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Abstract. Basing signature schemes on strong lattice problems has been a long standing open issue.
Today, two families of lattice-based signature schemes are known: the ones based on the hash-and-
sign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir
framework.
In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature
setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that
provides strong properties of security under the random oracle model. Anonymity is ensured in the
sense that signatures of different users are within negligible statistical distance even under full key
exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure
setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between
signatures of different users remains negligible.
Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability
against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present
two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing
signature and key sizes by a factor k (typically 80− 100), we provide a variant in which unforgeability
is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general
and can be adapted to other existing schemes.
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1 Introduction

In 2001 Rivest, Shamir and Tauman [21] introduced the concept of ring signature. In such a scheme, each
user has a keypair; a secret signing key and a public verification key. Any of them can choose a subset of
the public keys (including his own), the ring, and sign on behalf of the associated subset of users, without
permission or assistance. This signature can be verified using the ring of public keys. Such a scheme must
have the classic unforgeability property (it is not possible to sign on behalf of a ring without knowing one
of the associated secret keys) as well as an anonymity property: it is not possible to know which secret key
was used, just that it is associated to one of the public keys in the ring.

In 2006 [3], Bender et al. noted that the usual security setting with respect to anonymity and unforge-
ability did not take into account that some of the public keys in the ring may have been issued adversarially
by an attacker. They therefore proposed adapted security definitions for such a situation as well as for the
one in which all the secret keys including the one of the signers would be exposed. Of course if all the keys
are exposed it is no longer possible to ensure unforgeability but anonymity of previously issued signatures
may be preserved.

Such a strong anonymity property is a reassuring guarantee for a user hesitating to leak a secret, specially
if the consequences of an identification are dire. It also seems reasonable, specially if anonymity must be
preserved for a few decades (e.g. depending on the statute of limitations) not to rely on an estimation of
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the computational complexity of a given problem and require unconditional anonymity. The definitions of
Bender et al. can be easily translated to the unconditional setting and thus cover such a requirement.

A close but different setting, introduced by Chaum and van Heyst in 1991 [9], is the one of group signature.
In this setting there is an anonymity revocation mechanism that allows a given group manager to reveal
who was the signer of a given message. This property comes however at a cost as it requires a group setup
procedure which is not needed in the ring signature setting.

Most of the existing ring signature schemes are based on number theory assumptions: large integer
factorization [10, 21], discrete logarithm problem [1, 12] and bilinear pairing problems [22, 26, 5].

There are also a few ring signature schemes with security based on standard lattice problems. In [6],
Brakerski and Kalai propose a ring signature scheme in the standard model based on the Small Integer
Solution (SIS) problem using the hash-and-sign/bonsai-tree [11, 7] approach. Using again this approach
Wang and Sun propose in [25] two other ring signature schemes, one under the random oracle model and one
on the standard model. Both papers provide constructions in the standard model but, on the other hand,
use Gentry-Peikert-Vaikuntanathan’s (hereafter GPV) [11] strong trapdoors. These trapdoors are known to
be very versatile and the ring signature constructions come naturally. However, when using these strong
trapdoors a (hidden) structure is added to the underlying lattice which is, from a theoretical point of view,
an important price to pay. In practice, it is possible to give public bases of these lattices which are closer
to uniform, but some parameters, namely the dimension of the “perp” lattice (for a definition and details
see [20]), are increased significantly in the process.

Two other schemes, one by Kawachi et al. [13], and one by Cayrel et al. [8], follow a very different
approach. These schemes are based on weak trapdoors in which the underlying lattice is completely uniform
except for some public syndromes given (which corresponds to a small vectors in the “perp” lattice). Even if
we consider the lattice together with the syndromes, very little structure is added and in practice, it is close
to uniform for smaller parameters than with GPV trapdoors. Such “weak trapdoors” can be used in not
that many contexts (when compared to the strong GPV trapdoors) and [13, 8] prove that they are enough
for ring signature. On the other hand, these schemes use pretty straightforwardly Stern’s construction for
signature schemes [24] which is somehow a bad property. Of course, it is clearly important to note that
the code-based constructions can be translated to the lattice setting. In the case of the scheme by Cayrel
et al. this has the added benefit that by adapting the code-based construction of Aguilar et al. [2] they
obtain a threshold scheme, which is a pretty hard feature to obtain. However, we believe that finding ring
signatures which follow the more recent and promising techniques of lattice-based cryptography, without the
cumbersome zero-knowledge proofs used in code-based cryptography, is of independent interest.

Our Contributions. In this paper we present a lattice-based ring signature algorithm. As in the other
lattice-based ring signature schemes, each signature and verification key is composed of a linear amount of
sub-elements in the ring size.

Our main contribution is that our scheme is the first one to be based on Lyubashevsky’s approach to
lattice-based signature [16–18]. This is interesting from a theoretical point of view for two reasons. First, it
is one of the major approaches to build standard signatures and no ring signature was until now based on it.
Second, as Lyubashevsky’s signatures, our scheme uses a weak trapdoor (a uniformly random lattice with
a single syndrome) without Stern’s zero-knowledge proofs (previous lattice-based schemes used either GPV
strong trapdoors or Stern’s proofs).

We describe our scheme as a modification of the scheme of ASIACRYPT 2009 [17]. The ideas and proofs
can be re-used for the more recent schemes of [18], but the whole presentation gets trickier and the practical
benefits are of limited interest (unlike in the standard signature setting).

As a second contribution we present a modification of our scheme, which can be applied to other lattice-
based ring signature schemes to provide unforgeability in the insider corruption setting, even if the ring is of
polynomial size in the security parameter. To the best of our knowledge this is the first time such a security
property is obtained with lattice-based schemes.

Indeed, the schemes of Kawachi et al., Cayrel et al. and Brakerski and Kalai only provide a proof for the
fixed ring or chosen subring attack settings. Wang and Sun provide a proof for insider corruption which only



works for log-sized rings. More precisely, the advantage of the SIS attacker in their proof is in O(1/
(
qE
qE/2

)
),

qE being an upper-bound on the ring size (see first line of the Setup step in the proof of Theorem 2 in [25]).
The third contribution we would like to mention is that our ring signature scheme provides unconditional

anonymity even if the secret key of the signer and the public parameters have not been generated following
the key generation process (in fact, even if they are adversarially chosen). In the light of recent results on
the high percentage of unsure RSA keypairs [14], we find such a result a reassuring property for the users of
a ring signature scheme.

Finally, we would like to note that the underlying scheme on which we are based seems to be more efficient
than the schemes on which the alternative works are based. However, all ring signature lattice-based schemes,
including ours, are still pretty unpractical and in any case far behind the best results of number theoretic
schemes, such as [5], in size as well as in versatility. We therefore focus on the theoretical contributions and
leave aside practical parameter comparisons.

2 Preliminaries

2.1 Notations

Polynomials and vectors of polynomials. Let Zp denote the quotient ring Z/pZ. In this work we build
our cryptographic construction upon the ring D = Zp [x] /〈xn + 1〉; where xn + 1 is irreducible, n is a power
of two, and p is a prime such that p = 3 mod 8. The elements of D will be represented by polynomials of
degree n− 1 having coefficients in {−(p− 1)/2, . . . , (p− 1)/2}.

We will denote polynomials by roman letters (a, b, . . .), vectors of polynomials will be denoted by a roman

letter with a hat (â, b̂, . . .). Let m some positive integer such that, a1, . . . , am are polynomials in D, then we
can write â = (a1, . . . , am). For any polynomial a, the infinity norm `∞ is defined by ‖a‖∞ = maxi|a(i)|,
with a(i) the coefficients of the polynomial, and for a vector of polynomials by ‖â‖∞ = maxi‖ai‖∞.

Sets. For a positive integer i, [i] denotes the set {1, . . . , i}. For a given set S, the notation x← S represents
a uniformly random sample from the set, and for a given randomized algorithm x← RandomizedAlgorithm

represents a sampling from the possible outputs following the distribution given by the algorithm.
In our scheme, forgery attacks become easier as the ring size grows (this is also true for other schemes).

We therefore suppose that there is a constant c such that acceptable ring sizes are bounded from above by
kc, k being the security parameter. As signature and verification key sizes have an amount of sub-elements
proportional to the ring size the reader can replace c by 1 or 2 which will cover any reasonable use of these
signatures. The table below defines different sets we use and the parameters associated to these sets.

n power of 2 greater than the security parameter k

p prime of order Θ(n4+c) such that p ≡ 3 mod 8

mu (3 + 2c/3) logn

m (3 + 2c/3)nc logn

Dh {g ∈ D : ‖g‖∞ ≤ mn1.5 logn+
√
n logn}

Dy {g ∈ D : ‖g‖∞ ≤ mn1.5 logn}
Dz {g ∈ D : ‖g‖∞ ≤ mn1.5 logn−

√
n logn}

Ds,c {g ∈ D : ‖g‖∞ ≤ 1}

Table 1. Sets and parameters.

Rings and random oracles. Each keypair of the ring signature scheme is in any protocol, game or ex-
periment we may present always uniquely defined by an integer (its index). We define a ring R as a set of
verification keys. We consider that there is a bijection between users and keypairs and sometimes we will



implicitly use this bijection saying that a user belongs to a ring. We also define #R as the size of the ring
(i.e. the amount of verification keys it contains), and as index(R) the set of integers corresponding to the
indexes of the verification keys in R (each keypair being uniquely defined by its index).

H : {0, 1}∗ → Ds,c denotes a random oracle. We describe a ring R = {pki1 , . . . , pki#R}, for example when
using it as input to the random oracle, by desc(pki1)‖ . . . ‖desc(pki#R) where desc(pk) is a binary description
of a public key, ‖ is the concatenation operator and i1 < · · · < i#R (the representation is thus unique). When
possible we will just skip desc() in such notations, f1‖f2 meaning the concatenation of the description of
functions f1 and f2.

2.2 Collision-Resistant Hash Functions

In [15] Lyubashevsky and Micciancio introduced a family H of collision-resistant hash functions with security
based on the worst-case hardness of standard lattice problems over ideal lattices.4

Definition 1. For any integer m and D× ⊆ D, let H(D, D×,m) = {hâ : â ∈ Dmu} be the function family
such that for any ẑ ∈ Dmu

× , hâ(ẑ) = â · ẑ =
∑
aizi, where â = (a1, ..., am) and ẑ = (z1, ..., zm) and all the

operations aizi are performed in the ring D.

Note that hash functions in H(D, D×,m) satisfy the following two properties for any ŷ, ẑ ∈ Dmu and
c ∈ D:

h(ŷ + ẑ) = h(ŷ) + h(ẑ) (1)

h(ŷc) = h(ŷ)c (2)

Moreover, when the input domain is restricted to a strategically chosen set Dmu
× ⊂ Dmu , the function family

is collision resistant. We first introduce the collision finding problem and then present the security reduction
result for a well-chosen D×.

Definition 2 (Collision Problem). Given an element h ∈ H(D, D×,m), the collision problem Col(h,D×)
(where D× ⊂ D) asks to find distinct elements ẑ1, ẑ2 ∈ D× such that h(ẑ1) = h(ẑ2).

It was shown in [15] that, when D× is restricted to a set of small norm polynomials, solving Col(h,D×)
is as hard as solving SV Pγ(L) in the worst case over lattices that correspond to ideals in D.

Theorem 1 (Theorem 1 in [17], applied to our setting). Let D be the ring Zp [x] / 〈xn + 1〉 for n
a power of two. Define the set D× = {y ∈ D | ‖y‖∞ ≤ d} for some integer d. Let H(D, D×,m) be a hash
function family as in Definition 1 such that m > log p

log 2d and p ≥ 4dmn1.5 log n. If there is a polynomial-time

algorithm that solves Col(h,D×) for random h ∈ H(D, D×,m) with some non-negligible probability, then
there is a polynomial-time algorithm that can solve SV Pγ(L) for every lattice corresponding to an ideal in
D, where γ = 16dmn log2 n.

In this paper we will set d = mn1.5 log n +
√
n log n, D× = Dh, and n, p,m as suggested in Table 1.

This ensures that the conditions required by the above theorem are verified and that finding collisions for
H(D, Dh,m) implies an algorithm for breaking SV P in the worst-case over ideal lattices for polynomial gaps
(in n and therefore in k).

In the ring signature scheme we present, the manipulated hash functions will always belong to sets
H(D, Dh,m

′) with m′ ≤ m. It is important to note that if an attacker is able to solve the above problem for
m′ ≤ m he can also solve it for m. Indeed, when given a challenge h ∈ H(D, Dh,m) the attacker can puncture
the tuple of polynomials describing h, to obtain a tuple of m′ polynomials, solve the collision problem for
m′ and the pad the obtained solution with zeros on the punctured coordinates to obtain a solution to the
problem for h.

4 In this work, by ideal lattices, we make reference to the discrete subgroups of Zn
p that can be mapped from ideals

in rings of the form Zp [x] /〈f〉 for some irreducible polynomial of degree n. The mapping between ideals and ideal
lattices is trivially derived from the canonical isomorphism between polynomials v(0) + v(1)x+ . . .+ v(n−1)xn−1 in
Zp[x]/〈f〉 and vectors v = (v(0), . . . , v(n−1)) in Zn

p .



2.3 Statistical Distance

The statistical distance measures how different are two probability distributions. In this paper we will use
this tool to prove that the ring signature scheme presented is anonymous.

Definition 3 (Statistical Distance). Let X and X ′ be two random variables over a countable set S. We
define by:

∆(X,X ′) =
1

2

∑
x∈S
|Pr[X = x]− Pr[X ′ = x]|

the statistical distance between X and X ′.

One important property of the statistical distance is that it cannot be increased by a randomized algorithm
which is formalized by the following proposition.

Proposition 1 (Proposition 8.10 in [19]). Let X,X ′ be two random variables over a common set A. For
any (possibly randomized) function f with domain A, the statistical distance between f(X) and f(X ′) is at
most

∆(f(X), f(X ′)) ≤ ∆(X,X ′).

This proposition implies that if the statistical distance of two families of random variables (Xk) and (X ′k)
is negligible,5 an attacker given a sample will only obtain a negligible advantage over a wild guess when
trying to distinguish between the distributions of (Xk) and the ones of (X ′k). Note that the proposition
above does not make any assumption on the computational complexity of f and thus this is true whether
the attacker is computationally bounded or unbounded.

Note that the statistical distance may grow if we consider multiple variables. It is easy to verify from
definition 3 that if X,Y follow a distribution φ and X ′, Y ′ a distribution φ′, we have

2∆(X,X ′) ≥ ∆((X,Y ), (X ′, Y ′)) ≥ ∆(X,X ′). (3)

Thus, if an attacker is given many samples of the same distribution he may be able to distinguish better
than with just one sample. More specifically, using (3) iteratively, if the attacker is given #s samples of the
same distribution and the families of random variables have an upper-bound ε(k) on the statistical distance,
the advantage over a wild guess for such an attacker will be bounded from above by #s ∗ ε(k).

In Section 4.1 we prove that, for our scheme, the signatures of two different users have a statistical
distance which is exponentially small in k and thus, even a computationally unbounded attacker given an
exponential amount of signatures of the same user will have a negligible advantage over a wild guess when
trying to break anonymity.6

Attacker with additional information. An attacker trying to distinguish between the distributions of
two random variables Xk, X ′k may have some extra information which we model as a third random variable
Zk. This information may for example be obtained during an indistinguishability game prior to obtaining a
sample (e.g. two public keys). If Xk and X ′k are not dependent on Zk, this extra information is of no use to
the attacker as then, using proposition 8.8 from [19], ∆((Xk, Zk), (X ′k, Zk)) = ∆(Xk, X

′
k) and therefore we

still have ∆(f(Xk, Zk), f(X ′k, Zk)) ≤ ∆(Xk, X
′
k).

If Xk or X ′k depend on Zk (as signatures depend on the public keys in our case) we cannot use the same
argument, as proposition 8.8 from [19] only applies to independent variables. However, noting Xk,z and X ′k,z
the random variables conditioned on Z = z, if we have an upper-bound

∆(Xk,z, X
′
k,z) < ε(k)

5 i.e. asymptotically bounded from above by k−c for any c, k being the security parameter.
6 For example for 2k/2 samples, and ε(k) = 2−k we have #s ∗ ε(k) = 2−k/2.



which is independent of z it is also an upper-bound for ∆(f(Xk, Zk), f(X ′k, Z
′
k)). Indeed, we have

∆(f(Xk, Zk), f(X ′k, Zk)) ≤ ∆((Xk, Zk), (X ′k, Zk))

=
1

2

∑
x,z

|Pr[(Xk, Zk) = (x, z)]− Pr[(X ′k, Zk) = (x, z)]|

=
1

2

∑
z

Pr[Zk = z]
∑
x

|Pr[Xk = x | Zk = z]− Pr[X ′k = x | Zk = z]|

=
∑
z

Pr[Zk = z]∆(Xk,z, X
′
k,z)

∆(f(Xk, Zk), f(X ′k, Zk)) ≤ ε(k).

Note that the upper bound is valid independently of the distribution followed by Zk, and thus we can include
in this random variable parameters adversarially chosen by the attacker.

2.4 Ring Signature Schemes: Definitions and Properties

A ring signature schemes gives means to individual users to define an arbitrary set of public keys R (the
ring), and issue a signature using a secret key associated to one of the public keys in the ring. Using the set
R and a verification algorithm it is possible to verify that a signature has been issued by a member of the
ring (i.e. by a user who knows a secret key associated to one of the public keys in R), but it is not possible
to learn whom.

Ring Signature Scheme. We will describe a ring signature scheme by triple of algorithms (Ring−gen,
Ring−sign, Ring−verify):

– Ring−gen(1k): A probabilistic polynomial time algorithm that takes as input a security parameter k,
outputs a a public key pk and a secret key sk. For many schemes, the users in a ring must share in
common some public information derived from k. We thus suppose that Ring−gen(1k) has two sub-
algorithms: Ring−gen−params(1k) which generates a set of public parameters P which are used in all
the algorithms; and Ring−gen−keys(P) which generates keypairs based on the public parameters. We
suppose that the constant c is defined in the description of the scheme (we could also define it as an
input parameter of Ring−gen−params).

– Ring−sign(P, sk, µ,R): A probabilistic polynomial time algorithm that takes as input a set of parameters
P, a signing key sk, a message µ ∈ M (M being the message space of the scheme) and a set of public
keys R (the ring). It returns a signature σ for µ under sk, or failed.

– Ring−verify(P, σ, µ,R): A deterministic algorithm that takes as input a set of parameters P, a ring
signature σ on a message µ and a set of public keys R, and outputs 1 or 0 for accept or reject respectively.

We require the following correctness condition: for any k, any ` (bounded by a polynomial in k), any
P ∈ Ring−gen−params(1k), any {(pki, ski)}i∈[`] ⊂ Ring−gen−keys(P), any i0 ∈ [`], any message µ, and
any σ ∈ Ring−sign(P, ski0 , µ, {pki}i∈[`]), σ 6= failed, we have Ring−verify(P, µ, σ, {pki}i∈[`]) = 1. Moreover,
in order to be considered secure, a ring signature scheme must satisfy some anonymity and unforgeability
properties. Our goal will be to obtain the following two properties:

Anonymity. In [3], Bender et al. define various levels of anonymity for a ring signature scheme. Among
them the highest is anonymity against full key exposure. The authors of [3] use the same definition for two
levels of security (attribution attacks and full-key exposure) which results in a definition which is slightly
too complex for our needs. We use here a definition which is stronger and as a consequence, much simpler.
Indeed, we do not need to define a signing or corruption oracle as the attacker knows all the secrets and can
thus simulate both oracles effectively, and we don’t have a first step in which the challenger generates the
parameters and keys as these can be adversarially chosen. The definition is given by the following game:



Unconditional Anonymity Against Chosen Setting Attacks

1. A outputs a set of public parameters P = (k, n,mu, p, S), a ring R = {pk1, . . . , pk`} for ` in [kc], two
distinct indices i0, i1 ∈ [kc], two secret keys ski0 , ski1 , and a message µ.

2. Two signatures σ0 ← Ring−sign(P, ski0 , µ,R), σ1 ← Ring−sign(P, ski1 , µ,R) are generated and a random
bit b is chosen. If σ0 6= failed and σ1 6= failed, A is given σb, else the game is restarted.

3. A outputs a bit b′ and succeeds if b′ = b.

The ring signature scheme achieves unconditional anonymity against chosen setting attacks if any adversary
A has an advantage with respect to a wild guess which is negligible in the security parameter k.

This definition can be easily generalized to the case in which the adversary is given sets of samples instead
of a single sample. In order to simplify the definition we use just one sample, but the proofs of Section 4.1
show that the anonymity is ensured even if the attacker is given an exponential amount of samples.

Unforgeability. In [3] different notions of unforgeability are introduced. We present here all of them as
going from the simplest to the most complex definition helps in the presentation.

For a ring signature scheme with ` members, the unforgeability against fixed-ring attacks is defined using
the following experiment. The challenger firstly runs the algorithm Ring−gen to obtain compatible keypairs
(pk1, sk1), . . . , (pk`, sk`) for the signature scheme and sends R = {pki}i∈[`] to the forger. The forger can
then make polynomially many signing queries. A ring signing query is of the form (isigner, µ,R) for varying
µ ∈ M, isigner ∈ index(R). The challenger replies with σ ← Ring−sign(P, skisigner , µ,R). Finally the forger
outputs (σ?, µ?, R) and it wins if Ring−verify(P, σ?, µ?, R) outputs accept and µ? is not one of the messages
for which a signature was queried.

An intermediate, stronger, definition is unforgeability against chosen subring attacks in which signing
queries and the final forgery can be done with respect to any subring S ⊂ R. The strongest definition
proposed is unforgeability with respect to insider corruption. In this setting, signing queries can be done
with respect to any ring (i.e. the attacker can add to these rings adversarially generated public keys). The
attacker is also given a corruption oracle that for any i ∈ index(R) returns ski. Forgeries are valid if they
do not correspond to a signing query, the subring of the forgery is a subset of R, and none of the secret keys
of the subring have been obtained through the corruption oracle.

In this paper we will first show that the proof of [16] can be adapted to our scheme in order to prove
unforgeability with respect to subring attacks. We will then prove that for an alternative version of this
scheme it is also possible to ensure unforgeability with respect to insider corruption.

3 Our Scheme

3.1 Informal Description

In this section we first provide a high-level description of the tree-less signature scheme in [16], and then we
show how to transform it into a ring signature scheme. In [16], the signer has as (secret) signing key ŝ and
a (public) verification key (h, S) such that h(ŝ) = S. The domains to which these keys belong will be made
explicit later.

To make a signature of some message µ, the signer will prove that he can:

– Choose a random vector of polynomials ŷ (which he does not reveal)
– Output a vector of polynomials whose difference with ŷ is ŝ (his secret key) times a small polynomial e

that is not of his choice



In order to do this the signer will select some random ŷ, compute e = H(h(ŷ), µ) and output (ẑ, e) with
ẑ = ŝe + ŷ. The verifier tests that e = H(h(ẑ) − Se, µ). This is true for a correct signature thanks to the
linearity of h as h(ẑ)− Se = h(ŝe+ ŷ)− Se = h(ŷ) + Se− Se = h(ŷ).

To obtain a ring signature from this scheme we make two major modifications. The first one is to ensure
that each user has in his public key a function hi that satisfies hi(ŝi) = S where ŝi is the secret key and
S is a fixed standard polynomial (not null). Consider a ring R = {hi}i∈[`]. The second modification keeps
the real signer anonymous when he signs a message. We do this by simply adding ` − 1 random variables
that will corresponds to the ring members except the real signer. For example, suppose that the real signer
is indexed by j ∈ [`], the signer sends the signature (ẑi; i ∈ [`], e) with e = H(

∑
i∈[`] hi(ŷi), µ), ẑj = ŝje+ ŷj

and ẑi = ŷi for i ∈ [`] \ {j}. Therefore, the final signature will contain [`] elements one for each member
in the ring. Now we go gack to the first modification and we will show its utility in the correctness of the
scheme. In the verification step, the verifier checks if the hash value of (

∑
i∈[`] hi(ẑi) − Se, µ) is equal to e.

Note that this will be true only if
∑
i∈[`] hi(ẑi) − Se is equal to

∑
i∈[`] hi(ŷi). In fact using the linearity of

hj we have hj(ẑj) = hj(ŝje+ ŷj) = hj(ŷj) + Se. Since all the ring members have key pairs (hi, ŝi) such that
hi(ŝi) = S, the verifier will always accept when one of them produces a ring signature.

In order to resist to chosen subring attacks against unforgeability we must modify the scheme to include
in the random oracle call a description of the ring for which the signature is valid (if not, it is easy to reuse
a signature to generate a forged signature on a larger ring). In order to resist to attacks on adversarially
chosen parameters, the ring signature algorithm starts with an initial step in which the inputs are required
to pass simple tests (bounds on the amount of coordinates, scalar sizes, etc.). The security proofs proposed
by Lyubashevsky must also be modified to take into account the existence of multiple hash functions and
signature elements. Moreover, using modified hash functions also requires that we introduce a few new
lemmas and propositions to complete the proofs.

3.2 A More Formal Description

Ring Signature Scheme

Ring−gen−params(1k):
Given an integer k define the common public parameters.

1. Set n as a power of two larger than k
2. Set mu = 3 log n, and p as a prime larger than n4 such that p = 3 mod 8

— Note: these parameters define the sets D, Dh, Dz, Dy, Ds,c and the family H.
3. Set S ← D, S 6= 0
4. Output P = (k, n,mu, p, S)

Ring−gen−keys(P):
Generate a keypair.

1. Set ŝ = (s1, s2, . . . , smu)← Dmu
s,c

2. If none of the si is invertible, go to 1.
3. Let i0 ∈ {1, . . . ,m} such that si0 is invertible.
4. (a1, a2, . . . , ai0−1, ai0+1, . . . , amu)← Dmu−1.
5. Let ai0 = s−1i0 (S −

∑
i 6=i0 aisi) and note â = (a1, . . . , amu)

6. Output (pk, sk) = (h, ŝ), h being the hash function in H defined by â



Ring−sign(P, sk, µ,R):
Given a message µ ∈ M, a ring of ` members with public keys R = {hi}i∈[`] ⊂ H(D, Dh,mu),
and a private key sk = ŝj associated to one of the public keys hj in R, generate a ring signature
for the message.

0. Verify that: the public parameters respect the constraints of steps 1−3 in Ring−gen−params ;
sk is in Dmu

s,c ; R is of size bounded by kc ; one of the public keys in R is associated to sk.
If the verification fails output failed.

1. For all i ∈ [`]; i 6= j ;ŷi ← Dmu
z

2. For i = j; ŷj ← Dmu
y

3. Set e← H(
∑
i∈[`] hi(ŷi), R, µ) (e is therefore in Ds,c)

4. For i = j, ẑj ← ŝj · e+ ŷj
5. If ẑj /∈ Dmu

z then go to Step 2
6. For i 6= j, ẑi = ŷi
7. Output σ = (ẑi; i ∈ [`], e)

Ring−verify(P, µ,R, σ):
Given a message µ, a ring R = {hi}i∈[`] and a ring signature σ = (ẑi; i ∈ [`], e), the verifier
accepts the signature only if both of the following conditions satisfied:

1. ẑi ∈ Dmu
z for all i ∈ [`]

2. e = H(
∑
i∈{1,...,`} hi(ẑi)− S · e,R, µ)

Otherwise, the verifier rejects.

3.3 Correctness and convergence of the algorithms

The correctness of the signing algorithm is pretty straightforward. Indeed, let σ = (ẑi; i ∈ [`], {hi}i∈[`], e)←
Ring−sign(P, ŝj , µ, {hi}i∈[`]) be a signature with j ∈ [`] and (hj , ŝj) a given keypair. The first test in
Ring−verify is always passed by a valid signature as steps 2 and 5 of Ring−sign ensure that signatures
only contain elements in Dmu

z . With respect to the second test we have:∑
i∈[`]

hi(ẑi)− S · e = hj(ẑj)− S · e+
∑

i∈[`]\{j}

hi(ẑi)

= hj(ŝje+ ŷj)− S · e+
∑

i∈[`]\{j}

hi(ŷi) by replacing ẑj by ŝj · e+ ŷj and ẑi by ŷi,

= hj(ŝj) · e+ hj(ŷj)− S · e+
∑

i∈[`]\{j}

hi(ŷi) using the homomorphic properties of hj ∈ H,

=
∑
i∈[`]

hi(ŷi) as hj(ŝj) = S.

As e = H(
∑
i∈[`] hi(ŷi), {hi}i∈[`],m) the second test of Ring−verify is therefore always satisfied by a valid

signature.

A correctly issued signature is therefore always verified. Let’s consider now the expected running time of
the different algorithms.

Proposition 2. The expected running times of Ring−gen−params, Ring−gen−keys, Ring−sign and Ring−verify
are polynomial in the security parameter.



Proof. All the operations in the different algorithms can be executed in polynomial time in the security
parameter. Thus, Ring−gen−params and Ring−verify run in polynomial time and the only possible issue
would be the amount of iterations in the loops of Ring−gen−keys and Ring−sign.

Lemma 3, proved in the appendix, states that each of the polynomials chosen in step 1 of algorithm
Ring−gen−keys is invertible with probability exponentially close to one and thus the expected amount of
iterations in the associated loop is roughly one. Thus the expected running time of Ring−gen−keys is poly-
nomial.

In Ring−sign the outer loop has a polynomial amount of iterations, on the other hand inner loop between
steps 2 and 5 which will continue as long as ẑj = ŝj · e + ŷj 6∈ Dmu

z . Corollary 6.2 from [16] states that for
any ŝ ∈ Dmu

s ,

P rc←Ds,c,ŷ←Dmuy [ŝc+ ŷ ∈ Dmu
z ] =

1

e
− o(1).

As e and ŷj are drawn uniformly from Ds,c and Dmu
y we can use this result. This implies that the expected

amount of iterations in the inner loop of Ring−sign is less than 3, and therefore that Ring−sign also runs in
expected polynomial time. ut

4 Security of the proposed scheme

4.1 Anonymity

In the anonymity against chosen setting attacks game, the adversary receives a signature which depends on
a random bit b as well as on a set of public parameters P = (k, n,mu, p, S), two secret keys ski0 , ski1 , a
message µ, and a ring of public keys R. All of these parameters have been chosen adversarially except the
random bit b.

Let Xb,P,skib ,µ,R be the random variable that represents the signature received by the adversary for a
given set of parameters. The following theorem states that for any choice of P, ski0 , ski1 , µ,R which does not
result in a game restart, the statistical distance between X0,P,R,ski0 ,µ and X1,P,R,ski1 ,µ is negligible in k.

Theorem 2 (Anonymity). For b ∈ {0, 1}, let Xb,P,skib ,µ,R be the random variable describing the output
of Ring−sign(P, skib , µ,R) with P = (k, n,mu, p, S), skib , µ,R a set of arbitrary inputs to the algorithm. If
the domains of these variables are both different from {failed} we have

∆(X0,P,ski0 ,µ,R, X1,P,ski1 ,µ,R) = n−ω(1).

The proof of this theorem is available on the appendix. Using the properties of statistical distance
presented in Section 3 this implies that our scheme ensures unconditional anonymity against chosen setting
attacks.

4.2 Unforgeability against chosen subring attacks

In this section we will show that an adversary able to break the unforgeability in the chosen subring setting
for our scheme is also able to break the unforgeability of Lyubashevsky’s scheme. Given the results of [16],
this implies an efficient algorithm to solve SV Pγ on ideal lattices (for γ defined as in Theorem 1). It is
important to note that in Table 1 we change the parameters given by Lyubashevsky by increasing m and p,
but the reader can easily check (using the sketch proof of the corollary below) that the proofs given in [16]
are still valid and that the inequalities in Theorem 1 are verified.

Corollary 1 (of Theorems 6.5 and 6.6 in [16]). If there is a polynomial time algorithm that can break
the unforgeability of the signature scheme proposed in [16] for the parameters presented in Table 1, and more
precisely for hash functions with m = nc ∗mu columns, there is a polynomial time algorithm that can solve
SV Pγ for γ = O(n2.5+2c) for every lattice L corresponding to an ideal in D.



Proof (Sketch.). The unforgeability proof of [16] is split in two. First it reduces signature unforgeability from
collision finding and then collision finding from SVP (for a given gap). The first part of the reduction is
given by Theorem 6.6 which is almost unchanged for our parameters. As we have a major modification on
m, the amount of columns of the hash functions, the only point which could raise an issue is when Lemma
5.2 and Theorem 6.5 are used. These prove that for the parameters in [16] there is a second pre-image for
a given output of the hash function with high probability and that signatures using two such pre-images
are indistinguishable. As we increase the amount of columns in the hash functions used, the probability of a
second pre-image and the uniformity of the output are increased and thus we can still use these results.

Therefore using Theorem 6.6 of [16] we can deduce that breaking unforgeability for our parameters implies
finding collisions for the corresponding hash functions. As our hash functions have more columns than in [16]
it is easier to find such collisions than with the original parameters. Using Theorem 1 on our parameters
shows that collision finding can be reduced from SV Pγ for γ = O(n2.5+2c) (instead of O(n2.5) for the original
scheme).

ut

In our ring signature scheme, an unforgeability challenge is a set of verification hash functions defined
by a set of ` tuples of mu polynomials. In Lyubashevsky’s signature scheme an unforgeability challenge is a
single tuple of m′ polynomials. The idea is thus, considering an attacker to our scheme, to set m′ = `×mu,
transform this challenge into a set of ` tuples and show that if we give this as a ring signature challenge to
the attacker, we will obtain with non-negligible probability a valid forgery for Lyubashevsky’s scheme.

The are two key issues. First, the polynomials in the m′-tuple are uniformly random but the polynomials
in the mu-tuples that the attacker expects to receive are not. We address this issue by proving, in Corollary 2,
that the statistical distance between public keys in our ring signature scheme, and hash functions chosen
uniformly at random is negligible. This implies that an attacker able to forge signatures for hash functions
associated to the public keys is also able to forge them for hash functions chosen uniformly at random. Indeed,
if we model the attacker by a randomized function, it cannot increase the statistical distance between the
two families of functions and thus if it succeeds with non-negligible probability for a family he also will for
the other. The second issue is that we do not know the private keys associated to the challenge given to the
attacker but we must be able to answer to his signing queries. We solve this issue simply by programming
the random oracle that the attacker uses.

In order to prove Corollary 2, we will use the following theorem.

Theorem 3 (Adapted from [23], Theorem 3.2). For g1, . . . , gmu−1 ∈ D, we denote by F (g1, . . . , gmu−1)
the random variable

∑
i∈[mu−1] sigi ∈ D where s1, . . . , smu−1 are chosen uniformly at random in Ds,c. Noting

U1, . . . , Umu independent uniform random variables in D, we have

∆((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ 1

2

√(
1 +

( p

3mu−1

)n/2)
− 1

Proof. Just apply Theorem 3.2 from [23] to our setting, using the fact that by Lemma 2.3 from [23] our
choice of parameters ensures that xn + 1 = f1f2 mod p where each fi is irreducible in Zp [x] and can be
written fi(x) = xn/2 + tix

n/4 − 1 with ti ∈ Zp.
ut

Corollary 2 (Uniformity of the public key). Let XP be a random variable describing the distribution of
the hash functions resulting from the key generation algorithm Ring−gen−keys(P) and U1, . . . , Umu denote
independent uniform random variables in D. Then

∆ (XP , (U1, . . . , Umu)) ≤ n−ω(1).

Proof. We describe a hash function hâ by the set of polynomials â = (a1, . . . , amu). We suppose, w.l.o.g.
that (a1, . . . , amu) = (a1, . . . , amu−1, s

−1
mu(S −

∑
i∈[mu−1] aisi)), where ŝ = (s1, . . . , smu) is the secret key

corresponding to hâ.



We first note that the function on the right side of the inequality in Theorem 3 is negligible for our
parameters as p = Θ(n4+c) and 3mu−1 = 3(3+2c/3) log2 n/3 = n(3+2c/3) log2 3/3 > n4.5+c/3. Thus, using
Theorem 3, we have

∆((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ n−ω(1).

Proposition 1 states that a function cannot increase the statistical distance. Noting f(g1, . . . , gmu) the func-
tion that leaves unchanged the mu − 1 first coordinates and replaces gmu by s−1mu(S − gmu) we get

∆(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) ≤ n−ω(1).

To prove the corollary we just need to note that f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)) has exactly the same
distribution as XP , and f(U1, . . . , Umu) the same as (U1, . . . , Umu). The first assertion is trivially true given
the Ring−gen−keys algorithm. The second one comes from the fact that adding an element (in our case S)
or multiplying by an invertible element (in our case s−1mu) in D just permutes the elements of the ring and
thus the uniform distribution remains unchanged. We therefore have

∆(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) = ∆(XP , (U1, . . . , Umu))

and thus, ∆(XP , (U1, . . . , Umu)) ≤ n−ω(1).
ut

We are now ready to prove our theorem on unforgeability against chosen subring attacks.

Theorem 4. If there is a polynomial time algorithm that can break the unforgeability under chosen subring
attacks of the ring signature scheme described in Section 3.2 for the parameters presented in Table 1, there
is a polynomial time algorithm that can solve SV Pγ(L) for γ = Õ(n2.5+2c) for every lattice L corresponding
to an ideal in D.

Proof (Sketch.).
Suppose that we have an adversary A that can output a forgery for the ring signature scheme with

non-negligible advantage in the chosen subring setting. Given Corollary 1, it is enough to prove that using
A, we can construct a polynomial time adversary B that outputs a forgery for Lyubashevsky’s scheme with
non-negligible advantage for the parameters given in Table 1.

Setup: B is given as a challenge a description of a hash function (namely a tuple of m′ = `×mu polynomials
(a1, . . . , a`×mu) in D), an element S of D, and access to the random oracle HL of the signing algorithm. B
splits the set of polynomials in ` sets of mu polynomials (ai,1, . . . , ai,mu) for i ∈ [`]. Finally, B initializes A
by giving it the set of tuples generated, the public parameters associated (among which S) and access to the
ring signature random oracle H which it controls.
Query Phase: B answers the random oracle and signing queries of A as follows. For each random oracle
query (xy, xh, xm) it will test whether it has already replied to such a query. If so, it will reply consistently.
If not, it will reply with HL(xy, xh‖xm), ‖ being the concatenation operator and store the result. For each
signing query ({hi}i∈T , i0, µ) for i0 ∈ T ⊆ [`], B programs H to produce a signature. In other words:

1. It follows the steps of the signature by generating a set of ŷi ← Dmu
y for i ∈ T

2. It generates at random r ← Ds,c

3. It checks whether HL has been called with parameters (
∑
i hi(ŷi)− S · r, {hi}i∈T ‖µ) (if so it aborts)

4. It programs the random oracle H so that H(
∑
i hi(ŷi)− S · r, {hi}i∈T , µ) = r, and stores the result

5. Finally, it outputs (ŷi; i ∈ T, r).

Forgery Phase: At a given point, A finishes running and outputs a forgery ((ẑi; i ∈ T, e), µ, {hi}i∈T ), for
T ⊆ [`] with non-negligible probability. B just pads the remaining coordinates of the signature with null
polynomials ẑi = 0 for i ∈ [`]\T and outputs ((ẑ1‖ · · · ‖ẑ`, e), µ), ẑ1‖ · · · ‖ẑ` being the vector of polynomials
resulting from the concatenation of each of the vectors of polynomials ẑi.



Analysis: In this analysis we will detail completely the reasoning but just sketch the statistical arguments
as they are pretty standard and easy to verify.

First of all, note that in step 3 of the protocol above there is the possibility of an abort. The probability
of this event is negligible. Indeed, given the sizes of Dy and pn, mu is large enough to ensure by leftover hash
lemma [4] that

∑
i hi(ŷi)− S · r is within negligible distance from an uniformly random distribution. Thus,

the probability that A has generated beforehand a query colliding with the one of the protocol is negligible.

In order to prove that A will output a ring signature forgery with non-negligible probability we must
show that all the inputs it receives are within negligible statistical distance to the ones it would have received
in a ring signature challenge. Once this is proved, we must show that the final forgery that B outputs is valid
in the basic signature scheme.

First note that by Corollary 2 and using equation (3) of Section 3, we have that the challenge given to
A is within negligible statistical distance to the one it has in a ring signature challenge. Another family
of inputs to consider are the signatures generated by B. These signatures are trivially valid for the given
random oracle. Following the same ideas as those used in Theorem 2 we have that these signatures are
withing negligible statistical distance from a signature generated using the signing algorithm (omitted). The
last inputs to consider are the ones coming from the random oracle H which are pairs (preimage, image)
of the graph of H. All of the images of H are chosen uniformly at random over Ds,c. The issue is that
we have programmed H and thus, in our protocol the first coordinate of the pre-image and the image are
related. However, using the leftover hash lemma as in the first paragraph of this analysis (when considering
aborts) we have that we add to this coordinate

∑
i hi(ŷi) which is close to uniform and independent of the

image. This implies that (omitting the coordinates set by A with his query), the pairs (preimage, image)
are statistically close to uniform.

We therefore can ensure that A outputs a forgery for the ring signature scheme with non-negligible
probability and the only issue left to prove is the validity of the forgery given by B. The basic idea we will
use in the rest of this proof is that in the forgery ((ẑi; i ∈ T, e), µ, {hi}i∈T ) that A outputs, if e has been
obtained during a direct call to the random oracle we can prove that the forgery is valid in the basic signature
scheme. If not, we use the same ideas than in Theorem 6.6 of [16].

A wild guess of e can only happen with negligible probability. Indeed, as Ds,c is exponentially large, if
H has not been queried the probability that the output of A will give e when using H in the verification
step is exponentially small. If we therefore suppose that e has been obtained through a call to H there are
two possibilities: either e has been generated during a signing query, or it has been generated during a direct
random oracle query. We leave the latter option for the end of the proof.

Suppose e has been generated during a signing query which resulted in an output (ẑ′i; i ∈ T ′, e) for a ring
{hi}i∈T ′ and a message µ′. In order to be valid, the forgery must be different from ((ẑ′i; i ∈ T ′, e), µ′, {hi}i∈T ′)
and thus we must have either {hi}i∈T ′‖µ′ 6= {hi}i∈T ‖µ or (ẑ′i; i ∈ T ′) 6= (ẑi; i ∈ T ). The former case can only
happen with negligible probability as it implies a collision for H. Indeed, {hi}i∈T ′‖µ′ 6= {hi}i∈T ‖µ implies
{hi}i∈T ′ 6= {hi}i∈T or µ′ 6= µ and in both cases we have a collision as H(

∑
i∈T ′ hi(ẑ

′
i)− S · e, {hi}i∈T ′ , µ′) =

H(
∑
i∈T hi(ẑi) − S · e, {hi}i∈T , µ) = r (we have twice the same image for two pre-images that are different

either in the second or the third coordinate). In the latter case, using the same reasoning, the first coordinate
of H is the same in the two cases with overwhelming probability and thus we have

∑
i∈T ′ hi(ẑ

′
i) − S · e =∑

i∈T hi(ẑi)−S ·e for (ẑ′i; i ∈ T ′) 6= (ẑi; i ∈ T ). Setting ẑi = 0 for i ∈ [`]\T and ẑ′i = 0 for i ∈ [`]\T ′ we obtain
a collision for a random hash function of H(D, Dh, `). If this event happens with non-negligible probability,
using Theorem 1 we deduce that we can solve SV Pγ .

We conclude this proof by working on the case in which e has been generated during a direct random
oracle query. We have the forgery ((ẑi; i ∈ T, e), µ, {hi}i∈T ) and as the ring signature must be valid we
have H(

∑
i∈T hi(ẑi) − S · e, {hi}i∈T , µ) = e. Noting xy =

∑
i∈T hi(ẑi) − S · e and given the algorithm

followed by B, we also have HL(xy, {hi}i∈T ‖µ) = e. If we pad the ẑi with ẑi = 0 for i ∈ [`]\T we still
have

∑
i∈[`] hi(ẑi) − S · e = xy and thus HL(

∑
i∈[`] hi(ẑi) − S · e, {hi}i∈T ‖µ) = e. We therefore have that

σ′ = (ẑ1‖ · · · ‖ẑ`, e) is a signature of µ′ = {hi}i∈T ‖µ and, as we have not done any signing query in the basic
signature scheme, (σ′, µ′, [`]) is a valid forgery.



4.3 Unforgeability against insider corruption attacks

Suppose that we have an algorithm A able to break the unforgeability of our scheme with insider corrup-
tion attacks. We would like to prove again that there exists an algorithm B which using A can break the
unforgeability of the underlying basic signature scheme. The main issue is that when B gets the challenge
from the basic signature scheme he can split the tuple of polynomials but he does not know the signing keys
associated to those split tuples and thus he cannot answer to the corresponding corruption queries.

One idea would be to pass to A modified versions of these tuples so that B knows the signing keys
associated to them, but we have been unable to find a way to use the final forgery with such a strategy. A
more standard approach to solve this issue is the one used by Wang and Sun in [25], which consists in giving
to A more tuples than the ones obtained from splitting the initial challenge. These additional tuples are
generated using the key generation algorithm and B knows the associated signing keys. If there are enough
of them it is feasible to obtain a run from A in which all the corruption queries correspond to tuples for
which B has the signing key.

Unfortunately, this creates a new issue in [25] as well as in our case. If we have a lot of tuples which do
not correspond to the challenge then, for some strategies of A which are plausible, the final forgery is for a
ring which contains tuples which were not in the challenge with overwhelming probability. In some number
theory schemes this is not an issue, but in our case such forgeries are useless as B could have generated them
(as the statistical distance between ring signatures by different members of the ring is negligible).

In the end, if the ring size for which A works is polynomial in the security parameter, for some strategies
of A (in particular if he corrupts half of the ring and gives a ring signature for the other half), all the
trade-offs fail. If we have a super logarithmic amount of new tuples there is an overwhelming probability
to have a forgery for an inappropriate ring, and if not there is an overwhelming probability that B will be
unable to answer to some of the corruption queries.

Our approach In order to solve these issues we modify the key generation process. Each user generates
a set of k verification keys, k being the security parameter. Among these keys k/2 are generated through
the original key generation algorithm Ring−gen−keys, and the user stores the associated signing keys. The
other k/2 verification keys are just uniformly chosen hash functions. The k verification keys are numbered,
the order being chosen at random (mixing both types of keys).

Ring−gen−keys−ic(P):

1. Choose randomly a subset T ⊂ [k] of size k/2.
2. For i ∈ T , set pki ← H(D, Dh,m) and ski = 0.
3. For i ∈ [k]\T , set (pki, ski)← Ring−gen−keys(P).
4. Output (pk, sk) = ({pki}i∈[k], {ski}i∈[k]).

For a set of users S ⊂ Z (we associate users to integers), we define fulldesc(S) as a description of the
full set of verification keys of the users of S.

When signing a message µ for a set of users S, the user calls a first random oracle with input (µ, fulldesc(S)).
The output of this random oracle is {Tσ,i}i∈S , a set of subsets of [k], each of them of size k/2. In order to
sign, the user will create a ring of verification keys T which includes for each user i the subset of verification
keys indexed by Tσ,i.



Ring−sign−ic(P, sk, µ,R):

0. Verify that: the public parameters respect the constraints of steps 1−3 in Ring−gen−params
; each ski ∈ sk is inDmu

s,c ;R is of size bounded by kc ; one of the public keys inR is associated
to sk. If the verification fails output failed.

1. Set {Tσ,i}i∈R ← Hσ(µ, keys(R))
2. Define keys(T ) = (pki,j)i∈R,j∈Tσ,i
3. Let i0 denote the index of the signer in R. Choose randomly ski ∈ sk with i ∈ Tσ,i0 such

that ski 6= 0. If none exists, abort.
4. Output Ring−sign(P, ski, µ, T ).

Note that since the random oracle chooses k/2 verification keys of the signer at random, the probability
that they all are uniformly chosen random hash functions is exponentially small and thus the probability of
an abort in Step 3 is negligible.

The adaptation of the verification algorithm to this new setting is straightforward.

Sketch of proof in the insider corruption setting We just outline the ideas of the proof which can be
obtained by small modifications in the proof of Theorem 4.

We use an insider corruption attacker to break a challenge of Lyubashevsky’s signature. In order to do this
we get as a challenge a tuple of m′ = k/2× `×mu polynomials. We use them in our ring signature algorithm
instead of the uniformly chosen hash function obtained in the usual key generation process. The rest of
the keys are generated according to Ring−gen−keys−ic (i.e. through the original algorithm Ring−gen−keys).
Note that as half of the verification keys of each user are generated using this algorithm, we can answer to
the corruption queries of the attacker.

In order to answer to the challenge we want the attacker to output a signature that only uses as verification
keys the ones corresponding to the challenge and none of the ones generated by Ring−gen−keys. The main
idea is to call the attacker with a controlled random oracle Hσ, pre-generate a polynomial number of the
outputs of this oracle sampling uniformly its range and guess which one of these outputs will be used in the
forgery. There is a polynomial loss in the reduction but using this approach we can then order the keys of
the different users so that if the attacker uses the random oracle reply we expect, he will only use keys for
which we do not have the associated signing key. When this happens (after a polynomial number of calls to
the attacker), we obtain a forgery which can be used to answer the initial challenge.
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A Proof of Theorem 2

The contents of this section are closely related to Theorem 6.5 in [16], and the associated proof, which deals
with statistical distance between signatures with two related secret keys in the signature scheme we are



based on. The first major difference when dealing with statistical distance comes from the fact that we do
not have a single random polynomial y ← Dmu

y (resp. a random hash function) but a set of ` polynomials
(resp. a set of hash functions) on each signature. The second major difference is that we have to verify that
the adversarial nature of some parameters does not result in an explosion of the statistical distance. In order
to make that clear we first introduce a lemma that we will need in the main proof.

In order to get lighter notations we will denote the random variables of the theorem X0 and X1 dropping
the other parameters. As the output of the ring signature algorithm is a vector of `+ 1 coordinates we will

note X
(i)
b for i ∈ [`+ 1] and b ∈ {0, 1} the random variable associated to the i-th coordinate of Xb. Suppose

that none of these variables has {failed} as domain. We can then guarantee that the parameters given
in the theorem verify the properties tested on step 0 of the algorithm Ring−sign. We will say that these
parameters have passed the sanity check.

As in [16], we therefore start by noting that the set

Ds,c(ski0 , ski1) = {c ∈ Ds,c : ‖ski0c‖∞, ‖ski1c‖∞ ≤
√
n log n}

has a cardinality negligibly close (in a relative sense) to the one of Ds,c. As the secret keys have passed the
sanity check, they belong to Ds,c and therefore, even if they are chosen adversarially, Lemma 1 guarantees
that

|Ds,c(ski0 , ski1)|
|Ds,c|

= 1− n−ω(1). (4)

Note that n is also an adversarially chosen parameter but, again, the sanity check ensures that n ≥ k and
thus that n−ω(1) is a negligible function. Splitting the statistical distance in two we get

∆ (X0, X1) =
1

2

∑
α̂i∈Dmuz ;i∈[`],β 6∈Ds,c(ski0 ,ski1 )

|Pr [X0 = (α̂i; i ∈ [`], β)]− Pr [X1 = (α̂i; i ∈ [`], β)] | (5)

+
1

2

∑
α̂i∈Dmuz ;i∈[`],β∈Ds,c(ski0 ,ski1 )

|Pr [X0 = (α̂i; i ∈ [`], β)]− Pr [X1 = (α̂i; i ∈ [`], β)] |. (6)

In order to prove that the statistical distance is negligible, we will first prove that (5) is negligible and
then that (6) is equal to zero. The first assertion is almost trivial, as the last coordinate in the signature
comes from a random oracle and thus the probability it does not belong to Ds,c(ski0 , ski1) is negligible.
Noting that this is true for X0 as for X1 and that

∑
|Pr [X0 = (α̂i; i ∈ [`], β)]− Pr [X1 = (α̂i; i ∈ [`], β)] | ≤∑

Pr [X0 = (α̂i; i ∈ [`], β)] +
∑
Pr [X0 = (α̂i; i ∈ [`], β)] we can prove that

(5) ≤ 1− |Ds,c(ski0 , ski1)|
|Ds,c|

= n−ω(1). (7)

More formally, we have

(5) ≤ 1

2

∑
α̂i∈Dmuz ;i∈[`],β 6∈Ds,c(ski0 ,ski1 )

Pr [X0 = (α̂i; i ∈ [`], β)] + Pr [X1 = (α̂i; i ∈ [`], β)]

and for any b ∈ {0, 1}, noting that
∑
∀A Pr[A ∧B] =

∑
∀A Pr[A|B]Pr[B] = Pr[B], we have∑

α̂i∈Dmuz ;i∈[`],β 6∈Ds,c(ski0 ,ski1 )

Pr [Xb = (α̂i; i ∈ [`], β)] =
∑

β 6∈Ds,c(ski0 ,ski1 )

Pr
[
X

(`+1)
b = β

]
.

Finally, noting that X
(`+1)
b is obtained through a call to a random oracle H(

∑
i∈[`] hi(yi), R, µ), the prob-

ability it is equal to a given β is 1/|Ds,c|. It is important to note that this is true, independently of the
distribution of the input. Thus, even if the hi in H(

∑
hi(yi), R, rµ) are adversarially chosen (say, hi(x) = 0



for all x and i), the probability given is still valid. Using this probability for all β 6∈ Ds,c(ski0 , ski1), equation
(7) follows immediately.

In order to prove that (6) is equal to zero we will show that each term in the sum is null. As the last
coordinate of a signature is generated through a call to a random oracle we have for both random variables
the same probability to obtain β. Therefore, we must prove that for each term in (6):

Pr
[
(X

(i)
0 ; i ∈ [`]) = (α̂i; i ∈ [`])|X(`+1)

0 = β
]

= Pr
[
(X

(i)
1 ; i ∈ [`]) = (α̂i; i ∈ [`])|X(`+1)

1 = β
]

(8)

We will prove that for all b ∈ {0, 1}, Pr[X(i)
b = α̂i|X(`+1)

b = β] is equal to 1/|Dmu
z | if i ∈ [`]\ib and to 1/|Dmu

y |
if i = ib. This is enough to prove (8) as the first ` coordinates of the random variables are independently
chosen in the signature algorithm.

We note ŷb,i the variable ŷi corresponding to an execution of the signature algorithm in which skib is used.

For i 6= ib, we have X
(i)
b = α̂i if ŷb,i = α̂i. As ŷb,i is drawn uniformly at random from Dmu

z , and α̂i ∈ Dmu
z ,

the probability that both values are equal is 1/|Dmu
z |. For i = ib, we have X

(ib)
b = α̂ib if ŷb,ib = α̂ib − skibβ.

As ŷb,i is drawn uniformly at random from Dmu
y , the probability that it is equal to a given value is 1/|Dmu

y |
if this value is in Dmu

y , and 0 if not. By the definition of Ds,c(ski0 , ski1), to which β belongs, we have
skibβ ≤

√
n log n and thus α̂ib − skibβ belongs to Dmu

y which completes the proof.
ut

B Lemmas

Lemma 1 (Lemma 2.11 in [16] restricted to our setting). Let a be any polynomial in Ds,c and b a
polynomial uniformly chosen in Ds,c. Then

Pr[‖ab‖∞ ≥
√
n log n] ≤ 4ne

− log2 n
8 .

This lemma will be used to show that for any two secret keys, an overwhelming fraction of the polynomials
in Ds,c result in a small polynomial when multiplied by any of the two keys. Note that the lemma is valid
for any polynomial a in Ds,c (i.e. even if it is adversarially chosen).

Before proving Lemma 3, which is used in Proposition 2, we recall the following lemma which is adapted
from Lemma 3 in [23].

Lemma 2. Let f = xn + 1, r ≥ 2 and n = 2r and p is a prime with p ≡ 3 mod 8, then there exist f1, f2
such that f = f1f2 mod p where each fi is irreducible in Zp [x] and can be written fi(x) = xn/2 + tix

n/4 − 1
with ti ∈ Zp
Lemma 3. Let D×s,c denote the set of non-invertible polynomials of Ds,c. We have

Prf←Ds,c
[
f ∈ D×s,c

]
≤ 2

3n/2
.

Proof (Sketch.). We have D = Zp[x]/〈xn + 1〉 and by Lemma 2 and Table 1 we have xn + 1 = f1f2 mod p,
both factors being of degree n/2 and irreducible over Zp[x]. As these factors are irreducible, we have that
the non-invertible polynomials of D are such that f = 0 mod f1 or f = 0 mod f2.

As Ds,c = {g ∈ Zp[x]/〈xn + 1〉 : ‖g‖∞ ≤ 1} we have

D×s,c = {f ∈ Zp[x]/〈xn + 1〉 : ‖f‖∞ ≤ 1 and (f = 0 mod f1 or f = 0 mod f2)}.

By the union bound, we have

Prf←Ds,c
[
f ∈ D×s,c

]
≤ Prf←Ds,c [f = 0 mod f1] + Prf←Ds,c [f = 0 mod f1] .

It is easy to see that for each choice of n/2 higher order terms of f there is as most one choice on the n/2
lower order terms that satisfies f = 0 mod f1. The same can be said for f = 0 mod f2. Thus the probability
of each of the right-hand terms is bounded from above by 1/3n/2 which immediately proves the result.


