
Human reading relies on a mixture of domain-indepen-
dent processes and domain-specific knowledge. Until
recently, information extraction has leaned heavily on

domain knowledge, which requires either manual engineering
or manual tagging of examples (Miller et al. 1998; Soderland
1999; Culotta, McCallum, and Betz 2006). Semisupervised
approaches (Riloff and Jones 1999, Agichtein and Gravano
2000, Rosenfeld and Feldman 2007) require only a small
amount of hand-annotated training, but require this for every
relation of interest. This still presents a knowledge engineering
bottleneck, when one considers the unbounded number of rela-
tions in a diverse corpus such as the web. Shinyama and Sekine
(2006) explored unsupervised relation discovery using a clus-
tering algorithm with good precision, but limited scalability. 

The KnowItAll research group is a pioneer of a new paradigm,
Open IE (Banko et al. 2007, Banko and Etzioni 2008), that oper-
ates in a totally domain-independent manner and at web scale.
An Open IE system makes a single pass over its corpus and
extracts a diverse set of relational tuples without requiring any
relation-specific human input. Open IE is ideally suited to cor-
pora such as the web, where the target relations are not known
in advance and their number is massive. 
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� Information extraction (IE) can identify a set
of relations from free text to support question
answering (QA). Until recently, IE systems were
domain specific and needed a combination of
manual engineering and supervised learning to
adapt to each target domain. A new paradigm,
Open IE, operates on large text corpora without
any manual tagging of relations, and indeed
without any prespecified relations. Due to its
open-domain and open-relation nature, Open
IE is purely textual and is unable to relate the
surface forms to an ontology, if known in
advance. We explore the steps needed to adapt
Open IE to a domain-specific ontology and
demonstrate our approach of mapping domain-
independent tuples to an ontology using
domains from the DARPA Machine Reading
Project. Our system achieves precision over 0.90
from as few as eight training examples for an
NFL-scoring domain. 



This is a challenging task, because an Open IE
system has to locate both the set of entities believed
to participate in a relation and the salient textual
cues that indicate the relation among them. 

TEXTRUNNER (Banko et al. 2007, Banko and
Etzioni 2008) is an implemented Open IE system
that operates at web scale, with lightweight pro-
cessing that is linear in the number of documents
and constant in the number of relations. TEXTRUN-
NER uses a part-of-speech tagger and noun phrase
(NP) chunker and then identifies words that
denote a relation between a pair of NPs in a sen-
tence using a conditional random field (CRF) (Laf-
ferty, McCallum, and Pereira 2001). Identifying the
relation phrase is treated as a sequence-labeling
problem — the CRFs are undirected graphical
models trained to maximize the conditional prob-
ability that a sequence of words form a plausible
relation. 

TEXTRUNNER can produce a large corpus of gener-
ic relations in textual, surface forms. However,
additional processing is required to match these
textual relations with a domain-specific ontology.
Matching to a known ontology is necessary to
facilitate complex question answering, deep infer-
ence over the data, and combining knowledge
bases generated by several systems in which the
ontology may act as a common representation. In

this article we explore what is involved in this fur-
ther processing of Open IE relations. We ground
this exploration in domains from the Defense
Advanced Research Project Agency (DARPA)
Machine Reading Project, which was launched in
2009. 

Over the course of the 5-year Machine Reading
Project, there will be two new domains per year. Of
those, the first domain is NFL-scoring, in which
systems must extract final scores of American foot-
ball games, detect the winners and losers of the
game, the score of each team, the game date, and
similar relations. Figure 1 shows the desired output
for a sample sentence from this domain. 

The second domain is intelligence community
(IC) scenarios, in which systems must extract infor-
mation about agent, target, location and date of
attacks, killing, injuring, and bombing, along with
other information about persons and organiza-
tions. This domain is more challenging than the
NFL-scoring domain, where there is a closed class
of team names and regularity in the phrases that
refer to a game or a score. In the IC domain, there
is great variation in the phrases that can refer to
agents or targets of attacks: any person, group of
people, organization, or nation can be an agent;
any person, group, organization, city, or physical
structure can be a target. 
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Sentence:
“Blake threw three touchdown passes as New Orleans
opened up a 28-0 halftime lead and cruised to a 31–15
victory over the 49ers.”

Domain-independent Tuples:
(New Orleans, cruised to, a 31–15 victory)
(a 31–15 victory, over, the 49ers)

Domain-specific Relations:
GameWinner(NFLGame:a 31–15 victory, NFLTeam:New Orleans)
GameLoser(NFLGame:a 31–15 victory, NFLTeam:the 49ers)
TeamScoringAll(NFLTeam:New Orleans, FinalScore:31)
TeamScoringAll(NFLTeam:the 49ers, FinalScore:15)

Figure 1. Desired Output for a Sample Sentence.

An Open IE system produces relational tuples where the arguments and predicate are phrases taken from the text. Two
of the tuples for this sentence contain information needed for relations in an NFL-scoring domain. The challenge is to
map these tuples into domain-specific relations with a minimum of training and manual engineering. 
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The focus of this work is on creating a quickly
reconfigurable system that takes Open IE extrac-
tions, a small amount of manual effort, and very
limited training data — the output is instances
grounded in the given ontology at high precision
and recall. Our key ideas include: (1) domain-spe-
cific class recognizers built through minimal man-
ual effort, (2) learning rules for relation extraction
based on limited training data, and (3) active
learning over learned rules to increase precision
and recall. Figure 2 shows the system architecture. 

We present a formal evaluation of our system on
the NFL-scoring domain, where results indicate the
value of these techniques, often yielding precision
over 0.90 at reasonable coverage. We discuss pre-
liminary work in adapting those techniques to the
rich diversity in the IC domain. 

Domain Adaptation 
The goal of the DARPA Machine Reading Project is
to design general-purpose readers that can be
quickly adapted to particular domains. The formal
evaluation of system performance will be question
answering in terms of domain-specific relations. In

the first year, research teams are given new
domains in advance — by year three the goal is to
handle new domains on the fly. 

Figure 1 shows a sentence from an NFL football
text, along with tuples extracted by the TEXTRUN-
NER Open IE system. Below that are the desired rela-
tions in the NFL-scoring ontology as defined by
the DARPA Machine Reading Project organizers.
All the required information is in the Open IE
tuples, but substantial postprocessing is needed to
derive the domain-specific relations from the
tuples. Much of the information relevant to the
domain is contained in subphrases of the NPs,
while the relation phrases “cruised to” or “over”
convey little information. 

To meet the challenge of portability, an IE sys-
tem must rely primarily on domain-independent
processing. This allows it to keep the domain-spe-
cific knowledge to a minimum level that can be
learned from a small amount of training, perhaps
as few as 10 examples of each domain relation. Our
combination of Open IE and lightly trained
domain adaptation is a step in this direction. Fig-
ure 2 shows our system architecture. 

The initial release of the NFL-scoring domain is
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Figure 2. System Architecture.

TEXTRUNNER uses domain-independent processing to extract relational tuples from a text corpus. It then uses class recognizers to identify
domain-specific terms in the tuples and learns relation mapping rules to transform the tuples into domain relations. 



implicitly defined by 27 sentences in which 13
relations were tagged exhaustively. Figure 3 lists
the relations that had at least eight training exam-
ples. In this article we explore how well an Open IE
system can adapt to a domain ontology with such
a minimal tagging effort. 

TEXTRUNNER faced two challenges in adapting its
Open IE tuples to a specific domain. One challenge
is that it was developed for high-precision extrac-
tion from large corpora and not tuned for high
recall from individual sentences. The other chal-
lenge is that the TEXTRUNNER tuples are constructed
from phrases in the original text, whereas the

Machine Reading Project QA task is in terms of for-
mal relation types and argument types that do not
resemble surface forms. 

Extending TEXTRUNNER’s Recall 
The version of TEXTRUNNER described by M. Banko
and O. Etzioni (Banko et al. 2007, Banko and
Etzioni 2008) considers relations between each pair
of NPs in a sentence but extracts only those with
highest confidence. We are currently working on a
new version of TEXTRUNNER that substantially
increases its recall, but the problem will still
remain that portions of a sentence may not be cov-
ered by Open IE relations. 

To compensate for this, we created a high-recall
version of TEXTRUNNER by adding a tuple from each
pair of adjacent NPs in the sentence. For many of
these the predicate is simply a preposition between
adjacent NPs, such as (a 31–15 victory over the
49ers) shown in figure 4. This is not sufficient evi-
dence for a high-confidence tuple in Open IE, but
these additional tuples can result in high-confi-
dence domain relations when they contain terms
relevant to the domain. 

Mapping to Domain Relations 
In contrast to Open IE in which the tuple argu-
ments and predicates are taken directly from text,
a domain ontology may have relations and argu-
ment types that do not resemble surface forms.
Where Open IE treats entire noun phrases as argu-
ment values, arguments for domain relations may
be filled by subphrases within an NP. Our goal is to
learn a mapping of surface forms to domain rela-
tions such as
TeamFinalScore(NFLGame,FinalScore) or Bomb-
ing(Agent,Target) from a small number of training
examples. We have implemented this as a two-step
process: 

Step One. Learn a set of class recognizers and use
them to label terms in the tuples. This can include
domain-independent semantic tagging and named
entity recognizers (NERs) to support argument
type constraints. 

Step Two. Learn a mapping to domain relations
from tuples that have been processed by the class
recognizers. 

Figure 3 shows our architecture for a system that
maps TEXTRUNNER’s domain-independent tuples to
relations in a particular domain ontology. The
Open IE extractor takes a set of documents as input
and produces a set of relational tuples. These tuples
are annotated by concept recognizers for a domain
and then a set of relation-mapping rules operate
on the tuples to create domain-specific relations. 

Class Recognizers. The first step in domain adap-
tation is to identify terms or phrases in the tuples
as instances of domain-specific classes. We create a
class recognizer for terms that can serve as argu-
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NFL Relation Training
GameWinner(NFLGame,NFLTeam)  15
GameLoser(NFLGame,NFLTeam)  14
TeamFinalScore(NFLGame,FinalScore)  29
TeamScoringAll(NFLTeam,FinalScore)  46
GameDate(NFLGame,Date)  8

Sentence:
 “Blake threw three touchdown passes as New
Orleans opened up a 28–0 halftime lead and
cruised to a 31–15 victory over the 49ers.”

High Confidence Tuples:
(New Orleans, cruised to, a 31–15 victory) 0.816
(Blake, threw, three touchdown passes) 0.833

Additional tuples:
(a 31–15 victory, over, the 49ers)
(a 28–0 halftime lead, cruised to, a 31–15 victory)
(New Orleans, opened, a 28–0 halftime lead)
(three touchdown passes, as, New Orleans)

Figure 3. Relations for the NFL-Scoring Domain 
with the Number of Training Examples. 

Figure 4. A High-Recall Version of TEXTRUNNER.

An earlier version of TEXTRUNNER extracted two high-confidence tuples from
the sentence in Figure 1. A high-recall extension to TEXTRUNNER was necessary
to find tuples that included the second team, “the 49ers.” 



ment values for a domain relation or terms that
serve as “trigger words” to identify a relation. 

In the NFL-scoring domain, there is a closed
class of NFLTeam that includes the only valid fillers
for NFLTeam arguments. Valid fillers for the NFL-
Game argument are NPs that contain a word such
as “victory,” “loss,” or “game.” We created recog-
nizers for each argument type as well as two class-
es of trigger words: WinIndicator (victory, tri-
umph, rout, and so on) and LossIndicator (loss,
defeat, lose, and so on). 

We implemented the class recognizers as regular
expressions with class-specific lists of key words.
This simple representation was to minimize the
manual engineering effort and proved effective in
practice. It required only a few minutes to identify
the key words that were found in training exam-
ples and to supplement them with synonymous
terms beyond those found in training. The recog-
nizer for Date and for the NFL-scoring class
FinalScore used special-purpose regular expres-
sions. 

In future work, we plan to develop automatic
methods to find key words from training and then
augment them using a combination of web search
and WordNet synonyms. It is an open question
how accurately this can be done with a small num-
ber of training examples and the inherent ambigu-
ity of the key words (most NFLTeam instances in
training are simply a city name). 

Figure 5 shows one of the tuples from figure 1
after domain class recognizers have been applied
to the tuple. The class recognizers have found that
arg1 of the tuple contains a term that indicates
winning a game, a phrase that denotes NFLGame,
and two FinalScore instances. Similarly, arg2 con-
tains an NFLTeam. In addition to labeling classes
in the tuple arguments and predicate, we applied
the class recognizers to the portion of the sentence
to the left and to the right of the tuple. 

The class recognizers have a tendency to over-
generalize: a city such as New Orleans is always
labeled as the NFL team it hosts; scores such as the
28–0 halftime lead are incorrectly labeled as final
scores. We found that this overgeneralization was
not harmful in practice. We could learn high-pre-
cision domain mapping rules whose constraints
compensated for the overgeneralized class labels. 

Domain Relation Mapping Rules. The second
step in domain adaptation takes tuples in which
domain classes have been identified and maps
these tuples to domain relations. Since this must
be done with limited training, we chose an algo-
rithm with strong learning biases — using a cover-
ing algorithm to learn rules that are expressed with
constraints on classes and literals in specific argu-
ments of the tuple. 

Our rule representation has a set of constraints
on tuple arguments and on context to the left or

right of the tuple. If all constraints are met, the rule
specifies a domain relation type, argument types,
and the location of each argument value. A tuple
argument may have multiple instances of a
domain class, so a rule can specify that only the
nth instance of that class is to be extracted. Final-
ly, each rule has a confidence value. 

We extended the rule learning to handle long-
distance dependencies by including constraints on
the “left context” (before arg1) and “right context”
(after arg2). This enables extractions where the
argument values are not found within a single
tuple. Consider the sentence, “Kansas City took
sole possession of the American Conference West
lead with a 17–14 victory over Denver,” in which
the relation of winning team and game is not a
local reference. This was the case in about one-
third of the training examples for GameWinner. A
rule that applies to this sentence has constraints
that an NFLTeam be in the left context and that
WinIndicator, FinalScore, and NFLGame be found
in arg1. This rule had seven correct and five errors
on the training, for a confidence of 0.538.     d

Figure 6 shows two rules learned for the NFL-
scoring domain. These rules apply successfully to
our running example about a game between the
New Orleans Saints and the San Francisco 49ers. 

Our covering algorithm begins with a base rule
for each seed instance in the training set, the most
specific rule that covers the seed instance. Con-
straints in a base rule include all domain classes, lit-
eral constraints on all prepositions, and a position
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Tuple:
(a 31–15 victory, over, the 49ers)

Classes in tuple:
 arg1: WinIndicator: “victory”
  NFLGame: “a 31–15 victory”
  FinalScore: “31”, “15”
 pred:
  arg2: NFLTeam: “49ers”
  left: NFLTeam: “New Orleans”
  FinalScore: “28”, “0”
 right:

Figure 5. A Tuple from Figure 1 after 
Domain Class Recognizers Have Been Applied.

The first step in domain adaptation is to identify domain classes in a tuple.
This becomes input to learning domain relation mapping rules. 



constraint that is set to 0 if the argument value is
the first or only match for its class constraint (high-
er than 0 otherwise). This fairly restrictive rule rep-
resentation was chosen to allow generalization from
a small number of examples. A richer representation
would require considerably more training. 

The base rule, and each subsequent generaliza-
tion of it, is applied to each tuple from the training
sentences. If an extraction corresponds to a posi-
tive annotation, it is counted as correct, otherwise
as an error. We compute rule confidence based on
training precision with a variant of Laplacian
smoothing: confidence = c/(c + e + 1), where there
are c correct extractions and e errors. The rule
learner keeps a beam set of the highest confidence
k rules that cover the seed instance. 

At each iteration, the rule learner generalizes each
rule in the beam set by dropping a single constraint,
considering each possible generalization. The new
rules are added to the beam set and the learner con-
tinues until no further improvements are possible
to the beam set. Constraints must not be dropped if
they are specified as the subphrase to extract from a
tuple argument. For example, the first rule in figure
6 cannot drop the constraint on NFLTeam in arg1 or
the NFLGame constraint in arg2. Otherwise the rule
cannot produce an extraction. 

Active Learning for Domain Mapping 
We also compensate for insufficient training anno-
tations with active learning that presents a user
with instances to tag as correct or error from a pool
of unannotated tuples. Where traditional active
learning selects instances to be classified, our active

learning selects a rule r at each iteration. In our sys-
tem, instances only arise from applying a rule to a
tuple to produce extracted relations. 

The system displays k random instances for the
selected rule and their corresponding sentences,
which a user tags as correct, error, or ignore. The
learner then updates the number of correct and
errors for r and for each specialization of r that
applies to any of the newly tagged instances and
adjusts the rule confidence. 

The active learner starts with the set of all rules
considered by the covering algorithm. Hence, it
does not create any new rules, but adjusts the con-
fidence in any rules that cover the seed instances
from the original training set. 

Our learner selects a rule to refine based on a
combination of three metrics: confidence, satura-
tion, and constraint penalty.

Confidence — prefer rules with higher precision
on training. This keeps the learner focused on the
most useful rules, those with high precision. 

Saturation — apply a penalty to rules that already
have adequate training: no penalty if the rule is
undertrained (fewer than tagged instances); a max-
imum penalty of (� – � – 1)/(� – �) if there are � or
more tagged instances; and a proportional penalty
for between alpha and beta instances. 

Constraint penalty — prefer rules with fewer con-
straint. Tagging instances for a general rule r will
update the confidence in all specializations of r as
well, so selecting general rules is more useful than
specific rules. Apply a penalty of 1/gamma for each
constraint in the rule. 

The metric for selecting a rule is 
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Rule:
IF arg1 has NFLTeam AND pred has “to” AND arg2 has WinIndicator, NFLGame
THEN relation = GameWinner(NFLGame from NFLGame in arg2, NFLTeam from NFLTeam in arg1)
Confidence = 0.833

Extraction from (New Orleans, cruised to, a 31–15 victory)
GameWinner(NFLGame:a 31–15 victory, NFLTeam:New Orleans)

Rule:
IF arg1 has WinIndicator, FinalScore, NFLGame AND arg2 has NFLTeam
THEN relation = GameLoser(NFLGame from NFLGame in arg1, NFLTeam from NFLTeam in arg2)
Confidence = 0.7

Extraction from (a 31–15 victory, over, the 49ers)
GameLoser(NFLGame:a 31–15 victory, NFLTeam:the 49ers)

Figure 6: Example Rules for NFL-Scoring Domain. 

All constraints of the rules apply successfully to the Open IE tuple immediately below the rule to produce the domain specific relations
GameWinner(NLFGame,NFLTeam) and GameLoser(NLFGame,NFLTeam). 



argmax(confidence – saturation – constraints/�)

In these experiments, we set � = 10, � = 30, and ��=
20. While not perfect, this selection policy tends to
refine the highest-precision rules first and shifts to
rules with less training after the high-precision
rules have over 10 training examples. 

Empirical Results 
We evaluated TEXTRUNNER’s adaptation for the NFL
domain on blind test sets of news articles from the
English GigaWord corpus.1 The test set was 100
articles that a classifier judged to be sports related.
We first evaluated the output of rules learned from
the initial annotations supplied by the DARPA
Machine Reading Program. In a follow-up experi-
ment we used active learning to improve results for
each relation. 

Once a rule set was learned, we ran TEXTRUNNER

on each sentence in the test set and applied the
concept recognizers and the relation mapping
rules. When multiple rules extracted identical rela-
tions from the same sentence, we merged the
extractions and took the highest rule confidence as
the extraction confidence. We ranked extractions
for each relation by confidence to create recall-pre-

cision curves. Recall is the number of correct
extractions with confidence above a threshold,
divided by the total number of correct extractions.
Precision is the number correct divided by the
number of extractions output above a confidence
threshold. 

Figure 7 shows recall and precision using rules
learned from the initial annotation only. The
results varied considerably between relations,
depending not so much on the amount of training
as on the locality of information. The relation
TeamFinalScore, where both the NFLGame and the
scores of the game were almost always found in the
same tuple argument, had precision 0.95 at recall
0.87. The relation GameLoser, where the team
name and game reference are usually found in the
same or adjacent NPs (“victory over Denver,” “rout
of Chicago,” and so on), had precision 0.93 at
recall 0.32.

TEXTRUNNER had difficulty with the GameWin-
ner relation due to nonlocal references. In about
one third of the training examples the game win-
ner was not found in the same tuple as the game
reference. The rule learner needed to fall back on
less reliable rules that looked for the team name in
the “left context” of the sentence. This difficulty in
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Figure 7. TEXTRUNNER Performance.

Performance of TEXTRUNNER adaptation to the NLF-scoring domain on a blind test set of 100 NFL news articles. Even with limited training,
TEXTRUNNER has precision above 0.90 for a significant fraction of the recall for three of these five relations.



ing high precision. Domain-specific
classes of trigger words allow rules to
generalize beyond the exact words
found in training. The NFL-scoring
domain had characteristics that fit this
approach easily. Class recognizers
could be created with only a few min-
utes of manual engineering for each of
the argument types: NFLTeam, NFL-
Game, FinalScore, and Date. 

Tagging phrases with these classes
can be done independently of whether
that class participates in a domain rela-
tion in a given sentence. Other
domains that share this characteristic
include business domains where per-
son, corporation, corporate office, and
monetary amount can be identified
reliably. A biomedical domain will like-
wise have classes of medical terms that
can be reliably tagged using a medical
thesaurus. 

The IC domain proved to be more
challenging — unlike the NFL-scoring
domain with its closed class of NFL

identifying game winners also affected
the performance of the TeamScoringAll
relation, which must identify the score
of both winning and losing teams. 

Our experiment with active learning
demonstrates that it can be effective in
supplementing limited training data.
Figure 8 shows results of active learn-
ing on the GameWinner relation. Even
20 new instances caused a dramatic
improvement in the high-precision
end of the curve, lifting it from preci-
sion 0.48 at recall 0.19 to precision
0.91 at recall 0.21. Precision increased
with each new iteration of active learn-
ing, reaching 1.00 at recall 0.16 by 40
new instances and reaching precision
0.75 at recall 0.35 by 80 new instances.
Tagging 80 instances took one of the
authors about 25 minutes. 

Active learning also gave similar
boosts for the other relations from fig-
ure 7, lifting the recall-precision curve
for each relation from a small number
of new training examples. The relation

TeamScoringAll required more new
instances than GameWinner to show
similar improvement, since Team-
ScoringAll needs examples of scores for
both winning teams and losing teams. 

Balancing Expressiveness 
and Learnability 
We were able to learn high-precision
rules from a small amount of training
because of a restricted rule representa-
tion. TEXTRUNNER identifies instances of
domain relations in a sentence with
rules that only look at semantic tags
and a small set of closed-class words.
This enables the rules to generalize eas-
ily from a small number of examples. If
it used arbitrary lexicalized features
instead, or used sequences of words
and parts of speech, the system would
need thousands of training instances to
gain traction. 

The class recognizers for a domain
provide type constraints on argument
values, which is essential to maintain-
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Figure 8. Results of Active Learning on the GameWinner Relation.

Even 20 new instances of active learning for GameWinner raised precision from under 0.50 to over 0.90 at recall 0.20. Further iterations of
active learning continued to raise the recall-precision curve. 



teams, the agent and targets in the IC
domain are open classes. A phrase can-
not be tagged with a class such as
BombingAgent, since any person,
group of people, organization, or
nation can be the agent of a bombing
relation. This is a role that the phrase
plays, rather than a class to which it
belongs. 

We experimented with augmenting
class recognizers for the IC domain
with generic named entity recognizers.
This enables learning some high-preci-
sion rules, but has limited recall,
because about half of the argument val-
ues are common nouns. Only a small
fraction of the training annotations
had a named entity for both argu-
ments. The NER tags were also too
coarse grained. A nation can be the
agent of an attack, and a city can be a
target, but the reverse never occurred
in the annotations that implicitly
define the relations. Yet, both nations
and cities have the NER tag, Location. 

We are exploring another strategy to
provide the argument type checking
that is needed for high precision, yet
requires minimal manual engineering.
In addition to the class constraints in
particular rules, there will be argument
type checking that is applied to all
extractions for a domain relation. Argu-
ment phrases must match a disjunction
of domain classes, NER tags, and
domain-independent semantic classes
such as those from WordNet. Thus
fillers for the Agent argument of attack
relations must have an NER tag Person
or Organization or the head of the
phrase must be a child of one of these
WordNet senses: {person-1, organiza-
tion-1, social group-1, country-1}. 

Related Work 
Information extraction has a long his-
tory in the natural language-processing
community going back to the Message
Understanding Conferences2 (Grish-
man and Sundheim 1996) and the
Automated Content Extraction pro-
gram.3 The first systems were rule based
and highly domain dependent (Krupka
et al. 1991, Hobbs et al. 1992, Riloff
1996, Miller et al. 1998). To achieve
robustness under noisy settings rule-
based systems were replaced by statisti-
cal and probabilistic methods using
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hidden Markov models, max-entropy
models, and later conditional random
fields (Skounakis, Craven, and Ray
2003; Lafferty, McCallum, and Pereira
2001; Culotta, McCallum, and Betz
2006). Hybrid systems attempted to
combine the two paradigms (such as
Califf and Mooney [1999]), but all
these systems remained domain
focused and required significant manu-
al engineering and labeling effort. 

A few systems, especially ones that
focused on information extraction
from the web, investigated open-
domain IE (Etzioni et al. 2005; Talukdar
et al. 2008; Moschitti, Morarescu, and
Harabagiu 2003). Even though the
methods were meant to be general and
applied across different domains, still,
the extractors needed to be relearned,
often manually, for each relation of
interest. With potentially thousands of
relations of interest, these systems
couldn’t provide a convincing solution
to the knowledge acquisition bottle-
neck. Our recent paradigm of Open IE
(Banko et al. 2007, Banko and Etzioni
2008) overcomes these limitations by
applying a self-learned extractor with
unlexicalized features to separate out
the relation expressed in the sentence
as well as the entities between which
the relation is expressed. 

Reducing the cost of annotation
effort is a well-studied problem in
information extraction, active learning
being one of many proposed solutions
(Soderland 1999; Thompson, Califf,
and Mooney 1999; Settles and Craven
2008). Other approaches include semi-
supervised learning (Rosenfeld and
Feldman 2007), metabootstrapped
learning (Riloff and Jones 1999), and
more recently, transfer learning
(Daume 2007). 

Conclusions and 
Future Work 

We have demonstrated that domain-
independent extractions from an Open
IE system can be mapped to a domain
ontology with high precision from a
small number of training examples.
TEXTRUNNER with domain adaptation
achieved precision over 0.90 for rela-
tions with as few as eight training
examples from the NFL-scoring
domain of the DARPA Machine Read-

ing Project. Active learning can aug-
ment a limited training set and raise
both precision and recall from the
hand-tagging of a few dozen automati-
cally selected training examples. 

In this first attempt to map TEXTRUN-
NER extractions to a domain ontology,
we have assumed that there will be
only a limited amount of domain
training. Accordingly, we have built
strong biases into our learning algo-
rithms, sometimes at the expense of
expressiveness. We continue to explore
this trade-off between expressiveness
and learnability. 

Our exploration of Open IE domain
adaptation leads us to several areas for
improvement. We continue to work on
improvements to TEXTRUNNER that
increase its recall and precision and
extend the range to syntactic structures
that it handles. The NFL-scoring
domain points out the need to go
beyond extracting verb-centered rela-
tions. 

Many relations are contained entirely
within a complex NP or as a preposi-
tional attachment between NPs. For
example, the sentence “Paul Edinger’s
56-yard field goal on the final play lift-
ed Minnesota to a 23–20 victory over
Green Bay” contains several NFL-scor-
ing relations, but none of them is
expressed by the verb “lifted.” Relations
are often indicated by what we might
call relational nouns such as “victory”
or “loss” rather than by verbs. This phe-
nomenon occurs in a variety of
domains — the relation in “the Adobe-
Macromedia merger” is expressed by
the relational noun “merger”; “New
York Mayor Bloomberg” expresses a
relation with the noun “mayor.” 

We are exploring ways to extend
Open IE to detect noun-centered rela-
tions from a small number of noun-
based patterns. N serves as a relational
noun in the syntactic patterns “X’s N
of Y” (Google’s acquisition of YouTube)
and “X, N of Y” (Steve Jobs, CEO of
Apple). We can automatically compile
a list of nouns that frequently occur as
relational nouns in these strongly pre-
dictive patterns and use this to detect
relations whenever a relational noun
occurs in an NP. This enables Open IE
to identify “mayor” as a relational
noun and thus extract a mayor relation
from “New York Mayor Bloomberg.” 
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Notes
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