

heavily influenced by sample size, whereas TLI is relatively independent of sample size (Fan & Sivo, 

2007; Hu & Bentler, 1998). 

Bentler (1990) later proposed a similar index based on noncentrality—the comparative fit index (CFI)—
which is also normed to fall between 0 and 1,  CFI = max(0,�̂�0)−max(0,�̂�H)max(0,�̂�0) = 1 − max(0,�̂�H)max(0,�̂�0). (12) 

CFI has the advantage over both TLI and NFI by being both normed and relatively independent of 

sample size (Fan & Sivo, 2007; Hu & Bentler, 1998). 

On the Interpretation and Application of SEM Fit Indices 

We find it reasonable to interpret fit indices as merely descriptive measures of approximate fit, and to 

interpret questionable values as indicating not that the model should be rejected outright but that 

further investigation of local sources of misspecification (e.g., correlation residuals or modification 

indices) would be warranted. Fit indices were not proposed to function as test statistics but rather to 

“provide important adjunct information in evaluating models” (Bentler & Bonett, 1980, p. 604). Thus, 
similar to measures of effect size in other contexts (e.g., Cohen, 1992, provided guidelines to interpret 

correlations, standardized mean differences, and proportions of variance explained as small, medium, 

or large), guidelines were sought for interpreting the magnitude of fit indices. Because the H0 tested 

by 𝜒𝑀𝐿2 is that there is no discrepancy between the model-implied (mean and) covariance structure 

and the true population structure, a large “effect size” would indicate that a significant 𝜒𝑀𝐿2 test has 

identified a large discrepancy (i.e., “badness of fit”) between a hypothesized model and the true data-

generating process. Initially proposed guidelines were largely heuristic, based on experience 

(see Bentler & Bonett, 1980, p. 600; Browne & Cudeck, 1992, p. 239; MacCallum et al., 1996, p. 134). 

However, Hu and Bentler (1998, 1999) used Monte Carlo simulation results to develop a more 

objective set of criteria for interpreting fit indices, based on a hypothesis-testing rationale (i.e., 

minimizing Type I and II errors), which has been met with much criticism (Beauducel & Wittmann, 

2005; Fan & Sivo, 2005; Heene, Hilbert, Draxler, Ziegler, & Bühner, 2011; Heene, Hilbert, 

Freudenthaler, & Bühner, 2012; Marsh, Hau, & Wen, 2004). 

In our view, there are at least three major limitations preventing any of the previously proposed 

cutoffs from being generally useful to “test hypotheses” about approximate fit. First, they do not 
account for sampling variability. When claiming fit indices are relatively unaffected by sample size 

(e.g., Hu & Bentler, 1998), that only refers to the mean of their sampling distribution; as with any 

statistic, their sampling variance shrinks with larger N (Marsh et al., 2004). Second, sampling 

distributions of fit indices (including their means) vary across characteristics of the data (e.g., missing 

data: Davey, 2005; categorical data: Sass, Schmitt, & Marsh, 2014) and the model (e.g., number of 

factors and indicators; Jorgensen, Kite, Chen, & Short, 2018). Third, it is rarely clear what the numerical 

value of an index means in any absolute sense, so even when using a fit index (typically RMSEA’s 90% 



CI) to actually test a less restrictive H0 (MacCallum et al., 2006; K.-H. Yuan, Chan, Marcoulides, & 

Bentler, 2016), there is little justification for preferring a particular value for the H0. 

By approximating a sampling distribution consistent with MH, “Bayesian variant[s]” (Hoofs et al., 2018, 
p. 543) of SEM fit indices would provide a viable solution to the first two problems (as resampling 

methods have; Cheng & Wu, 2017; Jorgensen, Kite, et al., 2018; Zhang & Savalei, 2016). Although we 

do not set out to resolve the third issue in this article, we later note how Bayesian fit indices could be 

used to avoid the third major limitation by removing the need for a cutoff value at all. However, these 

three issues are contingent on applying cutoff guidelines as critical values to test a H0 of approximate 

fit. Again, we do not explicitly endorse this interpretation, instead encouraging researchers to consider 

the fit indices descriptive of model fit. No index will be fully descriptive, so any questionably poor 

values (including within the 90% CI of RMSEA) should be considered by researchers as an invitation to 

explore how their model fails using tools for detecting local misspecification. 

Bayesian Model-Fit Assessment 
Levy (2011) concluded in his review of BSEM model evaluation approaches that techniques for 

assessing model fit remain underdeveloped. Thus, although the increased availability of BSEM software 

for applied research holds great promise, particularly for complex modeling situations, the full scope of 

BSEM’s practical application remains limited due to the corresponding lack of general guidelines and 
best practices for model evaluation for applied users. 

Although Hoofs et al. (2018, p. 543) recently proposed a “Bayesian variant of the RMSEA” (BRMSEA), 
most BSEM software currently provides only one measure of overall fit: the posterior predictive p value 

(PPP; Gelman, Meng, & Stern, 1996) based on the familiar chi-square model-fit statistic. Most BSEM 

software also provides only two indices for model comparison—the deviance information criterion 

(DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002) and Schwarz’s (1978) so-called Bayesian 

information criterion (BIC)—although blavaan also provides additional, more recently developed 

information criteria (Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010). Our proposed Bayesian fit 

indices are based on the same quantities utilized by Hoofs et al. to calculate BRMSEA, which include 

aspects of posterior predictive model checking (PPMC) as well as the effective number of parameters 

(𝑝𝐷) used to calculate information criteria such as DIC. We review these measures below, before 

discussing Hoofs et al.’s proposed BRMSEA and introducing our proposed Bayesian indices of overall 

model fit. 

Posterior Predictive Checks 

PPMC (Gelman et al., 1996) is a flexible method to test whether aspects of a model adequately capture 

features of the data. When MCMC estimation is used to estimate model parameters, a discrepancy 

function can be specified to capture the degree to which a meaningful feature of the observed data 

differs from its expected value given the model parameters at iteration i of a Markov chain that has 

converged on the posterior distribution. If the model is not an adequate representation of the true 

data-generating process (or at least cannot make sufficiently similar predictions about observed data), 

the realized value of the discrepancy function will be large for the observed data (𝐷𝑖obs). Although D is 

a function of parameters (and data) rather than an estimated parameter itself, D is evaluated using all 

samples from the posterior distribution of model parameters, resulting in “an empirical approximation 



to the posterior distribution of the discrepancy measure . . . [also] referred to as the realized values of 

the discrepancy measure” (Levy, 2011, pp. 672–673). 

To quantify whether the discrepancy is larger than would be expected due to chance sampling 

fluctuations, a random sample of replicated data is drawn from the population implied by the model 

parameters (i.e., data that are predicted by the posterior distribution to occur if the model holds) at 

the same iteration i of the Markov chain. Because the replicated data are consistent with the model, 

the realized value of the discrepancy function for the replicated data (𝐷𝑖rep) only reflects sampling 

error. In contrast to the distribution of 𝐷obs, 𝐷rep empirically approximates the 

posterior predictive distribution of the discrepancy function, conditional on the data and estimated 

model parameters (i.e., the expected values of D if the H0 of perfect data–model correspondence were 

true). 

If the model is consistent with the population that generated the observed data, then P(𝐷obs > 𝐷rep) = 

50%, but this probability will differ from 50% to the degree that the model over- or underpredicts the 

feature of the data specified by the chosen discrepancy function. The PPP estimates this probability as 

the proportion of 𝑖 = 1,2, … 𝐼 samples from the posterior (i.e., postadaptation iterations of the Markov 

chain) for which 𝐷𝑖obs > 𝐷𝑖rep. Because the sampling distribution of PPP is not uniform in practice, 

application of traditional null-hypothesis testing criteria (α levels) yields conservative inferences (Levy, 
2011); however, many advocate its use as an informative diagnostic for identifying how a model fails 

(Gelman & Shalizi, 2013) rather than for traditional hypothesis testing. 

PPMC is flexible regarding the discrepancy function, which can evaluate any feature of the model from 

which predictions can be derived. For example, in general linear models, the discrepancy function can 

be summary measures such as the mean, standard deviation, minimum, or maximum values of the 

model’s outcome variable (Gelman et al., 2014). Levy (2011) described some reasonable discrepancy 

functions for evaluating an SEM, such as the SRMR, the model-implied factor correlations, and the 

familiar chi-square model-fit statistic (i.e., the likelihood ratio comparing the hypothesized model with 

a saturated model). Because BSEM software packages (Arbuckle, 2012; Merkle & Rosseel, 

2018; Muthén & Asparouhov, 2012) uniformly report only PPP based on the chi-square statistic—and 

because this paper focuses only on chi-square-based fit indices—we confine our discussion of PPP to 

this special case, denoting it as PPP𝑥2. 

Information Criteria Based on the Posterior Distribution 

Spiegelhalter et al. (2002) proposed DIC as a Bayesian generalization of Akaike’s information criterion 
(AIC), which adjusts a likelihood-based measure of model fit (e.g., the log-likelihood of the model) by 

taking the model’s complexity into account. Complexity can be quantified by the number of estimated 
parameters (p), although that oversimplifies how models can be parsimonious (Preacher, 2006). In the 

SEM framework, AIC can be calculated as χ2 + 2p, but in BSEM, the number of estimated parameters 

cannot simply be represented as an integer. For example, estimating three parameters with 

restrictively informative priors effectively limits the parameter space much more than estimating the 

same three parameters using uninformative priors, so the number of estimated parameters should 

differ in these situations. 



The effective number of parameters 𝑝𝐷 (or �̂�; Vehtari et al., 2017) can be estimated from the posterior 

distribution by calculating the deviance (i.e., χ2) using each vector of parameters (θ̅𝑖) sampled from the 

posterior distribution during MCMC estimation, the same way one would calculate chi square using ML 

estimates of the model parameters. But sampling θ̅ repeatedly from the joint posterior yields a 

posterior distribution of the deviance, with posterior-mean deviance  �̅� = 1𝐼 ∑ 𝐷(θ̂𝑖)𝐼𝑖=1 . (13) 

A different point-estimate for the model’s deviance, 𝐷(θ̅), can be calculated using μ̂ and Σ̂ implied by 

the posterior means of the parameters θ̅, which is analogous to the 𝜒𝑀𝐿2 calculated using the ML 

point estimates θ̂ (which are the mode rather than the mean of the likelihood function). The sampled 

parameters θ̅𝑖 at a particular iteration i in a Markov chain will rarely (if ever) be identical to the 

posterior mean θ̅, so the discrepancy function Di calculated at iteration i is expected to exceed 𝐷(θ̅) 
because values of θ̅𝑖 further from θ̅ yield smaller (log-)likelihoods of the data. Spiegelhalter et al. 

(2002) called the degree to which �̅� exceeds 𝐷(θ̅) the effective number of parameters, 𝑝𝐷DIC = �̅� − 𝐷(θ̅). (14) 

Conceptually, 𝑝𝐷 quantifies the degree to which the fit of the model improves due to allowing 

unknown values to vary across iterations of the Markov chain rather than fixing them to hypothesized 

values. Thus, it is a crude measure of model complexity, but it is not a count of the number of 

parameters (as in the frequentist framework). Another definition for 𝑝𝐷 is as a function of the variance 

of Di across iterations of the Markov chain (Vehtari et al., 2017), which perhaps more clearly illustrates 

that 𝑝𝐷 represents the uncertainty about how well a hypothesized model actually fits the data, and 

that uncertainty increases as we place fewer restrictions (or less restrictive priors) on our fitted model. 

DIC itself can be calculated analogously to AIC, with the deviance evaluated at the posterior 

mean 𝐷(θ̅) substituted for the analogous 𝜒𝑀𝐿2, and the effective number of 

parameters 𝑝𝐷 substituted for the number of parameters in MLE: DIC = 𝐷(θ̅) + 2𝑝𝐷 = �̅� + 𝑝𝐷. (15) 

Alternatively, DIC can be calculated as a function of the posterior-mean deviance �̅�, as shown on the 

far right-hand side of Equation 15. 

Hoofs et al.’s (2018) BRMSEA 

Although there are not established fit indices in BSEM that are equivalent to their frequentist 

counterparts (which might not even be possible, given the lack of 𝑑𝑓 or an integer number of 

estimated parameters in a Bayesian context), a recently proposed Bayesian analog of RMSEA (Hoofs et 

al., 2018) showed promise for evaluating approximate fit in large samples (N > 1,000). Hoofs et al. 

(2018) presented an intriguing approach to BRMSEA that attempts to estimate the same parameter 

that RMSEA estimates in a frequentist context. They replaced the quantities 𝜒𝑀𝐿2 and 𝑑𝑓 in Equation 

5 with analogous quantities representing a model’s misfit and complexity, as conceptualized in terms 
of posterior predictive model checking (PPP𝑥2) and the effective number of parameters (𝑝𝐷) in DIC. 

Specifically, rather than using the discrepancy function evaluated at the posterior mean— 𝐷(θ̅), which 



is analogous to the chi square when priors are noninformative—model misfit is represented by the 

difference in discrepancies of observed and replicated data (𝐷𝑖obs − 𝐷𝑖rep) at each iteration in the 

Markov chain, as in posterior predictive model checks (hence, our “PPMC” superscript in Equation 

16 below). Model complexity (as represented by 𝑑𝑓 =  𝑝∗ –  𝑞 in Equation 5) is calculated as 𝑝∗ –  𝑝𝐷,  

BRMSEA𝑖PPMC = √max [0, (𝐷𝑖obs−𝐷𝑖rep)−(𝑝∗−𝑝𝐷)(𝑝∗−𝑝𝐷)×𝑁 ]. (16) 

Hoofs et al. (2018) proposed their BRMSEAPPMC to complement the PPP𝑥2, because in large 

samples, PPP𝑥2 rejects all models with even minor misspecification (similar to 𝜒2 in SEM). The results 

from their simulation show that under those conditions (large N, minor misfit, “significantly” 
small PPP𝑥2), their BRMSEAPPMC would indicate approximately well-fitting models are acceptable, 

according to commonly used cutoffs (i.e., RMSEA < .08 is acceptable, RMSEA < .05 indicates close 

fit; Browne & Cudeck, 1992). 

To operate as a measure of effect size to accompany the statistical significance test offered by chi 

square, a fit index should be sensitive only to misspecification (Fan & Sivo, 2007). Although BRMSEAPPMC has been the first attempt to translate a frequentist fit index to BSEM, it does appear 

sensitive to sample size as well as model size. For example, when Hoofs et al. (2018) simulated data 

from a six-indicator confirmatory factor analysis (CFA), the BRMSEA 90% credible interval (with 

noninformative priors) implied a similar amount of sampling variability as implied by the RMSEA 90% CI 

under MLE. However, the 90% credible intervals for BRMSEA were much narrower than the 90% CIs for 

RMSEA when fitting larger, 12-indicator CFA models to smaller samples, leading to much lower power 

of BRMSEA than RMSEA to detect even severe misspecifications. Thus, when fitting models that are 

large relative to a smaller sample size, neither the BRMSEA nor PPP𝑥2 would have power to detect 

important problems with the model. 

This has important implications for multidimensional assessment of (approximate) model fit in BSEM, 

especially in the common case when samples are substantially less than 1,000. When samples are 

particularly small, the 𝜒𝑀𝐿2 might have very little power, yet the 90% CI of RMSEA will be wide enough 

to prevent rejecting the hypothesis of inadequate or poor fit (RMSEA > 0.08 or 0.10). An example of 

this can be found in the SEM textbook by (Kline, 2016, p. 257, Table 9.9), in which a multigroup CFA 

with full factorial invariance was not rejected by the 𝜒𝑀𝐿2 test (p = .229). However, the upper 

confidence limit of RMSEA was 0.103, prompting Kline (2016) to inspect local sources of misfit, where 

he found 16 correlation residuals that exceeded .10 (recall this practice is consistent with our 

recommendation to consider any indication of questionable overall fit as worthy of further attention, 

not as a reason to outright reject a model). 

We therefore argue that there are common situations (e.g., small to moderate sample size) when 

researchers would want a Bayesian analog of RMSEA to behave as RMSEA would under MLE, as 

opposed to indicating very certainly (i.e., very narrow credible intervals ) that a model with important 

misspecifications fits well. In the following section, we explore further methods to translate commonly 

used fit indices for use in BSEM, which can be expected to behave similarly to their MLE counterparts 



when noninformative priors are used for BSEM parameters (in which case, the posterior distribution is 

proportionally equivalent to the likelihood function). We consider a few cases of informative priors in 

the Illustrative Examples section, on the basis of which we offer important considerations for future 

research. 

Proposed Adaptation of Fit Indices for BSEM 

There is no ideal measure of fit in SEM. Rather, different indices evaluate different dimensions of 

model fit, leading many experts to propose supplementing the 𝜒𝑀𝐿2 test statistic with at least two 

additional fit indices (Brown, 2006; Hu & Bentler, 1998; Kline, 2016). The addition of a BRMSEA index 

allows Bayesian models to be evaluated relative to their complexity, which complements simply 

using PPP𝑥2 to evaluate whether the observed data are consistent with the model. To allow for models 

to be evaluated across additional dimensions of (approximate or relative) fit, we propose how 

additional non-centrality-based and incremental fit indices from SEM can be incorporated into BSEM. 

As previous research has shown (see Fan & Sivo, 2007, for a review of some issues), all fit indices have 

limitations and (dis)advantages in different situations, so an array of indices would allow for more 

nuanced evaluation of how a model fails than the BRMSEA alone. 

We propose BSEM fit indices developed in a fashion similar to Hoofs et al. (2018), by using 𝑝∗ –  𝑝𝐷 in 

the role of 𝑑𝑓 to represent model complexity (or rather, model parsimony). However, our proposals 

differ from Hoofs et al. in how we represent model misfit. A Bayesian analog of RMSEA that can be 

expected to behave like its frequentist counterpart (at least when using noninformative priors) might 

differ from Equation 16 by using the Bayesian analog of chi square: the deviance evaluated at the 

posterior mean (hence, the superscript “DevM”),  BRMSEADevM = √max [0, 𝐷(θ̅)−(𝑝∗−𝑝𝐷)(𝑝∗−𝑝𝐷)×𝑁 ]. (17) 

We posit that compared with BRMSEAPPMC, BRMSEADevM would more closely estimate the same 

quantity that RMSEA estimates (i.e., ε; Browne & Cudeck, 1992) in a frequentist framework, using an 

analogous (though not equivalent) definition. However, using 𝐷(θ̅) does not allow for the advantage of 

obtaining a credible interval for BRMSEA because Equation 17 only contains summaries of the data 

(N and 𝑝∗) and the posterior (𝐷(θ̅) and 𝑝𝐷). 

A similar quantity can be obtained that does vary across iterations, by using 𝐷(0̅𝑖) = 𝐷𝑖obs instead 

of 𝐷(θ̅). By substituting the right-hand side of Equation 13 for �̅� in Equation 14, rearranging terms 

provides a distribution centered at 𝐷(θ̅): 𝐷(θ̅) = 1𝐼 ∑ 𝐷𝑖obs − 𝑝𝐷𝐼𝑖=1 . (18) 

Thus, substituting (𝐷𝑖𝑜𝑏𝑠 − 𝑝𝐷) for 𝐷(θ̅) in Equation 17 yields a distribution of BRMSEA: BRMSEA𝑖DevM = √max [0, (𝐷𝑖obs−𝑝𝐷)−(𝑝∗−𝑝𝐷)(𝑝∗−𝑝𝐷)×𝑁 ] = √max [0, 𝐷𝑖obs−𝑝∗(𝑝∗−𝑝𝐷)×𝑁]. (19) 



 The subscript i indicates that BRMSEA𝑖DevM in Equation 19 varies across samples of parameters drawn 

from their posterior distribution. BRMSEADevM resembles Hoofs et al.’s (2018) BRMSEAPPMC but 

replaces 𝐷𝑖rep by 𝑝𝐷. Interestingly, the two occurrences of 𝑝𝐷 in the numerator of Equation 19 cancel 

out, resulting in a numerator that expresses misfit simply as the discrepancy at iteration i rescaled by 

the number of observed sample moments. 

Two important observations are worth mentioning here. First, the proposed approach in Equation 

19 yields neither a posterior distribution (because it is a function not only of the estimated parameters 

but also of the observed data) nor a posterior predictive distribution (because it is a function only of 

observed data, not data simulated from model parameters); rather, it yields a distribution of realized 

values (Levy, 2011) of a chi-square-based discrepancy measure, which could therefore be used in a 

posterior predictive model check, unlike BRMSEAPPMC. We provide further details in a later section. 

Second, it follows from Jensen’s inequality that the mean of √𝑋 generally underestimates the square 

root of �̅�. So although the equivalence in Equation 18 holds, the mean of the distribution in Equation 

19 will generally underestimate BRMSEADevM in Equation 17. However, if the difference turns out to 

be negligible in practice, we could still expect BRMSEADevM to behave approximately like the 

frequentist RMSEA (e.g., under MLE), which our simulation study is designed to investigate. 

We similarly propose Bayesian versions of other approximate fit indices by replacing chi square 

and 𝑑𝑓 with (𝐷𝑖𝑜𝑏𝑠 − 𝑝𝐷) and (𝑝∗  −  𝑝𝐷), respectively in Equations 5 to 12; furthermore, the 

noncentrality parameter �̂� is replaced by (𝐷𝑖𝑜𝑏𝑠 − 𝑝𝐷) − (𝑝∗  −  𝑝𝐷) = 𝐷𝑖𝑜𝑏𝑠 − 𝑝∗. With these 

substitutions, we are able to derive distributions of realized values not only for RMSEA but also for 

Mc, Γ̂, Γ̂𝑎𝑑𝑗, TLI, NFI, and CFI (see formulas in the Appendix). As in Hoofs et al. (2018), the distribution of BRMSEA𝑖DevM (and other indices in the Appendix) can be summarized using a measure of central 

tendency, such as the mean (expected a posteriori; EAP), mode (modal a posteriori; MAP), or median 

of their distribution, which should typically be quite close to the value obtained using 𝐷(θ̅) as 

in Equation 17. Uncertainty about EAP, MAP, or median estimates can be represented with their 

respective standard deviations and with 5th and 95th percentile from their empirical distributions, 

similar to defining a 90% credible interval for a model parameter. 

Incremental fit indices also require fitting a null model (M0) to the data, which is traditionally 

an independence model in which means and variances are freely estimated but covariances are 

constrained to zero. Although Hoofs et al. (2018, p. 26) brought up the concern that an independence 

model would be hard to justify (even contradictory) when incorporating prior information, we 

currently only consider the case of noninformative priors. But we recommend defining a meaningful 

null model appropriate for answering a specific research question, taking into account the functional 

form of the hypothesized model and characteristics of the data (e.g., Widaman & Thompson, 2003, 

discussed alternative null models for multigroup and longitudinal data; Lai & Yoon, 2015, proposed a 

modified version of Rigdon’s, 1998, null model specifically for evaluating measurement invariance). 
Similar to differences between discrepancies in posterior predictive checks, the differences (or ratios) 

between discrepancies of the hypothesized and null models in Equations 10 to 12 are calculated at 

each iteration of each model’s Markov chain(s). Thus, for computational purposes, the same number of 
samples should be drawn from the posterior distribution of both models fit to the same data. 



Distributions of the Proposed Fit Indices 

Because 𝐷obs is evaluated across the estimated posterior distribution of model parameters, 

uncertainty about fit indices is “borrowed” from uncertainty about the model parameters. Following 
from Levy (2011), the realized values 𝐷𝑖obs approximate the posterior distribution of the discrepancy 

function, so the posterior distributions of derived quantities like BRMSEA𝑖DevM can be seen as realized 

values of fit indices defined analogously in Bayesian and frequentist frameworks. Empirical 

distributions of fit indices help (but may not fully) resolve the first major limitation of interpreting the 

magnitude of fit indices relative to rule-of-thumb guidelines that we identified previously. And because 

the distribution of a fit index is derived from the estimated posterior distribution of the model 

parameters, features of the model are already taken into account, partially resolving the second major 

limitation (assumptions must still be made about the data distribution). 

There typically exists some actual discrepancy between the hypothesized model and the true data-

generating process, even if the model parameters were to be estimated using the population 

covariance matrix as input data (ruling out discrepancy due to sampling error; Cudeck & Browne, 

1992; MacCallum, 2003). Although, in that sense, there is a population parameter ε (Equation 6) that 
the sample formula (Equation 5) estimates (likewise for other fit indices), we do not assert that BRMSEADevM would consistently estimate ε. We only argue that in the special case of noninformative 

priors being used to estimate the same model parameters with MCMC as with MLE, the Bayesian 

analog of RMSEA should provide a reasonable approximation of ε by virtue of MCMC and MLE 
converging on equivalent parameter estimates in this case. 

It was brought to our attention during the review process that referring to a “posterior distribution of a 
fit index” could be construed as misleading given that the discrepancy function D is a function of not 

only estimated parameters but also the data on which those parameters were conditioned. Although it 

would be possible to estimate data–model discrepancy as a parameter in a BSEM framework (e.g., 

as adventitious error; Wu & Browne, 2015), we do not develop such an approach here. Instead, we 

show how the familiar measures of approximate data–model correspondence in SEM (i.e., fit indices 

derived from the 𝜒𝑀𝐿2 statistic) can be conceptualized in a Bayesian framework by plugging analogous 

quantities into the same formulas derived in a frequentist framework. 

Thus, we tend to refer to our proposed fit indices as having “distributions” with “intervals” around 
their means. For brevity in some instances (e.g., plots and tables), we sometimes refer to a “posterior 
distribution” of BRMSEA (or its 5th and 95th percentiles as constituting a 90% “credible interval”), 
following the existing convention of referring to a “posterior distribution for a discrepancy measure” 
(Levy, 2011, p. 672). But readers should recall that BRMSEADevM estimates a quantity only analogous 

(not equivalent) to the frequentist RMSEA (likewise for other fit indices), and we use the terms 

“posterior distribution” and “credible interval” only in the sense that BRMSEA is a function of the data 
and model parameters that is evaluated across the estimated posterior distribution of model 

parameters. 

The analogous definitions in Equations 5 and 19 yield similar interpretations for BRMSEADevM and 

RMSEA, so it is tempting to apply the same rules of thumb for interpreting their magnitudes. However, 

one should not expect any proposed guidelines for interpreting the magnitude of RMSEA (or of any 



other fit index) to generalize to BRMSEADevM. Likewise, although a 90% interval estimate could be 

used to test a hypothesis about a fit index (e.g., similar to MacCallum et al., 2006), the hypothesized 

value should not be derived from MLE-based guidelines when informative priors are used. 

Furthermore, researchers should refrain from applying the standard interpretation of a 90% credible 

interval (i.e., conditional on the data, there is a 90% probability the parameter lies between these 

limits) until more is understood about the quantities that are consistently estimated by the proposed 

indices. 

This brings us back to the third major limitation of proposed cutoff values for fit indices: It is not 

immediately apparent how to derive a cutoff value that can be meaningfully interpreted as indicating 

maximally ignorable or minimally important data–model misfit. Rather than relying on fixed cutoffs 

proposed under MLE, the magnitude of the realized values of fit indices could instead be compared 

with values consistent with the model simulated using PPMC, avoiding (though not resolving) the third 

major limitation of interpreting fit indices relative to cutoff values. As this issue falls beyond the scope 

of our current study, we return to this point in the Discussion to provide details as a direction for 

future research. 

Monte Carlo Simulation Study 
We borrowed design factors from Fan and Sivo (2007) to compare the sampling behaviors of fit indices 

under MLE and MCMC estimation across a range of sample sizes, model types (and sizes), and levels of 

model misfit. We chose their design elements because they synchronized levels of misspecification 

across model types and sizes such that the power to detect moderate and large amounts of misfit was 

always 51% and 88%, respectively, when N = 100 (see Table 1). Similar to Hoofs et al. (2018), we 

simulated data from CFA models with cross-loadings (CFA-A) and simple structure (CFA-B), but we also 

simulated data from large (12 indicators, four factors) and small (six indicators, two factors) structural 

regression models (SEM-A and SEM-B, respectively). Thus, we worked with models that had similar 

numbers of factors and indicators as Hoofs et al. worked with, but with the advantage of holding the 

practical impact of misfit constant across types of model and misspecification. 

  



Table 1 Comparison of Estimated to Population RMSEA 

 

Misfit (power) Model type FML(𝑑𝑓)  RMSEA BRMSEA ΔML ΔMCMC 

Level 0 CFA-A 0 (84) 0 .0172 .0202   

(a= 5%) CFA-B 0 (87) 0 .0169 .0194   

 SEM-A 0 (46) 0 .0166 .0251   

 SEM-B 0 (4) 0 .0225 .0453   

Level 1 CFA-A .2419 (85) .0533 .0537 .0547 -.0004 -.0013 

(51%) CFA-B .2416 (89) .0525 .0548 .0562 -.0022 -.0036 
 SEM-A .1868 (48) .0623 .0630 .0665 -.0006 -.0041 
 SEM-B .0726 (5) .1204 .1129 .1140 .0075 .0064 

Level 2 CFA-A .4521 (86) .0725 .0746 .0754 -.0021 -.0029 

(88%) CFA-B .4627 (90) .0717 .0736 .0803 -.0019 -.0086 
 SEM-A .3557 (49) .0852 .0861 .0890 -.0009 -.0038 
 

SEM-B .1831 (8) .1512 .1362 .1504 .0150 .0008 

Note. Power = power of 𝜒𝑀𝐿2 test when N = 100; FML= maximum likelihood fit function; 𝑑𝑓 = degrees of freedom; ε = population RMSEA; RMSEA = 

estimated RMSEA under MLE; BRMSEA = Bayesian variant of RMSEA using “DevM” formulation; ΔML = difference between ε and RMSEA (omitted when 

ε = 0); ΔMCMC = difference between ε and BRMSEA (omitted when ε = 0); Misfit = level of misspecification. 

  



Figures 1, 2, 3, and 4 present path diagrams of the four population models, the population values used 

to generate multivariate-normal data, and which parameters were fixed to zero in analysis models that 

were moderately or severely misspecified. Because Hoofs et al. (2018) found their BRMSEA behaved 

similar to RMSEA when N ≥ 1,000, we did not generate samples larger than 1,000. We included five 

sample-size conditions: N = 75, 100, 250, 500, or 1,000. Our full-factorial 5 (N) × 4 (model types) × 3 

(levels of misfit: none, moderate, and severe) design therefore included 60 conditions, and we 

generated 1,000 replications in each condition. Data were generated using the simulateData() function 

in the R (R Core Team, 2018) package lavaan (Rosseel, 2012). Models were fit to data using MLE in 

lavaan and using MCMC estimation (specifically, Gibbs sampling) available in the R package blavaan 

(Merkle & Rosseel, 2018), which optionally uses JAGS (Plummer, 2017) or Stan (Carpenter et al., 2017) 

as the general Bayesian estimation program in the back end. 

 

 

Figure 1. Path diagram and population parameters for Confirmatory Factor Model A (CFA-A). Dotted paths 

represent nonzero population values that were fixed to zero in the analysis model. λ = factor loading matrix; Φ = 
factor covariance matrix; θ = residual covariance matrix. 



 

 
Figure 2. Path diagram and population parameters for Confirmatory Factor Model B (CFA-B). Dotted paths 

represent nonzero population values that were fixed to zero in the analysis model. λ = factor loading matrix; Φ = 
factor covariance matrix; θ = residual covariance matrix. 
 

 
Figure 3. Path diagram and population parameters for Structural Equation Model A (SEM-A). Dotted paths 

represent nonzero population values that were fixed to zero in the analysis model. λx = factor loading matrix for 
exogenous factors; λy = factor loading matrix for endogenous factors; Φ = factor covariance matrix for 
endogenous factors; Ψ = factor covariance matrix for exogenous factors; θ = residual covariance matrix; Γ = 



regressions from exogenous factors; B = regressions from endogenous factors. 

 

 
Figure 4. Path diagram and population parameters for Structural Equation Model B (SEM-B). Dotted paths 

represent nonzero population values that were fixed to zero in the analysis model. λx = factor loading matrix for 
exogenous factors; λy = factor loading matrix for endogenous factors; Φ = factor covariance matrix for 

endogenous factors; Ψ = factor covariance matrix for exogenous factors; θ = residual covariance matrix; Γ = 
regressions from exogenous factors; B = regressions from endogenous factors. 

 

We used noninformative priors to analyze the simulated data. “Noninformative” indicates the prior 
distributions for the parameters provided little to no information above and beyond the information 

provided by the data, so that the posterior distributions are estimated around the information from 

the data instead of prior knowledge (Gelman, Simpson, & Betancourt, 2017). Priors for factor loadings, 

indicator intercepts, and regressions were ~𝒩(𝜇 = 0, 𝜎2 = 100) and priors for indicator residual 



standard deviations were ∼ half-Cauchy(𝜇 =  0, 𝜎2 =  2.5). For the CFA models, factor variances and 

covariances were ∼ Wishart−1(Ψ = I, ν = nf + 1), where I represents an identity matrix of dimension 

equal to the number of factors (nf), and degrees of freedom (ν) equal to number of factors plus 1. For 
the SEM models, factor covariances followed the same inverse-Wishart distribution as the CFA models, 

and the factor residual standard deviations followed the same half-Cauchy priors as the indicator 

residual standard deviations. It is pertinent to mention that these priors are noninformative with 

respect to the model parameters and the scale of the data in this simulation, but these priors could be 

considered informative in different conditions (e.g., data with larger scales). 

Each model started with 30,000 burn-in iterations; if the model did not converge, this was iteratively 

increased by 5,000 until the model converged. Convergence of each Markov chain to the same 

posterior distribution was evaluated using the potential scale reduction factor (PSRF), also known as 

“univariate R-hat” (Gelman & Rubin, 1992). It was determined that the model converged when R-hat < 

1.10 for each parameter (Brooks & Gelman, 1998). Although the total (including burn-in) number of 

iterations could differ across replications, we always saved the same number of post-burn-in iterations 

(5,000 from each chain) to estimate the posterior distributions. For every analysis, we used three 

chains, yielding 15,000 iterations for drawing inferences. We did not “thin” the chains by discarding 
samples because although thinning decreases the autocorrelation between iterations (thus decreasing 

the Monte Carlo error of the posterior distribution’s sample statistics), it does not affect the posterior 
distribution itself nor inferences drawn from it (Gelman et al., 2014). 

Because Hoofs et al. (2018) already showed via Monte Carlo simulations that their BRMSEAPPMC and 

the RMSEA under MLE do not converge until sample size is quite large (N ≥ 1,000), the main goal of our 
simulation study was to evaluate whether our proposed BRMSEADevM behaves as expected when 

priors are uninformative (i.e., similar to the RMSEA under MLE, which converges on ε at much 
smaller N; Curran, Bollen, Chen, Paxton, & Kirby, 2003). Thus, when comparing SEM fit indices under 

MLE with our proposed BSEM fit indices in the Results section, we omit the “DevM” label for brevity, 
referring only to BRMSEA, BCFI, and so forth, except in the case of explicitly comparing the “DevM” 
and “PPMC” formulations. 

Monte Carlo Results 

For each of the 60 conditions, we had 1,000 replications that converged for both the MLE and Bayesian 

models (PSRF < 1.1). The total computation time was 3,175.33 days (8.69 years), distributed across 

several parallel computers. To calculate BSEM fit indices with 𝑝∗ –  𝑝𝐷 in place of 𝑑𝑓, we chose 𝑝𝐷𝐿𝑂𝑂 

rather than 𝑝𝐷𝑊𝐴𝐼𝐶 or 𝑝𝐷DIC because it is preferred by Vehtari et al. (2017). But because we estimated 

models with noninformative priors, any 𝑝𝐷 was expected to be very close to the number of 

parameters under MLE. Table 2 shows that 𝑝𝐷𝐿𝑂𝑂 and 𝑝𝐷WAIC were both very similar to the number of 

parameters under MLE across model types and misspecification levels, whereas 𝑝𝐷𝐷𝐼𝐶  substantially 

underestimated the number of parameters for model SEM-A. Given this result, we recommend using 

either 𝑝𝐷𝐿𝑂𝑂 or 𝑝𝐷𝑊𝐴𝐼𝐶 in practice. 

Table 2 Comparison of Alternative Estimators of the Effective Number of Parameters (𝑝𝐷) 
 

Misfit Model types q 𝑝𝐷LOO 
𝑝𝐷𝑊𝐴𝐼𝐶

 
𝑝𝐷𝐷𝐼𝐶

 

Level 0 CFA-A 51 50.01 49.90 49.42 

(none) CFA-B 48 46.05 45.96 45.31 



 SEM-A 44 43.17 43.06 26.49 
 SEM-B 23 22.62 22.57 21.96 

Level 1 CFA-A 50 49.21 49.10 48.23 
 CFA-B 46 44.75 44.67 44.05 
 SEM-A 42 41.10 41.00 19.89 
 SEM-B 22 21.61 21.57 20.96 

Level 2 CFA-A 49 48.48 48.38 47.59 
 CFA-B 45 44.55 44.48 38.15 
 SEM-A 41 40.53 40.43 11.24 
 SEM-B 19 19.28 19.24 18.78 

Note. q = number of parameters estimated in the analogous model fitted with maximum likelihood estimation; 

LOO = leave-one-out information criterion; WAIC = widely applicable information criterion (or Watanabe’s AIC); 
DIC = deviance information criterion; 𝑝𝐷 = effective number of parameters; Misfit = level of misspecification. 

 

Population RMSEA for each analysis model (i.e., ε with varying across levels of misspecification) was 
calculated by fitting the model to the population covariance matrix implied by its associated 

population-model parameters. FML (which is independent of sample size) in each condition was 

plugged into Equation 6, reported in Table 1 along with the average RMSEA and BRMSEA (averaged 

across sample size conditions). Compared with (Hoofs et al., 2018, see their Figures 2–4), Table 

1 shows that across population models and levels of misspecification, both RMSEA and BRMSEA closely 

approximate ε. The largest deviations (𝜀̂̂ −  𝜀̂) were when there was no misspecification (𝜀̂ =  0), 

which was due to a floor effect because RMSEA is bound below at zero. When this floor effect was not 

present, the absolute value of 𝜀̂ ̂ −  𝜀̂ ranged from 0.0008 to 0.0086, showing that, on average, 

BRMSEA (like RMSEA under MLE) reproduced ε within two to three decimal places. The solid lines 

in Figure 5 further show that across sample sizes, RMSEA and BRMSEA tended to converge quickly on 

the same value. The larger deviations between RMSEA and BRMSEA in the small SEM model (SEM-B 

in Figure 4) may be related to the more erratic sampling variability of RMSEA when either N or 𝑑𝑓 (but 

especially when both) are small (Kenny, Kaniskan, & McCoach, 2015). 

 

 



Figure 5. (B)RMSEA mean (solid lines) and average 90% confidence (or credible) bounds (dashed lines) across 

simulation conditions. The dotted gray line represents the population RMSEA (𝜀̂) in that condition. 

 

Table 3 compares each BSEM fit index with its ML counterpart. Recall that 𝐷(θ̅) is the Bayesian analog 

of chi square. The BSEM fit indices consistently indicate slightly worse fit, at least in part because 𝐷(θ̅) 
> 𝜒2 in 93.3% of replications; however, in most cases, this difference is minimal because the values are 

equal to the second decimal place. Looking at these differences as paired comparisons, we can 

estimate the Cohen’s d as the standardized mean difference, representing the mean difference in units 

of SD. Following standard guidelines (Cohen, 1992), these are small to medium effect sizes. Table 3 also 

shows that fit indices have nearly equivalent standard deviations, and Figure 5 shows that for 

(B)RMSEA, these similarities generally hold across simulation conditions. 

 

 

  



Table 3 Comparison of Mean (SD) Fit Indices Using Maximum Likelihood and MCMC Estimation 
 

Index MLE (SD) MCMC (SD) ΔMean (SD) Cohen’s d % Overlap r 𝜒2 128.3104 (119.784) 132.3457 (119.277) -4.0352 (5.874) .6869 98.21 .9988 PPP𝑥2 .167 (.289) .198 (.248) -.030 (.095) .322 81.89 .936 

RMSEA .0607 (.044) .0664 (.044) -.0056 (.012) .4465 93.44 .9585 

 Γ̂ .9688 (.028) .9635 (.029) .0052 (.007) .6598 99.73 .9627 

 Γ̂𝑎𝑑𝑗  .9445 (.054) .9334 (.058) .0111 (.026) .4221 99.26 .8924 

Mc .9072 (.091) .8928 (.094) .0144 (.023) .6237 99.19 .9692 

CFI .9713 (.027) .9670 (.030) .0043 (.007) .5476 99.76 .9663 

TLI .9580 (.046) .9512 (.053) .0068 (.017) .3997 99.51 .9490 

NFI .9367 (.050) .9323 (.053) .0043 (.007) .5888 99.74 .9921 

Note. ΔMean = MLE - MCMC; % Overlap = percentage of the MLE sampling distribution that overlaps with the MCMC sampling distribution; d = 

standardized ΔMean (Cohen’s d); r = the Pearson correlation between indices under MLE and MCMC; MLE = maximum likelihood estimation; SD = 

Standard deviation; MCMC = Markov Chain Monte Carlo estimation; 𝑥2 = chi-square; PPP𝑥2 = chi-square based posterior predictive p-value; RMSEA = 

root mean square error of approximation; Γ̂ = gamma-hat; Γ̂𝑎𝑑𝑗 = adjusted gamma-hat; Mc = McDonald’s centrality index; CFI = comparative fit index; TLI 

= Tuker-Lewis index; NFI = normed fit index. 

 

 

  



Additionally, Table 3 shows the percent overlap between the Monte Carlo distributions as well as their 

correlations (r). Overlap was calculated with the R package overlap (Meredith & Ridout, 2017). The 

overlap ranged from 93.44% to 99.76%, indicating high similarity between ML fit indices and posterior 

means of BSEM fit indices. The correlations also indicate high linear relation between ML and MCMC, 

ranging between .89 to .99, where the lowest relation is for Γ̂𝑎𝑑𝑗. The PPP𝑥2 is comparable with the 𝜒𝑀𝐿2p value. As Table 3 shows, the PPP𝑥2 follows the similar behavior as the 𝜒𝑀𝐿2p value, not only 

on average value but also in variability, consistently highly correlated (r = .936) and highly overlapping 

(81.89%). 

Comparisons in Table 3 marginalize over all simulation conditions. To evaluate the sensitivity of each 

index to design factors, we used factorial ANOVA to estimate the percentage of sampling variance (η2) 

in a fit index attributable to each design factor. Table 4 shows only negligible interaction effects on 

both MLE and MCMC, with the exception of a misspecification by sample size interaction on chi square, 

which is of course because chi square is more sensitive to misspecification in larger samples. The main 

effect of N was only substantial for chi square and (B)NFI, which is also consistent with previous 

research. BSEM fit indices generally tended to be more sensitive to N and model type, and less 

sensitive to misspecification, than their ML counterparts. The differences tended to be small, but two 

substantial differences can be seen: BRMSEA seems much more affected by model type than RMSEA, 

and Γ̂𝑎𝑑𝑗 appears less sensitive to misspecification under MCMC than MLE. Consistent with past 

research (Fan & Sivo, 2007), (B)CFI and (B) Γ̂ were substantially affected (η2 > 10%) only by model 

misspecification, which is ideal behavior for a fit index (Hu & Bentler, 1998). Finally, PPP𝑥2 was 

affected by the interaction between misspecification level and sample size. Table 5 presents the 

Bayesian fit indices across misspecification levels, as misspecification increases the fit indices present 

worse model fit. Table 6 shows that for models with minor misspecification, PPP𝑥2 tended to reveal 

model misspecification as sample size increased. With minor misspecification at N = 75, PPP𝑥2 <.01 for 4.5% of replications compared with 95.3% of replications with N = 500. In the case of severe 

misspecification, 28.6% of replications had PPP𝑥2 > .01  at N = 75, compared with 100% of replications 

when N = 500. This is analogous to increased power of 𝜒𝑀𝐿2 when sample size increases, rejecting 

models even with trivial levels of misspecification, whereas small sample sizes are unable to detect 

severe levels of misspecification consistently. 

 

  



Table 4 Percentage of Variance (η2) in Fit Indices Accounted for by Simulation Conditions 

Condition 𝑥2 RMSEA Γ̂ Γ̂𝑎𝑑𝑗  Mc CFI TLI NFI  

    MLE      

(MI) 22.7 49.5 61.5 49.7 49.8 53.0 39.6 17.3  

(N) 24.8 .9 1.9 1.2 1.8 2.1 .9 36.1  

(MT) 24.6 15.5 2.1 5.2 14.3 7.8 13.2 23.9  

MI × N 17.3 1.2 .0 .0 .0 .1 .0 .0  

MI × MT 2.5 5.8 .3 3.8 5.2 3.9 7.5 1.5  

N × MT 2.9 .2 .7 .3 .8 .7 .3 11.0  

MI × N × MT 2.1 .1 .0 .0 .0 .0 .0 .1  

    MCMC     PPP𝑥2 

(MI) 23.9 44.7 58.6 39.6 46.5 49.5 35.4 16.6 66.6 

(N) 23.9 2.9 8.6 5.9 7.2 7.0 3.3 40.6 8.4 

(MT) 24.8 24.0 1.7 12.3 15.7 8.6 17.0 20.8 .9 

MI × N 17.8 2.1 .1 .4 .1 .1 .2 .0 11.5 

MI × MT 2.4 3.5 .8 1.7 5.4 4.6 6.9 1.7 .8 

N × MT 2.4 .1 1.2 .2 2.0 1.4 .5 10.5 .8 

MI × N × MT 1.7 .9 .9 1.2 .6 1.1 .7 .2 .6 

Note.    For rows under MCMC, the column labels should be understood as representing their Bayesian analogs (e.g., 𝐷(θ̅) in place of 𝑥2, BRMSEA in 

place of RMSEA, and so on). MLE = Maximum Likelihood Estimation; MCMC = Markov Chain Monte Carlo estimation; 𝑥2 = chi-square; PPP𝑥2 = chi-square 

based posterior predictive p-value; RMSEA = root mean square error of approximation; Γ̂ = gamma-hat; Γ̂𝑎𝑑𝑗  = adjusted gamma-hat; Mc = McDonald’s 

centrality index; CFI = comparative fit index; TLI = Tuker-Lewis index; NFI = normed fit index; MI = misspecification; MT = model type; N = sample size. 

 

Table 5 PPP𝑥2 and Bayesian Approximate Fit Indices Across Misspecification Conditions 

 Level 0  Level 1  Level 2  

Index Mean 90% CI Mean 90% CI Mean 90% CI PPP𝑥2 .469 [.122, .807] .095 [.000, .463] .028 [.000, .181] 

RMSEA .028 [.001, .078] .072 [.037, .141] .098 [.062, .171] Γ̂ .990 [.961, .999] .965 [.927, .987] .936 [.888, .964] Γ̂𝑎𝑑𝑗  .979 [.920, .999] .933 [.853, .976] .889 [.799, .942] 

Mc .970 [.869, .999] .895 [.764, .977] .813 [.641, .936] 

CFI .991 [.965, .999] .969 [.934, .989] .940 [.884, .977] 



TLI .990 [.947, 1.011] .950 [.874, .988] .913 [.817, .969] 

NFI .958 [.859, .998] .934 [.833, .981] .905 [.793, .969] 

Note. These results marginalize over sample-size and model-type conditions. 90% CI = the average lower and upper bounds. PPP𝑥2 = chi-square based 

posterior predictive p-value; RMSEA = root mean square error of approximation; Γ̂  =  gamma-hat;  Γ̂𝑎𝑑𝑗   =  adjusted  gamma-hat;  Mc  =  McDonald’s  
centrality  index;  CFI  = comparative fit index; TLI = Tuker-Lewis index; NFI = normed fit index; CI = credible interval. 

 

Table 6 PPP𝑥2 Across Misspecification and Sample Size Conditions 

Misspecification levels Sample size Mean 90% CI % PPP𝑥2 < .01 

Level 0 75 .453 [.105, .799] .125 

 100 .447 [.105, .795] .100 

 250 .466 [.120, .804] .075 

 500 .487 [.135, .818] .075 

 1,000 .494 [.161, .814] .025 

Level 1 75 .249 [.011, .596] 4.475 

 100 .192 [.006, .537] 7.425 

 250 .034 [.000, .172] 57.650 

 500 .002 [.000, .008] 95.300 

 1,000 .000 [.000, .000] 100 

Level 2 75 .091 [.000, .353] 28.575 

 100 .050 [.000, .227] 44.700 

 250 .001 [.000, .002] 98.575 

 500 .000 [.000, .000] 100 

 1,000 .000 [.000, .000] 100 

Note. These results marginalize over model-type conditions. 90% CI = the average lower and upper bounds. PPP𝑥2 = chi-square based posterior p-value. 

  



To understand the nature of the differences between estimators, Figure 5 shows the average 

(B)RMSEA across conditions. To evaluate the estimated sampling variability in BRMSEA implied by its 

posterior distribution, the average of its 5th and of its 95th posterior percentiles (corresponding to 

90% credible-interval limits) were plotted along with the average 90% confidence limits of RMSEA. 

BRMSEA appears generally less variable (more precisely estimated) than RMSEA, except when SEM-B 

was perfectly specified. However, recall from Table 3 that BRMSEA is just as variable as RMSEA, so the 

estimated distribution of BRMSEA actually underestimates its true sampling variability. The means, 

however, were similar between estimators, showing greater variability at smaller sample sizes, 

especially for model SEM-B. Compared with BRMSEAPPMC (Hoofs et al., 2018), we see that BRMSEADevM is less sensitive to sample size and provides similar information about model fit as its 

MLE counterpart. This contrasts with Hoofs et al. (2018), who showed that their BRMSEAPPMC under 

noninformative priors provided much lower values than RMSEA under MLE, failing to detect 

misspecification in smaller samples. In Table 7 we see the linear relation between the PPP𝑥2 and the 

approximate Bayesian fit indices, it presents the stronger relation with Γ,̂ and the lowest relation with 

NFI. 

 

Table 7 Correlations Between PPP𝑥2 and Bayesian Approximate Fit Indices 

Index PPP𝑥2 

RMSEA -.668 Γ̂ .695 Γ̂𝑎𝑑𝑗 .587 

Mc .642 

CFI .611 

TLI .565 

NFI .284 

Note. PPP𝑥2 = chi-square based posterior predictive p-value; RMSEA = root mean square error of approximation; Γ̂ = gamma-hat; Γ̂𝑎𝑑𝑗 = adjusted gamma-hat; Mc = McDonald’s centrality index; CFI = comparative fit index; TLI = 
Tuker-Lewis index; NFI = normed fit index. 

 

We found the same patterns of results for other fit indices, which can be seen in plots available on the 

Open Science Framework. Because only RMSEA has analytically derived confidence limits under MLE, 

we represented sampling variability of the other MLE fit indices by the 5th and 95th percentiles from 

their Monte Carlo distributions in each condition. 

Limitations of the Monte Carlo Design 

We can conclude from our Monte Carlo study that the BSEM fit indices proposed here can be expected 

to provide similar information about data–model fit as their frequentist counterparts do, at least in the 

special case of effectively equivalent models under MLE and MCMC with noninformative priors. But 

there are some important limitations worth noting. 

First, our Monte Carlo study utilized only 𝐷𝑖obs and 𝐷(θ̅) as defined by the marginal likelihood of the 

data, not the conditional likelihood, which is consistent with the chi square (likelihood ratio) test 

statistic in SEM. Bayesian latent variable models can directly sample latent variables through data 



augmentation (Merkle, Furr, & Rabe-Hesketh, n.d.; Merkle & Rosseel, 2018; Song & Lee, 2012), and the 

conditional likelihood treats the latent variable scores as parameters (called person parameters in the 

item-response theory framework). In contrast, the latent variable scores can be integrated out to yield 

the marginal likelihood. Information criteria based on marginal likelihoods have been shown to behave 

more consistently with expectations across conditions than those based on conditional likelihoods 

(Merkle et al., n.d.), and the interpretation applies more generally to any new data point rather than 

only to new observed data from cases with the same factor scores. We therefore considered marginal 

likelihood to be preferable (a view shared by developers of BSEM software such as Mplus and blavaan), 

but future researchers might find it reasonable to investigate the sampling properties of BSEM fit 

indices calculated under conditional likelihoods. 

Additionally, we simulated only complete data. Missing data are quite common in applied research 

(Enders, 2010; Little, 2013), so more research is needed about how the proposed fit indices behave 

with incomplete data. Because BSEM software uses data augmentation to deal with missing data 

(Merkle & Rosseel, 2018; Muthén & Muthén, 1998–2017), the proposed fit indices can still be 

estimated with incomplete data. Missing values are treated as unknown parameters to be estimated at 

each iteration of the Markov chain, effectively imputing the data before calculating the likelihood 

(Merkle, 2011). This would make the effective number of parameters 𝑝𝐷 larger, but blavaan 

marginalizes the missing data by integrating it out, just as it does with latent variable scores, so 

the 𝑝𝐷 it reports should be relatively unaffected by missing data. The 𝜒𝑀𝐿2 statistic and fit indices 

based on it have been shown to indicate better fit when incomplete data are analyzed using full-

information maximum likelihood (FIML; Davey, 2005), but it remains to be seen whether multiple 

imputation in SEM or data augmentation in BSEM affect fit measures the same way. The numerous 

other factors that could impact BSEM fit indices (e.g., proportion missing data, fraction of missing 

information, mechanisms of missingness) warrant deeper attention than would fit within the scope of 

the current article, but two of our illustrative examples explore some effects of missing data on fit 

measures. 

Finally, our Monte Carlo study investigated only noninformative priors because the variety of ways that 

informative priors could effect BSEM fit indices would have required an unwieldy number of design 

factors (thus, these issues warrant their own investigation). Given how commonly informative priors 

are applied (van de Schoot et al., 2017), it is important to understand how the proposed indices can be 

expected to behave. In general, we expect priors would only have a noticeable effect on the posterior 

distribution in small to moderate samples, because in larger samples, the likelihood overwhelms the 

prior. This is consistent with results reported by Hoofs et al. (2018). But this also depends on how 

informative the priors are (Gelman et al., 2017). Greater precision will shrink 𝑝𝐷, which can affect fit to 

different degrees depending on how closely the prior matches the actual parameter (Muthén & 

Asparouhov, 2012). Equation 19 shows that 𝑝𝐷 cancels out in our “DevM” formulation of BRMSEA, 
whereas in the “PPMC” formulation (Equation 16) 𝐷𝑖obs is rescaled by 𝐷𝑖rep. Thus, the shrinking 

of 𝑝𝐷 by increasing the precision of prior distributions should have differential effects on the different 

proposals for BRMSEA (and other 𝜒2-based fit indices). We explore some assumptions using illustrative 

examples, and we encourage future researchers to take these issues into account when designing 

Monte Carlo studies to investigate the effect of informative priors on BSEM fit indices, as well as 

comparing the “PPMC” with “DevM” formulations. 



Illustrative Examples 

We encourage future Monte Carlo research into the issues involving informative priors and missing 

data discussed above, and our illustrative examples serve as preliminary investigations into the details 

we expect to warrant immediate attention. We utilize the popular Holzinger and Swineford (1939) data 

set, available in the R packages lavaan (Rosseel, 2012) and blavaan (Merkle & Rosseel, 2018). The data 

set consists of mental ability test scores of N = 301 seventh- and eighth-grade children from two 

different schools. The CFA consisted of three latent cognitive-ability constructs (visual, textual, and 

speed), each of which was defined by three indicators. 

The model was estimated with MLE in lavaan (Rosseel, 2012), and several Bayesian models were 

estimated with the No-U-Turn Sampler (NUTS)—an extension to Hamiltonian Monte Carlo (Gelman et 

al., 2014; Hoffman & Gelman, 2014)—with Stan (Carpenter et al., 2017; Stan Development Team, 

2018) as the general Bayesian software employed by blavaan (Merkle & Rosseel, 2018) in the back end. 

For both MLE and MCMC (NUTS), we identified the latent scales and locations by fixing factor variances 

to 1 and factor means to 0. For MCMC estimation, model parameters were sampled using three chains, 

discarding 10,000 burn-in iterations from each, and retaining 10,000 post-burn-in iterations from each 

chain. Model convergence was assessed by inspecting traceplots for adequate mixing chains and 

verifying R-hat < 1.10 for every parameter (Brooks & Gelman, 1998). For all models, we calculated 

BSEM fit indices using 𝑝𝐷LOO as the measure of effective number of parameters. The number of 

parameters estimated with MLE was always 30 (𝑑𝑓 =  24), and different Bayesian models yielded 

different estimates of the effective number of parameters. 

Results using blavaan’s default priors (except for residual standard deviations, where the default prior 

is ∼  Γ(1, .5) for the residual variance) are presented in Table 8, which compares our proposed fit 

indices with those using the PPMC method proposed by Hoofs et al. (2018) as well as the ML fit indices. 

These results provide no new information beyond the conclusions of the Monte Carlo study, but they 

provide users with a real-data example with accompanying syntax in our online OSF materials. They 

also serve as a baseline to highlight how informative priors and missing data can affect the resulting 

posterior distributions of the proposed BSEM fit indices in subsequent illustrative examples. We 

summarize our expectations of these effects below: 

• We expect results not to differ between alternative noninformative prior specifications. 

• We expect sufficiently informative priors (i.e., informative enough not to be overwhelmed by 

the likelihood) that are consistent with the data to yield narrower intervals than noninformative 

priors. When the posterior distributions of estimated parameters vary less, so will 𝐷obs. 
However, when the posterior is influenced by the prior, 𝑝𝐷 will be lower, which could affect the 

expected values of some fit indices (see Equations 19 and 20–25). Holding other quantities 

constant, smaller 𝑝𝐷 should yield smaller BRMSEADevM and BNFIDevM (indicating better and 

worse fit, respectively) but larger B − Γ̂𝑎𝑑𝑗DevM (indicating better fit), whereas the posterior 

means of B − Γ̂ DevM and BCFIDevM should be unaffected. Given where 𝑝𝐷𝐻 appears twice 

in Equation 23, how BTLIDevM might be affected would probably depend on the average 

magnitude of 𝐷Hobs relative to 𝑝∗. 



• We expect that if an informative prior is not consistent with the data, the BSEM fit indices will 

indicate poorer data–model correspondence (e.g., higher BRMSEA and lower BCFI). This follows 

from priors being part of a Bayesian model, and sufficiently informative priors place restrictions 

on the parameter space sampled during MCMC estimation, so invalid restrictions should be 

seen as model misspecifications that yield poorer fit measures. 

• We expect a model with small-variance priors for cross-loadings hypothesized to be 

approximately zero (Muthén & Asparouhov, 2012) to yield better fit than a model that fixes 

those parameters to zero. This is becoming a common practice in BSEM, raising some concerns 

about making poor-fitting models appear acceptable (Stromeyer, Miller, 

Sriramachandramurthy, & DeMartino, 2015), prompting Asparouhov, Muthén, and Morin 

(2015) to advocate sensitivity analyses in combination with small-variance priors. 

• Because blavaan marginalizes over imputed missing values, we expect missing data to have 

negligible impact on the effective number of parameters 𝑝𝐷, but we expect 𝐷(θ̅) to be smaller 

with greater proportions of missing data, as observed by Davey (2005). This phenomenon also 

held for the independence model (Davey, 2005), making it more difficult to predict the behavior 

of incremental fit indices. 

  



Table 8 Holzinger and Swineford (1939) CFA Fit Indices  

  MCMCDevM  MCMCPPMC  

Index MLE Mean (SD) 90% CI Mean (SD)                            90% CI 𝜒2 85.306a 83.560b (8.003) [70.639, 96.251] 61.278 (13.233) [38.958, 82.242] 

RMSEA .092 [.071, .114] .097 (.006) [.086, .107] .076 (.014) [.055, .099] Γ̂ .957 .956 (.005) [.948, .965] .972 (.009) [.956, .986] Γ̂𝑎𝑑𝑗  .919 .892 (.013) [.870, .913] .930 (.023) [.891, .966] 

Mc .903 .902 (.012) [.884, .922] .937 (.021) [.902, .970] 

CFI .931 .930 (.009) [.916, .945] .953 (.016) [.928, .979] 

TLI .896 .887 (.015) [.864, .911] .924 (.025) [.884, .966] 

NFI .907 .909 (.009) [.895, .923] .931 (.015) [.906, .955] 

Note.    Row names under the Index column should be understood as representing their Bayesian analogs (e.g., 𝐷(θ̅) in place of 𝑥2, BRMSEA in place of 

RMSEA, and so on). Under the MCMCPPMC formulation, the mean of (𝐷𝑖obs  - 𝐷𝑖rep) is reported in place of 𝑥2. 90% CI = the average lower and upper 

bounds. For MLE, only RMSEA is accompanied by its 90% confidence bounds. 𝑥2 = chi-square; SD = standard deviation; CI = credible interval; PPP𝑥2 = 

chi-square based posterior predictive p-value; RMSEA = root mean square error of approximation; Γ̂ = gamma-hat; Γ̂𝑎𝑑𝑗 = adjusted gamma-hat; Mc = 

McDonald’s centrality index; CFI = comparative fit index; TLI = Tuker-Lewis index; NFI = normed fit index. 
a 𝑝 <  .001, with 𝑑𝑓 =  24 and 𝑞 =  30 estimated parameters. b PPP𝑥2 < .001, with 𝑝𝐷𝐿𝑂𝑂 = 31.768 estimated parameters. 

  



Noninformative Priors 

To verify our first assumption about the effects of priors—that different specifications of 

noninformative priors yield approximately the same results—we compared the following 

noninformative priors: 

• Default priors in blavaan (Merkle & Rosseel, 2018): Factor loadings and indicator intercepts 

were distributed as 𝒩(𝜇 = 0, 𝜎2 = 100); indicator residual standard deviations were 

distributed as ∼ half-Cauchy(𝜇 =  0, 𝜎2 =  2.5); and factor correlations were distributed as ∼  𝑈(−1, 1). 
• Alternative noninformative priors: Factor loadings and indicator intercepts were distributed as 𝒩(𝜇 = 0, 𝜎2 = 1,000,000); indicator residual standard deviations were distributed as ∼  𝑈(0.01, 1000); and factor correlations were distributed as ∼  𝑈(−1, 1). These priors are 

even less informative, to a degree similar to the default priors in Mplus (Muthén & Muthén, 

1998–2017). However, we could not exactly replicate all the default priors of Mplus because 

they place priors on factor covariances, whereas blavaan places priors on factor correlations, 

which are rescaled to covariances implied by the estimated correlations and (fixed or free) 

variances (Merkle & Rosseel, 2018). 

The default priors yielded 𝑝𝐷𝐿𝑂𝑂 = 32.263 (similar to 30 estimated parameters under MLE) 

and 𝑝∗  −  𝑝𝐷 =  21.737 (similar to 𝑑𝑓 =  24 under MLE). The alternative priors (the “Wide” column 
in Table 9) yielded nearly identical results: 𝑝𝐷𝐿𝑂𝑂 = 32.451 and 𝑝∗  −  𝑝𝐷 =  21.549. 

 

  



 

Table 9 Holzinger and Swineford (1939) CFA Fit Indices with Different Priors 

 Wide  Cross  Orth  Strict  

Index Mean 90% CI Mean 90% CI Mean 90% CI Mean 90% CI PPP𝑥2 <.001  .169  <.001  <.001  𝑝𝐷LOO 32.451  40.835  29.607  22.837  𝐷(θ̅ ) 83.319 [70.865, 96.048] 27.322 [11.634, 42.833] 122.651 [107.211, 138.635] 163.988 [141.420, 186.359] 

BRMSEA .097 [.087, .107] .056 [.018, .094] .116 [.106, .125] .119 [.109, .129] BΓ̂ .956 [.948, .965] .990 [.981, 1.000] .932 [.922, .942] .911 [.897, .924] BΓ̂𝑎𝑑𝑗           .891 [.869, .912] .957 [.920, 1.000] .850 [.828, .872] .845 [.821, .869] 

BMc .903 [.884, .921] .977 [.956, 1.000] .850 [.827, .871] .802 [.772, .832] 

BCFI .930 [.916, .944] .984 [.970, 1.000] .889 [.871, .907] .850 [.824, .875] 

BTLI .885 [.862, .909] .957 [.909, 1.004] .839 [.813, .865] .829 [.801, .859] 

BNFI .909 [.896, .923] .970 [.953, .987] .866 [.849, .884] .821 [.797, .846] 

Note. Wide = wider-than-default noninformative priors; Cross = strongly informative priors for near-zero cross-loadings; Orth = strongly informative 

priors for near-zero factor correlations; Strict = strongly informative priors for estimated parameters; 90% CI = the average lower and upper bounds; PPP𝑥2   = chi-square  based  posterior  predictive  p-value;  BRMSEA  = Bayesian  root  mean  square  error  of  approximation;  BΓ̂  = Bayesian  gamma-

hat; BΓ̂𝑎𝑑𝑗  = Bayesian  adjusted  gamma-hat;  BMc  = Bayesian  McDonald’s  centrality  index;  BCFI  = Bayesian  comparative  fit  index;  BTLI  = Bayesian 

Tuker-Lewis index; BNFI = Bayesian normed fit index; 𝑝𝐷𝐿𝑂𝑂 = leave-one-out based effective number of parameters; D(0) = deviance. 

 

  



We calculated Bayesian fit indices using both the “DevM” formulation proposed here (columns labeled  MCMCDevM in Table 8) and the “PPMC” formulation (columns labeled MCMCPPMC in Table 8) based on 

the BRMSEA proposed by Hoofs et al. (2018). Each index’s distribution is summarized in Table 8 by its 

mean, standard deviation, and percentiles corresponding to a 90% credible interval. The means using 

default priors can be compared with their MLE counterparts (also presented in Table 8), and the upper 

and lower bounds of BRMSEA can be compared with the 90% CI of RMSEA. 

Posterior means of MCMCDevM-based fit indices were close to the MLE fit indices, whereas the MCMCPPMC-based fit indices indicated better data–model fit. This is due to the difference in how 

model discrepancy is rescaled between the “DevM” and “PPMC” formulations (compare Equation 

19 with Equation 16), as shown in the row of Table 8 labeled “𝜒2.” The MLE chi square and  MCMCDevM chi-square analog were 85.31 and 83.56, respectively, whereas the average of the 

difference (𝐷obs − 𝐷rep) used by MCMCPPMC was 61.28. Chi-square-based approximate fit indices 

using the “PPMC” formulation therefore indicated better data–model fit. If one were to test a H0 of 

approximate fit using the guideline RMSEA <0.08 (MacCallum et al., 1996, 2006), this model would 

have been rejected using both MLE and BRMSEADevM, yet accepted using BRMSEAPPMC. Using the 

90% CI, a H0 of poor fit (RMSEA > 10) would be rejected using BRMSEAPPMC but not by RMSEA or BRMSEADevM, so the latter should prompt researchers to further investigate whether their model fails 

in specific ways. These results with our nine-indicator model were consistent with the simulation 

results in Hoofs et al. (2018), which showed that in small to moderate samples, BRMSEAPPMC was 

similar to RMSEA in six-indicator models but was much smaller than RMSEA in 12-indicator models. 

Specifying alternative noninformative priors yielded nearly identical results. These examples further 

support that MCMCDevM fit indices are reasonable approximations of their MLE counterparts, but with 

narrower intervals (see Table 8, Figure 5). In contrast, MCMCPPMC fit indices indicate a more positive 

(perhaps misleading) impression of data–model fit. 

Small-Variance Priors for Cross-Loadings 

Holzinger and Swineford (1939) posited a bifactor solution from their exploratory factor analysis 

results, in which the three factors of our example model would be interpreted as orthogonal method 

factors, and all indicators would also load on a single general-intelligence factor. However, a 

hypothetical researcher might be interested in retaining approximately simple structure by specifying a 

Bayesian model that more flexibly represents theoretical expectations. Following Muthén and 

Asparouhov (2012), we specified the same model with default priors but also added all possible cross-

loadings with the constraint that they were approximately zero (i.e., specifying a normal prior with μ = 
0 and 𝜎2 =  0.01). The standard deviations of the observed variables ranged from 1.01 to 1.29, so 

(similar to Muthén & Asparouhov, 2012) these priors represents a hypothesized 95% probability that 

approximately standardized cross-loadings are within ±0.2 of zero. 

As expected, adding small-variance priors for cross-loadings hypothesized to be approximately zero 

yielded fit measures that indicated better data–model correspondence. Comparing the “Cross” column 
in Table 9 with the “Wide” column (the latter of which is essentially equivalent to the MCMCDevM results in Table 8), PPP𝑥2 = 0.17 (compared with <.001) and BRMSEADevM = 0.056 

(compared with 0.097) indicated good fit. However, adding 18 cross-loadings to the model—even 



though constrained to approximately zero—increased the effective number of parameters from 𝑝𝐷 ≈ 32 to 𝑝𝐷 ≈  41 (so each cross-loading effectively added approximately half an estimated parameter). 

A consequence of estimating more parameters is increased variability of the resulting posterior 

distribution as well as the fit indices derived from it. The width of BRMSEADevM’s interval increased 

from 0.107 − 0.086 = 0.021 to 0.094 − 0.018 = 0.076. 

Strongly Informative Priors for Orthogonal Correlations 

The estimated factor correlations were in the approximate range of .30 to .50 (medium to 

large; Cohen, 1992), so constraining them to zero would be a gross model misspecification. Thus, if we 

specified strongly informative priors that constrained the factor correlations to be approximately (but 

not exactly) zero, those priors would be an aspect of the model that is misspecified, which should be 

reflected by fit measures. We would expect (a) 𝑝𝐷 to decrease by no more than three parameters, and 

(b) PPP𝑥2 and approximate fit indices to show worse model fit than an otherwise equivalent model 

with uninformative priors for factor correlations (i.e., the results from Table 8). 

To verify this expectation, we fit a model with default priors for all parameters except factor 

correlations, for which we specified informative priors following a rescaled Beta(200, 200) distribution. 

The standard boundaries of the Beta distribution from 0 to 1 are rescaled by multiplying by 2 and 

subtracting 1, effectively setting new boundaries from −1 to 1 (same as correlations). These priors 
reflect the belief that these factor correlations have a 95% chance of being within ±0.1 of 0. 

The “Orth” column of Table 9 shows the results for the model with orthogonality constraints. As 

expected, 𝑝𝐷 decreases from 31.77 with default priors to 29.61 (about 0.72 for each of three 

constrained correlations). All approximate fit indices indicated worse fit after constraining correlations, 

for example, BRMSEADevM = 0.116 for approximate orthogonality compared with BRMSEADevM = 

0.097 with default priors. Their intervals were not noticeably more precise after specifying informative 

priors for factor correlations, so misspecified priors do not appear to translate to increased precision 

for fit indices in this case, but future simulation research could test whether and under what conditions 

this could be expected. 

Strongly Informative Priors for Reproducing Results 

The previous examples investigated informative priors for nuisance parameters and for a substantive 

hypothesis that was not consistent with the data. We also consider the case of informative priors 

based on previously obtained estimates. To imitate a situation in which the priors are maximally 

consistent with the observed data, we specified priors based on the posterior distribution from the 

model with default priors. Priors for factor loadings and item intercepts were ~𝒩 (𝜇 =  θ̅, 𝜎 =  0.1), 

and for residual standard deviations were ~Log −𝒩 (𝜇 =  θ̅, 𝜎 =  0.1), where θ̅ is the estimated 

posterior mean from the model with default priors, and the standard deviations specified similar 

precision as for the model with near-zero cross-loadings. Thus, the model was specified with high 

certainty that the parameters would be consistent with estimates from the model with default priors 

(which we treated as results from a “previous” sample). In practice, this is what Gelman et al. 

(2017) would consider “cheating” because the 𝜇 =  θ̅ was specified after seeing the data instead of 

reflecting prior theoretical/probabilistic beliefs about the expected distribution. 



The column “Strict” in Table 9 presents the results. As expected, 𝑝𝐷 decreases substantially, from 31.7 

(default priors) to 22.8. Note that this decrease results solely from estimating all the same parameters 

but with greater precision (i.e., prior variances 𝜎2 =  0.01  vs. 𝜎2 =  100). On average, 𝑝𝐷 decreased 

by 0.33 per estimated parameter. Contrary to expectation, all fit indices presented worse model fit. So 

despite the priors being set around the previously estimated posterior means, 𝐷(θ̅) was also affected, 

possibly because the priors did not allow the MCMC sampler to sufficiently explore the parameter 

space. However, the posterior distributions of model parameters estimated with default and strict 

priors still overlapped substantially: between 85.7% and 99.5% across parameters, with an average 

overlap of 95.2% (SD = 3.5%). It is also notable that contrary to expectation, the strict priors did not 

yield narrower intervals for fit indices than noninformative priors did. 

We are unsure whether these results would be observed in a model that fit the data well; given the 

mediocre fit of this model, placing great certainty in the wrong parameters might merely exacerbate 

evidence against data–model fit. This would be consistent with the expected behavior of a marginal 

likelihood with constrained priors, which yield an inappropriate marginal likelihood. This is reflected in 

a marginal likelihood sensitive to aspects of the prior distribution that have minimal effect on the 

posterior inferences (Gelman et al., 2017), which could imply the approximate fit indices have the 

potential to diagnose if prior distributions are affecting the marginal likelihood in such a way that 

would make it unreliable. 

The effects of informative priors should be even more pronounced when they have a greater relative 

influence on the posterior, as would be the case with small samples. We drew a random sample of N = 

75 from the full data set and fit the model with default priors, wide priors, and strict priors to the 

subsample. Consistent with our simulation results, Table 10 shows wider intervals for all models 

(reflecting less information from data), and the different noninformative priors yielded effectively the 

same posterior means (consistent with MLE across sample sizes). Again, the strict priors yielded worse 

fit, but the effect of informative priors appears even more extreme than with the full sample. 

Unfortunately, the data–model correspondence already appears much poorer for this subsample than 

the full N = 301 in Table 9, which might be due (at least in part) to small-sample bias (Jiang & Yuan, 

2017; Nevitt & Hancock, 2004). Future simulation studies could verify whether our original expectation 

(same average fit with smaller intervals) holds when the model accurately represents the population. 

 

 

  



Table 10 CFA Fit Indices for Random Subset of N = 75 From Holzinger and Swineford (1939) Data 
 

 Default  Wide  Strict  

Index Mean 90% CI Mean 90% CI Mean 90% CI PPP𝑥2 .003  .003  <.001  𝑝𝐷LOO 32.382  31.623  16.604  𝐷(θ̅ ) 63.640 [50.410, 77.144] 64.223 [51.411, 77.690] 137.783 [122.228, 152.542] 

BRMSEA .160 [.134, .186] .157 [.132, .182] .189 [.175, .203] BΓ̂ .890 [.859, .921] .890 [.859, .921] .771 [.744, .797] BΓ̂𝑎𝑑𝑗                             .724 [.647, .804] .735 [.660, .809] .669 [.630, .707] 

BMc .757 [.689, .824] .758 [.692, .824] .513 [.461, .564] 

BCFI .822 [.765, .879] .823 [.767, .879] .575 [.509, .642] 

BTLI .714 [.623, .806] .725 [.639, .812] .605 [.544, .668] 

BNFI .765 [.714, .814] .763 [.714, .812] .491 [.432, .550] 

Note. Default = default noninformative priors in blavaan; Wide = wider-than-default noninformative priors; Strict = strongly informative priors for 

estimated parameters; 90% CI = the average lower and upper bounds; PPP𝑥2 = chi-square based posterior predictive p-value; BRMSEA = Bayesian root 

mean square error of approximation; BΓ̂ = Bayesian gamma-hat; BΓ̂𝑎𝑑𝑗 = Bayesian adjusted gamma-hat; BMc = Bayesian McDonald’s centrality index; 
BCFI = Bayesian comparative fit index; BTLI = Bayesian Tuker-Lewis index; BNFI = Bayesian normed fit index; pDLOO = leave-one-out based effective 

number of parameters; 𝐷(θ̅ ) = deviance. 

 

Table 11 Holzinger and Swineford (1939) CFA Fit Indices with Missing Data 

MCAR:  0%  20%  MCMC   50%  MCMC  

Index  Mean 90% CI  FIML  Mean  90% CI  FIML  Mean  90% CI 

p value  <.001   .001  .020   .021  .160  𝑝𝐷𝐿𝑂𝑂  31.768   q = 30  32.662   q = 30  32.965  𝜒2 83.560  [70.639, 96.251] 51.380 49.440 [35.931, 61.635] 39.981 37.555 [24.769, 49.327] 

 𝜒02 918.302 [908.713, 927.773] 621.833  620.797 [610.834, 630.120] 296.164 294.886 [284.615, 303.880] 

RMSEA  .097  [.086, .107] .062  .065  [.050, .081]  .047  .049  [.030, .070] Γ̂ .956  [.948, .965]  .980  .980  [.971, .989]  .988  .988  [.979, .997] Γ̂𝑎𝑑𝑗                   .892  [.870, .913]  .963  .949  [.927, .973]  .978  .969  [.947, .992] 

Mc .902  [.884, .922]  .956  .954  [.935, .976]  .974  .973  [.953, .993] 

CFI   .930 [.916, .945] .953 .952 [.931, .975] .939  .936  [.889, .984] 

TLI  .887 [.864, .911] .930 .922 [.888, .959] .908 .896 [.818, .973] 



NFI .909 [.895, .923] .917 .920 [.900, .941] .865 .873 [.832, .913] 

Note. Row names under the Index column should be understood as representing their Bayesian analogs (e.g., 𝐷(θ̅ ) in place of 𝜒2, PPP𝑥2  in place of the 

p value, BRMSEA in place of RMSEA, and so on). 90% CI = the average lower and upper bounds; MCAR = percentage of data points missing completely at 

random; MCMC = “DevM”-based Bayesian fit indices; FIML = full-information maximum likelihood based fit indices; 𝜒2 = chi-square; 𝜒02 =null model 

chi-square; RMSEA = root mean square error of approximation; Γ̂ = gamma-hat; Γ̂𝑎𝑑𝑗 = adjusted gamma-hat; Mc = McDonald’s centrality index; CFI = 

comparative fit index; TLI = Tuker-Lewis index; NFI = normed fit index; 𝑝𝐷LOO = leave-one-out based effective number of parameters; q = MLE number of 

parameters. 

  



Incomplete Data 

We used the R package simsem (Jorgensen, Pornprasertmanit, Miller, & Schoemann, 2018) to set 20% 

and 50% of values on all the indicators in the Holzinger and Swineford (1939) data to be missing 

completely at random (Enders, 2010). We fit the model using FIML and MCMC using default 

noninformative priors. Results are presented in Table 11, which repeats the complete-data MCMC 

results from Table 8 to ease comparison. As expected, missing data have minimal impact on 𝑝𝐷 given 

that imputed values are integrated out to yield a marginal likelihood (Merkle & Rosseel, 2018; Muthén 

& Muthén, 1998–2017). Consistent with Davey (2005), absolute fit measures indicated better fit with 

greater proportions of missing data. 

 

Contrary to Davey (2005), we observed that incremental fit indices indicated better fit for 20% missing 

than for complete data yet worse fit for 50% missing than for 20% missing. Our model was similar to 

the simulated models of Davey’s Monte Carlo study, but we imposed missing values on all indicators 
rather than only three, and our model fit the Holzinger and Swineford (1939) data worse than most of 

the conditions that Davey simulated. Table 11 includes 𝜒02 for the independence model M0 to help 

make sense of the results for incremental fit indices. With greater proportions of missing data, the fit 

for M0 improves proportionally more so than the fit for the hypothesized model, so the hypothesized 

model’s fit relative to M0 is not as high with 50% missing data. 

Discussion 
We proposed how chi-square-based SEM fit indices can be calculated in BSEM using a Bayesian analog 

of the chi-square statistic: 𝐷(θ̅). Because 𝐷(θ̅) ≈ χ2, it can be used to calculate measures of 

approximate fit that are commonly used in SEM to complement the chi-square test of exact fit of a 

model to data. We compared these BSEM fit indices with their frequentist counterparts through a 

Monte Carlo simulation study, which verified our expectation that MCMC with noninformative priors 

yields similar results to MLE across levels of misspecification, sample sizes, and model types. Because 

we apply the same formulas to analogous Bayesian and frequentist quantities, we opine that 

traditional guidelines proposed for interpreting the magnitude of SEM fit indices based on intuition and 

experience (Bentler & Bonett, 1980; Browne & Cudeck, 1992) would be no less valid to apply to BSEM 

fit indices applied using the “DevM” formulation, even when informative priors are specified. 

An advantage of BSEM fit indices over most of their frequentist counterparts is that the posterior 

distribution allows uncertainty to be quantified for any fit index, although the BRMSEADevM intervals 

were narrower than the CIs of RMSEA under MLE. So researchers who insist on interpreting fit indices 

from a hypothesis-testing perspective (MacCallum et al., 1996, 2006) should not expect previous 

simulation results that provided guidelines based on Type I and II error rates (Hu & Bentler, 

1998, 1999; and for invariance testing: Chen, 2007; Cheung & Rensvold, 2002; Meade, Johnson, & 

Braddy, 2008) to generalize to the BSEM fit indices proposed here. Recall, though, that much research 

has already revealed that fixed cutoffs do not generalize well in frequentist SEM (Beauducel & 

Wittmann, 2005; Davey, 2005; Fan & Sivo, 2005; Heene et al., 2011, 2012; Jorgensen, Kite, et al., 

2018; Marsh et al., 2004; Pornprasertmanit, 2014; Pornprasertmanit et al., 2013; Sass et al., 2014), so 

we do not advocate their use (see below for discussion of alternatives). 



Consistent with previous research (Fan & Sivo, 2007), Γ̂ and CFI were substantially affected (𝜂2 > 10%) only by the level of misspecification, whereas other indices were also affected by model 

type (and NFI was also affected by sample size). Based on these simulation results, we would therefore 

recommended the use of CFI and Γ̂ in applied research as well as their continued investigation in 

simulation research. Also, we recommend applied researchers use either 𝑝𝐷𝐿𝑂𝑂 or 𝑝𝐷𝑊𝐴𝐼𝐶 to calculate 

BSEM fit indices because 𝑝𝐷𝐷𝐼𝐶  appeared sensitive to model type. 

Future Directions 

Our illustrative examples provide preliminary support for some expectations based on intuition and 

past results. Different noninformative priors yielded similar results. Informative priors for nuisance 

parameters (Asparouhov et al., 2015; Muthén & Asparouhov, 2012; Stromeyer et al., 2015) yielded fit 

indices that indicated better fit. Informative priors that were inconsistent with the data yielded fit 

indices that indicated worse fit. However, informative priors that were consistent with the data also 

yielded fit indices that indicated worse fit, which might be due to the lack of data–model 

correspondence in our Holzinger and Swineford (1939) example or a diagnosis of the priors provoking 

the marginal likelihood to become inappropriate due to the strong constraints (Gelman et al., 2017). 

Finally, missing data yielded absolute fit indices that indicated better fit, but incremental fit indices 

only indicated better fit when the majority of data were observed (20% missing) because the M0’s fit 
seemed to improve proportionally more than MH’s fit when 50% of the values were set to missing (a 
result not observed with FIML; Davey, 2005). Before more general guidelines can be provided for their 

use in evaluating a wider array of BSEM models, future Monte Carlo research must be designed to 

investigate whether these assumptions hold under various conditions and to further probe the causes 

of some unexpected results. 

Gelman et al. (2017) classified the relevance and use of priors accordingly: minimalist (or 

“noninformative”), reference, structural, weakly informative, and regularizing. 
The minimalist and reference types do little more than fulfill the requirement of specifying a prior for 

Bayesian inference, but with no intention of priors providing information about the model 

parameters. Structural priors set a structural form for the related parameters, without guiding the 

expected values. Regularizing priors represent a strong assumption about the model, where the 

researcher intends to yield smoother and more stable inferences. 

Between structural and regularizing is weakly informative, which provides information that applies to a 

general type of problems without taking full advantage of problem-specific knowledge. In BSEM, the 

priors are usually in the categories of minimalist, reference, or structural, the latter of which can yield 

unexpected results regarding model comparison when priors add no information about the model, 

only varying levels of uncertainty about them (e.g., 𝜎2). The priors are included in the calculation of the 

marginal likelihood, which can be affected by priors without affecting the posterior distribution 

inferences—this is a known issue with multivariate models (Gelman et al., 2017). More research is 

needed to determine the effects of different types of priors and ways to quantify the effect of priors on 

the marginal likelihood and the posterior distribution. 

We considered chi-square-based fit indices only to assess the practical fit of the model (consistent with 

their use in MLE). Because their true sampling variability is underestimated by the interval derived 

from the posterior percentiles, using 90% intervals to test a H0 about the model would yield inflated 



Type I errors. Instead, researchers interested in using a fit index to test the model could use it as the 

discrepancy function for the observed data in a PPMC framework. Because Hoofs et al. 

(2018) proposed calculating BRMSEA𝑖PPMC using the posterior predictive distribution of 𝐷𝑖rep, one 

could not subsequently use BRMSEA𝑖PPMC as the discrepancy function in a posterior predictive model 

check (e.g., the way Levy, 2011, used SRMR as a discrepancy function). On the other hand, BRMSEA𝑖DevM (or other “DevM” fit indices Equations 20–25) could serve as a discrepancy function in a 

PPMC. For example, the posterior distribution of BRMSEADevM could be approximated using their 

realized values by plugging 𝐷𝑖obs into Equation 17, whereas plugging 𝐷𝑖rep into Equation 17 in place 

of 𝐷𝑖obs would approximate its posterior predictive distribution (i.e., expected values given the model 

parameters). However, because BRMSEA𝑖DevM is simply a function of 𝐷H,𝑖obs and other quantities that 

do not differ for the observed (or replicated) data (i.e., 𝑁, 𝑑𝑓, 𝑝∗, and 𝑝𝐷), we can expect PPMC to 

yield the same conclusions when using BRMSEA𝑖DevM (or any indices based solely on 𝐷Hobs) as when 

using 𝜒H2 itself. So we would not expect applying PPMC with a fit index based only on 𝜒H2 to add any 

extra information beyond what PPP𝑥2 provides. 

In contrast, incremental fit indices are based not only on 𝜒H2 but also on 𝜒02, so a PPMC 

using Equation 25 could provide distinct information from PPMC using 𝜒H2 (i.e., How well does MH fit 

relative to a meaningfully specified M0; Bentler & Bonett, 1980). Beyond the complication of specifying 

informative priors for a null model M0 that is known not to be true (Hoofs et al., 2018), a second 

complication involves estimating a posterior predictive distribution of incremental fit indices. 

Calculating a posterior distribution of realized values (e.g., of BCFI𝑖DevM) would require 𝜒02, which only 

requires fitting an appropriate M0 (e.g., an independence model) to the observed data. PPMC would 

also require fitting the hypothesized model MH to both observed data and replicated data generated 

from the sampled estimates (at that iteration) of the model being fitted to the observed data. 

However, whereas M0 is also fitted to observed data, M0 should be fitted to replicated data generated 

from MH, so that the model would be tested assuming MH is true, not M0. We expect a deeper 

exploration of how to conduct PPMC with incremental fit indices (e.g., whether to use the same 

replicated data generated when fitting MH) to be a valuable extension of the current proposal. 

We conclude by reminding readers that fit indices were designed merely to be descriptive measures 

meant to help researchers evaluate the degree to which their model fails to reproduce the observed 

data; they were not originally developed to be test statistics (although they have been applied as such). 

Global fit indices are meant to complement, not replace, informative tests of the model. Researchers 

who find values of their fit indices questionable should complement these global measures with more 

informative local measures of model (mis)fit, such as described in Levy (2011). We are hopeful that fit 

indices can be conscientiously applied in (B)SEM in conjunction with other model-evaluation tools that 

summarize different dimensions of data–model correspondence (or lack thereof). 

Footnotes 
1 Some restricted cases of nonlinearity in variables have been proposed, such as latent moderated 

structures for normally distributed latent variables (Klein & Moosbrugger, 2000), but are rarely 

implemented in SEM software packages (Muthén & Muthén, 1998–2017). 



2 Rare exceptions can be fitted with MLE by placing nonlinear constraints on certain estimated 

parameters. See Grimm and Ram (2009) for an example of nonlinear latent growth models. 

3 Some resampling methods have been proposed for obtaining confidence intervals for SEM fit indices 

in a frequentist framework, such as bootstrapping (Cheng & Wu, 2017; Zhang & Savalei, 2016), 

permutation (Jorgensen, Kite, et al., 2018), and Monte Carlo simulation (Millsap, 

2007; Pornprasertmanit, 2014; Pornprasertmanit, Wu, & Little, 2013). 

4 Online materials can be found at https://osf.io/afkcw/. 

5 Early software such as LISREL (Jöreskog & Sörbom, 2006) and EQS (Bentler, 2006) applied Wishart-

theory likelihood to analyses of covariance structure only, so they used N – 1 instead of N. 

More recently developed software such as Mplus (Muthén & Muthén, 1998–2017) and lavaan 

(Rosseel, 2012) include a mean structure by default, so they apply normal-theory likelihood, 

which requires N as the multiplier (Widaman & Thompson, 2003). 

6 Some SEM software, such as Mplus and lavaan, calculate AIC as −2 × log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑝, which 

yields equivalent rankings of competing models because each model’s chi square is calculated 
relative to the same saturated model. 

7 Or more generally, further from the posterior mode of θ, which is the same as the posterior mean 
when the posterior distribution is symmetric and unimodal (e.g., normal). 

8 Vehtari et al. (2017) compared 𝑝𝐷 as developed for DIC with an expression developed 

for Watanabe’s (2010) widely applicable information criterion (WAIC)—which Vehtari et al. 

called more “fully Bayesian in that it uses the entire posterior distribution” (p. 1414)—as well as 

a Pareto-smoothed importance sampling (PSIS) approximation of leave-one-out (LOO) cross-

validation. We do not discuss the more complex calculations of 𝑝𝐷 presented by Vehtari et al., 

but we compare them in our simulation study. 

9 See Results for the 12-indicator Models C–E in Figure 2, Model C in Figure 3, and Model F2 in Figure 4 

of Hoofs et al. (2018). 

10 An example proof can be found 

here: https://math.stackexchange.com/questions/1204484/average-of-square-rootss-sum-vs-

square-root-of-an-average 

11 Guidelines proposed for fit indices under MLE have also been shown not to generalize to other 

frequentist estimators, such as DWLS with a mean- and variance-adjusted chi square for ordinal 

data (Sass et al., 2014). 

12 Online files associated with this project are available at https://osf.io/afkcw/ 

13 A description and path diagram of the model can also be found on the lavaan 

tutorial: http://lavaan.ugent.be/tutorial/cfa.html 

14 The R scripts to replicate this analysis are available on https://osf.io/afkcw/ 

15 Recall that an SEM’s chi-square statistic compares MH with a saturated MS. 
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APPENDIX 

APPENDIX A: Formulas for Additional Bayesian Fit Indices 

These formulas use the same quantities defined for Equation 19 and are expected (when using 

noninformative priors) to be reasonable approximations of fit indices under MLE. We designate these 

with a superscript “DevM” to indicate the observed deviance at iteration i in the Markov chain is 

rescaled using 𝑝𝐷 to make its expectation equal to the deviance evaluated at the posterior mean. 

Note, however, that because the mean of a nonlinear function of X does not generally equal the same 

nonlinear function of �̅�, the recentering of 𝐷𝑖obs does not imply that the posterior mean of any of these 

indices will equal the values of the indices calculated using 𝐷(θ̅). The simulation study shows that they 

are nonetheless reasonable approximations of their ML counterparts. 

For all incremental fit indices, quantities for the hypothesized model (MH) have an “H” subscript, 
whereas a “0” indicates the same quantity from the null model (M0).  BMc𝑖DevM = 𝑒 − 12𝑁 [(𝐷𝑖obs − 𝑝𝐷) − (𝑝∗ − 𝑝𝐷)] = 𝑒 − 12𝑁 (𝐷𝑖obs − 𝑝∗). (20) B − Γ̂𝑖DevM = 𝑝𝑝+2𝑁[(𝐷𝑖obs−𝑝𝐷)−(𝑝∗−𝑝𝐷)] = 𝑝𝑝+2𝑁(𝐷𝑖obs−𝑝∗). (21) 

B − Γ̂𝑎𝑑𝑗,𝑖DevM = 1 − 𝑝∗𝑝∗−𝑝𝐷 (1 − B − Γ̂𝑖DevM). (22) 

BTLI𝑖DevM = BNNFI𝑖DevM = 𝐷0,𝑖obs−𝑝𝐷0𝑝∗−𝑝𝐷0 −𝐷H,𝑖obs−𝑝𝐷H𝑝∗−𝑝𝐷H𝐷0,𝑖obs−𝑝𝐷0𝑝∗−𝑝𝐷0 −1 . (23) 

BNFI𝑖DevM = (𝐷0,𝑖obs−𝑝𝐷0)−(𝐷H,𝑖obs−𝑝𝐷H)𝐷0,𝑖obs−𝑝𝐷0 .(24) 

BCFI𝑖DevM = 1 − (𝐷H,𝑖obs−𝑝𝐷H)−(𝑝∗−𝑝𝐷H)(𝐷0,𝑖obs−𝑝𝐷0)−(𝑝∗−𝑝𝐷0) = 1 − 𝐷H,𝑖obs−𝑝∗𝐷0,𝑖obs−𝑝∗.(25) 

Following from Hoofs et al. (2018), indices can be derived using similar principles, rescaling 𝐷𝑖obs not 

by 𝑝𝐷 but by 𝐷𝑖rep. We designate these with a superscript “PPMC” to indicate the observed deviance at 
iteration i in the Markov chain is rescaled using posterior predictive model checks.  



BMc𝑖PPMC = 𝑒 − 12𝑁 [(𝐷𝑖obs − 𝐷𝑖rep) − (𝑝∗ − 𝑝𝐷)]. (26) B − Γ̂𝑖PPMC = 𝑝𝑝+2𝑁[(𝐷𝑖obs−𝐷𝑖rep)−(𝑝∗−𝑝𝐷)]. (27) 

B − Γ̂𝑎𝑑𝑗,𝑖PPMC = 1 − 𝑝∗𝑝∗−𝑝𝐷 (1 − B − Γ̂𝑖PPMC).(28) 

BTLI𝑖PPMC = BNNFI𝑖PPMC = 𝐷0,𝑖obs−𝐷0,𝑖rep𝑝∗−𝑝𝐷0 −𝐷H,𝑖obs−𝐷H,𝑖rep𝑝∗−𝑝𝐷H𝐷0,𝑖obs−𝐷0,𝑖rep𝑝∗−𝑝𝐷0 −1 . (29) 

BNFI𝑖PPMC = 𝐷0,𝑖obs−𝐷0,𝑖rep−𝐷H,𝑖obs−𝐷H,𝑖rep𝐷0,𝑖obs−𝐷0,𝑖rep . (30) 

BCFI𝑖PPMC = 1 − (𝐷H,𝑖obs−𝐷H,𝑖rep)−(𝑝∗−𝑝𝐷H)(𝐷0,𝑖obs−𝐷0,𝑖rep)−(𝑝∗−𝑝𝐷0) .(31) 
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