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Abstract

To establish cooperative relationships, agents must be
willing to engage in helpful behavior and to keep their com-
mitments with agents who reciprocate this behavior. How-
ever, in uncertain and dynamic environments, it is difficult
to identify the degree of helpfulness of other agents. This
paper approaches this problem by characterizing agents’
helpfulness in terms of cooperation and reliability. An agent
chooses an action based on other agents’ helpfulness as
well as the dependency relationship between the agent and
others. This model was evaluated in a negotiation game in
which players needed to exchange resources to reach their
goals, but did not have information about each other’s re-
sources. Results showed that the model allowed agents to
identify and to adapt to others’ varying degree of helpful-
ness, even while they are constantly changing their strat-
egy. Moreover, agents who vary their cooperativeness and
reliability depending on those traits of others, can outper-
form agents who do not, as well as increase the social wel-
fare of the group.

1. Introduction

When making decisions, self-interested agents need to
reason about the behavior of other agents as well as the ef-
fects of their own actions. In particular, when agents depend
on each other to achieve their individual goals, agents’ suc-
cess depends on their ability to cooperate with others, i.e. to
perform actions that mutually benefit each other. In many of
these settings cooperation arises as a result of a process of
negotiation, in which agreements are reached and then re-
sources are exchanged. However, deceitful agents can take
advantage of agents that are helpful to them and others. As
systems become truly open, and consist of multiple agents
with no central control of design or behavior, agents must be
able to identify those who are cooperative and avoid those
who are exploiters.

One option is to use normative models of decision mak-
ing (e.g. game theory) as a guide for agents’ behavior [5].
These prescribe optimal strategies for all agents which take
into account the effects of their decisions on each other, and
guarantee that no agent is exploited by another. However,
in many cases, players who follow these strategies do not
help each other, and cooperative behavior, leading to higher
utilities for all agents, does not occur . In addition, these
models assume all agents deliberate in the same fashion
and completely adhere to their assigned strategies, a diffi-
cult assumption to make in open environments. Lastly, the
complexity of analysis becomes inherently difficult as the
number of agents grow or when agents are uncertain about
each other’s preferences. In short, normative models can-
not cope with the diversity that characterizes systems that
include many types of agents.

In behavioral economics and social psychology, person-
ality models have been used to explain and predict human
behavior across different environments and contexts. In par-
ticular, it has been shown that people’s personality affects
their decision-making strategies in negotiation (e.g., in the
ultimatum game) and their level of cooperation [1]. This pa-
per presents a model of negotiation which represents and
reasons about agents’ personalities in uncertain environ-
ments. The model characterizes the personality of others
along two dimensions: cooperation (the tendency to propose
mutually beneficial exchanges of resources) and reliability
(the tendency to fulfill commitments). By including these
measures inside agents’ utility functions, they can recipro-
cate helpful behavior rather than maximize their immediate
reward. They are also flexible in their ability to adapt to oth-
ers who change their own behavior. Therefore, they are able
to stay clear of unhelpful agents, and realize beneficial ex-
changes with helpful agents. Agents alternated between up-
dating a model of others and using the model to come up
with the best strategy to play.

We tested our model in an open system which included
agents that were created by the experiments as well as by
other people, who were not required to design their agents
in any specific manner. Our experiments varied the com-



plexity of the environment as well as the number of play-
ers and the dependency relationship between players. Re-
sults showed that agents who reason about the personality
were able to identify the cooperation and reliability tenden-
cies of others; they negotiated and reciprocated with help-
ful agents, while staying clear of agents that were deceitful
or unhelpful. In particular, agents who vary their helpful-
ness depending on the personality tendencies of others, can
outperform agents who do not, and include the social wel-
fare of all agents in the system.

Our work extends previous models of social reasoning
in negotiation. Hogg and Jennings [4] proposed a model in
which agents’ utilities were a weighted summation of each
other’s expected outcomes. By learning these weights from
observations, agents could change their measure of helpful-
ness over time. When all agents in the system were adap-
tive, high exploration rates led agents to seek out new ne-
gotiation opportunities and increased the overall social wel-
fare of the group. Sen and Dutta [6] investigated the effect
of agents’ helpfulness, and testimonies of others’ helpful-
ness, on the performance of the group. Agents agreed or
declined others’ requests according to a probability distri-
bution which depended on their past experiences as well as
the cost of helping. Agents who weighted the testimony of
others based on their reputation were more likely to suc-
ceed than those who did not consider reputation of others.
They were also able to avoid deceitful agents and to coop-
erate with helpful agents. Lastly, Zhang et. al [7] explored
the tradeoff between selfishness and benevolence in envi-
ronments where agents are uncertain about the helpful na-
ture of others in the system. They showed that without this
knowledge, realizing every opportunity for cooperation is
impossible, and that selfish agents do better than helpful
agents as the rate of uncertainty in the system grows.

All of these models allow agents to adapt their behav-
ior towards others by changing their measure of helpful-
ness over time. However, they explicitly include the poten-
tial benefit for each agent originating from possible actions
of others, which could be computed since all agents in the
group were designed by the experimenters. In systems that
are truly open, there is no knowledge about any aspect of
other agents’ design mechanisms, including how they bene-
fit from potential actions of other agents. Our model does
not assume or control any shape or form of other’s util-
ity function and as we show here, is thus suitable for such
systems. In addition, these works examined the effects of
agents’ helpfulness on the overall performance of the sys-
tem as well as the level of cooperation between agents.
Our focus was to construct an agent which could outper-
form other agents in open environments, regardless of their
helpfulness measure. Lastly, the strategy space of the do-
mains used in these works was limited, as were the number
of moves in the games In the domain we used in this work

there were thousands of potential actions at each phase of
the game and the length of each game depended on agents’
performance. There was uncertainty not only over agents’
resources, but also their measure of helpfulness. In addition,
the model was evaluated in repeated game settings which
added to its complexity.

2. The Colored Trails Formalism

Our study used the Colored Trails (CT) game designed
by Grosz and Kraus [3]. CT is a framework for investigating
decision-making processes of agents in contexts in which
their outcome depends on each other’s actions. By setting
the game parameters, it allows to control varying environ-
mental features such as task complexity, the resources avail-
able to agents and their capabilities, and the dependency re-
lationship between agents. CT provides a clear analogue be-
tween the properties of the game and real world task settings
and thus it generalizes to many domains.

CT is played on an NxM board of colored squares with
a set of tiles in colors chosen from the same palette as the
squares. One square is designated as the “goal square” and
each player has a piece on the board, initially located in one
of the non-goal squares. Each player also has a set of col-
ored chips. To move a piece into an adjacent square a player
must turn in a chip of the same color as the square. Chips
may be exchanged by the players, and the conditions of ex-
change may be varied to model different decision-making
situations.

A player’s performance in CT is determined by a scor-
ing function, which is computed when the player is declared
“out-of-game”. This function may depend on many factors,
such as the player’s distance from the goal-square, the num-
ber of moves made, and the number of tiles the player pos-
sesses at the end of the game. In addition, a player’s per-
formance in the game may be made to depend on the per-
formance of other players, by including the score of other
players in its own scoring function.

For our study, we used a version of CT in which two or
four players played on boards of different sizes. Each player
had knowledge of the scoring function and full view of the
board but cannot see the other player’s chips.

The game protocol comprised two phases, a communi-
cation phase and a movement phase. During the commu-
nication phase, new exchanges could be proposed, pend-
ing proposals could be replied to, and chips could be sent
from player to player. Agreements reached during the com-
munication phase were not enforced by the game controler,
allowing agents to deceive each other. During the move-
ment phase, the game controler automatically advanced
each player one square closer along the shortest path to the
goal given its resources.



A player was declared “out-of-game” if it reached the
goal state or if it stayed dormant for 3 moves, at which point
its score, denoted scorei, was computed. Each player’s out-
come depended solely on its own performance. The scor-
ing rule used was a multi-attribute linear function which in-
corporated three factors: (1) whether the player reached the
goal square; (2) the distance of the player from the goal
square; (3) the number of chips the player possessed at the
end of the game.

3. Model Construction

We wanted our model to be able to generalize to envi-
ronments which varied the number of players, the size of
the board-game, and the dependency relationship between
players. In addition, we wanted the model to be able to play
well in systems characterized by uncertainty over others’ re-
sources and utility functions. To this end, our model explic-
itly represented the helpfulness tendencies of multiple CT
players.

We described agents’ personality traits along two dimen-
sions with range [0, 1).

• Cooperation (c) - measured agents’ willingness to
share resources with others in the game through ini-
tiating and agreeing to proposals.

• Reliability (r) - measured agents’ willingness to keep
their commitments in the game through delivering the
chips they had agreed to.

We regarded agents that cooperated more than 50% of
the time as highly cooperative, and agents that reneged on
their commitments less than 20% of the time as highly re-
liable. More formally, we discretized parameter values into
three types.

• low-cooperation: [0, 0.3) ; low-reliability: [0, 0.4)

• medium-cooperation: [0.3, 0.6) ;
medium-reliability: [0.4, 0.8)

• high-cooperation: [0.6, 1.0) ; high-reliability: [0.8, 1.0)

We refer to agents’ personality traits by their coopera-
tion and reliability types. For example, an agent whose be-
havior exhibits low cooperation and medium reliability will
be referred to as a low-cooperation, medium-reliability (or
LM) type agent.

According to our model, agent i’s expected utility of tak-
ing action a directed at agent j depended on the following
features.

• The personality of agent i, denoted Pi.

• Agent i’s estimate of the personality of agent j, de-
noted Pj .

• The expected value of taking action a given the state
of the game s, denoted EVi(a|s).

• The expected cost of future ramifications of taking ac-
tion a, denoted ECi(a).

Computing the terms EVi(a|s) and ECi(a) is difficult,
especially when the chips of the opponent are unknown.
They require us to estimate the likelihood of agent i reach-
ing the goal in future phases of the game. In addition, they
require modeling the reasoning of opponent j who might
itself be modeling agent i. We approximated the probabil-
ity P (RG|s) of reaching the goal, while at state s, simply
as 1 − #cn

M+N
where #cn is the number of chips the agent

lacks to get the goal at state s and M and N are the game
board dimensions. We can then compute

EVi(a|s) = P (RG|s) · RGwt + scorei − e#np

where RGwt is a constant representing a bonus for reach-
ing the goal, scorei is the score for player i at state s and
the term e#np punishes the player for remaining idle, where
#np equals the number of idle turns the player has had in
the game.

To compute the expected ramification cost ECi, we as-
sumed that selfish actions of a player were punished by oth-
ers, and that considerate actions were rewarded by others.
For any proposal made by agent i towards agent j, we de-
fined a selfish exchange of i to be any exchange which is
more advantageous to i than to agent j. We defined a con-
siderate exchange of agent i to be any exchange that is more
advantageous to agent j than to i. We defined a feasible ex-
change of i to be any exchange for which agent i possesses
the chips to complete. All exchanges were assumed to be
beneficial to the recipient agent.

We estimated ECi(a) to equal some constant integer t

when a is (1) a considerate exchange of agent i; (2) an
agreement of i to a feasible exchange; (3) a transfer of chips
to fulfill a promise of exchange. We estimated ECi(a) to
equal −t when a is (1) a selfish exchange for agent i; (2) an
agreement of i to an infeasible exchange; (3) reneging on a
promise to send chips.

We constructed a multi-attribute linear utility function
associated with weights w1, . . . , w4.

ui(a, j, s) = w1 · (Pj .c + Pi.c) + w2 · (Pj .r + Pi.r)

+w3 · EVi(a|s) + w4 · ECi(a)

Here, we used object-oriented notation to denote mea-
sures of personality traits. For example, Pj .c refers to agent
i’s estimate of the cooperation measure for agent j. The
value of the weights depended on agents’ personality traits.
Low-cooperation and low-reliability type personalities as-
signed a higher weight to the expected value EVi, lead-
ing them to adopt behavior that was unhelpful. For ex-
ample, low-cooperation type agents only proposed selfish
exchanges and low reliability-type agents never fulfilled



their commitments to send chips. For medium- and high-
cooperation (or reliability) type agents, the weights were
tuned empirically.

Given that we have a model that represents the personal-
ities of each opponent, the next step is to show how an agent
that used this model behaved in the game. For each oppo-
nent j, an optimal action a∗

j maximizes the utility of agent
i at state s.

a∗

j ∈ argmaxaui(a, j, s)

Note that the equation uses set membership rather than
equality to indicate that there may be more than one ac-
tion that maximize the agent’s utility. An optimal action set
for i, denoted As is the set of all optimal actions of agent i

at state s (It will include at least one action for every oppo-
nent). We say two actions a1 and a2 contradict if perform-
ing a1 would require at least one chip that is needed to per-
form a2. For each subset of As in which no two actions
contradict, agent i summed up its utility for performing ev-
ery action. Agent i chose the subset whose set of actions
together yielded maximum utility, and performed every ac-
tion in that subset at the onset of each communication phase
of the game.

Lastly, we show how we updated the personality model
after each communication phase k. We computed the re-
liability measure of agent j at phase k, denoted Pj .r

k , to
be the fraction of times that agent j met its commitments
at phase k. The cooperation measure of agent j at phase
k, denoted Pj .c

k, is the fraction of times that agent j pro-
posed exchanges in which it offered chips to others. To up-
date Pj .r, we computed 1

k

∑k

l=1 δk−lPj .r
k , where δ is a

discount factor. We updated Pj .c in a similar manner.
This model prescribes distinct behaviors for differ-

ent personality traits. Low-reliability type agents never
keep their commitments to others. Medium-reliability
type agents are (1) more likely to keep their commit-
ments to medium- and high-reliability type agents than
they are to low-reliability type agents; (2) less likely to
keep their commitments to medium- and high-cooperation
type agents then they are to low-cooperation type agents.
High-reliability personalities always keep their commit-
ments, regardless of the personality type of the other.

The effect of an agent’s cooperation level on its behav-
ior, according to the model, is more complex – it varies ac-
cording to the dependency relationship between players. We
say that player i is task-dependent on player j, if player
i lacks the chip it needs to reach its goal and depends on
some player j, which possesses these chips, to supply them.
We say that a player is task-independent if it possesses all
the chips it needs to get to the goal. Table 1 presents the
behavior that was associated with agents’ level of cooper-
ation given their task dependency type. For example, when
it was independent of others, a high-cooperation type agent
was benevolent: it accepted any exchange, provided that it

was beneficial to the agent. Medium- and high-cooperation
type agents proposed exchanges whose benefit to the recip-
ient agent was correlated with their estimate of its level of
cooperation. The higher this estimate, the higher the ben-
efit of the exchange. This was denoted as “cooperation-
dependent” behavior within the table. As shown in the table,
when agents were task dependent on each other, medium-
and high-cooperation type agents were more helpful to co-
operative agents than others.

4. Experimental Design and Analysis

We used several classes of agents in our study. Multiple-
Personality (MP) and Single-Personality (SP) agents were
designed by the experimenters, and explicitly model the co-
operation and reliability traits Pj .c and Pj .r of each oppo-
nent j. The personality Pi of a SP agent includes constant
cooperation and reliability measures. However, a MP agent
adopts different measures of cooperation and reliability for
each personality type of its opponents based on a match-
ing scheme we describe later. Both MP and SP agents were
adaptive: they changed their behavior as a function of their
estimate of others’ measure of helpfulness, given the his-
tory of observations. However, the MP agent varied its co-
operativeness and reliability traits by adopting a unique per-
sonality type for each opponent.

Another class of agents was Peer-Designed (PD) agents.
To create a truly open system, the designers of these agents
were graduate-level computer-science students who were
not given any explicit instructions regarding their decision-
making strategies. In particular, the utility function that
guided PD agents in their play was not known.

We characterized all agents as “helpful” and “unhelpful”
in a preliminary evaluation: Helpful PD agents were those
who mainly engaged in reciprocal-type exchanges, in which
chips were both received and sent by the PDs; unhelpful PD
agents were those agents who engaged in (1) take-type ex-
changes in which players received chips, but did not give
out chips, or (2) were idle and did not engage in any ne-
gotiation with others. Helpful SP agents exhibited medium-
and high-cooperation and reliability personality traits, while
unhelpful SPs exhibited low-cooperation and reliability per-
sonality traits, as described in Section 3.

We expected helpful agents to be able to realize opportu-
nities for exchange with each other more often than unhelp-
ful agents and to exceed them in performance. We also ex-
pected that in some cases, unhelpful agents would be able
to take advantage of the vulnerability of helpful agents who
allow themselves to be exploited. We envisioned that the
flexibility of the MP agent would allow it to identify and
reciprocate helpful agents more quickly than others, while
staying clear of those who would exploit it. As a result, the
MP agent would achieve a higher score in the game than



Cooperation Level Negotiates with Personalities Types of Exchanges Accepted types of Exchanges Proposed
Low none / all selfish / selfish none / selfish

Medium
high-reliability / medium- and high
reliability

selfish/ cooperation-dependent
cooperation-dependent /
cooperation-dependent

High
all / medium- and high- cooperation
and reliability

any beneficial / cooperation-dependent
cooperation-dependent /
cooperation-dependent

Table 1. Task Independent/Dependent Behavior by Cooperation Level

personality personality
type matched
LL LL
LM LM
LH LM
MM LM
MH MM
HM HM
HH MM

Table 2. Matching Table for MP agent by Person-
ality Type (cooperation and reliability measure)

all other agents. Our experiments used a single MP agent,
7 SP agents with personality traits LL, LM, LH, MM, HM
and HH, and 10 PD agents, all of which achieved the high-
est score in a preliminary evaluation.

We took an empirical approach to come up with a match-
ing scheme for the MP agent, which assigned a different
personality type for each agent type. We ran a series of
games in which SP agents played each other using 30 2-
player boards, which varied every possible task-dependency
combination between two players. Each SP agent played
multiple games against each of the other possible SP types.
We matched each SP agent’s personality with the person-
ality of the opponent that resulted in the highest average
score for the SP agent. We did this separately for single and
repeated CT games, and combined the results of both set-
tings to form a matching table, described in Table 4. Based
on its estimates of the personality traits of others, the MP
agent matches a personality of its own to each agent.

This matching scheme adopted the right “balance” be-
tween helpfulness and selfishness. Low-cooperation agents
were matched with low-cooperation personalities to avoid
getting taken advantage of. Medium and high-reliability
agents were matched with medium-reliability personalities,
who kept their commitments as long as their opponent
kept theirs. Interestingly, some matchings were not intu-
itive. For example, high-cooperation agents were matched
with medium-reliability personalities; this was enough to
get high-cooperation agents to behave optimally from the
MP agent’s point of view.

We report on the performance of agents in the system by
comparing their scores and behavior across environments
which varied the dependency relationships between players
as well as the number of players. All results are statistically

significant in the 95% confidence interval range unless in-
dicated otherwise.

4.1. Repeated Game Settings

We evaluated the MP agent by playing a series of re-
peated games with the other agents in the systems. We al-
lowed agents to update their model of others from game to
game. We expected the MP agent to score higher than both
helpful and unhelpful agents in each of the games, and that
the rate of increase in score of the MP agent from game
to game to be significantly higher than for other agents
who increase their score. Also, we expected that helpful
agents would score higher than unhelpful agents in each
game, and that helpful agents would improve their perfor-
mance from game to game while unhelpful agents would
decrease their performance. Lastly, we expected that when
playing against unhelpful agents, the MP agent would score
lower than when playing against helpful agents. This is be-
cause one of the characteristics of low-cooperation SPs was
that they hardly initiated negotiation. Since we expected the
MP agent to avoid them altogether, this would prevent both
agents from realizing beneficial opportunities for exchanges
in the game.

The evaluation used two types of game boards. One in
which all players were task dependent on each other (allDep
board), and one in which one player was task independent
and the other players were task dependent on it (oneSelf)
board. The players in each game consisted of a MP agent, a
PD agent and two SP agents. In our experiment we executed
5,040 games, played in 1,080 rounds of three consecutive
games each. The board games we used in each round al-
ternated between the (oneSelf, allDep, OneSelf) boards and
(allDep, oneSelf, allDep) boards. The players in each game
included a MP agent, two SP agents, and one of the PD
agents. Each group of four players played all possible task
dependency roles, to control for any effect brought about
by dependency relationships. Table 3 presents the average
score for the MP agent when playing against helpful and
unhelpful agents across all games. These results sum over
the other players in the game.

As expected, the average score achieved by the MP agent
was significantly higher than all other agents, regardless of
their measure of helpfulness. Also, the MP agent’s score
when playing against helpful agents (170.6) was higher than



MP agent PD and SP agents

Helpful 170.6 114.8
Unhelpful 142.5 98.2

Table 3. MP agent Score average (3 repeated
games)

Exchange Helpful Unhelpful
Type agents agents

Reciprocal 60% 25%
Idle 20% 39%

Table 4. Exchange type Percentage of MP agent

its score when playing unhelpful agents (142.5). Helpful
agents also benefited from cooperating with the MP agent:
Their performance was significantly higher than their un-
helpful counterparts (114.8 vs. 98.2).

To show that the MP agent established a cooperative re-
lationship with helpful agents, while staying clear of un-
helpful agents, we examined the fraction of reciprocal ex-
changes the MP engaged in, as well as the fraction of turns
it was idle and did not offer any exchange. Results are
shown in Table 4 for both MP agents and helpful SP agents.
They confirm that the percentage of reciprocal exchanges
between an MP agent and helpful agents (60%) were signifi-
cantly higher than that of the MP agent and unhelpful agents
(20%), while the MP agent’s percentage of idleness with
regard to unhelpful agents (39%) was significantly higher
than with regard to helpful agents (20%). This also proves
that the MP agent successfully identified agents who were
exploitive and kept them from taking advantage of it. In
contrast, helpful SP agents were more likely to engage in re-
ciprocal exchanges (65%) and far less likely to remain idle
towards others (1%), indicating that they were more vulner-
able to exploitation. Note that percentages do not up to 1 be-
cause we have left out give- and take-type exchanges from
this analysis.

Table 5 shows the average performance for each game.
The performance of the PD agent increased from game to
game, while the performance of unhelpful PD agents de-
creased from game to game. This result is supported by the
fact that the MP agent avoided interacting with unhelpful
agents, as shown in Table 4. Interestingly, there was no sig-
nificant difference in the performance of helpful PD agents
from game to game, indicating that the MP agent was able
to capture them and adopt just the right balance of coop-
erative behavior. However, we were surprised that the av-
erage performance of both helpful and unhelpful SP agents
increased from game 2 to game 3. We wanted to find out
whether this increase signaled a process of adaptation to the
MP agent. Would this trend be continued in future games ?

Game 1 Game 2 Game 3

MP agent 149.87 153.06 154.74
Helpful PDs 115.53 115.92 112.67

Unhelpful PDs 116.85 107.29 102.94
Helpful SPs 117.26 107.93 116.28

Unhelpful SPs 95.33 85.96 91.46

Table 5. Repeated Games Results
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Figure 1. MP agent vs. SP agent Performance (6
repeated games)

To this end, we ran six repeated games played on 4-
player board games in which the MP agent played against
three other SP agent types. Figure 1 shows average perfor-
mance of MP vs. SP agents game across the six game se-
ries. We labeled the significant differences in score between
games whenever the difference was not in the 95% confi-
dence interval. Between game 1 and game 3, the score of
the MP agent rose monotonically while the score of the SP
agents decreased monotonically. However, the score of the
MP agent decreased from game 3 to game 4, while the SP
agents increased their score between game 3 and game 5.
Although the decrease in the MP agent’s score was not sta-
tistically significant, we sought to explain it by hypothesiz-
ing that unhelpful SP agents who avoided detection prior to
game 3, were able to exploit the MP agent in game 4.

This claim was supported by Figure 2 which depicts the
difference in score for the MP agent between game 3 and
4 when playing against each SP personality type. As de-
scribed by the figure, the MP agent suffered a significant
decrease in score when playing against unhelpful SP agent
types LL and LM, as we expected, but also when playing
the helpful agent type HM. To verify that mis-identification
is the cause of this behavior, we ran a series of separate
games in which a HH SP type agent played against every
other SP agent type on each of the boards. We used a HH
type agent for this experiment because such a player com-
municates a lot with other player. Therefore, these results



represent an upper bound on the MP agent’s ability to iden-
tify its opponents. We recorded the HH SP agent’s success
rate for every personality type of SP agent.

Indeed, the highest error rate in identification (35%) oc-
curred when the HH type agent tried to identify an HM type
agent, perhaps because the behavior of this agent is some-
what contradictory. It agrees and proposers considerate ex-
changes while fulfilling some, but not all, of its commit-
ments. However, we were encouraged by the fact that al-
though some agents escaped identification in earlier rounds,
the performance of the MP agent was not affected. It con-
tinued to do much better than SP agents, as well as to in-
crease its average score in game 6.

Figure 2. Difference in Score of MP agent be-
tween games 3 and 4

4.2. The Influence of Task Dependency

When players need each other’s resources, helpful agents
are likely to supply more resources than unhelpful agents.
However, they are also taking a chance of getting exploited
by players who are deceitful and renege on their commit-
ments. We expected the MP agent to perform better than
both helpful and unhelpful agents in any task-dependency
role. Also, we hypothesized that when helpful SP and PD
agents are task-independent, they will engage in benevo-
lent behavior, and as a result, be taken advantage by unhelp-
ful players. Therefore we expected their performance to be
lower than their unhelpful counterparts. Since all SP agents
share the same type of model, we hypothesized that help-
ful SPs would be able to perform better than unhelpful SPs,
because they would identify the exploiters and avoid them.

We analyzed the performance of all agents for each type
of task-dependency on the game boards. We presents our re-
sults in table 6. Recall that all agents were task dependent in
the allDep game board, while one agent was task indepen-
dent on the oneSelf board, and all other agents were task
dependent on it.

Results confirmed the second part of our hypotheses, but
not the first: Unhelpful SP and PD agents were more suc-
cessful than helpful agents when they were task indepen-

Agent Task task
Type Dependent Independent

MP agent 160.32 231.2
Helpful PDs 137.23 221.16

Unhelpful PDs 150.58 253.54
Helpful SPs 113.26 231.93

Unhelpful SPs 93.69 241.2

Table 6. Agent Performance by Task Dependency

dent and helpful SPs were more successful than unhelp-
ful SPs when they were task dependent. When it was task
dependent, the MP agent’s performance was significantly
higher than both SP and PD agents’ performance. When it
was task-independent, the MP agent performed better than
unhelpful SPs, but not better then unhelpful PDs. They were
able to take advantage of it. Since the MP agent’s score
is higher than that of helpful SPs when they were task-
dependent, we inferred that helpful SPs were taken advan-
tage more by unhelpful PDs than the MP agent.

To test this premise, we computed the exchange type ra-
tio that the MP agent engaged in with others in each task de-
pendency role, as described in Figure 3. When it was task
dependent, the MP agent engaged in idle behavior much
more often when dealing with unhelpful PD agents (42%)
then when dealing with unhelpful SPs (21%). This con-
firmed that the MP agent was able to “cut its losses” when
playing with unhelpful PD agents, although they were still
able to take advantage of it in this situation. However, the
score difference in favor of the MP agent when it was task-
dependent was much higher than the score difference in fa-
vor of the MP when it was task-independent – therefore on
average, the performance of the MP agent was much higher
than all other agents in the system, confirming our findings
in Section 4.1. Another interesting result was that unhelp-
ful PDs were more successful than helpful PDs when they
were task-dependent. We inferred that it was more difficult
to predict the behavior of agents for which their was no cen-
tral design scheme.

4.3. MP agents and Social Welfare

Our hypothesis was that any group of agents would in-
crease its overall social welfare when playing with an MP
agent. This is because MP agents engage in helpful ex-
changes that would not be realized when other agents are
playing. To evaluate this claim, we ran a series of 2-player
repeated games which included SP and PD type agents, but
did not include MP agents, and compared it to the perfor-
mance of each agent type after after including an MP agent
in the group. The results are described in Figure 4 and are
statistically significant with p-value < 0.08. The perfor-
mance of helpful and unhelpful agents increased signifi-
cantly when interacting with the MP agent. As expected,



Figure 3. MP Exchange Behavior when task depedent. Left: with SP agents Right: with PD agents

this increase was more profound for helpful SP and PD
agents.

Figure 4. Performance with/without MP agent

5. Conclusions and Future Work

We have presented a model of negotiation which explic-
itly represents agents’ measure of helpfulness personality
traits. We evaluated this model in an open system for which
there was no central design for the control of agents and
in a domain characterized by uncertainty over agents’ re-
sources, as well as their cooperative and reliability tenden-
cies. We have shown that agents that adopt a different coop-
erativeness and reliability measure, depending on who they
interact with, could outperform all other agents in the sys-
tems. They could identify others personality, and adopt the
right balance of behavior towards them more quickly and
accurately than other agents. This enabled them to recip-
rocate helpful behavior while punishing deceitful behavior.
Also, they improved the performance of all agents in the
system, including unhelpful agents. We showed that when
helpful agents are task-independent, they engage in benevo-
lent behavior and are taken advantage by unhelpful agents.
However, when they are task-independent, helpful players
do better than unhelpful players, who do not realize the full
potential of cooperating with others.

One future goal is to use personality models to describe
team formation in agent systems. Are agents which exhibit
similar personality traits more likely to form teams ? How
will this affect the performance of the system ? Also, we
intend to use this model to build computers which inter-
act with people. It has been shown that people’s behavior
in negotiation is affected by their preferences towards oth-
ers outcomes, as well as their own [2]. We are interested to
see if modeling people’s measures of helpfulness can lead
to better computer negotiators and explain people’s behav-
ioral tendencies outside of the game. We are also planning
to tailor the model to deal with higher levels of uncertainty.
For instance, by limiting the visibility of the board, it will
be difficult for agents to assess their own chances of get-
ting to the goal.
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