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Abstract

Over the last years, particle filters have been applied with great success to a variety of

state estimation problems. In this paper we present a statistical approach to increasing the

efficiency of particle filters by adapting the size of sample sets during the estimation pro-

cess. The key idea of the KLD-sampling method is to bound the approximation error intro-

duced by the sample-based representation of the particle filter. The name KLD-sampling is

due to the fact that we measure the approximation error by the Kullback-Leibler distance.

Our adaptation approach chooses a small number of samples if the density is focused on

a small part of the state space, and it chooses a large number of samples if the state un-

certainty is high. Both the implementation and computation overhead of this approach are

small. Extensive experiments using mobile robot localization as a test application show

that our approach yields drastic improvements over particle filters with fixed sample set

sizes and over a previously introduced adaptation technique.

1 Introduction

Estimating the state of a dynamic system based on noisy sensor measurements is extremely

important in areas as different as speech recognition, target tracking, mobile robot navigation,

and computer vision. Over the last years, particle filters have been applied with great success to

a variety of state estimation problems including visual tracking [41], speech recognition [77],

mobile robot localization [28, 54, 43], map building [59], people tracking [69, 60], and fault

detection [76, 16]. A recent book provides an excellent overview of the state of the art [22].

Particle filters estimate the posterior probability density over the state space of a dynamic

system [23, 66, 3]. The key idea of this technique is to represent probability densities by

sets of samples. It is due to this representation, that particle filters combine efficiency with

the ability to represent a wide range of probability densities. The efficiency of particle filters

lies in the way they place computational resources. By sampling in proportion to likelihood,

particle filters focus the computational resources on regions with high likelihood, where good

approximations are most important.
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Since the complexity of particle filters depends on the number of samples used for esti-

mation, several attempts have been made to make more efficient use of the available sam-

ples [34, 66, 35]. So far, however, an important source for increasing the efficiency of particle

filters has only rarely been studied: Adapting the number of samples over time. While sample

sizes have been discussed in the context of genetic algorithms [65] and interacting particle fil-

ters [18], most existing approaches to particle filters use a fixed number of samples during the

entire state estimation process. This can be highly inefficient, since the complexity of the prob-

ability densities can vary drastically over time. Previously, an adaptive approach for particle

filters has been applied by [49] and [28]. This approach adjusts the number of samples based

on the likelihood of observations, which has some important shortcomings, as we will show.

In this paper we introduce a novel approach to adapting the number of samples over time. Our

technique determines the number of samples based on statistical bounds on the sample-based

approximation quality. Extensive experiments indicate that our approach yields significant im-

provements over particle filters with fixed sample set sizes and over a previously introduced

adaptation technique.

In this paper, we investigate the utility of adaptive particle filters in the context of mobile

robot localization, which is the problem of estimating a robot’s pose relative to a map of its

environment. The localization problem is occasionally referred to as “ the most fundamental

problem to providing a mobile robot with autonomous capabilities” [13]. The mobile robot

localization problem comes in different flavors. The most simple localization problem is po-

sition tracking. Here the initial robot pose is known, and localization seeks to identify small,

incremental errors in a robot’s odometry. More challenging is the global localization prob-

lem, where a robot is not told its initial pose, but instead has to determine it from scratch.

The global localization problem is more difficult, since the robot’s position estimate cannot

be represented adequately by unimodal probability densities [9]. Only recently, several ap-

proaches have been introduced that can solve the global localization problem, among them

grid-based approaches [9], topological approaches [46, 70], particle filters [28], and multi-

hypothesis tracking [4, 68]. The most challenging problem in mobile robot localization is the

kidnapped robot problem [25], in which a well-localized robot is teleported to some other po-

sition without being told. This problem differs from the global localization problem in that the

robot might firmly believe to be somewhere else at the time of the kidnapping. The kidnapped

robot problem, thus, is often used to test a robot’s ability to recover autonomously from catas-

trophic localization failures. Virtually all approaches capable of solving the global localization

problem can be modified such that they can also solve the kidnapped robot problem. Therefore,

we will focus on the tracking and global localization problem in this paper.

The remainder of this paper is organized as follows: In the next section we will outline the

basics of Bayes filters and discuss different representations of posterior densities. Then we will

introduce particle filters and their application to mobile robot localization. In Section 3, we will

introduce our novel technique to adaptive particle filters. Experimental results are presented in

Section 4 before we conclude in Section 5.
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2 Particle Filters for Bayesian Filtering and Robot Localiza-

tion

In this section we review the basics of Bayes filters and alternative representations for the

probability densities, or beliefs, underlying Bayes filters. Then we introduce particle filters as

a sample-based implementation of Bayes filters, followed by a discussion of their application

to mobile robot localization.

2.1 Bayes filters

Bayes filters address the problem of estimating the state x of a dynamical system from sensor

measurements. The key idea of Bayes filtering is to recursively estimate the posterior prob-

ability density over the state space conditioned on the data collected so far. Without loss of

generality, we assume that the data consists of an alternating sequence of time indexed ob-

servations zt and control measurements ut, which describe the dynamics of the system. The

posterior at time t is called the belief Bel(xt), defined by

Bel(xt) = p(xt | zt, ut−1, zt−1, ut−2 . . . , u0, z0)

Bayes filters make the assumption that the dynamic system is Markov, i.e. observations zt and

control measurements ut are conditionally independent of past measurements and control read-

ings given knowledge of the state xt. Under this assumption the posterior can be determined

efficiently using the following two update rules: Whenever a new control measurement ut−1 is

received, the state of the system is predicted according to

Bel−(xt) ←−
∫

p(xt | xt−1, ut−1) Bel(xt−1) dxt−1 , (1)

and whenever an observation zt is made, the state estimate is corrected according to

Bel(xt) ←− α p(zt | xt)Bel−(xt) . (2)

Here, α is a normalizing constant which ensures that the belief over the entire state space

sums up to one. The term p(xt | xt−1, ut−1) describes the system dynamics, i.e. how the

state of the system changes given control information ut−1. p(zt | xt), the perceptual model,

describes the likelihood of making observation zt given that the current state is xt. Note that the

random variables x, z and u can be high-dimensional vectors. The belief immediately after the

prediction and before the observation is called the predictive belief Bel−(xt), as given in (1).

At the beginning, the belief Bel(x0) is initialized with the prior knowledge about the state of

the system.

Bayes filters are an abstract concept in that they only provide a probabilistic framework for

recursive state estimation. To implement Bayes filters, one has to specify the perceptual model

p(zt|xt), the dynamics p(xt | xt−1, ut−1), and the representation of the belief Bel(xt).

2.2 Belief representations

The properties of the different implementations of Bayes filters strongly differ in the way they

represent densities over the state xt. We will now discuss different belief representations and
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Fig. 1: Properties of the most common implementations of Bayes filters. All approaches are based on

the Markov assumption underlying all Bayes filters.

their properties in the context of mobile robot localization. An overview of the different algo-

rithms is given in Figure 1.

Kalman filters are the most widely used variant of Bayes filters [47, 32, 72, 80]. They approx-

imate beliefs by their first and second moments, i.e. mean and covariance. Kalman filters

are optimal under the assumptions that the initial state uncertainty is unimodal Gaus-

sian and that the observation model and the system dynamics are linear in the state with

Gaussian noise. Non-linearities are typically approximated by linearization at the cur-

rent state, resulting in the extended Kalman filter (EKF). Recently, the unscented Kalman

filter (UF) has been introduced [45, 79]. This approach deterministically generates sam-

ples (sigma-points) taken from the Gaussian state and passes these samples through the

non-linear dynamics, followed by a Gaussian approximation of the predicted samples.

The unscented filter has been shown to yield better approximations both in theory and in

practice. Due to the linear approximations, both extended and unscented Kalman filters

are not optimal.

Despite their restrictive assumptions, Kalman filters have been applied with great suc-

cess to mobile robot localization, where they yield very efficient and accurate position

estimates even for highly non-linear systems [55, 58, 2, 39]. One of the key advantages

of Kalman filters is their efficiency. The complexity is polynomial in the dimensional-

ity of the state space and the observations. Due to this graceful increase in complexity,

Kalman filters can be applied to the simultaneous localization and map building prob-

lem (SLAM), where they estimate full posteriors over both robot positions and landmark

positions (typically consisting of hundreds of dimensions) [15, 20, 56, 10, 17].

However, due to the assumption of unimodal posteriors, Kalman filters applied to robot

localization solely aim at tracking a robot’s location. They are not designed to globally

localize a robot from scratch in arbitrarily large environments. Some of the limitations

of Kalman filters in the context of robot localization have been shown experimentally

in [37].
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Multi-hypothesis approaches represent the belief state by mixtures of Gaussians [4, 68, 42,

1]. Each hypothesis, or Gaussian, is typically tracked by an extended Kalman filter.

Due to their ability to represent multi-modal beliefs, these approaches are able to solve

the global localization problem. Since each hypothesis is tracked using a Kalman filter,

these methods still rely on the assumptions underlying the Kalman filters (apart from uni-

modal posteriors). In practice, however, multi-hypothesis approaches have been shown

to be very robust to violations of these assumptions. So far it is not clear how these

methods can be applied to extremely non-linear observations, such as those used in [19].

In addition to pure Kalman filtering, multi-hypothesis approaches require sophisticated

heuristics to solve the data association problem and to determine when to add or delete

hypotheses [6, 14].

Topological approaches are based on symbolic, graph structured representations of the en-

vironment. The state space of the robot consists of a set of discrete, locally distinctive

locations such as corners or crossings of hallways [46, 70, 52, 40, 11, 53]. The advantage

of these approaches lies in their efficiency and in the fact that they can represent arbitrary

distributions over the discrete state space. Therefore they can solve the global localiza-

tion problem. Additionally, these approaches may scale well towards high dimensional

state spaces because the complexity of the topological structure does not directly depen-

dent on the dimensionality of the underlying state space. A key disadvantage, however,

lies in the coarseness of the representation, due to which position estimates provide only

rough information about the robot location. Furthermore, only sensor information related

to the symbolic representation of the environment can be used, and adequate features

might not be available in arbitrary environments.

Grid-based, metric approaches rely on discrete, piecewise constant representations of the

belief [9, 8, 51, 63]. For indoor localization, the spatial resolution of these grids is

usually between 10 and 40 cm and the angular resolution is usually 5 degrees. As the

topological approaches, these methods can represent arbitrary distributions over the dis-

crete state space and can solve the global localization problem 1. In contrast to topo-

logical approaches, the metric approximations provide accurate position estimates in

combination with high robustness to sensor noise. A grid-based method has been ap-

plied successfully for the position estimation of the museum tour-guide robots Rhino

and Minerva [7, 73, 30]. A disadvantage of grid-based approaches lies in their compu-

tational complexity, based on the requirement to keep the typically three-dimensional

position probability grid in memory and to update it for each new observation. Efficient

sensor models [30, 51], selective update schemes [30], and adaptive, tree-based repre-

sentations [8] greatly increase the efficiency of these methods, making them applicable

to online robot localization. Since the complexity of these methods grows exponentially

with the number of dimensions, it is doubtful whether they can be applied to higher-

dimensional state spaces.

Sample-based approaches represent beliefs by sets of samples, or particles [28, 19, 31, 54,

43, 36]. A key advantage of particle filters is their ability to represent arbitrary probabil-

ity densities, which is why they can solve the global localization problem. Furthermore,

1Topological and in particular grid-based implementations of Bayes filters for robot localization are often

referred to as Markov localization [26].
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particle filters can be shown to converge to the true posterior even in non-Gaussian, non-

linear dynamic systems [18]. Compared to grid-based approaches, particle filters are

very efficient since they focus their resources (particles) on regions in state space with

high likelihood. Since the efficiency of particle filters strongly depends on the number

of samples used for the filtering process, several attempts have been made to make more

efficient use of the available samples [34, 66, 35]. Since the worst-case complexity of

these methods grows exponentially in the dimensions of the state space, it is not clear

how particle filters can be applied to arbitrary, high-dimensional estimation problems.

If, however, the posterior focuses on small, lower-dimensional regions of the state space,

particle filters can focus the samples on such regions, making them applicable to even

high-dimensional state spaces. We will discuss the details of particle filters in the next

section.

Mixed approaches use independences in the structure of the state space to break the state into

lower-dimensional sub-spaces (random variables). Such structured representations are

known under the name of dynamic Bayesian networks [33]. The individual sub-spaces

can be represented using the most adequate representation, such as continuous densities,

samples, or discrete values [50]. Recently, under the name of Rao-Blackwellised par-

ticle filters [21, 16, 36], the combination of particle filters with Kalman filters yielded

extremely robust and efficient approaches to higher dimensional state estimation includ-

ing full posteriors over robot positions and maps [62, 59].

2.3 Particle filters

Particle filters are a variant of Bayes filters which represent the belief Bel(xt) by a set St of n
weighted samples distributed according to Bel(xt):

St = {〈x(i)
t , w

(i)
t 〉 | i = 1, . . . , n}

Here each x
(i)
t is a state, and the w

(i)
t are non-negative numerical factors called importance

weights, which sum up to one. The basic form of the particle filter realizes the recursive Bayes

filter according to a sampling procedure, often referred to as sequential importance sampling

with resampling (SISR, see also [57, 23, 22]). A time update of the basic particle filter algo-

rithm is outlined in Table 1.

At each iteration, the algorithm receives a sample set St−1 representing the previous belief

of the robot, a control measurement ut−1, and an observation zt. Steps 3–8 generate n samples

representing the posterior belief: Step 4 determines which sample to draw from the previous

set. In this resampling step, a sample index is drawn with probability proportional to the sample

weight 2. Once a sample index is drawn, the corresponding sample and the control informa-

tion ut−1 are used to predict the next state x
(i)
t . This is done by sampling from the density

p(xt | xt−1, ut−1), which represents the system dynamics. Each x
(i)
t corresponds to a sample

drawn from the predictive belief Bel−(xt) in (1). In order to generate samples according to the

posterior belief Bel(xt), importance sampling is applied, with Bel(xt) as target distribution

2Resampling with minimal variance can be implemented efficiently (constant time per sample) using a proce-

dure known under the name deterministic selection [48, 3] or stochastic universal sampling [5].
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1. Inputs: St−1 = {〈x(i)
t−1, w

(i)
t−1〉 | i = 1, . . . , n} representing belief Bel(xt−1),

control measurement ut−1, observation zt

2. St := ∅, α := 0 // Initialize

3. for i := 1, . . . , n do // Generate n samples

// Resampling: Draw state from previous belief

4. Sample an index j from the discrete distribution given by the weights in St−1

// Sampling: Predict next state

5. Sample x
(i)
t from p(xt | xt−1, ut−1) conditioned on x

(j)
t−1 and ut−1

6. w
(i)
t := p(zt | x(i)

t ); // Compute importance weight

7. α := α + w
(i)
t // Update normalization factor

8. St := St ∪ {〈x(i)
t , w

(i)
t 〉} // Insert sample into sample set

9. for i := 1, . . . , n do // Normalize importance weights

10. w
(i)
t := w

(i)
t /α

11. return St

Table 1: The basic particle filter algorithm.

and p(xt | xt−1, ut−1)Bel(xt−1) as proposal distribution [71, 31]. By dividing these two distri-

butions, we get p(zt | x(i)
t ) as the importance weight for each sample (see Eq.(2)). Step 7 keeps

track of the normalization factor, and Step 8 inserts the new sample into the sample set. After

generating n samples, the weights are normalized so that they sum up to one (Steps 9-10). It

can be shown that this procedure in fact implements the Bayes filter, using an (approximate)

sample-based representation [23, 22]. Furthermore, the sample-based posterior converges to

the true posterior at a rate of 1/
√

n as the number n of samples goes to infinity [18].

Particle filters for mobile robot localization

Figure 2 illustrates the particle filter algorithm using a one-dimensional robot localization ex-

ample. For illustration purpose, the particle filter update is broken into two separate parts: one

for robot motion (Steps 4-5), and one for observations (Steps 6-7). The robot is given a map of

the hallway, but it does not know its position. Figure 2a shows the initial belief: a uniformly

distributed sample set, which approximates a uniform distribution. Each sample has the same

importance weight, as indicated by the equal heights of all bars in this figure. Now assume the

robot detects the door to its left. The likelihood p(z | x) for this observation is shown in the

upper graph in Figure 2b. This likelihood is incorporated into the sample set by adjusting and

then normalizing the importance factor of each sample, which leads to the sample set shown

in the lower part of Figure 2b (Steps 6-10 in Table 1). These samples have the same states as

before, but now their importance factors are proportional to p(z | x). Next the robot moves

to the right, receiving control information u. The particle filter algorithm now draws samples

from the current, weighted sample set, and then randomly predicts the next location of the robot

using the motion information u (Steps 4-5 in Table 1). The resulting sample set is shown in

Figure 2c. Notice that this sample set differs from the original one in that the majority of sam-
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Figure 2: One-dimensional illustration of particle filters for mobile robot localization.

ples is centered around three locations. This concentration of the samples is achieved through

resampling Step 4 (with a subsequent motion). The robot now senses a second door, leading to

the probability p(z | x) shown in the upper graph of Figure 2d. By weighting the importance

factors in proportion to this probability, we obtain the sample set in Figure 2d. After the next

robot motion, which includes a resampling step, most of the probability mass is consistent with

the robot’s true location.

In typical robot localization problems, the position of the robot is represented in the two-

dimensional Cartesian space along with the robot’s heading direction θ. Measurements zt may
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Fig. 3: Map of the UW CSE Department along with a series of sample sets representing the robot’s

belief during global localization using sonar sensors (samples are projected into 2D). The size of the

environment is 54m × 18m. a) After moving 5m, the robot is still highly uncertain about its position

and the samples are spread through major parts of the free-space. b) Even as the robot reaches the upper

left corner of the map, its belief is still concentrated around four possible locations. c) Finally, after

moving approximately 55m, the ambiguity is resolved and the robot knows where it is. All computation

is carried out in real-time on a low-end PC.

include range measurements and camera images, and control information ut usually consists

of the robot’s odometry readings. The next state probability p(xt | xt−1, ut−1) describes how

the position of the robot changes based on information collected by the robot’s wheel en-

coders. This conditional probability is typically a model of robot kinematics annotated with

white noise [28, 31]. The perceptual model p(zt | xt) describes the likelihood of making the

observation zt given that the robot is at location xt. Particle filters have been applied to a

variety of robot platforms and sensors such as vision [19, 54, 24, 81, 78, 38] and proximity

sensors [28, 31, 43].

Figure 3 illustrates the application of particle filters to mobile robot localization using sonar

sensors. Shown there is a map of a hallway environment along with a sequence of sample sets

during global localization. The pictures demonstrate the ability of particle filters to represent a

wide variety of distributions, ranging from uniform to highly focused. Especially in symmetric

environments, the ability to represent ambiguous situations is of utmost importance for the

success of global localization. In this example, all sample sets contain 100,000 samples. While

such a high number of samples might be necessary to accurately represent the belief during

early stages of localization (cf. 3(a)), it is obvious that only a small fraction of this number

suffices to track the position of the robot once it knows where it is (cf. 3(c)). Unfortunately, it
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is not straightforward how the number of samples can be adapted during the estimation process,

and this problem has only rarely been addressed so far.

3 Adaptive Particle Filters with Variable Sample Set Sizes

The time complexity of one update of the particle filter algorithm is linear in the number of

samples needed for the estimation. Therefore, several attempts have been made to make more

effective use of the available samples, thereby allowing sample sets of reasonable size. One

such method incorporates Markov chain Monte Carlo (MCMC) steps to improve the quality

of the sample-based posterior approximation [34]. Another approach, auxiliary particle filters,

applies a one-step lookahead to minimize the mismatch between the proposal and the target

distribution, thereby minimizing the variability of the importance weights, which in turn de-

termines the efficiency of the importance sampler [66]. Auxiliary particle filters have been

applied recently to robot localization [78]. Along a similar line of reasoning, the injection of

observation samples into the posterior can be very advantageous [54, 74, 31]. However, this

approach requires the availability of a sensor model from which it is possible to efficiently

generate samples.

In this paper we introduce an approach to increasing the efficiency of particle filters by

adapting the number of samples to the underlying state uncertainty [27]. The localization

example in Figure 3 illustrates when such an approach can be very beneficial. In the beginning

of global localization, the robot is highly uncertain and a large number of samples is needed to

accurately represent its belief (c.f. 3(a)). On the other extreme, once the robot knows where it

is, only a small number of samples suffices to accurately track its position (c.f. 3(c)). However,

with a fixed number of samples one has to choose large sample sets so as to allow a mobile

robot to address both the global localization and the position tracking problem. Our approach,

in contrast, adapts the number of samples during the localization process, thereby choosing

large sample sets during global localization and small sample sets for position tracking. Before

we introduce our method for adaptive particle filters, let us first discuss an existing technique

to changing the number of samples during the filtering process [49, 28].

3.1 Likelihood-based adaptation

We call this approach likelihood-based adaptation since it determines the number of samples

based on the likelihood of observations. More specifically, the approach generates samples

until the sum of the non-normalized likelihoods exceeds a pre-specified threshold. This sum is

equivalent to the normalization factor α updated in Step 7 of the particle filter algorithm (see Ta-

ble 1). Likelihood-based adaptation has been applied to dynamic Bayesian networks [49] and

mobile robot localization [28]. The intuition behind this approach is as follows: If the sample

set is well in tune with the sensor reading, each individual importance weight is large and the

sample set remains small. This is typically the case during position tracking (cf. 3(c)). If,

however, the sensor reading carries a lot of surprise, as is the case when the robot is globally

uncertain or when it lost track of its position, the individual sample weights are small and the

sample set becomes large.

The likelihood-based adaptation directly relates to the property that the variance of the

importance sampler is a function of the mismatch between the proposal distribution and the
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target distribution. Unfortunately, this mismatch is not always an accurate indicator for the

necessary number of samples. Consider, for example, the ambiguous belief state consisting of

four distinctive sample clusters shown in Fig. 3(b). Due to the symmetry of the environment,

the average likelihood of a sensor measurement observed in this situation is approximately the

same as if the robot knew its position unambiguously (cf. 3(c)). Likelihood-based adaptation

would hence use the same number of samples in both situations. Nevertheless, it is obvious that

an accurate approximation of the belief shown in Fig. 3(b) requires a multiple of the samples

needed to represent the belief in Fig. 3(c).

The likelihood-based approach has been shown to be superior to particle filters with fixed

sample set sizes [49, 28]. However, the previous discussion makes clear that this approach does

not fully exploit the potential of adapting the size of sample sets.

3.2 KLD-sampling

The key idea of our approach to adaptive particle filters can be stated as follows:

At each iteration of the particle filter, determine the number of samples such that, with

probability 1− δ, the error between the true posterior and the sample-based

approximation is less than ε.

3.2.1 The KL-distance

To derive a bound on the approximation error, we assume that the true posterior is given by a

discrete, piecewise constant distribution such as a discrete density tree or a multi-dimensional

histogram [49, 61, 64, 75]. For such a representation we show how to determine the number of

samples so that the distance between the sample-based maximum likelihood estimate (MLE)

and the true posterior does not exceed a pre-specified threshold ε. We denote the resulting

approach as the KLD-sampling algorithm since the distance between the MLE and the true

distribution is measured by the Kullback-Leibler distance (KL-distance) [12]. The KL-distance

is a measure of the difference between two probability distributions p and q:

K(p, q) =
∑

x

p(x)log
p(x)

q(x)
(3)

KL-distance is never negative and it is zero if and only if the two distributions are identical. It

is not a metric, since it is not symmetric and does not obey the triangle property. Despite this

fact, it is accepted as a standard measure for the difference between probability distributions

(or densities).

In what follows, we will first determine the number of samples needed to achieve, with

high probability, a good approximation of an arbitrary, discrete probability distribution (see

also [67, 44]). Then we will show how to modify the basic particle filter algorithm so that

it realizes our adaptation approach. To see, suppose that n samples are drawn from a dis-

crete distribution with k different bins. Let the vector X = (X1, . . . , Xk) denote the number

of samples drawn from each bin. X is distributed according to a multinomial distribution,

i.e. X ∼ Multinomialk(n, p), where p = p1 . . . pk specifies the true probability of each bin.

11



The maximum likelihood estimate of p using the n samples is given by p̂ = n−1X . Further-

more, the likelihood ratio statistic λn for testing p is

log λn =
k∑

j=1

Xj log

(
p̂j

pj

)

. (4)

Since Xj is identical to np̂j we get

log λn = n
k∑

j=1

p̂j log

(
p̂j

pj

)

. (5)

From (3) and (5) we can see that the likelihood ratio statistic is n times the KL-distance between

the MLE and the true distribution:

log λn = nK(p̂, p). (6)

It can be shown that the likelihood ratio converges to a chi-square distribution with k − 1
degrees of freedom [67]:

2 log λn →d χ2
k−1 as n→∞. (7)

Now let Pp(K(p̂, p) ≤ ε) denote the probability that the KL-distance between the true distri-

bution and the sample-based MLE is less than or equal to ε (under the assumption that p is the

true distribution). The relationship between this probability and the number of samples can be

derived as follows:

Pp(K(p̂, p) ≤ ε) = Pp(2nK(p̂, p) ≤ 2nε) (8)

= Pp(2 log λn ≤ 2nε) (9)
.
= P (χ2

k−1 ≤ 2nε) (10)

(10) follows from (6) and the convergence result stated in (7). The quantiles of the chi-square

distribution are given by

P (χ2
k−1 ≤ χ2

k−1,1−δ) = 1− δ . (11)

If we choose n such that 2nε is equal to χ2
k−1,1−δ, we can combine (10) and (11) and get

Pp(K(p̂, p) ≤ ε)
.
= 1− δ . (12)

Now we have a clear relationship between the number of samples and the resulting approxima-

tion quality. To summarize, if we choose the number of samples n as

n =
1

2ε
χ2

k−1,1−δ, (13)

then we can guarantee that with probability 1 − δ, the KL-distance between the MLE and the

true distribution is less than ε (see (12)). In order to determine n according to (13), we need
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to compute the quantiles of the chi-square distribution. A good approximation is given by the

Wilson-Hilferty transformation [44], which yields

n =
1

2ε
χ2

k−1,1−δ

.
=

k − 1

2ε

{

1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

, (14)

where z1−δ is the upper 1 − δ quantile of the standard normal distribution. The values of z1−δ

for typical values of δ are readily available in standard statistical tables.

This concludes the derivation of the sample size needed to approximate a discrete distribu-

tion with an upper bound ε on the KL-distance. From (14) we see that the required number of

samples is proportional to the inverse of the error bound ε, and to the first order linear in the

number k of bins with support. Here we assume that a bin of the multinomial distribution has

support if its probability is above a certain threshold (i.e. if it contains at least one particle) 3.

3.2.2 Using KL-distance in particle filters

It remains to be shown how to incorporate this result into the particle filter algorithm. The

problem is that we do not know the true posterior distribution for which we can estimate the

number of samples needed for a good approximation (the efficient estimation of this posterior is

the main goal of the particle filter). Our solution to this problem is to rely on the sample-based

representation of the predictive belief as an estimate for the posterior (samples from this belief

are generated in step 5 of the basic particle filter algorithm shown in Table 1). Furthermore,

(14) shows that it is not necessary to determine the complete discrete distribution, but that

it suffices to determine the number k of bins with support (for given ε and δ). Even though

we do not know this quantity before we actually generated all samples from the predictive

distribution, we can estimate k by counting the number of bins with support during sampling.

An update step of the KLD-sampling particle filter is summarized in Table 2. As can

be seen, we update the number of supported bins k for the predictive distribution after each

sample generated in step 5. The determination of k can be done incrementally by checking

for each generated sample whether it falls into an empty bin or not (steps 9-11). After each

sample, we use Equation (14) to update the number nχ of samples required for our current

estimate of k (step 12,13). In step 12, we additionally check whether the minimum number of

samples has been generated (nχmin
is typically set to 10). This concurrent increase in number

n of already generated samples and in the desired number nχ of samples works as follows:

In the early stages of sampling, k increases with almost every new sample since virtually all

bins are empty. This increase in k results in an increase in the number of desired samples nχ.

However, over time, more and more bins are non-empty and nχ increases only occasionally.

Since n increases with each new sample, n will finally reach nχ and sampling can be stopped

(condition in step 15).

3This way of determining the number of degrees of freedom of a multinomial distribution is a common statis-

tical tool. In our approach, the key advantage of this approximation is that it results in an efficient implementation

that does not even depend on a threshold itself (see next paragraph). We also implemented a version of the algo-

rithm using the complexity of the state space to determine the number of samples. Complexity is measured by 2H ,

where H is the entropy of the distribution. This approach does not depend on thresholding at all, but it does not

have guaranteed approximation bounds and cannot be implemented as efficiently as the method described here.

Furthermore, it does not yield noticeably different results.
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1. Inputs: St−1 = {〈x(i)
t−1, w

(i)
t−1〉 | i = 1, . . . , n} representing belief Bel(xt−1),

control measurement ut−1, observation zt,

bounds ε and δ, bin size ∆, minimum number of samples nχmin

2. St := ∅, n = 0, nχ = 0, k = 0, α = 0 // Initialize

3. do // Generate samples . . .

// Resampling: Draw state from previous belief
4. Sample an index j from the discrete distribution given by the weights in St−1

// Sampling: Predict next state

5. Sample x
(n)
t from p(xt | xt−1, ut−1) using x

(j)
t−1 and ut−1

6. w
(n)
t := p(zt | x(n)

t ); // Compute importance weight

7. α := α + w
(n)
t // Update normalization factor

8. St := St ∪ {〈x(n)
t , w

(n)
t 〉} // Insert sample into sample set

9. if (x
(n)
t falls into empty bin b) then

10. k := k + 1 // Update number of bins with support

11. b := non-empty // Mark bin

12. if n ≥ nχmin
then

13. nχ := k−1
2ε

{
1− 2

9(k−1) +
√

2
9(k−1)z1−δ

}3

// Update number of desired samples

14. n := n + 1 // Update number of generated samples

15. while (n < nχ and n < nχmin
) // . . . until KL-bound is reached

16. for i := 1, . . . , n do // Normalize importance weights

17. w
(i)
t := w

(i)
t /α

18. return St

Table 2: KLD-sampling algorithm.

The implementation of this modified particle filter is straightforward. The difference to

the original algorithm is that we have to keep track of the number k of supported bins and

the number nχ of desired samples (steps 9-12; for clarity we omitted the fact that nχ can

be determined only when k > 1). The bins can be implemented either as a fixed, multi-

dimensional grid, or more compactly as tree structures [49, 61, 64, 75, 29]. Note that the

sampling process is guaranteed to terminate, since for a given bin size ∆, the maximum number

k of bins is limited, which also limits the maximum number nχ of desired samples.

To summarize, our approach adapts the number of samples based on the approximation

error introduced by the sample-based representation. It uses the predictive belief state as an

estimate of the underlying posterior. Therefore, it is not guaranteed that our approach does

not diverge from the true (unknown) belief. However, as our experiments show, divergence

only occurs when the error bounds are too loose. KLD-sampling is easy to implement and the

determination of the sample set size can be done without noticeable loss in processing speed

(at least in our low-dimensional robot localization context). Furthermore, our approach can be
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Fig. 4: a) Pioneer II robot used throughout the experiments. b) Map used for localization along with the

path followed by the robot during data collection. The small circles mark the different start points for

the global localization experiments.

used in combination with any scheme for improving the approximation of the posterior [34,

66, 35, 74].

4 Experimental Results

We evaluated KLD-sampling in the context of indoor mobile robot localization using data col-

lected with a Pioneer robot (see Figure 4). The data consists of a sequence of sonar and laser

range-finder scans along with odometry measurements annotated with time-stamps to allow

systematic real-time evaluations. We used a beam-based sensor model to compute the likeli-

hood of the sensor scans [30, 31]. In the first experiments we compared our KLD-sampling

approach to the likelihood-based approach discussed in Section 3.1, and to particle filters with

fixed sample set sizes. Throughout the experiments we used different parameters for the three

approaches. For the fixed approach we varied the number of samples, for the likelihood-based

approach we varied the threshold used to determine the number of samples, and for our ap-

proach we varied ε, the bound on the KL-distance. In all experiments, we used a value of 0.99

for (1− δ) and a fixed bin size ∆ of 50cm× 50cm× 10deg. We limited the maximum number

of samples for all approaches to 100,000. The influence of different parameter settings on the

performance of KLD-sampling is discussed in more detail in Section 4.4.

4.1 Approximation of the true posterior

In the first set of experiments we evaluated how accurately the different methods approximate

the true posterior density. Since the ground truth for these posteriors is not available, we

generated reference sample sets using a particle filter with a fixed number of 200,000 samples

(far more than actually needed for position estimation). At each iteration of our test algorithms,

we computed the KL-distance between the current sample sets and the corresponding reference

sets, using histograms for both sets. We ignored the time-stamps in these experiments and gave

each algorithm as much time as needed to process the data. Fig. 5(a) plots the average KL-

distance along with 95% confidence intervals against the average number of samples for the

different algorithms and parameter settings (for clarity, we omitted the large error bars for KL-

distances above 1.0). The different data points for KLD-sampling were obtained by varying

the error bound ε between 0.4 and 0.015. Each data point in the graph represents the average of

16 global localization runs with different start positions of the robot (each of these runs itself

represents the average of approximately 150 sample set comparisons at the different points
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Fig. 5: The x-axis represents the average sample set size for different parameters of the three approaches.

a) The y-axis plots the KL-distance between the reference densities and the sample sets generated by

the different approaches (real-time constraints were not considered in this experiment). b) The y-axis

represents the average localization error measured by the distance between estimated positions and

reference positions. The U-shape in b) is due to the fact that under real-time conditions, an increasing

number of samples results in higher update times and therefore loss of sensor data.

in time). As expected, the more samples are used by the different approaches, the better the

approximation. The curves clearly illustrate the superior performance of our approach: While

the fixed approach requires about 50,000 samples before it converges to a KL-distance below

0.25, our approach converges to the same level using only 3,000 samples on average. This is

also an improvement by a factor of 12 compared to the approximately 36,000 samples needed

by the likelihood-based approach. The graph also shows that our approach is not guaranteed to

accurately track the true belief. This is due to the fact that the error bound is computed relative

to the current estimate of the belief, not the true posterior. Therefore, our approach can diverge

if the error bound is too loose (see leftmost data point in the KLD-sampling graph). However,

these experiments indicate that our approach, even though based on several approximations,

is able to accurately track the true posterior using far smaller sample sets on average than the

other approaches.

4.2 Real-time performance

Due to the computational overhead for determining the number of samples, it is not clear that

our approach yields better results under real-time conditions. To test the performance of our

approach under realistic conditions, we performed multiple global localization experiments

under real-time considerations using the timestamps in the data sets. As in the previous ex-

periment, localization was based on the robot’s sonar sensors. Again, the different average

numbers of samples for KLD-sampling were obtained by varying the ε-bound. The minimum

and maximum numbers of samples correspond to ε-bounds of 0.4 and 0.015, respectively. Af-

ter each update of the particle filter we determined the distance between the estimated robot

position and the corresponding reference position 4. The results are shown in Fig. 5(b). The

U-shape of all three graphs nicely illustrates the trade-off involved in choosing the number of

samples under real-time constraints: Choosing not enough samples results in a poor approxi-

mation of the underlying posterior and the robot frequently fails to localize itself. On the other

4Position estimates are extracted from sample sets using histograming and local averaging, and the reference

positions were determined by evaluating the robot’s highly accurate laser range-finder information.
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Fig. 6: Typical evolution of number of samples for a global localization run, plotted against time (num-

ber of samples is shown on a log scale). The solid line shows the number of samples when using the

robot’s laser range-finder, the dashed graph is based on sonar sensor data.

hand, if we choose too many samples, each update of the algorithm can take several seconds

and valuable sensor data has to be discarded, which results in less accurate position estimates.

Fig. 5(b) also shows that even under real-time conditions, our KLD-sampling approach yields

drastic improvements over both fixed sampling and likelihood-based sampling. The smallest

average localization error is 44cm in contrast to a minimal average error of 79cm and 114cm

for the likelihood-based and the fixed approach, respectively. This result is due to the fact that

our approach is able to determine the best mix between more samples during early stages of

localization and less samples during position tracking. Due to the smaller sample sets, our

approach also needs significantly less processing power than any of the other approaches. Note

that the average errors are relatively high since they include the large errors occurring during

the beginning of each localization run.

Figure 6 shows the sample set sizes during a typical global localization run using KLD-

sampling. In addition to the sizes based on the sonar data used in the previous experiments

(dashed line), the graph also shows the numbers of samples resulting from data collected by

the robot’s laser range-finder (solid line). As expected, the higher accuracy of the laser range-

finder results in a faster drop in the number of samples and in smaller sample sets during the

final tracking phase of the experiment. Note that the same parameters were used for both runs.

Extensions 1 and 2 illustrate global localization using sonar and laser range-finders. Shown

there are animations of sample sets during localization, annotated with the number of samples

used at the different points in time. Both runs start with 40,000 samples. The robot is plotted at

the position estimated from the sample sets. The timing of the animations is proportional to the

approximate update times for the particle filter (real updates are more than two times faster).

4.3 Tracking performance

So far we only showed that KLD-sampling is beneficial if the state uncertainty is extremely

high in the beginning and then constantly decreases to a certain level. In this experiment

we test whether KLD-sampling can produce improvements even for tracking, when the initial

state of the system is known. Again, we used the data collected by the Pioneer robot shown

in Figure 4. This time we used the robot’s laser range-finder data. In each run, the particle

filter was initialized with a Gaussian distribution centered at the start location of the robot. Our

initial experiments showed that in this context KLD-sampling has no significant advantage over

17



0

200

400

600

0 500 1000 1500 2000 2500

L
o

ca
li

za
ti

o
n

 e
rr

o
r 

[c
m

] Fixed

Adaptive

Number of samples (a)

100

200

300

400

500

600

700

0 200 400 600 800 1000

N
u
m

b
er

 o
f 

sa
m

p
le

s

Time [sec]

Adaptive

(b)

Fig. 7: (a) Localization error for different average sample set sizes. The solid line shows the error using

KLD-sampling, and the dashed line illustrates the results using fixed sample set sizes. (b) Number of

samples during one of the KLD-sampling runs. The grey shaded areas indicate time intervals of sensor

loss, i.e.during which no laser data was available.

Robot position

(a)

Robot position

(b)

Robot position

(c)

Robot position

(d)

Fig. 8: Sample sets before, during and after an interval of sensor loss. (a) During normal tracking, the

robot is highly certain and only 64 samples are used. (b) At the end of the sensor loss interval, the robot

is uncertain and 561 samples are used to represent the belief. (c) Even after receiving sensor data again,

the robot has to keep track of multiple hypotheses (129 samples). (d) The position uncertainty is low

and the number of samples is reduced accordingly (66 samples).

fixed sample sets. This result is not surprising since the uncertainty does not vary much during

position tracking. However, if we increase the difficulty of the tracking task, our approach

can improve the tracking ability. Here, the difficulty was increased by adding random noise

to the robot’s odometry measurements (30%) and by modeling temporary loss of sensor data.

This was done by randomly choosing intervals of 30 seconds during which all laser scans were

deleted. Figure 7(a) illustrates the localization error for different sample set sizes for both

KLD-sampling and fixed sample set sizes 5. Again, our approach is highly superior to the fixed

sampling scheme. With our approach, good tracking results (average error of 52.8 ± 8.5cm) can

be achieved with only 184 samples on average, while the fixed approach requires 750 samples

to achieve comparable accuracy. Note that the relatively large errors are due to the intervals of

sensor loss.

5We did not compare KLD-sampling to the likelihood-based approach, since this method is not able to ad-

equately adapt to situations of sensor loss. This is due to the fact that, without integrating sensor data, the

likelihoods are always the same.
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Fig. 9: Number of required samples n versus number of bins k for different settings of ε and δ. (a) ε
was fixed to 0.05 and the graphs show Eq. (14) for different values of (1− δ). (b) (1− δ) was fixed to

95% and ε was varied.

Figure 7(b) illustrates why our approach performs better than particle filters with fixed sam-

ple sets. The figure plots the number of samples during one of the runs using KLD-sampling.

The grey shaded areas indicate time intervals during which the laser data was removed from

the script. The graph shows that our approach automatically adjusts the number of samples

to the availability of sensor data. While less than 100 samples are used during normal track-

ing, the number of samples automatically increases whenever no laser data is available. This

increased number of samples is needed to keep track of the increased estimation uncertainty

due to sensor loss. Figure 8 shows a sequence of sample sets (a) before, (b) during and (c,d)

after one of the intervals without laser data. It is clear that distributions during the sensor loss

interval (Figure 8(b)) require more samples than the distributions during normal tracking (Fig-

ure 8(a) and (d)). Furthermore, Figure 8(c) shows that it is essential to have enough samples to

represent ambiguous situations occurring due to increased uncertainty.

4.4 Parameter settings

This section discusses the influence of the different parameters on the performance of KLD-

sampling. Our approach is independent of the parameters used for the sensor and motion

models, i.e. these values do not have to be changed when using KLD-sampling. The key

parameters of the approach are the error bound ε, the probability bound δ, and the the bin size

∆. In the experiments so far, the bound δ and the bin size ∆ were fixed, and only the error

bound ε was changed. For a given number of non-empty bins k, the number of samples n is

computed using (14). Figure 9 illustrates this function for different combinations of ε and δ.

The graphs are shown for up to 100 bins only. For larger values the individual graphs continue

in almost perfectly straight lines. As can be seen, the number of required samples changes

less significantly with different settings of δ than with different values of ε (see also Eq. (14)).

Hence it is reasonable to fix δ and adjust ε so as to achieve good performance.

Figure 10 shows how KLD-sampling changes with the bin size ∆. These results were ob-

tained in the context of the global localization experiment described in Section 4.1. For each bin

size, (1− δ) was fixed to 0.99 and ε was varied so as to achieve different sample set sizes. Fig-

ure 10(a) shows the average number of samples for bin sizes ranging from 25cm×25cm×5deg

to 200cm×200cm×40deg. For fixed values of δ and ε, the number of samples increases with

smaller bin sizes. The difference is most prominent for small values of the tolerated approx-

imation error ε. This result is not surprising, since smaller bin sizes result in larger values of
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Fig. 10: Dependency on bin size. (a) The x-axis represents different values for the error bound ε. The

y-axis plots the resulting average number of samples for different bin sizes. (b) The x-axis shows the

average number of samples and the y-axis plots the localization error achieved with the corresponding

number of samples and bin size. Obviously, all bin sizes achieve comparable results.

non-empty bins k, thereby increasing the number n of required samples.

Figure 10(b) shows the localization error plotted versus average number of samples for

different bin sizes. Again, the number of samples was varied by changing the value of ε.

In this experiment we found no significant difference between the performances when using

different bin sizes. When using approximately 1,200 samples on average, all bin sizes achieved

the same, low level of localization error. The only difference lies in the value of ε required

to achieve a certain average number of samples. More specifically, the same quality can be

achieved when using large bin sizes in combination with small approximation bound ε, or

when using small bin sizes in combination with larger approximation bound ε. This result was

slightly surprising since we expected that smaller bin sizes result in better overall performance.

However, the result is also very encouraging since it shows that the performance of KLD-

sampling is very robust to changes in its parameters. In our experience, a good approach was

to fix two parameters to reasonable values (e.g.(1−δ) = 0.99 and ∆ = 50cm×50cm×10deg),

and to adjust the remaining parameter so as to get the desired results.

5 Conclusions and Future Research

We presented a statistical approach to adapting the sample set sizes of particle filters during

the estimation process. The key idea of the KLD-sampling approach is to bound the error in-

troduced by the sample-based belief representation. At each iteration, our approach generates

samples until their number is large enough to guarantee that the KL-distance between the max-

imum likelihood estimate and the underlying posterior does not exceed a pre-specified bound.

Thereby, our approach chooses a small number of samples if the density is focused on a small

subspace of the state space, and chooses a large numbers of samples if the samples have to

cover a major part of the state space. KLD-sampling is most advantageous when the complex-

ity of the posterior changes drastically over time, as is the case, for example, in global robot

localization and position tracking with sensor loss.

Both the implementational and computational overhead of this approach are small. Exten-

sive experiments in the context of mobile robot localization show that our approach yields dras-

tic improvements over particle filters with fixed sample sets and over a previously introduced
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adaptation approach [49, 28]. In our experiments, KLD-sampling yields better approximations

using only 6% of the samples required by the fixed approach, and using less than 9% of the

samples required by the likelihood adaptation approach. In addition to the experiments pre-

sented in this paper, KLD-sampling has been tested in various indoor environments including

a museum with wide open spaces. In all environments, the results were comparable to the ones

presented here.

So far, KLD-sampling has been tested using robot localization only. We conjecture, how-

ever, that many other applications of particle filters can benefit from this method. In general,

our approach achieves maximal improvements in lower-dimensional state spaces and when

state uncertainties vary over time. In high-dimensional state spaces the bin counting can be

implemented using tree structures [49, 61, 64, 75, 29]. In this case the additional cost of

KLD-sampling is higher, since each tree lookup takes time logarithmic in the size of the state

space (instead of the constant time for the grid we used in the experiments). Furthermore,

our approach can be combined with any other method for improving the efficiency of particle

filters [34, 66, 35, 74].

KLD-sampling opens several directions for future research. In our current implementation

we use a discrete distribution with a fixed bin size to determine the number of samples. We as-

sume that the performance of the filter can be further improved by changing the discretization

over time, using coarse discretizations when the uncertainty is high, and fine discretizations

when the uncertainty is low. Our approach can also be extended to the case where in cer-

tain parts of the state space highly accurate estimates are needed, while in other parts a rather

crude approximation is sufficient. This problem can be addressed by locally adapting the dis-

cretization to the desired approximation quality using multi-resolution tree structures [49, 61]

in combination with stratified sampling. As a result, more samples are used in “important”

parts of the state space, while less samples are used in other parts.
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