
Adapting robot task planning to user preferences: An
assistive shoe dressing example

Gerard Canal · Guillem Alenyà · Carme Torras

Abstract Healthcare robots will be the next big ad-

vance in humans’ domestic welfare, with robots able to
assist elderly people and users with disabilities. How-
ever, each user has his/her own preferences, needs and

abilities. Therefore, robotic assistants will need to adapt

to them, behaving accordingly. Towards this goal, we

propose a method to perform behavior adaptation to

the user preferences, using symbolic task planning. A

user model is built from the user’s answers to simple

questions with a Fuzzy Inference System, and it is then

integrated into the planning domain. We describe an

adaptation method based on both the user satisfac-

tion and the execution outcome, depending on which

penalizations are applied to the planner’s rules. We

demonstrate the application of the adaptation method

in a simple shoe-fitting scenario, with experiments per-

formed in a simulated user environment. The results

show quick behavior adaptation, even when the user

behavior changes, as well as robustness to wrong infer-

ence of the initial user model. Finally, some insights in

a non-simulated world shoe-fitting setup are also pro-

vided.
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1 Introduction

The Assistive Robotics field is an area of growing in-

terest in which robots are used as a tool to help care-
givers and nurses to better assist human users with spe-

cial needs. Such robotic systems can allow these people

to perform some Activities of Daily Living (ADLs) by

themselves, hence empowering them (Chen et al, 2013).

However, the potential users of these systems, care-
givers or disabled and elderly people themselves, may

find it difficult to manipulate or configure the system.

Thus, natural interfaces as well as suitable adaptation

mechanisms must be developed to ease robot instruc-

tion and involve users in the task.

Furthermore, the robot should not try to perform

the task in a general way, but to take each individual as

a unique person who has special capabilities, tastes and

feelings, therefore providing a personalized assistance.

For example, a robot should not treat a person that

trusts and fully accepts the robot in the same manner

as a user that expresses some concerns.

In this paper, we propose a method to obtain the ac-

tions preferred by the user to then drive an off-the-shelf
planner towards the plan that best suits him/her. To do
so, we follow the FUTE (Factory setting, User Tailor-

ing, Execution tuning) framework approach for assistive

robotic applications (Canal et al, 2016) in which there is

an initial phase, called Factory setting, where the robot

is configured for a general user. Then, once the robot is

to assist a particular person, the User Tailoring process
is performed in order to adapt the robot behavior to
that specific user. Finally, the robot assists the user by

performing an Execution tuning using the adapted pa-

rameters to perform the task in the user preferred man-

ner. The framework has been used to develop a behavior

adaptation method based on stochastic planning, which

has been exemplified with a shoe-fitting domain, such
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Fig. 1 Shoe-fitting example.

as the one shown in Figure 1, in which the user is able

to determine the interaction level as well as the speed

of the actions. The preferences are obtained from the

answers to indirectly-related questions and the system

evolves to the final user model based on the outcome

of the actions while they are performed. We will con-

sider preferences of the “information obtaining” type
and the robot motion speed type, as defined in the tax-
onomy of user preferences in assistive scenarios from
Canal et al (2017). The method has been tested with

simulated users to provide a constant behavior to which

the method adapts, and its deployment on a real robot

has been assessed.

The remainder of the paper is as follows: Section 2

reviews similar works in the field. Section 3 explains the

proposed methodology, while Section 4 is devoted to its

evaluation. Finally, the main conclusions are depicted

in Section 5.

2 Related work

Robot behavior personalization and adaptation is an

interesting topic which is gaining lots of attention from

the research community. And personalization can make

a difference for the users, specially in the case of as-

sistive scenarios, in which robots help people with dis-

abilities or age-related issues (Robinson et al, 2014). In
close-contact applications such as feeding or dressing,
taking into account the needs and abilities of the user
is essential for the success of the task.

There are different works that tackle dressing sce-

narios similar to the one we propose. Gao et al (2015)
tackle the problem of assisting a user to put on a sleeve-
less jacket with the help of a Baxter robot. They model

the user’s movement space using Gaussian Mixture Mod-

els, the user pose being obtained by means of a depth

camera. The model is used to dress the user taking

into account their movement capabilities. Later on, they

propose an online iterative path optimisation method

(Gao et al, 2016). By means of vision and force estima-

tion, they find the optimal personalized path to help a
user to put on a jacket.

Similarly, Chance et al (2016) use a Baxter robot

to put on a sleeve of a jacket to a wooden mannequin.
They explore dressing error detection using force sen-
sors and an Inertial Measurement Unit (IMU) installed

in the end-effector of the robot. Moreover, speech recog-

nition is employed to enable the user to correct the

end-effector trajectory, which is planned for different

arm positions.

Yamazaki et al (2014) develop a procedure to help

disabled users to put on trousers. Visual information is

used to recognize the trousers state, while force sensing

is also employed to detect failures. The system is able

to adapt to leg differences by using different trajectory

segments and fitting them to the current user.

Tamei et al (2011) use reinforcement learning to

dress a mannequin with a shirt by means of a dual-

arm robot. They adapt to different person postures,

and represent the state using the topological relation

between the garment and the user. The system is able

to modify the arms motion to insert the shirt in the

mannequin’s head.

Another dressing example is the one by Klee et al

(2015), in which a robot assists the user to put on a

hat. This is performed in a collaborative manner by

taking turns when moving. The robot learns the user’s

limitations as constraints, which are used to personal-

ize the repositioning requests to the user. The dressing
task is represented as a sequence of robot goal poses
with respect to the user. The robot tries to fulfill the
goals, asking the user to reposition him/herself when

the motion planning fails.

In our approach, we are interested in viewing the

dressing task from a higher-level perspective, in which

there are different actions available to fulfill the task,

and the user’s preferences are taken into account to

choose one action instead of another, while in the case

of Gao et al (2015) and Klee et al (2015), they model the

user capabilities to adapt the robot’s movement rather

than using preferences.

Our approach uses a planner to choose the most

suitable action for the user. Planning with preferences

has been slightly explored in different scenarios. The

Human Aware Task Planner (HATP), by Alili et al

(2009), is able to define plans in environments in which

other agents, such as humans, are present. It performs

plans that take into account the state and capacities

of the other agents and anticipates their actions. The

plans should also satisfy social rules, which are imple-

mented as penalties to the agent’s behavior. The Hi-

erarchical Agent based Task Planner (Lallement et al,
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2014; de Silva et al, 2015) is a Hierarchical Task Net-

work (HTN) planner that treats the different agents

in the environment as first-class entities in the domain

representation language. Moreover, it is able to split the

final solution into different subsolutions for the different

agents. Fiore et al (2016) propose a system able to exe-

cute collaborative tasks with a user taking into account

the preferences of the human partner by providing three
different operation modalities: one in which the human
plans and asks the robot for single tasks, another where

the robot computes a plan to fulfill the joint goal with

the human, and one in which the robot is able to adapt

the plans to the human actions by proactively execut-

ing actions towards the goal. The method is evaluated

in an object manipulation scenario. However, these ap-

proaches are designed to work in a collaborative task

solving scenario which does not suit the assistive tasks

we are planning to tackle. Moreover, their notion of user

preference is related to allowing the human to take the

lead or leave the reasoning to the robot, while in our

case the preferences are related to how the user prefers

the task to be done in terms of the chosen actions.

Castellano et al (2016) explore how the task con-

text, the social context and their interdependencies can

be used to predict the affective state of the user and the

quality of the interaction. They show that the task con-

text along with social context-based features are better

than turn-based features to predict social engagement
and affective states of the user. In our work, we dis-
tinguish between interaction actions, which may relate
to the social context, and task actions, related to their

game context, as we believe the addition of the inter-

action can improve the task actions’ performance.
We propose an adaptation mechanism that takes

into account user feedback to tune the system. Other

similar examples are mainly related to reinforcement

learning, such as Thomaz and Breazeal (2006), in which

reward signals from users are used to provide feedback

about past actions as well as to guide the future ones.

In the TAMER framework Knox and Stone (2009), the

human trainer interactively shapes the agent’s policy by

providing reinforcement signals. A different approach is
the one by Griffith et al (2013), in which the policy is
shaped directly by human feedback rather than using

such feedback as a shaping reward.

3 User-oriented task planning

Assistive tasks, such as shoe-fitting, tend to be com-

plex. Apart from the usual uncertainties that are found

in all kinds of robotic applications, such as noisy per-

ceptions and inaccurate actions, these tasks usually in-

volve physical contact with a human who will proba-

bly be unfamiliar with the robot and, therefore, may

have some difficulties due to mobility, age or cognitive
impairments. Therefore, simple reactive techniques are
not enough to handle all the involved uncertainties in

a safe manner. Note that the user behavior cannot be

accurately predicted and this may introduce multiple

sources of error in the interaction. That is why sym-

bolic planning techniques are useful in this kind of en-

vironments as they provide an appropriate abstraction

of the task. A planner is used to obtain a sequence of

actions to drive the system from an initial state to a

goal state in which the task is completed or some crite-

rion is satisfied. For instance, there will be applications

in which the running time needs to be minimized, oth-

ers will rather use the minimum number of actions or

will try to maximize a target function.

In the case we present, the goal of the planner is to

balance the satisfaction of the user and obtain the

shortest possible plan, with maximum acquired reward.

We aim to obtain a plan that selects the action that will

best suit the person, and takes into account their needs

and preferences.
A planning problem can be formulated as a Markov

Decision Process (MDP), which is defined by a five tu-

ple 〈S,A, P,R, γ〉 where

– S: set of discrete states.

– A: set of actions that can be performed.

– P (s′|s, a): transition function computing the prob-

ability of obtaining a new state s′ when action a is
executed in state s.

– R : S ×A → R: the reward function.
– γ ∈ [0, 1): discount factor for future rewards degra-

dation.

With this representation, the planner finds a policy

π : S → A that maximizes a value function (sum of

expected rewards) for a given state.

There are two main families of symbolic planners:

deterministic planners, in which the actions can yield

one unique outcome; and stochastic planners, able to

handle non-deterministic actions where different out-
comes can happen with a certain probability. In this
work, we use a probabilistic planner because we con-

sider that each action can lead to different results. The

probability associated with each one of the different

outcomes encodes naturally the uncertainty of each ac-

tion (see a formal example below).

More precisely, we will define the problem domain
using a set of Noisy Indeterministic Deictic rules (NID)

(Pasula et al, 2007). Briefly, each NID rule models one

action execution in a given state, and can lead to dif-

ferent next states, each one with a different associated

probability P r
o . Each NID rule is defined by its precon-

ditions, which are the predicates that must be satisfied
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in the state in order to apply the rule, and its effects,

which are the changes that are applied to the state, each

of them with an associated probability. An example of

NID rule is:

Action: approachFoot(F - foot)

Preconditions:

- not(reachableFoot(F))

- shoeInGripper(S - shoe)

- not footMoving(F)

- inWorkingSpace(F)

Effects:

- reachableFoot(F) (Pos = 0.80)

-- (Successful outcome)

- footMoving(F) (Po2 = 0.15)

- not(inWorkingSpace(F)) (Po3 = 0.05)

Note that an action of the domain can be repre-
sented by many NID rules while each rule can only rep-
resent one action. For instance, the action approachFoot

may be defined by different NID rules with different
outcomes, although each one of the rules is only linked
to a single action - the approachFoot one.

We want to clearly separate the action outcomes and
the user model. As explained before, action outcomes
are modeled by NID rules representing the probabilities
of the different expected outcomes of each action. Com-

plementarily, we propose to include the user preferences

as a part of the planning domain in the form of expected

behavior of the robot (see Sec. 3.1), for example, the

ones we have used in the experiments: maximum ex-
pected velocity and degree of verbal interaction (Sec. 4).
Note that, although we will focus on speed and verbal

feedback preferences, other preferences such as maxi-

mum force, preferred approach direction or non-verbal

communications could also be included. However, the

acquisition of such preferences by the robot should be

easy and natural for the user. Thus, rather than trying
to obtain the actual preferences directly, we propose to
ask simple and apparently unrelated questions to the

user. Taking inspiration from the Numerical Pain Rat-

ing Scale (NPRS), which is one of the most common

pain assessment scales used in nursery (McLafferty and

Farley, 2008), we believe it is easier for the user to ex-

press preferences by means of a numerical score. There-
fore, we also use numerical scores to assess the user state
and preferences:

– From 0 to 10, how confident do you feel with the
robot?

– From 0 to 5, how comfortable are you now?

The answers are used to infer preferences such as the

speed of the robot and the interaction level. This is

achieved by the addition of a Fuzzy Inference System

Algorithm 1 Preference-based task personalization
– Initialization –

1: userInfo ← getUserInfo()
2: userPreferencesPredicates ← FIS(userInfo) ⊲ Section 3.2
3: planningDomain ← add(userPreferencesPredicates)
4: for all r ∈ {ruleset} do

5: if satisfiesUserModel(r) then

6: updateSatisfyingRule(r) ⊲ Use Eqs. 1 and 3
7: else

8: updateNonSatisfyingRule(r) ⊲ Use Eqs. 2 and 4

– Task execution –
9: repeat

10: nextRule ← getSuitableRule(ruleset) ⊲ Planning step
11: success ← executeAction(nextRule)
12: usedRules ← append(nextRule)
13: removeUnsuccessfulRules(ruleset)⊲ Force exploration
14: until taskIsComplete()

– Update outcome probabilities based on experience –
15: for all r ∈ {usedRules} do

16: updateRuleProbabilities(r) ⊲ Use Eq. 5

– Update the executed rules based on user feedback –
17: userSatisfaction ← getUserSatisfaction()
18: userFeedback ← FIS(userSatisfaction)
19: for all r ∈ {usedRules} do

20: if ruleWasSuccessful(r) then

21: updatePenalizations(r, userFeedback) ⊲ Use Eq. 6

(FIS) to transform the user answers to planning do-

main predicates, as shown in Fig. 4. Moreover, a simi-
lar method is used to obtain a feedback value after each
robot interaction, which is used as a scoring method em-

ployed to refine the preferences and adapt to possible

biases. In this case, we ask the user about their satis-

faction score (from 0 to 10) with the overall interaction,

and use it as the input to another FIS that provides the

feedback value.

Although it has been shown that performance rat-

ing, similar to the one we are using with the satisfaction,

is influenced by the user’s empathy and trust Kühnlenz

et al (2013); Muir (1987), in this paper we are using

the FIS only as an example of the inputs that can be

fed to the adaptation system. However, a more sophis-

ticated FIS could also be employed, as well as other

methods that provide a numerical feedback measure.

For instance, the satisfaction value obtained from the

user could be weighted by the perceived confidence and

trust of the user in the system to overcome this confi-

dence and trust bias. User acceptance, measured using

methods such as Heerink et al (2009), would be another
useful metric to balance the user feedback.

A system representation is depicted in Figure 2. The

process is also shown in Algorithm 1, in which lines 1-8
consist in the initial refinement of the planning opera-
tors, lines 9-14 are the execution of the task, and lines

15-21 are the update of the planning operators based

on the outcome of the task and the user’s satisfaction.
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User Model

Planner Action 
Execution

User Input
(FIS)

FeedbackInitial

Planning 
Operators

Provides

Modifies

Is reflected as

World

Fig. 2 System flow representation. Notice the action execu-
tion loop from Planning Operators - Planner - Action Execution

- World, which goes to User Input once the task is completed
to adapt the Planning Operators based on the user feedback.

The following sections describe the details of these
methods. For illustration and better understanding, we

will use a simple shoe-fitting task to exemplify the used
methodology.

3.1 Domain definition

We propose to add preference-related predicates directly

into the planning domain in order to guide the planner

towards the user’s preferred sequence of actions.

Then, the actions are defined so that those actions

not complying with the user model are penalized and

thus are less likely to be chosen. To achieve this behav-

ior, each NID rule has an extra cost associated to the

compliance of the rule with the current user model. For

this reason, each action has an associated rule for each
combination of user preference predicates, all of them
including its own execution cost (fixed penalization for

the execution of the action), user model penalizations

and stochastic outcomes when needed.

Note that with this definition, there are multiple
paths to transform the world from the initial state to

the goal state. However, as the planner is set up to min-

imize the cost (which could also be seen as maximizing

the negative reward), those actions complying with the

user model will result in a lower penalization and will

be favored by the planner.

We use a simple shoe-fitting scenario to explain and

test the method. For this shoe-fitting domain, we have

defined three movement actions:

– approachFoot: The robot approaches the person’s

foot with the shoe in the gripper. Possible failures

are that the user moves away if he/she is disturbed

by the sudden robot motion, or moving the foot

aside in a hard-to-reach position if he/she gets tired

because the robot takes too long. The correspond-

ing NID rule has been shown in the example in Sec-

tion 3.

– insertShoeInFoot: The robot inserts the shoe in
the foot. The action will fail if the foot is moving,

the foot is in an incorrect pose or the person has put

the foot aside. In the latter case, the robot will have

to approach the foot again. An example of NID rule

for this action is:

Action: insertShoeInFoot(F - foot , S - shoe)

Preconditions:

- reachableFoot(F)

- shoeInGripper(S)

- not(footMoving(F))

- bareFoot(F)

- correctPose(F)

Effects:

- shoeInFoot(S, F) & not(bareFoot(F))

(Pos
= 0.850)

-- (Successful outcome)

- not(footInCorrectPose(F)) (Po2
= 0.0625)

- footMoving(F) (Po3
= 0.0625)

- not(inWorkingSpace(F)) &

not(reachableFoot(F)) (Po4
= 0.025)

– releaseShoe: The robot releases the shoe, which

has already been placed in the foot. We assume this

action does not fail (though it may result more or

less pleasant to the user depending on its execution).

A NID rule that represents the release action is:

Action: releaseShoe(S - shoe)

Preconditions:

- shoeInGripper(S)

- not(footMoving(F))

- shoeInFoot(S - shoe , F)

Effects:

- not(shoeInHand(S)) (Pos
= 1.0)

-- (Successful outcome)

We have also defined two interaction actions:

– informUser: The robot informs the user about the

next action that will be performed. We expect less

failures if the user knows in advance the robot in-

tentions, but the overall task will last longer.

– askUser: The robot asks the user to do something

when the current state is not the expected one. For

instance, the robot can ask the user to stop moving

the foot or to set the foot in the working area.

Examples of wrong action outcomes are depicted in Fig-

ure 3. All the actions can be executed either in a quick,
intermediate or slow speed, and information may have



6 Gerard Canal et al.

(a) The user moves the foot
away from the robot.

(b) The user has put the foot
aside.

Fig. 3 Example of shoe-fitting action failures.

been given to the user or not before every action execu-

tion. The user model predicates are the speed modifier

sm ∈ {quick, slow, intermediate} and the informer

mode is defined as im ∈ {informer, not informer}.
So, there are six rules per action, one for each combina-

tion of sm and im. In case of an action failure, the robot
uses the askUser action to obtain the missing condi-

tion, so it may ask the user to reposition or reorient

the foot if the action failed for this reason. Other task-

related predicates are used to define the state of the

environment. Examples of these predicates are: reach-
ableFoot(F), footMoving(F), inWorkingSpace(F), shoe-

InGripper(S) and shoeInFoot(S, F).

In this paper, we focus on planning with high-level
symbolic actions, similar to the ones defined in other

frameworks such as the high-level operations in ARMAR-

X Vahrenkamp et al (2015); or similar to the non-primitive

tasks of the HTN planning framework Erol et al (1994).

Therefore, we will assume that the robot already knows

how to perform such actions. These low-level smart ac-

tions are learned beforehand (in the Factory setting
phase) using a learning framework such as the one pre-
sented by Rozo et al (2016); Pignat and Calinon (2017).

Note that these smart low-level actions are able to in-

teract with the environment, for instance using the foot

as reference to modify the learned trajectory.

Once the planner issues an action, the low-level con-
troller executes it, handling elements such as perception

and robot motion. The trajectories are taught kines-
thetically, as in Canal et al (2016). The perception is im-
plemented using an RGB-D sensor such as a KinectTM

sensor, from which a 3D point cloud is obtained and

processed to obtain the foot’s location and build the

symbolic state.

A typical execution scenario would start with the
robot holding the shoe and the user seated in front,

as shown in Figure 1. Then, if the user was defined

as im = informer the robot will tell the user that

it is going to approach the shoe to the foot. Then, it

will start the approachFoot action. If the user model

specifies so, an utterance informing the insertion will

follow, and the insertShoeInFoot action will be exe-

cuted afterwards. Finally, the releaseShoe action will

be performed, having informed the user beforehand if

required. Therefore, movement actions are interleaved

with interactive actions in the plan. The resulting plan

sequence is

1: approachFoot(F)

2: insertShoeInFoot(F)

3: releaseShoe(F)

in the non-informative case, and

1: informUser

2: approachFoot(F)

3: informUser

4: insertShoeInFoot(F)

5: informUser

6: releaseShoe(F)

when the user is to be informed. Note that, after adap-
tation, the system may use informing actions only be-
fore one conflicting action, avoiding the utterance prior
to the execution of the rest of actions. In case of fail-

ure, the askUser action is performed to interact with

the user and return the system to a known state, suit-

able to continue with the plan execution:

1: informUser

2: approachFoot(F)

-- Failure: User moves the foot away

3: askUser(approach)

4: informUser

5: approachFoot(F)

6: informUser

7: insertShoeInFoot(F)

8: informUser

9: releaseShoe(F)

3.2 Fuzzy user model extraction

As already introduced, we use two simple questions in

order to obtain the user traits. This step corresponds to

the arrow that goes from User Input to User Model in

Figure 2, and is shown in lines 1-3 in Alg. 1. The answer

to the questions is fed to a Mamdani-like Fuzzy Infer-

ence System (FIS) (Mamdani and Assilian, 1975) built

using a simple fuzzy library (Rada-Vilela, 2014), which

consists of a rule block that outputs the predicates rel-

ative to the inferred preferred speed of the actions as

well as whether the robot should inform the user before

every action execution or not.
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Another FIS is used to obtain the feedback value,

corresponding to the arrow from User Input to Plan-
ning Operators in Figure 2. The feedback computation

is also shown in lines 15 and 18 in Alg. 1. In this case,

the user is asked about his/her satisfaction with the

executed task, also in a value between 0 and 10. The

satisfaction, along with the initial confidence value, pro-

vides the feedback score which is used to update the
penalizations of the rules.

The linguistic variables have been defined as follows.
The ranges of the variables can be seen in Figure 4 along
with the fuzzy inference systems.

– Confidence (Input, [0, 10]): Includes the terms “very

unconfident”, “unconfident”, “confident”, and “very
confident”.

– Comfortability (Input, [0, 5]): Includes the terms

“none”, “low” and “high”.
– Satisfaction (Input, [0, 10]): Includes the terms “very

unsatisfied”, “unsatisfied”, “slightly satisfied”, “sat-
isfied” and “very satisfied”.

– Speed (Output, [0, 15]): Includes the terms “slow”,

“intermediate” and “quick”.

– Informer (Output, [0, 1]): Includes the terms “yes”

and “no”.
– Feedback (Output, [−5, 5]): Includes the terms

“worst”, “bad”, “neutral”, “good” and “best”.

3.3 Initial model refinement

Once the predicates conforming the initial user model

are defined, all the rules’ specifications are refined to fa-

vor more those complying with the user model. Here we

are in the step from User Model to Planning Operators
in Figure 2. The Planning Operators from the figure

correspond to the NID rules defined in Section 3.1. The

initial refinement corresponds to the block comprising

lines 4 to 8 in Alg. 1 Building on the intuition that the

rules satisfying the user preferences will be more likely

to succeed, we increase the probability of the success-

ful outcome of those rules, at the same time that we

decrease the one of the rest of rules. For each rule r,

the probability of the successful outcome P r
os

(the one
that allows the planner to advance towards the goal1)

is updated as follows. For the rules that satisfy the user

model predicates, we increment it as

P r
os

= P r
os

+
1− P r

os

K
, (1)

1 For simplicity, we consider only one successful outcome,
though it can be easily extended to several successful out-
comes.

while probabilities of the rules not complying with the

user model are decreased as

P r
os

= P r
os

−
P r
os

K
. (2)

This update sets the value of P r
os

between [ 1
K
, 1] when

increasing the probability and between [0, (K−1)
K

] when

it is decreased. The idea is to increase more the lower

probabilities that satisfy the user model, while only

slightly increasing those which were already high. As
a counterpart, the same principle is applied when the
probabilities are decreased. We have used a value of

K = 3 in all the performed experiments. After the up-

date of P r
os
, the probabilities of the rest of the outcomes

are also tuned so they sum up to one. This is achieved

by applying the opposite equation to the other out-

comes. That is, in the cases in which we applied Equa-

tion 1 to P r
os
, we apply Equation 2 to the other rule’s

outcomes, and viceversa.

Similarly, we update the penalizations applied to

all the rules based on the user model. Each rule has,

apart from the fixed execution cost, a speed penaliza-

tion and an interaction penalization. These penaliza-
tions are applied when a NID rule not satisfying the
user model is executed. Thus, we aim to increase the
cost of the rules whose penalization condition is sat-

isfied by the current user model , and lower it in the

other cases. For instance, in the shoe-fitting scenario,

the approachFoot with the [quick, informer] mod-

ifiers will imply a penalization when the user model

is defined as im = (not informer), and another one

when the user model is either sm = slow or sm =

intermediate. Be Rr
c the penalization of type c of the

rule r, we update it as follows. When the rule is not ad-

equate for the current user model, we update the costs2

that satisfy the user model as

Rr
c = min(Rmax,max(Rmin, R

r
c − C)). (3)

To keep the cost balanced, the opposite is applied for
the rules satisfying the user model (note that in this
case, penalizations will not be applied since the user

model is satisfied):

Rr
c = min(Rmax,max(Rmin, R

r
c + C)). (4)

Rmin and Rmax are used to maintain the costs in a rea-

sonable range, avoiding the degeneration of the system
in the long term. C is a fixed constant value used as

update factor.

3.4 Improvement based on user feedback

With the proposed problem definition, the system is

able to provide plans that comply with the specified

2 We define costs as negative rewards, thus subtracting to
the previous cost we are worsening it.
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Fig. 4 Fuzzy inference system used to obtain the initial user model, as well as its improvement using feedback.

user model. Nevertheless, the user model may not be

properly determined. Given that the preferences are

specified by the user him/herself, they may not be accu-

rate. For instance, imagine fitting a shoe to a user who
specifies that the robot should move quickly, but he/she
is not confident enough with the robot, so when the

robot moves quickly he/she gets scared and puts his/her

foot aside. Moreover, the user may change his/her be-

havior with respect to the robot with the use, as his/her

confidence will increase when he/she is accustomed to

the robot. Thus, adaptation is needed to cope with
these user model deviations.

The adaptation is performed in a similar manner to

the initial refinement, but it is carried out each time the
task is fulfilled. However, some distinctions are taken
into account at this point. We believe that the users’
satisfaction can not be measured only by the outcome

of the actions. Thus, a failed action does not imply

that the action was not suitable for the user in the

same way a successful action does not indicate that it

was the best for that user. For this reason, we will up-

date the probabilities based on the expected outcome,

while the penalizations will be updated based on the

feedback obtained from the user, them being related to

the user preferences. This favors actions that follow the
user model even though they have low probability of
success, allowing for more exploration towards the user

model. In case the user preferences were not correctly

established, the adaptation procedure will modify the

penalizations, along with the probabilities, towards the

correct behavior. This rule update based on user feed-

back corresponds to the lines 15 to 21 in Alg. 1.

3.4.1 Outcome probability update based on executed

actions

For the probability update, we use the decreasing m-

estimate as defined by Mart́ınez et al (2015). We update

the probability of the ith outcome of rule r, P r
i as

P r
i =

p+ m√
p+n

P r
i,0

p+ n+ m√
p+n

, (5)

where p is the number of positive examples (number

of times i was the execution outcome), n the number

of negative examples (number of times i was not the

execution outcome) and P r
i,0 is the prior or initial prob-

ability (defined in the Factory setting phase).

3.4.2 Rule penalization update based on user feedback

The feedback is then used to update every rule r that

was successfully applied during the task execution. We
only use the rules that were successfully applied because

the feedback value is the score of the whole execution
rather than that of individual actions. Therefore, a pos-
itive score would diminish the cost of those rules that
failed, which would not lead the system to the user pre-

ferred behavior.

The penalization update for each cost c of the rule
r is computed as

Rr
c = min(Rmax,max(Rmin, R

r
c + C

1

f
)), (6)

where f is the feedback value represented as the user’s

task score in the range [−5, 5]. In case the user feedback

is negative, the costs will be worsened and this will lead

the system to explore beyond the current user model.

Otherwise, the current rule definition will be updated

as it satisfies the user, and successful rules will have

more chances to be applied.
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After the feedback update step, all the costs are

normalized in order to keep balance and avoid the de-
generated case in which all the rules of the system have
the minimum cost3. Therefore, for each action we nor-

malize each kind of cost of its rules so they always sum
up to the same. Thus, decreasing a cost for one rule
increases those of the other rules of the same action.

While the task is being carried out, the planner is
used after each action execution to build a new plan to
go from the current state to the goal one, which will

compute a recovery plan if the action failed. Therefore,

when an action fails and the system recovers to a previ-

ous state, the planner will suggest the same action rule

again. And, if the action failed due to the user not being
satisfied with it, it is likely to fail again. This is solved
by removing the failed rule from the set of available
rules after 3 failed execution attempts. The removal of

the rule forces the system to explore other options. The

rules are removed only during the task execution, and

are re-added to the set after the task has been finished,

just before the update of the probabilities and penal-
izations.

In this paper we use 3 attempts arbitrarily, following

the next rationale: one failed attempt might have been
caused by the robot or some other element. Two failed
attempts are more suspicious, but can still be due to

the robot. After a third attempt it may simply be con-

cluded that the action is not adequate for the user and

it is time to explore other options. In the general case,

the number of attempts can be selected differently, or

computed on-line depending on the past experiences.

However, note that with 3 attempts, 18 failures in the

same action would be necessary in order to completely

remove one action, which would lead to an unsolvable
planning problem. In such case we would consider that
the task cannot be completed.

4 Experimental evaluation

The proposed adaptation method has been evaluated
through simulated experiments using the same shoe-
fitting scenario, and qualitatively assessed in real robot
experiments. In them, we define a simulated user with

an associated ground-truth user model as well as an

inferred user model (which may differ from the real

one). The simulated user’s behavior consists in accept-

ing only those actions that coincide with the ground-
truth model. Otherwise the action fails. Obviously, in
a real scenario the action may not fail even if it is not

3 This would happen if the user changes his/her behavior
from the adapted model, always providing a positive feedback
score.

exactly the one the user was expecting. However, for

the sake of clarity, we use this simulated user behavior

because the adaptation mechanism is better observed.

Therefore, a simulator inferred as [quick, informer],

but whose ground-truth real model is [slow, informer],

will only allow slow actions that have informed the user

beforehand. With this, we can easily test how the be-

havior of the robot adapts to match the user.

To avoid bias due to the randomness in the plan ex-
ecutions, we have executed each simulated experiment

15 times, and the results shown in this section are the
average of all the executions.

In order to assess the effect of the different steps of

the method, shown in Figure 2 and explained in the
previous section, each experiment has been executed

with different combinations of them. Therefore, we start
with single methods, the first being to use only the de-
creasing m-estimate (Mart́ınez et al, 2015) to adapt the
probabilities based only on the outcomes of the actions.

Similarly, the second one uses the feedback update from

Section 3.4.2, adapting the user model by means of de-

creasing the penalization of the successful rules. Then

we combine two steps, applying the initial refinement
from Section 3.3 along with the decreasing m-estimate,
and the decreasing m-estimate with the feedback up-

date. Finally, we evaluate the full method consisting in

the combination of the initial refinement, the decreasing

m-estimate and the feedback update.

When the user model is correct, all the actions suc-

ceed and the robot finishes the task with the minimum

number of actions. To show how the method success-

fully adapts to the user behavior, we will show the de-

generated case in which the simulator’s ground-truth

user model is the opposite to the initial inferred one.

Figure 5 shows the results of a user who behaves as

[slow, informer], but whose inferred model from the

initial questions was [quick, not informer]. The com-

parison between different method combinations is also

displayed. The figure shows the rewards obtained and

the length of the plan at each iteration. As it can be

seen, all the methods start with a low reward and a

long plan, as the system is behaving to suit a different

type of user. However, they quickly improve with few

iterations, drastically reducing the plan length. Note

that this is a degenerated case, and all the actions fail

if they are not exactly those of the ground-truth user
model. In a normal house set-up, the user would ac-
cept some actions even if they are not exactly the ones

matching their exact preferences. The methods combin-

ing the decreasing m-estimate and the feedback update

are the ones that converge faster and reach the opti-

mum number of actions in the plan, as well as being

more stable. Given that the inferred model is not the
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correct one, the method not including the initial refine-

ment performs slightly better, as it can be also seen

in the plan length plot. But, if only the feedback up-

date is used, the method gets stuck. Given that the

probabilities are not modified, the planner’s best op-

tion is to go on with the actions that comply with the

inferred user model, as they lead to less penalizations.

Nevertheless, when the success probabilities of those ac-

tions are decreased, the planner has better gain when

choosing actions that do not satisfy the inferred model.

When only using the decreasing m-estimate (with and
without the initial refinement)4, the method is slower

to converge to the preferred solution, and is less stable,

oscillating around the preferred solution. Therefore, the

combination of the feedback update with the decreasing

4 Note that the feedback update modifies the reward, thus
the reward plots of the methods using it keep improving its
reward because of this.
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m-estimate are appropriate to converge to the preferred

solution, with few iterations and reaching a constant

minimum number of actions in the plan. The most sim-

ilar cases are the full method and the one not using

the initial update. In the reward plot, it can be seen

how they perform almost equally well, although when

checking the plan length, it is clear that the method not

using the initial update converges faster than the full
method. Again, this is due to the initial method making
the algorithm keep the initial inferred model, leading to

a slower convergence to the correct model, but making

it more robust when the user model has been correctly

inferred.

Figure 6 shows an example of adaptation when the

user suddenly changes his/her behavior. In this case,

the user was behaving as [quick, informer], and his/her

model was correctly inferred. Thus, the planner by do-

main definition is able to find the preferred plan since

the beginning. However, around iteration 27, the user

starts to behave as [quick, not informer] as it gets

used to the robot, and thus every action fails. When

this happens the system needs to readapt, as there is

a drop in the reward and the plan length increases. In

this case, the methods involving the feedback update

and the decreasing m-estimate are the only ones able

to cope with the change and converge to the new solu-

tion. Note that after the change, the preferred plan is

shortened as there are no informative actions.

Although our proposed method shows correct adap-

tation, the initial refinement may be counterproductive

in cases in which the user model was not correctly in-

ferred, slowing the convergence to the real user model.

However, in the cases in which the user model was prop-

erly inferred, the initial refinement helps to lead the

planner towards the preferred goal and avoids the sys-

tem to wrongly adapt to an erroneous new model due
to occasional action failures.

4.1 Experimental feasibility assessment

In this section we show the feasibility of the proposed

approach in a real assistive robotics scenario. To do so,

we present an experimental setup with a real robot.

The setup can be seen in Figure 7. The robot is a 7 de-

grees of freedom Barrett R© WAM Arm and a KinectTM

camera mounted on the ceiling is used for the percep-

tion. The software has been developed using the Robot

Operating System (ROS) Quigley et al (2009). For the

informative actions, the text-to-speech is performed us-

ing the hmi robin ROS node5 from the Institute for

Robotics at Johannes Kepler University.

5 http://wiki.ros.org/hmi_robin

Fig. 7 Experimental setup with the robot, a user and the
ceiling camera.

The environment state is obtained by processing the

point cloud retrieved from the RGB-D camera. Given

the presented setup (see Fig. 7), the point-cloud P is
first splitted to remove the ground points, thus obtain-

ing a new point-cloud P ′ = {p ∈ P |py ≤ tg} for a

threshold tg representing the distance from the camera

to the ground. The resulting point-cloud P ′ is further

divided in two smaller clouds, P ′
h = {p ∈ P ′|py ≥ th},

corresponding to the human space, and P ′
r = {p ∈

P ′|py < th} corresponding to the region where the
robot moves, for a threshold th representing the dis-

tance between the corner of the image and the end of

the human space. Then, we perform a simple blob seg-

mentation to obtain the user’s leg point-cloud and de-

fine the extreme region of the blob as the foottip. The

shoe position, as assumed to be grasped by the robot,

is defined by the Tool Center Point (TCP) pose of the

robot’s end effector and is used to filter out the shoe

detection.

The user is seated near the robot and lifts the foot

as a signal to start the shoe-fitting task. The robot
has already the shoe in its end-effector6 and has been

taught the task via kinesthetic reproduction. In the
first execution, the user is asked about his/her confi-
dence and comfortability (Section 3) and the initial re-

finement is performed. Then, the planner is called to

obtain the next action to execute based on the per-

ceived state, and the execution of the action is car-

ried out. Each action can be either a robot motion,

including the foot perception to accomplish a part of
the task, or a verbal interaction, to make request or
to inform the user. Once finished, the state is recom-

6 Shoe grasping is out of the scope of the paper.

http://wiki.ros.org/hmi_robin
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puted and the planner is called again, until the shoe has

been fit. When the shoe-fitting has been completed, the

user’s satisfaction is asked and the feedback modifica-

tion is then performed in order to refine the domain for

the next executions. Figure 8 shows the robot execut-

ing the three shoe-fitting task actions. A video demon-

stration can be found at www.iri.upc.edu/groups/

perception/plannedBehaviorAdaptation.
As seen in the video, the proposed method shows

a robust behavior of the robot in which the planner is

able to adapt to the changes in user preferences and

to unexpected situations. We show how the robot asks

the user to put the foot forward when it is not in sight,

and how it speaks only when needed, e.g. when the

informative behavior is not specified in the user state.

These decisions are made by the planner. Moreover, the

video also shows how the robot changes its behavior in

the short term in order to fulfill the task, by exploring

different speed alternatives, when a failure occurs in

the current situation. However, the video cannot show

the long-term adaptation of the rewards. Moreover, the

robot moves slowly to ensure safety as well as due to

nonoptimized computations (vision, trajectory genera-

tion and planning). More robust and safe movements

are planned as future work to come up with a more

efficient and less tiring fitting scenario.

5 Conclusions

In this paper, we have defined a method to guide a

planner to choose the preferred actions by the user.

The user model is included in the planning domain as

predicates, and the actions’ associated costs depend on

them, the most costly actions being those that do not

satisfy the user model. Moreover, we use an stochastic

planner with NID rules that contemplate the possibil-

ity of different action outcomes and failures. The initial

user model is inferred by asking two simple questions

to the user, related to his/her confidence and comfort-
ability. A Fuzzy Inference System (FIS) is then used to
translate the answers to planning predicates.

In order to make the planner adapt to user behavior

change and to cope with wrongly inferred user models,
each rule’s probabilities and costs are updated. First,
an initial refinement is performed to favor the inferred

user model. Then, after each task completion, the sat-
isfaction of the user is used to refine each rule cost, and
the outcome of each action is used to refine the suc-

cess’ probabilities. This defines a separation between

the user model and the action outcomes, as the user

delight should not be measured only by the success of

the actions, which may fail due to events unrelated to

the users’ preferences.

Moreover, the system is able to plan with task re-

lated actions as well as with interaction actions, asking
the user to move when needed and informing him/her
regarding the next action when this increases the suc-

cess rate of the action.

We show how the system is able to adapt to user

behavior changes, as well as how the use of feedback to

update the action costs with the decreasing m-estimate

produces a more stable behavior and faster convergence

to the preferred solution.

Although the system keeps adapting to new changes,

long-term adaptation should be analysed more thor-

oughly, as well as the inclusion of more actions and

preferences, with the possibility of automatically learn-

ing the actions along with the preferences, which is out

of the scope of this paper and therefore is left as future

work.
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