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Abstract
We describe efforts to adapt the Tesseract open source OCR

engine for multiple scripts and languages. Effort has been

concentrated on enabling generic multi-lingual operation such

that negligible customization is required for a new language

beyond providing a corpus of text. Although change was required

to various modules, including physical layout analysis, and

linguistic post-processing, no change was required to the

character classifier beyond changing a few limits. The Tesseract

classifier has adapted easily to Simplified Chinese. Test results on

English, a mixture of European languages, and Russian, taken

from a random sample of books, show a reasonably consistent

word error rate between 3.72% and 5.78%, and Simplified

Chinese has a character error rate of only 3.77%.
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1. Introduction
Research interest in Latin-based OCR faded away more than a

decade ago, in favor of Chinese, Japanese, and Korean (CJK)

[1,2], followed more recently by Arabic [3,4], and then Hindi

[5,6]. These languages provide greater challenges specifically to

classifiers, and also to the other components of OCR systems.

Chinese and Japanese share the Han script, which contains

thousands of different character shapes. Korean uses the Hangul

script, which has several thousand more of its own, as well as

using Han characters. The number of characters is one or two

orders of magnitude greater than Latin. Arabic is mostly written

with connected characters, and its characters change shape

according to the position in a word. Hindi combines a small

number of alphabetic letters into thousands of shapes that

represent syllables. As the letters combine, they form ligatures

whose shape only vaguely resembles the original letters. Hindi

then combines the problems of CJK and Arabic, by joining all the

symbols in a word with a line called the shiro-reka.

Research approaches have used language-specific work-arounds

to avoid the problems in some way, since that is simpler than

trying to find a solution that works for all languages. For instance,

the large character sets of Han, Hangul, and Hindi are mostly

made up of a much smaller number of components, known as

radicals in Han, Jamo in Hangul, and letters in Hindi. Since it is

much easier to develop a classifier for a small number of classes,

one approach has been to recognize the radicals [1, 2, 5] and infer

the actual characters from the combination of radicals. This

approach is easier for Hangul than for Han or Hindi, since the

radicals don't change shape much in Hangul characters, whereas

in Han, the radicals often are squashed to fit in the character and

mostly touch other radicals. Hindi takes this a step further by

changing the shape of the consonants when they form a conjunct

consonant ligature. Another example of a more language-specific

work-around for Arabic, where it is difficult to determine the

character boundaries to segment connected components into

characters. A commonly used method is to classify individual

vertical pixel strips, each of which is a partial character, and

combine the classifications with a Hidden Markov Model that

models the character boundaries [3].

Google is committed to making its services available in as many

languages as possible [7], so we are also interested in adapting the

Tesseract Open Source OCR Engine [8, 9] to many languages.

This paper discusses our efforts so far in fully internationalizing

Tesseract, and the surprising ease with which some of it has been

possible. Our approach is use language generic methods, to

minimize the manual effort to cover many languages.

2. Review Of Tesseract For Latin

Fig. 1 is a block diagram of the basic components of Tesseract.

The new page layout analysis for Tesseract [10] was designed

from the beginning to be language-independent, but the rest of the

engine was developed for English, without a great deal of thought

as to how it might work for other languages. After noting that the

commercial engines at the time were strictly for black-on-white

text, one of the original design goals of Tesseract was that it

should recognize white-on-black (inverse video) text as easily as

black-on-white. This led the design (fortuitously as it turned out)

in the direction of connected component (CC) analysis and

operating on outlines of the components. The first step after CC
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Figure 1. Top-level block diagram of Tesseract.
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analysis is to find the blobs in a text region. A blob is a putative

classifiable unit, which may be one or more horizontally

overlapping CCs, and their inner nested outlines or holes. A

problem is detecting inverse text inside a box vs. the holes inside

a character. For English, there are very few characters (maybe ©

and ®) that have more than 2 levels of outline, and it is very rare

to have more than 2 holes, so any blob that breaks these rules is

"clearly" a box containing inverse characters, or even the inside or

outside of a frame around black-on-white characters.

After deciding which outlines make up blobs, the text line finder

[11] detects (horizontal only) text lines by virtue of the vertical

overlap of adjacent characters on a text line. For English the

overlap and baseline are so well behaved that they can be used to

detect skew very precisely to a very large angle. After finding the

text lines, a fixed-pitch detector checks for fixed pitch character

layout, and runs one of two different word segmentation

algorithms according to the fixed pitch decision. The bulk of the

recognition process operates on each word independently,

followed by a final fuzzy-space resolution phase, in which

uncertain spaces are decided.

Fig.2 is a block diagram of the word recognizer. In most cases, a

blob corresponds to a character, so the word recognizer first

classifies each blob, and presents the results to a dictionary search

to find a word in the combinations of classifier choices for each

blob in the word. If the word result is not good enough, the next

step is to chop poorly recognized characters, where this improves

the classifier confidence. After the chopping possibilities are

exhausted, a best-first search of the resulting segmentation graph

puts back together chopped character fragments, or parts of

characters that were broken into multiple CCs in the original

image. At each step in the best-first search, any new blob

combinations are classified, and the classifier results are given to

the dictionary again. The output for a word is the character string

that had the best overall distance-based rating, after weighting

according to whether the word was in a dictionary and/or had a

sensible arrangement of punctuation around it. For the English

version, most of these punctuation rules were hard-coded.

The words in an image are processed twice. On the first pass,

successful words, being those that are in a dictionary and are not

dangerously ambiguous, are passed to an adaptive classifier for

training. As soon as the adaptive classifier has sufficient samples,

it can provide classification results, even on the first pass. On the

second pass, words that were not good enough on pass 1 are

processed for a second time, in case the adaptive classifier has

gained more information since the first pass over the word.

From the foregoing description, there are clearly problems with

this design for non-Latin languages, and some of the more

complex issues will be dealt with in sections 3, 4 and 5, but some

of the problems were simply complex engineering. For instance,

the one byte code for the character class was inadequate, but

should it be replaced by a UTF-8 string, or by a wider integer

code? At first we adapted Tesseract for the Latin languages, and

changed the character code to a UTF-8 string, as that was the most

flexible, but that turned out to yield problems with the dictionary

representation (see section 5), so we ended up using an index into

a table of UTF-8 strings as the internal class code.

3. Layout Preprocessing
Several aspects of the “textord” (text-ordering) module of

Tesseract required changes to make it more language-

independent. This section discusses these changes.

3.1 Vertical Text Layout
Chinese, Japanese, and Korean, to a varying degree, all read text

lines either horizontally or vertically, and often mix directions on

a single page. This problem is not unique to CJK, as English

language magazine pages often use vertical text at the side of a

photograph or article to credit the photographer or author.

Vertical text is detected by the page layout analysis. If a majority

of the CCs on a tab-stop have both their left side on a left tab and

their right side on a right tab, then everything between the tab-

stops could be a line of vertical text. To prevent false-positives in

tables, a further restriction requires vertical text to have a median

vertical gap between CCs to be less than the mean width of the

CCs. If the majority of CCs on a page are vertically aligned, the

page is rotated by 90 degrees and page layout analysis is run again

to reduce the chance of finding false columns in the vertical text.

The minority originally horizontal text will then become vertical

text in the rotated page, and the body of the text will be

horizontal.

Figure 3. (a) A page containing a verical text region.

(b) The detected regions with image in red, horizontal text in

blue, and vertical text in yellow.
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Figure 2. Block diagram of Tesseract word recognition.
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Figure 4. The vertical

text is differentially

rotated so it is oriented

horizontally.

As originally designed, Tesseract had

no capability to handle vertical text,

and there are a lot of places in the code

where some assumption is made over

characters being arranged on a

horizontal text line. Fortunately,

Tesseract operates on outlines of CCs

in a signed integer coordinate space,

which makes rotations by multiples of

90 degrees trivial, and it doesn't care

whether the coordinates are positive or

negative. The solution is therefore

simply to differentially rotate the

vertical and horizontal text blocks on a

page, and rotate the characters as

needed for classification. Fig. 3 shows

an example of this for English text.

The page in Fig. 3(a) contains vertical

text at the lower-right, which is

detected in Fig. 3(b), along with the

rest of the text. In Fig. 4, the vertical

text region is rotated 90 degrees

clockwise, (centered at the bottom-left

of the image), so it appears well below

the original image, but in horizontal orientation.

Fig. 5 shows an example for Chinese text. The mainly-vertical

body text is rotated out of the image, to make it horizontal, and

the header, which was originally horizontal, stays where it started.

The vertical and horizontal text blocks are separated in coordinate

space, but all Tesseract cares about is that the text lines are

horizontal. The data structure for a text block records the rotations

that have been performed on a block, so that the inverse rotation

can be applied to the characters as they are passed to the classifier,

to make them upright. Automatic orientation detection [12] can be

used to ensure that the text is upright when passed to the

classifier, as vertical text could have characters that are in at least

3 different orientations relative to the reading direction. After

Tesseract processes the rotated text blocks, the coordinate space is

re-rotated back to the original image orientation so that reported

character bounding boxes are still accurate.

Figure 5. Horizontal text detection for Traditional Chinese.

Since the majority of the text is vertical, inside Tesseract it is

rotated anticlockwise 90 degrees so it lies outside the image,

but the lines are horizontal. The page header, which was

already horizontal, remains behind.

3.2 Text-line and Word Finding
The original Tesseract text-line finder [11] assumed that CCs that

make up characters mostly vertically overlap the bulk of the text

line. The one real exception is i dots. For general languages this is

not true, since many languages have diacritics that sit well above

and/or below the bulk of the text-line. For Thai for example, the

distance from the body of the text line to the diacritics can be

quite extreme. The page layout analysis for Tesseract is designed

to simplify text-line finding by sub-dividing text regions into

blocks of uniform text size and line spacing. This makes it

possible to force-fit a line-spacing model, so the text-line finding

has been modified to take advantage of this. The page layout

analysis also estimates the residual skew of the text regions, which

means the text-line finder no longer has to be insensitive to skew.

The modified text-line finding algorithm works independently for

each text region from layout analysis, and begins by searching the

neighborhood of small CCs (relative to the estimated text size) to

find the nearest body-text-sized CC. If there is no nearby body-

text-sized CC, then a small CC is regarded as likely noise, and

discarded. (An exception has to be made for dotted/dashed

leaders, as typically found in a table of contents.) Otherwise, a

bounding box that contains both the small CC and its larger

neighbor is constructed and used in place of the bounding box of

the small CC in the following projection.

A "horizontal" projection profile is constructed, parallel to the

estimated skewed horizontal, from the bounding boxes of the CCs

using the modified boxes for small CCs. A dynamic programming

algorithm then chooses the best set of segmentation points in the

projection profile. The cost function is the sum of profile entries

at the cut points plus a measure of the variance of the spacing

between them. For most text, the sum of profile entries is zero,

and the variance helps to choose the most regular line-spacing.

For more complex situations, the variance and the modified

bounding boxes for small CCs combine to help direct the line cuts

to maximize the number of diacriticals that stay with their

appropriate body characters.

Once the cut lines have been determined, whole connected

components are placed in the text-line that they vertically overlap

the most, (still using the modified boxes) except where a

component strongly overlaps multiple lines. Such CCs are

presumed to be either characters from multiple lines that touch,

and so need cutting at the cut line, or drop-caps, in which case

they are placed in the top overlapped line. This algorithm works

well, even for Arabic.

After text lines are extracted, the blobs on a line are organized

into recognition units. For Latin languages, the logical recognition

units correspond to space-delimited words, which is naturally

suited for a dictionary-based language model. For languages that

are not space-delimited, such as Chinese, it is less clear what the

corresponding recognition unit should be. One possibility is to

treat each Chinese symbol as a recognition unit. However, given

that Chinese symbols are composed of multiple glyphs (radicals),

it would be difficult to get the correct character segmentation

without the help of recognition. Considering the limited amount

of information that is available at this early stage of processing,

the solution is to break up the blob sequence at punctuations,

which can be detected quite reliably based on their size and

spacing to the next blob. Although this does not completely
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resolve the issue of a very long blob sequence, which is a crucial

factor in determining the efficiency and quality when searching

the segmentation graph, this would at least reduce the lengths of

recognition units into more manageable sizes.

As described in Section 2, detection of white-on-black text is

based on the nesting complexity of outlines. This same process

also rejects non-text, including halftone noise, black regions on

the side, or large container boxes as in sidebar or reversed-video

region. Part of the filtering is based on a measure of the

topological complexity of the blobs, estimated based on the

number of interior components, layers of nested holes, perimeter

to area ratio, and so on. However, the complexity of Traditional

Chinese characters, by any measure, often exceeds that of an

English word enclosed in a box. The solution is to apply a

different complexity threshold for different languages, and rely on

subsequent analysis to recover any incorrectly rejected blobs.

3.3 Estimating x-height in Cyrillic Text
After completing the text line finding step and organizing blocks

of blobs into rows, Tesseract estimates x-height for each text line.

The x-height estimation algorithm first determines the bounds on

the maximum and minimum acceptable x-height based on the

initial line size computed for the block. Then, for each line

separately, the heights of the bounding boxes of the blobs

occurring on the line are quantized and aggregated into a

histogram. From this histogram the x-height finding algorithm

looks for the two most commonly occurring height modes that are

far enough apart to be the potential x-height and ascender height.

In order to achieve robustness against the presence of some noise,

the algorithm ensures that the height modes picked to be the x-

height and ascender height have sufficient number or occurrences

relative to the total number of blobs on the line.

This algorithm works quite well for most Latin fonts. However,

when applied as-is to Cyrillic, Tesseract fails to find the correct x-

height for most of the lines. As a result, on a data set of Russian

books the word error-rate of Tesseract turns out to be 97%. The

reason for such high error rate is two-fold. First of all the ascender

statistics in Cyrillic fonts differ significantly from Latin ones.

Simply lowering the threshold for the expected number of

ascenders per line is not an effective solution, since it is not

infrequent that a line of text would contain one or no ascender

letters. The second reason for such poor performance is a high

degree of case ambiguity in Cyrillic fonts. For example, out of 33

upper-case modern Russian letters only 6 have a lower-case shape

that is significantly different from the upper-case in most fonts.

Thus, when working with Cyrillic, Tesseract can be easily misled

by the incorrect x-height information and would readily recognize

lower-case letters as upper-case.

Our approach to fixing the x-height problem for Cyrillic was to

adjust the minimum expected number of ascenders on the line,

take into account the descender statistics and use x-height

information from the neighboring lines in the same block of text

more effectively (a block is a text region identified by the page

layout analysis that has a consistent size of text blobs and line-

spacing, and therefore is likely to contain letters of the same or

similar font sizes).

For a given block of text, the improved x-height finding algorithm

first tries to find the x-height of each line individually. Based on

the result of this computation each line falls into one of the

following four categories: (1) the lines where the x-height and

ascender modes were found, (2) where descenders were found, (3)

where a common blob height that could be used as an estimate of

either cap-height or x-height was found, (4) the lines where none

of the above were identified (i.e. most likely lines containing

noise with blobs that are too small, too large or just inconsistent

in size). If any lines from the first category with reliable x-height

and ascender height estimates were found in the block, their

height estimates are used for the lines in the second category

(lines with descenders present) that have a similar x-height

estimate. The same x-height estimate is utilized for those lines in

the third category (no ascenders or descenders found), whose

most common height is within a small margin of the x-height

estimate. If the line-by-line approach does not result in finding

any reliable x-height and ascender height modes, the statistics for

all the blobs in the text block are aggregated and the same search

for x-height and ascender height modes is repeated using this

cumulative information.

As the result of the improvements described above the word error

rate on a test set of Russian books was reduced to 6%. After the

improvements the test set still contained some errors due to the

failure to estimate the correct x-height of the text line. However,

in many of such cases even a human reader would have to use the

information from the neighboring blocks of text or knowledge

about the common organization of the books to determine whether

the given line is upper- or lower-case.

4. Character / Word Recognition
One of the main challenges to overcome in adapting Tesseract for

multilingual OCR is extending what is primarily designed for

alphabetical languages to handle ideographical languages like

Chinese and Japanese. These languages are characterized by

having a large set of symbols and lacking clear word boundaries,

which pose serious tests for a search strategy and classification

engine designed for well delimited words from small alphabets.

We will discuss classification of large set of ideographs in the

next section, and describe the modifications required to address

the search issue first.

4.1 Segmentation and Search
As mentioned in section 3.2, for non-space delimited languages

like Chinese, recognition units that form the equivalence of words

in western languages now correspond to punctuation delimited

phrases. Two problems need to be considered to deal with these

phrases: they involve deeper search than typical words in Latin

and they do not correspond to entries in the dictionary. Tesseract

uses a best-first-search strategy over the segmentation graph,

which grows exponentially with the length of the blob sequence.

While this approach worked on shorter Latin words with fewer

Figure 6. Estimating x-height of Cyrillic text.
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segmentation points and a termination condition when the result is

found in the dictionary, it often exhausts available resources when

classifying a Chinese phrase. To resolve this issue, we need to

dramatically reduce the number of segmentation points evaluated

in the permutation and devise a termination condition that is

easier to meet.

In order to reduce the number of segmentation points, we

incorporate the constraint of roughly constant character widths in

a mono-spaced language like Chinese and Japanese. In these

languages, characters mostly have similar aspect ratios, and are

either full-pitch or half-pitch in their positioning. Although the

normalized width distribution would vary across fonts, and the

spacing would shift due to line justification and inclusion of digits

or Latin words, which is not uncommon, by and large these

constraints provide a strong guideline for whether a particular

segmentation point is compatible with another. Therefore, using

the deviation from the segmentation model as a cost, we can

eliminate a lot of implausible segmentation states and effectively

reduce the search space. We also use this estimate to prune the

search space based on the best partial solution, making it

effectively a beam search. This also provides a termination

condition when no further expansion is likely to produce a better

solution.

Another powerful constraint is the consistency of character script

within a phrase. As we include shape classes from multiple

scripts, confusion errors between characters across different

scripts become inevitable. Although we can establish the

dominant script or language for the page, we must allow for Latin

characters as well, since the occurrence of English words inside

foreign language books is so common. Under the assumption that

characters within a recognition unit would have the same script,

we would promote a character interpretation if it improves the

overall script consistency of the whole unit. However, blindly

promoting script characters based on prior could actually hurt the

performance if the word or phrase is truly mixed script. So we

apply the constraint only if over half the characters in the top

interpretation belong to the same script, and the adjustment is

weighted against the shape recognition score, like any other

permutation.

4.2 Shape Classification
Classifiers for large numbers of classes are still a research

problem; even today, especially when they are required to operate

at the speeds needed for OCR [13, 14]. The curse of

dimensionality is largely to blame. The Tesseract shape classifier

works surprisingly well on 5000 Chinese characters without

requiring any major modifications, so it seems to be well suited to

large class-size problems. This result deserves some explanation,

so in this section we describe the Tesseract shape classifier.

The features are components of a polygonal approximation of the

outline of a shape. In training, a 4-dimensional feature vector of

(x, y-position, direction, length) is derived from each element of

the polygonal approximation, and clustered to form prototypical

feature vectors. (Hence the name: Tesseract.) In recognition, the

elements of the polygon are broken into shorter pieces of equal

length, so that the length dimension is eliminated from the feature

vector. Multiple short features are matched against each

prototypical feature from training, which makes the classification

process more robust against broken characters.

Figure 7. (a) Prototype of h for Times Roman, (b) Match of a

broken h against prototytype.

Fig.7(a) shows an example prototype of the letter ‘h’ for the font

Times Roman. The green line-segments represent cluster means of

significant clusters that contain samples from almost every sample

of ‘h’ in Times Roman. Blue segments are cluster means that were

merged with another cluster to form a significant cluster. Magenta

segments were not used, as they matched an existing significant

cluster. Red segments did not contain enough samples to be

significant, and could not be merged with any neighboring cluster

to form a significant cluster.

Fig.7(b) shows how the shorter features of the unknown match

against the prototype to achieve insensitivity to broken characters.

The short, thick lines are the features of the unknown, being a

broken ‘h’ and the longer lines are the prototype features. Colors

represent match quality: black -> good, magenta -> reasonable,

cyan -> poor, and yellow -> no match. The vertical prototypes are

all well matched, despite the fact that the h is broken.

The shape classifier operates in two stages. The first stage, called

the class pruner, reduces the character set to a short-list of 1-10

characters, using a method closely related to Locality Sensitive

Hashing (LSH) [13]. The final stage computes the distance of the

unknown from the prototypes of the characters in the short-list.

Originally designed as a simple and vital time-saving

optimization, the class pruner partitions the high-dimensional

feature space, by considering each 3-D feature individually. In

place of the hash table of LSH, there is a simple look-up table,

which returns a vector of integers in the range [0, 3], one for each

class in the character set, with the value representing the

approximate goodness of match of that feature to a prototype of

the character class. The vector results are summed across all

features of the unknown, and the classes that have a total score

within a fraction of the highest are returned as the shortlist to be

classified by the second stage. The class pruner is relatively fast,

but its time scales linearly with the number of classes and also

with the number of features.

The second stage classifier calculates the distance df of each

feature from its nearest prototype, as the squared Euclidean

distance d of the (x,y) feature coordinates from the prototype line

in 2-D space, plus a weighted (w) difference of the angle  from
the prototype:

22 wdd f 
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This is essentially a generative classifier, in the sense that it

calculates the distance from an ideal. The feature distance is

converted to feature evidence Ef using the following equation:

21
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E
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The constant k is used to control the rate at which the evidence

decays with distance. As features are matched to prototypes, the

feature evidence Ef, is copied to the prototypes Ep. Since the

prototypes expect multiple features to be matched to them, and the

collection of “best match” is done independently for speed, the

sums of feature and prototype evidence can be different. The sums

are normalized by the number of features and sum of prototype

lengths Lp, and the result is converted back into a distance:


 






p

pf

f p

pf

final
LN

EE

d 1

Note that the actual implementation uses fixed-point integer

arithmetic and a lot of the scaling constants that would otherwise

obscure the calculations are omitted from the equations above.

Part of the strength of the second-stage classifier is in allowing

multiple ideals (known as configs in Tesseract) within each class

label, thus allowing multi-modal distributions that may be caused

by arbitrary differences in font or typography. The matching

process described above selects the best config when calculating

the final distance. In this sense, the classifier is thus effectively a

nearest neighbor classifier.

We hypothesize that the class pruner and the secondary classifier

work well for large numbers of classes because of their use of

voting among multiple “weak classifiers” of small dimension,

rather than relying on a single classifier of high dimension. This is

the very concept behind boosting [15], except that currently the

weal classifiers are not weighted. The dimensions of feature space

are quantized to 256 levels, which provide enough precision to

store the complex shapes of CJK characters and Indic syllables,

and the dfinal calculation avoids the curse of dimensionality in a

similar fashion to the class pruner.

5. Contextual Post-Processing
Tesseract's training process supports partially extending the

language model by providing a way to generate dictionaries for

new languages from an arbitrary word list. For compactness and

fast search, these dictionaries are represented by directed acyclic

word graphs (DAWGs). In the original implementation the

DAWG data structure was used to sequentially search several

dictionaries including the pre-generated system dictionary, the

document dictionary (dynamically constructed from the words in

the OCRed document) and a user-provided word list.

Originally each edge in the DAWG stored an 8-bit char to

represent the letter used for the corresponding transition in the

DAWG. This representation, however, was limiting, since

manipulating multi-character graphemes and multi-byte Unicode

characters in this manner was awkward. The DAWG data

structure was modified to store the unicharset IDs used by the

character classifier instead. This significantly simplified the

process of constructing and searching the DAWGs. Another

improvement was parallelizing the search over all the DAWGs.

To find out whether a given string is a valid dictionary word, the

search now starts out with an initial set of "active" DAWGs. As

each letter in the word is considered, this set is reduced to only

contain those that still "accepted" the partial string. At the end of

the process the set of "active" DAWGs consist of only those

DAWGs that contain the word. This restructuring allows us to

dynamically load an arbitrary number of DAWGs without having

to add any custom support for searching each of the newly added

DAWGs. It was also one of the necessary modifications to allow

Tesseract to support an arbitrary combination of languages - a

feature needed for Tesseract to work on multi-language text.

5.1 Constraint Patterns
The punctuation and number state machines in Tesseract were

hard-coded and did not generalize beyond the Latin scripts. Even

for the Latin scripts, a significant portion of valid punctuation and

number patterns were not accepted by the state machines. To help

Tesseract handle punctuation and numbers in non-Latin scripts

Tesseract's training process was extended with code to collect and

encode a set of frequently occurring punctuation and number

patterns. The step for collecting these patterns was implemented

to be done in parallel with the processing of a large text corpus to

construct the dictionaries for a given language. To represent and

match the generated patterns, the already existing code for

generating and searching word DAWGs was employed. A few

modifications to the algorithm that determines whether a given

classifier choice is a valid word in the language enabled Tesseract

to do a simultaneous search over all the DAWGs containing

words, punctuation and number patterns. With this modification it

was possible to remove all the language- and script-specific hard-

coded rules for numbers and punctuation. The process of

generating and searching the punctuation and number patterns

was designed to be completely data-driven and so far requires no

special casing for any language in particular.

5.2 Resolving Shape Ambiguities
Alongside the pre-trained shape templates, Tesseract's shape

classifier includes an adaptive component that learns the patterns

of the characters seen in the OCRed document. In order to ensure

that the adaptive component is trained on reliable data, the

classifier only adapts to the unambiguous dictionary words. The

OCRed word is dubbed "unambiguous" if it satisfies two

constraints. The first one is that the shape classifier must identify

a clear winner among all the alternative choices for the word (i.e.

the classifier rating for the top best choice must be significantly

higher than the rating of the next best choice). The second

constraint is that no dictionary word can exist that is ambiguous in

shape to the best choice for the word. This requirement is also

important for recognition speed, since (depending on the classifier

score) once Tesseract finds such a word choice, it could accept the

recognition result and stop further processing of the word.

For Latin scripts Tesseract contained a hand-crafted data file

(referred to as "dangerous ambiguities" file) specifying which

letter combinations are inherently ambiguous in the majority of

the Latin fonts. A scalable solution to enable this functionality for

languages using other scripts was to develop an automated way of

generating a list of ambiguous n-gram pairs for any given
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language. A set of n-grams (in this case uni-, bi-grams) whose

combined weight accounts for 95% of all n-grams in the language

was collected from a large text corpus. The n-grams were rendered

with a set of commonly used fonts in a few degradation modes

and exposures. Then Tesseract's shape classifier was run on the

rendered images to obtain a set of top scoring classifications for

each of the n-grams. The resulting classification scores statistics

was aggregated for each of the n-grams and the outliers with low

classifier scores were discarded (in some fonts and degradation

modes the characters were rendered beyond recognizable, and

such cases would only pollute the data). Then for each of the

incorrectly OCRed n-grams and the corresponding correct n-gram

pair an ambiguity score was computed. The ambiguity score was

defined as a function of the shape classifier-perceived similarity

between the wrong and correct n-grams (aggregated across all

fonts and degradation modes) and the frequency of the correct n-

gram in the language. In order to achieve the desired balance

between Tesseract's speed and accuracy, it was necessary to pick a

threshold of the expected number of errors allowed to occur due

to the n-gram shape ambiguities (computed from the n-gram

frequency and classifier error statistics). To generate the

"dangerous ambiguities" file the ambiguous n-gram pairs were

sorted in the non-increasing order of their ambiguity scores and

the appropriate number of top-scoring ambiguities that ensured

the desired expected error rate were included in the file.

With the data files generated by this automated approach it was

possible to achieve similar improvements on Latin scripts (EFIGS

data set) as compared to using the hand-crafted "dangerous

ambiguities" files (although in some languages the results were

slightly weaker). Using the automatically generated file on the

Russian data set resulted in a 10% reduction in word error rate.

Examining the files generated for other languages also showed

that the automatically generated files contained a fair number of

commonly confused shapes, but further tests on the corresponding

data sets will be needed to quantify the improvement.

5.3 Handling Highly Inflected Languages
Tesseract's speed and accuracy are tied to the quality of the

dictionary, and it is always a challenge to maximize these, while

minimizing the space consumed to store the dictionary.

Generating the dictionary from a corpus in a highly inflected

language is a particularly difficult task. The frequency of words in

highly inflected languages is more evenly distributed, and thus to

achieve the same language coverage, a larger dictionary is needed.

Moreover, many of the word forms of even the more frequent

words might not occur enough times in the training corpus to be

included in the dictionary, and thus the dictionary might not

generalize well beyond the training corpus. Fig.8 illustrates this

problem on a collection of languages by graphing the coverage of

the corpus against the number of most frequent words chosen to

form the dictionary.

Because of the head and tail compaction of the DAWG data

structure, adding an inflected form of a word that already exists in

the DAWGs might result in a very small increase in the overall

size of the dictionary. This is because the beginning and the

ending of the word might already be stored in the DAWG (for

example it would be relatively cheap to add the word "talking" to

the dictionary if "talk" and "making" have already been inserted).

To combat the problem of capturing more of the inflected word

forms, the dictionary generation process was amended with a step

to generate word variants (that were not present in the word list)

and add them to the dictionary. First, as previously done, the

DAWG is constructed from a word list. Then for each word root

in the DAWG a set of suffixes is collected. The sets are clustered

using a group-average hierarchical agglomerative clustering

algorithm. The suffix sets in the resulting clusters are merged to

form expanded suffix sets. Then for each word root and the

corresponding suffix set (pre-computed during the first traversal

of the DAWG) the closest expanded suffix set is identified. The

new words formed by the suffixes from the expanded set are

inserted into the DAWG.

6. Status / Experimental Results
Our data set consists of pages from randomly selected books

collected by the Google Book Search project. For each language,

100 random books were selected, and 10 pages were randomly

selected from each book for manual ground-truthing. Therefore,

these pages cover a large variety in every aspect from layout,

typeface, image quality, to subject and term usage.

The dataset is then broken into training, validation and test sets,

where the training and validation sets are used for learning and

benchmarking the algorithms during development, and the test set

is reserved for final evaluation during release. Table 1 summarizes

the size of the data set and current accuracy for a few languages.

For alphabetical languages, we report the error rates at both the

character and word level. For Chinese where the meaning of word

is ambiguous, we report only the character substitution rate.

EFIGSD is a combination of English, French, Italian, German,

Spanish and Dutch.

For Simplified Chinese, we noticed there is a large deviation of

error rates across different books. The difference can be mainly

attributed to variation in fonts and quality. Where the page quality

and accuracy are reasonable, the errors are mainly due to

confusions between similar or near-identical shape classes. We

have plans to increase the capacity of the feature space in the

shape matcher, which should help distinguish between similar

Figure 8. Corpus coverage of varying-size dictionaries in a

collection of languages.
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shapes. On the near-identical cases, the within-class variation

across fonts is probably larger than the between-class variation.

Fortunately, their usage and priors are so different that they could

easily be corrected when we introduce a language model for CJK.

Table 1. Error rates over various languages

Language No. of

chars

(millions)

No. of

words

(millions)

Char

error

rate

(%)

Word

error

rate

(%)

English 39 4 0.5 3.72

EFIGSD 213 26 0.75 5.78

Russian 38 5 1.35 5.48

Simplified

Chinese

0.25 NA 3.77 NA

Hindi 1.4 0.33 15.41 69.44

7. Conclusions & Future Work
We have described our experiments with adapting Tesseract to

operate on a diverse set of languages, and found that it was

surprisingly mostly a matter of engineering. Without any

significant changes to the classifier, we were able to obtain good

results for a variety of Latin-based languages, Russian, and even

Simplified Chinese. The results for Hindi have so far been

disappointing, but we have discovered that our test set contains a

mix of new and old typography, and a significant proportion of

errors are due to the fact that the training set does not contain

characters from the old typography. This work does not yet cover

languages that are written from right to left, which is mainly

another engineering issue, but Arabic has its own set of problems

that Tesseract may not be able to address – namely character

segmentation. Another language that we have not discussed is

Thai, which poses problems of highly ambiguous characters, and

like Chinese, does not have spaces between words.

An important future project is to improve the training process to

be able to use real data for training instead of just synthetic data

with character bounding boxes. This will greatly help accuracy on

Hindi. We also need to test Arabic and Thai, where we anticipate

more problems. For Chinese, Japanese, and Thai, we need to

allow the language model to search the space of arbitrarily

concatenated words, since there is no whitespace between the

words of these languages. The same capability would also be

useful for German, although German compounding has the

additional complexity of case changes and inserted letters.
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