
Adapting RRT Growth for Heterogeneous Environments

Jory Denny1, Marco Morales2, Samuel Rodriguez1, and Nancy M. Amato1

Abstract— Rapidly-exploring Random Trees (RRTs) are ef-
fective for a wide range of applications ranging from kin-
odynamic planning to motion planning under uncertainty.
However, RRTs are not as efficient when exploring hetero-
geneous environments and do not adapt to the space. For
example, in difficult areas an expensive RRT growth method
might be appropriate, while in open areas inexpensive growth
methods should be chosen. In this paper, we present a novel
algorithm, Adaptive RRT, that adapts RRT growth to the
current exploration area using a two level growth selection
mechanism. At the first level, we select groups of expansion
methods according to the visibility of the node being expanded.
Second, we use a cost-sensitive learning approach to select a
sampler from the group of expansion methods chosen. Also, we
propose a novel definition of visibility for RRT nodes which
can be computed in an online manner and used by Adaptive
RRT to select an appropriate expansion method. We present
the algorithm and experimental analysis on a broad range of
problems showing not only its adaptability, but efficiency gains
achieved by adapting exploration methods appropriately.

I. INTRODUCTION

Often in robotic applications, computing a feasible path

between start to goal locations is needed, which is referred

to as motion planning. This can be challenging due to un-

certainty, optimality, or even planning through heterogeneous

environments. Motion planning not only has applications in

robotics but also influences areas such as computer aided

design (CAD) [2], bioinformatics (e.g., protein folding) [26],

[27], and assembly mechanisms [13]. As this problem is

difficult to solve with exact methods [23], sampling-based

methods have been extensively used. Rapidly-exploring Ran-

dom Trees (RRTs) [14] have been successful in single-query

problems, while Probabilistic RoadMaps (PRMs) [11] are

useful for multi-query use.

Sampling-based approaches construct a graph representing

the connectivity of the space of valid robot configurations.

RRTs use local exploration by progressively expanding a

tree outwards in random directions until an input query can

be solved, or a maximum number of iterations has been

reached. PRMs use a global strategy of randomly sampling
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the entire space followed by connecting the sampled config-

urations with simple paths. With these methods, constrained

regions (e.g., narrow passages) become difficult to discover.

Narrow passages often arise in high dimensional problems

or application domains such as CAD [2] applications (e.g.,

removal of an engine component). Moreover, heterogeneous

environments mixed with narrow passages, cluttered regions,

and free space are an additional challenge.

Simple visibility metrics [17], [19], [22] have been pro-

posed that can be efficiently computed in an online manner

and used to effectively improve roadmap construction in

narrow passages and heterogeneous environments. For PRMs

visibility is approximated as a simple ratio of successful con-

nections over total connection attempts, calculated during the

node connection phase. This has been used to filter sampling

to structurally improve the roadmap [22], and exploited for

heterogeneous environments in [18], [28]. However, it is non-

trivial to utilize visibility like this in RRTs.

In this paper, we seek to develop strategies to approximate

and utilize visibility to improve RRT performance in narrow

regions and heterogeneous environments. In particular, we

present a novel online method for approximating visibility of

RRT nodes based on tree growth. We then show how these

metrics can be used in an Adaptive RRT that chooses an

appropriate RRT exploration method in a two level selection

mechanism based upon the visibility of the node being

expanded and a cost-sensitive adaptive strategy over the

growth methods. Specific contributions of this paper include:

• A novel definition of visibility for RRTs.

• A new RRT variant, Adaptive RRT, that selects a

growth method based on the visibility metric and a cost-

sensitive adaptive strategy.

• An experimental analysis of visibility and Adaptive

RRT in a broad set of example queries showing its

effectiveness and adaptability in heterogeneous environ-

ments.

II. RELATED WORK AND PRELIMINARIES

In this section, we discuss motion planning preliminaries,

RRTs, and utilizing metrics in PRMs.

Motion planning preliminaries. A robot is a movable

object whose position and orientation can be described by

n parameters, or degrees of freedom (DOFs), each corre-

sponding to an object component (e.g., object positions,

object orientations, link angles, and link displacements).

Hence, a robot’s placement, or configuration, can be uniquely

described by a point (x1, x2, ..., xn) in an n-dimensional

space (where xi is the ith DOF). This space, consisting

of all possible robot configurations (feasible or not), is
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called configuration space (Cspace) [16]. The subset of all

feasible configurations is the free space (Cfree), with the

complement being the infeasible configurations, the obstacle

space (Cobst). Thus, the motion planning problem becomes

that of finding a continuous trajectory in Cfree between given

start and goal configurations. In general, it is intractable to

compute explicit Cobst boundaries [23], but we can often

determine whether a configuration is feasible or not quite

efficiently, e.g., by performing a collision detection (CD) test

in the workspace, the robot’s natural space. Sampling-based

methods (Probabilistic RoadMaps (PRMs) [11] and Rapidly-

exploring Random Trees (RRTs) [14]) have been shown to

be successful at solving a diverse set of problems.

Advances in RRTs. RRTs [14] incrementally explore

Cspace from some start configuration qroot by iteratively

selecting a random direction qrand followed by finding qnear,

the nearest node in the tree to qrand, and steering qnear

towards qrand to create qnew which is then added to the tree.

More precisely, once qnear is selected, an Extend operation

is done on qnear towards qrand which iteratively takes steps

at the environmental resolution, checking validity at each

step. This continues until either a distance of ∆q, the Cobst

boundary, or qrand is reached. RRTs explore space with

Voronoi bias explaining their efficiency in expansive spaces

[14]. Even so, RRTs have deficiencies in traversing narrow

spaces of the environment, often colliding with obstacles.

Much work has been done in advancing RRTs. RRT-

Connect [12] utilized a bidirectional search with two trees,

one at the start and one at the goal, and biases exploration

between the two trees. Rapidly-exploring Random Graphs

(RRGs) and optimal RRT (RRT∗) [10] are able to asymp-

totically find optimal paths, e.g., shortest paths. Execution-

extended RRT (ERRT) [4] biases exploration towards goals

and waypoints along a path in real-time. Obstacle-based RRT

(OBRRT) [24] biases exploration with using the workspace

obstacle geometries in nine different growth methods: G0

and G1 utilize random Cspace directional vectors, G2 and G3

utilize random obstacle vectors, G4 rotates a robot and then

translates it, G5 and G6 use tangent obstacle vectors, G7 uses

tangent Cobst vectors, and G8 biases towards the medial-axis.

Dynamic-Domain RRTs [29] restrict the Voronoi region in

the sampling domain of boundary nodes. EG-RRT [9] adapts

the distribution bias accounting for dynamic limitations of

the robot and reduces the risk of unproductive expansions.

Retraction-based methods [15], [21], [30] have shown great

success in exploring narrow passages.

One method, Selective Retraction-based RRT [15], filters

the usage of Retraction-based RRT by applying a possibly

expensive filtering test, bridge-line test, to determine whether

the tree is within or near a narrow passage. Our work is

similarly motivated, except we propose a general approach to

combine growth methodologies, and we use an inexpensive

local strategy for determining the growth method selected.

Moreover, the Selective Retraction-based RRT could be used

as one of the subroutines in our algorithm.

Another method adapts RRT growth for constrained sys-

tems reducing metric sensitivity in approximating the cost-

to-go between configurations [6]. While exploring the space,

information is collected, such as the constraint violation

frequency. This metric is then used to define better near nodes

for the RRT growth. We approach the problem differently, in

that our visibility metric allows selection of growth methods

based upon the near node instead of finding more appropriate

near nodes for expansion. Nonetheless, this method could be

used in conjunction with our approach.

Utilizing metrics in PRMs. PRMs [11] map Cfree by ran-

domly sampling valid configurations and validating simple

straight-line paths between nearby samples to form the edges

of the map. Then, the map is queried for a final solution.

However, PRMs are inefficient at mapping narrow passages

and heterogeneous spaces [7].

Many approaches have been proposed to improve map-

ping techniques, e.g., Obstacle-based PRM [1] and Gaussian

filtering [3]. Visibility PRM [25] defined heuristics for only

accepting samples that benefit the roadmap. Specifically, this

method required samples to improve the roadmap by dis-

covering new samples not visible from any previous sample

or merging disconnected parts of the map together. This

was evolved to define metrics for analyzing the evolution

of roadmaps and effectively utilize them to bias roadmap

growth [19], [22]. Essentially, the analysis classifies nodes

by their affect on the roadmap and utilizes visibility that is

computed for each node during roadmap connection as a ratio

of successful to total connection attempts. Unfortunately, this

only applies to PRMs. Other methods use visibility to bias

samples as well, e.g., feature-sensitive motion planning [18],

[20], [28] which adapts the sampling method based upon

a decomposition and classification of regions. Hybrid PRM

[8] uses a cost-sensitive adaptive strategy to select sampling

methods for PRMs.

Even though many advances have been made for RRTs, to

the best of the authors’ knowledge no approach generalizes

growth method adaptation based upon an online metric to

take advantage of the strengths of each method as presented

in this paper.

III. VISIBILITY

In this section, we introduce a novel approximation of

visibility that can be computed and utilized during RRT

construction. Visibility is an estimation of how easy it is

to connect a configuration q to the other configurations in its

local surroundings. This is based on the visibility between

configurations: a configuration q′ is visible from another

configuration q if some method, e.g., a local planner, can

produce a continuous sequence of adjacent, at some resolu-

tion, configurations τ = (q0, q1, q2, . . . , qn, ), where q = q0,

q′ = qn, and ∀qi ∈ τ, qi is valid. While exact visibility

is intractable to compute in high dimensional spaces, it can

be easily approximated for PRMs based upon a success-fail

ratio from node connection [19]. For RRTs, however, it may

not be as simple as a success-fail ratio of expansion attempts.

In particular, since RRTs can expand very small distances,

there is a need to differentiate between large expansions, e.g.,

all the way to qrand, and encountering the boundary of Cobst.
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Algorithm 1 Updating the visibility for qnear and qnew.

Input: Configurations qnear , qnew , qrand; Distance metric

δ; Penalty for hitting Cobst HitPenalty; Expansion

distance ∆q.

1: expandDist = δ(qnear , qnew)
2: expandRatio = expandDist/∆q
3: nearV is = qnear .visibility
4: qnear .UpdateAverageV isibility(expandRatio)
5: if 0 < expandRatio < 1 then

⊲ Partial Expansion, Cobst hit

6: qnew.visibility = HitPenalty
7: else if expandRatio = 1 then

⊲ Full Expansion at ∆q or to qrand

8: qnew.visibility = (expandRatio + nearV is)/2
9: end if

Building on this idea, Algorithm 1 presents a novel, online,

updating mechanism for approximating visibilities in RRT

methods. Configurations qnear , qnew, and qrand are provided

as input from an RRT growth attempt. Additionally, the roots

of the tree are initialized with visibility 1 in an optimistic

manner.

There are three possible outcomes that we differentiate

during RRT expansion – null, partial or full expansion –

each of which causes the node visibilities to be updated

accordingly, as shown in Algorithm 1. In null expansion,

qnear could be against Cobst and expansion towards qrand

fails (Figure 1 (a)). In partial expansion, qnear can expand

part of the way to ∆q or qrand, implying that qnew is against

Cobst (line 5, also Figure 1 (b)). In full expansion, expansion

succeeds at a distance of ∆q or expansion reaches qrand,

(line 7, also Figure 1 (c)). In all cases, qnear’s visibility is av-

eraged with expandRatio (the distance traveled divided by

∆q) as a running average with UpdateAverageV isibility().

(a) (b)

(c)

Fig. 1. Possible outcomes during RRT expansion: (a) null expansion of
qnear against Cobst; (b) partial expansion of qnear which collides with
Cobst before reaching ∆q; and (c) full expansion of qnear to ∆q.

For null expansion, expandRatio is 0. If qnear is against

Cobst, this penalty quickly reduces qnear’s visibility towards

0 over subsequent iterations.

When partial expansion occurs, qnew is initialized with a

wall hit penalty HitPenalty. This penalty is user defined,

and can affect the growth method chosen in subsequent

iterations. In this scenario, qnew is in close proximity to

Cobst. When qnear is very close to Cobst, expandRatio is low

and reduces qnear’s visibility. However, if qnear is slightly

less than ∆q away from Cobst, then qnear is likely to still be

in a high visibility area, so its visibility will be little affected.

For full expansion cases, qnew is likely in an open area,

but not guaranteed since full expansion can occur in a

constrained region of Cspace. Since this is unpredictable,

qnew “inherits” part of the visibility of qnear averaged with

expandRatio. qnear is rewarded with expandRatio as it is

likely to be in a high or mid-visibility area.

Through this definition, configurations within narrow

spaces of Cfree will have low visibility as expansion will

either fail or occur in small increments. In open spaces,

configurations will have high visibility as expansions will

either expand at ∆q or reach qrand.

IV. ADAPTIVE RRT

In this section, we present Adaptive RRT, a novel approach

that exploits visibility to guide RRT growth. Intuitively, if we

are expanding from a node in an open space, we should apply

an inexpensive growth method such as randomly choosing

a direction. However, if we are expanding within a narrow

passage, more expensive growth methods may be more

successful. Algorithm 2 summarizes Adaptive RRT.

Algorithm 2 Adaptive RRT which chooses an RRT growth

method based upon visibility.

Input: Query Q, growth distance ∆q, and an ordered

set of visibility/growth strategy set pairs S =
〈(d1, GS1), (d2, GS2), . . . , (di, GSi)〉

1: T = ∅
2: while Q is not solved do

3: qrand = RandomCfg()
4: qnear = NearestCfg(T, qrand)
5: vis = qnear.visibility
6: GS ← SelectGrowthStrategySet(vis)
7: G← SelectGrowthStrategy(GS)
8: qnew = G.Grow(qnear , qrand, ∆q)
9: UpdateTree(qnear, qnew)

10: UpdateVisibility(qnear , qnew, qrand)
11: Reward(GS)
12: end while

In addition to the standard RRT input such as ∆q,

Adaptive RRT requires an ordered set S of visibility/growth

strategy set pairs for a two level growth strategy selection

mechanism. The algorithm begins like a standard RRT.

T is initialized, and until the query is solved, we iterate

over choosing qrand, selecting qnear and expanding. The

difference is that, after qnear is found, we select the growth

method based upon qnear’s visibility. We split this decision

in two levels: in the first level, we select the set of growth

methods GS in use for the approximated visibility vis, in

the second level we choose a particular method G from the

selected growth set based on a probability distribution that is
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(a) (b) (c) (d) (e)

Fig. 2. Progression of Adaptive RRT in a simple environment (a). (b) shows rapid exploration through high visibility areas (nodes shown in blue). (c)
shows the tree adapting to enter a narrow passage, which the tree classifies as mid visibility nodes (magenta). (d) shows exploration through the passage
classifying nodes as low visibility (red). (e) shows completion of the method and classification of various parts of the tree as high, mid, and low visibility
corresponding to the correct areas of the environment.

adapted according to performance. Then, using G, qnear is

grown towards qrand to define qnew , and UpdateTree() adds

qnew to T and adds the edge (qnear , qnew) to T . Visibility of

qnear and qnew is updated through UpdateVisibility(), as

described in Section III. A cost-sensitive adaptive strategy in

[8] is adapted for RRT to define and update the weights of

the methods in GS with the Reward() function. The process

of selection and reward is fully described in Section IV-

A. Adaptive RRT stops when either a maximum number of

iterations is reached or the input query Q is solved.

A. Selecting the Growth Method

Growth method selection happens on two levels in order

to adapt weights of the methods for each visibility range

independently. First, a growth strategy set GS is selected

based upon vis in SelectGrowthStrategySet(). This is

done by finding the appropriate pair (dk, GSk) in S, where

dk is a visibility threshold and GSk is a growth strategy set,

such that d1 = 0 and dk ≤ vis ≤ dk+1 (if dk+1 does not

exist, 1 is used as the upper bound). In the second level of

growth method selection, SelectGrowthStrategy() selects

a strategy from GS based upon a weighted probability

distribution over the methods in the set. After expansion, the

weights are updated through the Reward() function. In this

section, we describe our cost-sensitive adaptive algorithm

used in the later level of growth method selection. It is

derived from Hybrid PRM [8] which adaptively selects

sampling methods for PRMs.

Let GS = 〈G1, G2, . . . , Gj〉 be the set of growth strategies

from which we are selecting. Ideally, the growth strategies

that are most effective will be selected more often. We define

a given cost cl and a weight wl for all methods Gl with 1 ≤
l ≤ j. Initially, wl = 1 for each method and the cost is given

as input. Through the weights and costs we can arrive at a

probability pl for each growth method and select randomly

based upon these probabilities for each growth method. After

the growth method is applied, reward will be given based

upon its success. In this paper, we define the reward as a

ratio of expansion distance diste to ∆q, which is always

between 0 and 1. If the growth fails, we reward with a value

of −0.001. Firstly, a cost-insensitive probability p∗l is defined

for each method

p∗l = (1− γ)
log(wl + 1)

∑j
m=0

log(wm + 1)
+ γ

1

j

where γ ∈ [0, 1] is a fixed constant describing a weighting

factor on probability derived from a uniform distribution over

the methods in the growth strategy set. The first component

of the cost-insensitive probability is weighted based upon

how effective the method is in relation to the other methods

in the growth set. Cost is taken into account when defining

the probability pl

pl =
p∗l /cl

∑j
m=0

p∗m/cm

where this fraction is a weighted sum compared to the other

cost-insensitive probability/cost ratios. cl can be updated

during execution to keep track of the average cost of actually

running the method in practice in relation to the others.

Finally, to update the weights based upon a reward rl we

apply the following formula

wl = wle
γ

rl
p∗

l
j

where rl = 0 for any strategy not selected. The exponential

factor allows for rapid adaptability throughout the execution

of the method. The factor is taken in proportion to the cost-

insensitive probability and uniform distribution weighting.

B. Example

An example is shown in Figure 2 which is a simple

environment with a narrow passage (Figure 2(a)). High

visibility nodes are shown in blue, mid visibility nodes in

magenta, and low visibility nodes in red. In this example

we define three growth strategy sets H , M , and L each

used for high, mid, and low nodes, respectively. H includes

the standard RRT growth suited to high visibility regions.

M includes inexpensive growth methods from OBRRT [24]

such as selecting a random workspace obstacle vector to bias

the expansion direction. L includes expensive approaches,

such as utilizing the medial axis (e.g., G8 in OBRRT). When

the tree is expanding through a high visibility area (Fig-

ure 2(b)), randomized exploration is taken to quickly expand

through the space. As the tree expands and approaches the

mouth of the narrow passage (Figure 2(c)), the visibility of
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TABLE I

ADAPTIVE RRT GROWTH SETS USED FOR EXPERIMENTAL ANALYSIS.

VISIBILITY IS SPLIT INTO LOW, MEDIUM, AND HIGH VISIBILITY SETS.

Adaptive RRT Growth Sets

Method Low Vis Mid Vis High Vis

AdaptiveRRT1 {G0-G6} ∅ ∅
AdaptiveRRT2 {G2-G6} ∅ {G0-G3}
AdaptiveRRT3 {G4-G6} {G2-G6} {G0-G3}

the nodes drops and growth methods will be chosen from

M . As the tree expands into a narrow passage, expensive

techniques can be used to guide the growth of the tree

effectively, which are selected when the visibility for those

nodes adapt and drop below the threshold for the growth set

M (Figure 2(d)). The visibility adapts from failed expansion

attempts or partial expansion attempts which occur often in

mid and low visibility regions. Finally, as the tree expands

out of the passage, and successful attempts occur often, the

visibilities return to high values appropriately (Figure 2(e)).

V. EXPERIMENTS

In this section, we analyze the effectiveness of Adaptive

RRT on a range of heterogeneous single-query problems

comparing its effectiveness to that of RRT and OBRRT.

Section V-A discusses experimental setup. Section V-B and

Section V-C show advantages of using Adaptive RRT with

varying cost metrics.

A. EXPERIMENTAL SETUP

All experiments were run on a Rocks Cluster running

CentOS 5.1 with Intel XEON CPU 2.4 GHz processors with

the GNU gcc compiler version 4.1.

RRT, OBRRT, and Adaptive RRT were implemented in a

C++ motion planning library developed in the Parasol Lab

at Texas A&M University which uses a distributed graph

data structure from the Standard Template Adaptive Parallel

Library (STAPL) [5], a C++ library designed for parallel

computing. All methods use ∆q = 10 with the Euclidean

distance metric (∆q is about 5% of the length of the diagonal

of the boundary used). All nearest neighbor computations are

done in an exact brute force fashion.

We experiment with three variants of Adaptive RRT, which

use one, two, or three sets of growth methods, respectively.

Growth sets are shown in Table I. AdaptiveRRT2 uses a high

visibility growth set with threshold 0.4 and a low visibility

growth set. AdaptiveRRT3 uses a high visibility growth set

with threshold 0.6, a mid visibility growth set with threshold

0.4, and a low visibility growth set. G0-G6 are growth

methods from OBRRT [24] and are described in Section II.

Overlap of growth methods between the sets is motivated

by multiple growth strategies being useful in different levels

of visibility. We use only G0-G6 in OBRRT because these

provided the best performance in extremely heterogeneous

environments. All growth methods have equal weighting as

it is unclear which is most beneficial for heterogeneous

environments.

Environments are shown in Figure 3.

• In 2D (Figure 3(a)), a robot must traverse a series of

difficult narrow passages and cluttered areas to solve a

query between the two free spaces above and below the

passage. We use both a 2DOF circle and a 3DOF stick

robot, denoted 2D-Circle and 2D-Stick, respectively.

• In Tic-Tac-Toe (TTT) (Figure 3(b)), a robot must tra-

verse a series of rooms starting from the middle going in

a spiral to the bottom right room. Some rooms contain

clutter. The robot is a 3DOF stick.

• In 3D (Figure 3(c)), a large spinning top-like robot

(6DOF) must traverse two long narrow passages with

a region of clutter in between to successfully solve

a query from the bottom left to the top right of the

environment.

All experiments are run on 10 random seeds until the

example query is solved. For these experiments, we report the

total number of nodes in the tree, the total number of colli-

sion detection (CD) calls, and the time required to generate

the tree as metrics for efficiency of tree construction. All

results are normalized to RRT and averaged over successful

trials. Outliers are removed using 1.5 times the interquartile

range of the data. All data is shown in Figure 4.

B. Expansion-based Cost Metric

For the 2D environment, we defined cost as c = ∆q−dist
where dist is the expansion distance during growth. The

number of nodes, number of CD calls, and time are compared

in Figure 4(a), Figure 4(b), and Figure 4(c), respectively.

When comparing the number of nodes, the variants of

Adaptive RRT generally need fewer nodes to solve the query

as compared to OBRRT and RRT. This has a dual benefit in

RRT exploration. First, fewer nodes implies more effective

exploration of the space, and second, fewer nodes allows

for more efficient nearest neighbor queries because their

efficiency is proportional to the size of the tree. The number

of CD tests performed is not necessarily a direct performance

indicator, as more successful growth attempts require more

CD tests. However, when compared with OBRRT, we can

see that Adaptive RRT is able to successfully reduce the

number of CD calls in the majority of cases. Adaptive RRT is

able to efficiently explore the space by appropriately adapting

the growth method selection to more successful methods in

using this cost metric. Finally, we can see that Adaptive

RRT ultimately provides a reduction in planning time for the

2D-Stick environment as compared with OBRRT and RRT.

Adaptive RRT performed similarly to OBRRT in 2D-Circle.

In a deeper analysis of the cost metric used, we can see

that the more successful growth methods will have cheaper

cost, as it relates high cost with short expansion attempts.

We found this metric to be most beneficial in environments

where the Voronoi bias of RRT expansion is largely biased

by the goal. In the 2D environment, this is apparent as the

tree’s largest region of Voronoi bias is towards the top.

C. Time-based Cost Metric

For the TTT and 3D environments, we use a cost pro-

portional to the computational time required to execute each
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(a) 2D (b) Tic-Tac-Toe (c) 3D

Fig. 3. Various environments for experimental analysis. All queries must traverse through difficult heterogeneous regions of narrow passages and clutter.
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Fig. 4. The number of nodes (a), number of CD calls (b), and the time (c) compared between RRT, OBRRT, and Adaptive RRT in the various environments.
Results are normalized to RRT.

growth method for Adaptive RRT. The number of nodes,

number of CD calls, and time are compared in Figure 4(a),

Figure 4(b), and Figure 4(c), respectively.

In the TTT environment, the number of nodes and time

are clearly reduced for each of the Adaptive RRT methods,

the number of CD calls is cheaper than OBRRT, and the total

time required is lower. This implies again that the Adaptive

RRT approach solves the problem more efficiently compared

to OBRRT and RRT. In the 3D environment, the number

of nodes is lower in AdaptiveRRT1 and AdaptiveRRT2, the

number of collision detection calls compared with OBRRT

is less for all AdaptiveRRT cases, and the total time is com-

parable to OBRRT for Adaptive RRT. From these metrics,

we can see that the time required for neighborhood searches

was slightly less than what is required for RRT. Adaptive

RRT gained efficiency over OBRRT by significantly reducing

both CD calls and number of nodes in the tree. From our

analysis, we see that Adaptive RRT more effectively chose

growth methods with average expansion success (implying

fewer CD calls) allowing more trials for expansion to be

completed. This was useful as the Voronoi bias towards the

goal was very limited in this environment, so adapting based

on computational cost of the growth method allowed cheaper

methods to be selected as they were just as effective in this

environment as the more successful methods.

Additionally, we can see that AdaptiveRRT3 suffered from

an over segmentation of the growth sets. Not all meth-

ods are right for every environment, and still some tuning
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of Adaptive RRT is required. However, we recommend

AdaptiveRRT1, AdaptiveRRT2, and AdaptiveRRT3 as good

heuristics for setting up growth sets.

D. Discussion

From the previous experiments, we can see that Adaptive

RRT successfully adapts growth strategy selection to provide

an improvement in efficiency over other methods. From our

experiments, we suggest two ways to use Adaptive RRT

effectively. One, we suggest understanding the environment

to choose the cost metric effectively. When the environment

is amenable to goal biasing, e.g., the 2D environment, we

suggest using reward-based cost, otherwise we recommend

time-based cost. Two, avoid over-fragmentation of visibility

growth sets, using two sets of targeted growth, one for high

and one for low visibility ranges seemed to be a good balance

across all environments tested. In the future, we would

like to gain a better understanding of building growth sets

and assigning appropriate visibility thresholds to maximize

effectiveness for input queries.

VI. CONCLUSION

In this paper, we presented a novel definition of visibilities

for RRTs based upon local growth knowledge and an algo-

rithm, Adaptive RRT, to effectively adapt RRT growth using

a two level growth selection method based upon visibility and

a cost-sensitive adapting scheme. This algorithm has little

overhead in computing visibility as it adapts and updates

based upon previous growth experience in an online manner.

In the future, we plan to explore creation of a fully adaptable

framework for RRTs.
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