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1.  INTRODUCTION

In October 2009, the International Energy Agency
(IEA) announced a major opportunity to mitigate climate
change presented by the downturn in carbon emissions
resulting from the global financial crisis. Their forecast
estimated an emissions reduction of 3%, bringing a
future target of 450 ppm CO2 apparently within reason-
able reach (IEA 2009). Whilst the IEA report is optimistic
about the political feasibility of a 450 ppm target (com-
pare this with the IPCC Special Report on Emissions Sce-
narios; IPCC 2000), and achieving such a target would
certainly reduce the extent of ongoing climate change,

given the radiative forcing of CO2 as a greenhouse gas
(Archer & Rahmstorf 2010), the present course of human
activities still commits the globe to substantial changes in
climate. Indeed, even if radiative forcing remained at the
level experienced in 2000, warming and other changes
in climate would continue. Independent assessments
also indicate that the trajectory of emissions has ex-
ceeded even the highest forecasts made by the IPCC
(IPCC 2007). Thus the planet is now committed to an-
thropogenic climate change. Moreover, new evaluations
suggest that dangerous environmental impacts will
require smaller degrees of warming than previously
thought (Smith et al. 2009).
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Biologists no longer doubt that biological systems
have already responded to the current global anthro-
pogenic changes in climate. Many studies have dem-
onstrated substantial shifts in the geographic ranges
and phenologies of species from a broad array of taxa,
indicating a coherent fingerprint of climate change
(e.g. Walther et al. 2002, Parmesan & Yohe 2003, Gen-
ner et al. 2004, Nussey et al. 2005, Both et al. 2006,
Møller et al. 2006, Parmesan 2006, Pörtner & Knust
2007, Lenoir et al. 2008, le Roux & McGeoch 2008,
Chen et al. 2009, Steltzer & Post 2009). Given the sub-
stantial evidence of shifting ranges and phenologies,
and of substantial range shifts in the past (Dynesius &
Jansson 2000, Davis & Shaw 2001), much attention has
also been given to forecasting the likely effects of
ongoing climate change on species and ecosystems
from these perspectives (e.g. Midgley et al. 2003,
Thomas et al. 2004, Thuiller et al. 2006, Kearney et al.
2008). A large body of often contentious literature has
developed about how changes in species’ ranges
should be modelled and how additional biological
mechanisms might be incorporated to improve their
utility (e.g. Pearson & Dawson 2003, Elith et al. 2006,
Hijmans & Graham 2006, Brooker et al. 2007, Soberón
2007, Sutherst et al. 2007, Beale et al. 2008, Jeschke &
Strayer 2008, Keith et al. 2008, Elith & Graham 2009).

Nonetheless, 2 areas stand out as relatively underap-
preciated: the importance of understanding a species’
physiological capacities when forecasting its response
to climate change (reviewed by Helmuth et al. 2005,
Kearney & Porter 2009), and the likely influence that
capacities for genetic change across generations and
changes in plastic responses, or the lack thereof, will
have on a species’ response (Lande & Shannon 1996,
Stillman 2003, Bradshaw & Holzapfel 2006, 2008, van
Asch et al. 2007, Kearney et al. 2009a). In many ways,
these 2 areas of research are inseparable. If evolution-
ary or plastic adjustments are impossible (or simply
slower than the rate required to keep up with environ-
mental change), the demographic effects of a mis-
match between physiological capacities (in a multi-
species context, see de Mazancourt et al. 2008) and
environmental variation will lead to local extinction.
Indeed, when the rate of environmental change is
below ca. 10% of a phenotypic standard deviation per
generation, mean time to extinction increases rapidly
(Burger & Lynch 1995). The degree of unpredictability
of an environment can also make the presence of
genetic variance disadvantageous (Lande & Shannon
1996). Thus patterns of environmental noise will affect
responses to environmental change (Stenseth et al.
2002, Tuljapurkar et al. 2003, Ranta et al. 2006, Pertoldi
et al. 2008). If organisms can locate new areas that are
better suited to their physiological capacities, a range
shift might take place; however, if such sites are

unavailable or inaccessible (Hill et al. 1999, Perry et al.
2005), the population is likely to go extinct. Conse-
quently, understanding the extent to which current
ranges set variation in physiological characteristics—
and the extent to which such characteristics might
change via either plasticity or evolution—form key
elements of forecasting biological responses to global
change (Chown & Terblanche 2007, Pörtner & Farrell
2008, Hoffmann 2010). Although perhaps not as well
developed as correlative approaches, mechanistic ap-
proaches are advancing rapidly (e.g. Kearney & Porter
2009). Here we explore several of the messages
emerging from mechanistic modelling.

2.  PHYSIOLOGICAL TRAITS AND FUNDAMENTAL 
LIMITS

Organisms posses a wide range of systems that
maintain function, restrict damage or depress metabo-
lism under extreme conditions (such as up-regulation
of heat shock proteins; Feder & Hofmann 1999,
Sørensen et al. 2003). Understanding how and why
these systems vary through space and time to ensure
survival and reproduction lies at the very heart of
evolutionary physiology (Prosser 1986, Hoffmann &
Parsons 1997, Mangum & Hochachka 1998, Feder et al.
2000, Hochachka & Somero 2002, Sørensen et al. 2003,
Chown et al. 2004). Thus evolutionary physiology has
particular significance in the context of climate change
responses.

One concept in evolutionary physiology that has
proven especially fruitful from both theoretical and
empirical perspectives is that of the performance curve
(Fig. 1). This concept has been applied in a variety of
guises (e.g. Huey & Stevenson 1979, Vannier 1994,
Pörtner 2001), but in essence all performance curves
represent the response of a physiological rate to a
change in an environmental variable. Furthermore,
one can consider how the form of this response might
change under various circumstances (Levins 1968,
Gilchrist 1995, Kingsolver & Huey 1998, Davis et al.
2005). Performance curves also provide a point of
departure for investigations of the biochemical and
cellular mechanisms underlying variation in particular
physiological functions (Pörtner 2001, 2002, de Jong &
van der Have 2008). Most commonly, the environmen-
tal variable of interest is temperature, but physiologi-
cal and vital rates (e.g. reproduction, expected lifetime
fecundity [Ro], and maximum intrinsic rate of increase
[rmax]) also vary with other environmental variables
(such as pH and humidity) (Chown & Gaston 2008).
These performance curves, and their spatial and tem-
poral variation, provide a useful means of understand-
ing how physiological variation can influence a spe-
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cies’ response to climate change (Buckley 2008). Such
relationships also underlie physiologically based spe-
cies distribution models (Crozier & Dwyer 2006, Austin
2007, Buckley 2008, Kearney & Porter 2009, Kearney et
al. 2009a). Consequently, renewed attention has been
given to the thermal sensitivity of performance and to
thermal limits in general, as well as the application of
these physiological measures in the laboratory to eco-
logical problems in nature (e.g. Angilletta et al. 2002,
2006, Loeschcke & Hoffmann 2007, Pörtner & Knust
2007, Kristensen et al. 2008b, Chown et al. 2009, Kel-
lermann et al. 2009).

A theoretical understanding of variation in the limits,
breadth, optima and maxima of thermal performance
curves is well developed. Perhaps one of the most
notable conclusions of a recent review thereof (Angil-
letta 2009) is that empirical evidence has failed in
many cases to support the predictions of current the-
ory. This mismatch between theory and data might
stem from ecological interactions among species, costs
of resource acquisition and spatial structure of the
environment—all of which have not been adequately
captured by existing models (Davis et al. 1998, de
Mazancourt et al. 2008, Angilletta 2009, Mitchell &
Angilletta 2009). The mismatch might also result from
fundamental limits to some aspects of thermal perfor-
mance curves. For example, whilst metabolic functions
of metazoans have an upper thermal limit of ca. 47°C
(Pörtner 2002), heat tolerance seems to have limited
capacity for genetic and plastic responses (Gilchrist &
Huey 1999, Chown 2001, Mitchell & Hoffmann 2010).
Likewise, thermal specialists and generalists differ
substantially in the extent to which physiological limits
might evolve (Hoffmann et al. 2003a, Kellermann et al.
2009). Nonetheless, theory has clarified expectations

for when and how physiological traits might signifi-
cantly influence demographics, and thus geographical
distributions and range limits (see e.g. Holt et al. 1997).

Biologists have empirically demonstrated that physi-
ological traits can limit the distributions and ranges of
species (reviewed in Hoffmann & Blows 1994, Gaston
2003, 2009). Moreover, the fact that species richness
depends strongly on temperature provides further
support for this idea (see Allen et al. 2002, Clarke &
Gaston 2006, Wang et al. 2009). Nonetheless, many
approaches to niche modelling assume implicitly (and
sometimes incorrectly) that geographic distributions
provide an adequate index of a species’ environmental
tolerance (e.g. Bonier et al. 2007). Not only may other
factors be responsible for influencing species range
limits and abundance structure, but the direction of
causality may also sometimes be difficult to discern
(Gaston 2003, 2009). Be that as it may, physiological
traits play an important initial demographic role by
influencing survival and reproduction under a given
set of environmental conditions (Soberón 2007).

The significance of understanding such relationships
between the phenotype and the environment has
recently been highlighted by 2 studies (Deutsch et al.
2008, Huey et al. 2009). Both studies considered en-
vironmental temperatures and thermal optima in a
spatially explicit context. These studies define: (1) the
difference between the optimal temperature for physio-
logical performance and the mean (or maximal) body
temperature as the ‘thermal safety margin’, and (2) the
difference between the critical thermal maximum
(CTmax) and the mean (or maximal) body temperature
as the ‘warming tolerance’. By analyzing latitudinal
variation in the safety margin and the warming toler-
ance, these studies have shown that tropical ecto-
therms could be at considerably greater risk from envi-
ronmental warming than their temperate counterparts.

Whether tropical ectotherms are actually at greater
risk than temperate organisms from environmental
warming is a more difficult question to answer than
some biologists have acknowledged. From a climatic
perspective, both current and forecasted changes in
temperature may be accompanied by increased pre-
cipitation and cloud cover in many tropical regions
(Trenberth & Shea 2005, Meehl et al. 2007, Trenberth
et al. 2007, Adler et al. 2008, Zhou et al. 2009), which
could reduce thermal loads for ectotherms in these
areas. By contrast, regions just outside the tropics not
only are historically prone to the highest environmen-
tal temperatures (Bonan 2002), but also are likely to
experience less precipitation and cloud cover in the
future. Thus ectotherms at these latitudes, rather than
those in the tropics, might be most at risk. A more
recent and larger compilation of data suggests that this
may well be the case for squamate reptiles (S. Clusella-
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Fig. 1. A typical thermal performance curve. Parameters such
as the optimal temperature (To), critical thermal maximum
(CTmax) and critical thermal minimum (CTmin) have a consid-
erable influence on fitness (Angilletta 2009). Figure courtesy 

of S. Clusella-Trullas
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Trullas et al. unpubl data). Moreover, this study also
showed that variation in preferred body temperatures
and critical thermal maxima are more strongly related
to the variances of precipitation and temperature,
respectively, than either is to the mean temperature.
Thus changes in mean environmental temperatures
might have played a smaller role in the evolution of
performance curves than have changes in thermal
extremes and their interactions with precipitation (and
likely cloud cover). In a similar vein, tropical species of
Drosophila from eastern Australia have relatively high
upper thermal limits which are no closer to thermal
extremes likely to be experienced by these species
in the field than are those of a non-tropical group
(J. Overgaard et al. unpubl. data).

These findings highlight the significance not only of
mean values for influencing the evolution of perfor-
mance curves, but also variance in the parameter of
interest, extreme events, the predictability of both and
the time scale over which they take place relative to
the duration of various stages (Angilletta et al. 2006,
Chown & Terblanche 2007). Along with changes in
average conditions, changes in daily and seasonal
variation and in the frequency of extreme events are
an integral part of current and forecast climate change
(Katz & Brown 1992, Easterling et al. 2000, Jentsch &
Beierkuhnlein 2008, Knapp et al. 2008). Thus under-
standing the likely responses of traits to these changes,
and the demographic consequences of any response, is
important for forecasting the impacts of change.
Indeed, a limited range of examples has already
demonstrated the considerable demographic and evo-
lutionary significance of extreme events and combina-
tions of events that increase physiological stress (Grant
& Grant 1993, Brown & Brown 1998, Parmesan et al.
2000, Gutschick & BassiriRad 2003, Helmuth et al.
2006, Jentsch et al. 2007, Parker et al. 2008, Wegner et
al. 2008, Welbergen et al. 2008, Pelini et al. 2009).

Many traits also show plasticity (Pigliucci 2005),
which can result in the alteration of direct and indirect
interactions among individuals and their environ-
ments, so affecting population and community dynam-
ics, and aspects of community and ecosystem func-
tioning (Pertoldi et al. 2007). Hence, to predict the
biological outcome of an environmental change, under-
standing the magnitude and direction of phenotypic
plasticity (i.e. the potential of individuals to respond
over the short term) and the speed at which the pop-
ulation can evolve (i.e. the potential of the population
to respond over the long term) is also important.
Although plasticity is often viewed as a likely way that
organisms can deal with climate change, the effective-
ness of this strategy depends on whether organisms
can predict stressful conditions. Phenotypic plasticity
can be interpreted as a bet-hedging strategy in an

unpredictable environment (Simons & Johnston 1997).
When the magnitude of genetic variation is insufficient
to create a diversity of phenotypes that can be exposed
to selection, phenotypic plasticity, by producing varia-
tion within populations, will enrich the evolutionary
potential. However, phenotypic plasticity can also
reduce the ability for evolutionary adaptation (see van
Buskirk & Steiner 2009). Moreover, the genetic consti-
tution of a specific population might significantly affect
its ability to respond to changing environmental condi-
tions via plasticity. For example, small populations
exposed to genetic drift and inbreeding may be less
plastic; a phenomenon described by Fowler & Whitlock
(1999) as inbreeding depression for canalisation (Fig. 2).
Few experiments examine the significance of this
phenomenon for traits of physiological importance in
natural populations. Unpredictable thermal variation
should lead not only to a broadening of performance
curves, but also to a reduction in phenotypic plasticity
(Kingsolver & Huey 1998, Deere & Chown 2006, An-
gilletta 2009). Thus, in areas where climate change
involves a decline in the predictability of extremes,
populations that currently show considerable plasticity
may face high costs because of inappropriate re-
sponses. Moreover, these costs may differ considerably
among life stages because of the variation in strategies
and the significance of behavioural adjustment among
them (e.g. Huey et al. 2003, Marais & Chown 2008).
Understanding the significance of extreme events re-
mains a pressing, yet under-investigated, issue (see
Schwager et al. 2006, Chown & Terblanche 2007 for
further discussion).

Importantly, climate change will affect several envi-
ronmental parameters simultaneously. Thus popula-
tions are likely to encounter concurrent changes in
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Fig. 2. Schematic illustration of canalization. For a given
genotype, the phenotype (P) is a non-linear function of the en-
vironment (E), as shown by the solid line. For a ‘normal’ range
of environments, the genotype shows no phenotypic varia-
tion, but variation exists outside this range. If canalization is
reduced, e.g. by inbreeding, then this ‘zone of canalization’ is
narrowed, as shown by the dotted line. The result is more en-
vironmental variance in the population (modified after 

Lewontin 1974)
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temperature, water availability and resource supply.
Furthermore, environmental stress may cause a pro-
nounced reduction in effective population size and,
in consequence, reduce evolutionary potential and in-
crease inbreeding rate. Typically, laboratory investiga-
tions do not adopt a multifactorial approach, preferring
to vary one parameter while holding others constant,
which may constrain the ecological relevance of such
studies (Gibbs 1999, Harshman & Hoffmann 2000).
However, multifactor assessments will be important for
understanding future responses. Not only is variation
in performance curves associated with such interac-
tions (see above), but multi-factor assessments may
reveal trait–environment and genotype–environment
interactions that limit responses to change. Geno-
type–environment interactions for a trait within a pop-
ulation suggest genetic variation for phenotypic plas-
ticity, and will increase the phenotypic variance of the
trait, which will depress the response to selection (Per-
toldi & Bach 2007). There is ample evidence for trait
interactions limiting responses to selection (Etterson &
Shaw 2001, Blows et al. 2004).

Moreover, synergistic interactions among climate
and other factors are expected (Brook et al. 2008).
Although evidence for ecological synergies is limited
at present (Darling & Côté 2008), multivariate studies
are starting to emerge (e.g. Hayward et al. 2001,
Juliano et al. 2002, Chown et al. 2007, Hoverman &
Relyea 2007, Campero et al. 2008, Kristensen et al.
2008a, Liu et al. 2009). Ultimately, the need for replica-
tion limits the number of factors that can be examined
in one experiment to no more than a few. Common
garden experiments, field releases of manipulated
organisms, and mesocosm trials provide useful ways of
overcoming these experimental limitations, because
the more natural conditions represent a multifactor
change in the environment (Loeschcke & Hoffmann
2007, Kristensen et al. 2008a,b, Gaston et al. 2009,
Overgaard et al. 2010). Whilst the ultimate cause of the
response may not always be detectable from these
approaches, this cause might be elucidated by combin-
ing experiments under natural conditions with labora-
tory experiments.

3. POTENTIAL AND REALIZED EVOLUTION
DURING CLIMATE CHANGE

Despite the complexity of selective factors in chang-
ing environments, evolutionary responses are well
documented. The earliest examples include the evolu-
tion of metal tolerance in plants and the evolution of
pesticide tolerance in insects (Bishop & Cook 1981).
More recently, rapid evolutionary changes during the
course of biological invasions have also been observed

(Strauss et al. 2006, Carroll & Fox 2007). Substantial
phenotypic responses to climate change have been
documented for several traits (e.g. Walther et al. 2002,
Convey et al. 2003, Perry et al. 2005, Bradshaw &
Holzapfel 2006, Millien et al. 2006, Babin-Fenske et al.
2008), and it has also been shown that species which
appear incapable of responding are suffering adverse
consequences (Møller et al. 2008, Ozgul et al. 2009).
However, only a few studies have so far demonstrated
a genetic basis to these responses (Nussey et al. 2005,
Umina et al. 2005, Bradshaw & Holzapfel 2008), and it
is not yet clear to what extent phenotypic changes
reflect plasticity or evolutionary change (Gienapp et al.
2007, 2008). Indeed, recent studies of red-billed gulls
and Soay sheep failed to document evidence for
genetic change, despite large, climate-associated de-
clines in body size (Teplitsky et al. 2008, Ozgul et al.
2009).

For the traits typically investigated by evolutionary
physiologists, evidence of climate-induced evolution is
limited (Gienapp et al. 2008). Nevertheless, a few stud-
ies have had the power to detect evolutionary adapta-
tion to climate change (Bradshaw & Holzapfel 2001,
Franks et al. 2007, Hoffmann & Daborn 2007). Where
evolutionary changes have not been detected, plastic
changes might have compensated for the demographic
impacts of climate change, as in the case of birds shift-
ing their nesting time in response to food availability
(Teplitsky et al. 2008). Despite the relative lack of
empirical evidence to date, rapid evolution of pheno-
types and their plasticity is expected from theoretical
models (see reviews in Ghalambor et al. 2007, An-
gilletta 2009). Moreover, it has also been widely docu-
mented in laboratory studies of responses to environ-
mental temperature and water availability (e.g. Bennett
et al. 1992, Cavicchi et al. 1995, Bull et al. 2000, Gibbs
et al. 2003, Bubliy & Loeschcke 2005, Driessen et al.
2007, Sørensen et al. 2007, Vera et al. 2008).

Plastic changes have an underlying genetic basis
and the extent of plasticity may thus also evolve
(Scheiner 2002, Driessen et al. 2007). For example,
Nussey et al. (2005) showed that great tits Parus major
in the Netherlands have increased their phenotypic
plasticity to cope with more unpredictable spring
weather in the Netherlands over the last 32 yr. This is
one example illustrating heritable genetic variation for
the ability to respond in a plastic manner. However,
estimates of heritability and variance components
for the physiological mechanisms underlying plastic
responses (Krebs et al. 1998) are scarce.

A problem in extrapolating from laboratory studies
to likely field responses is that the traits characterized
under laboratory conditions might not be relevant to
field ecology. Two issues related to the measurement
of heat tolerance illustrate this point. First, the rates of
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evolution in response to heat stress will depend on how
this trait is measured. Recent studies of tsetse flies,
vinegar flies and Argentine ants have shown that the
rate of controlled thermal change, part of the proce-
dure for estimating critical thermal limits, affects not
only the mean thermal limit but also its variance and
acclimation potential (Terblanche et al. 2007, Chown
et al. 2009, Mitchell & Hoffmann 2010). The latter
study showed that substantial differences in pheno-
typic variance emerged when rates of thermal change
were varied, influencing the heritability and evolvabil-
ity of traits. These findings underscore the need to doc-
ument rates of environmental change appropriate to
the organism of interest (see also Sinclair 2001). The
second issue is that measures of heat tolerance can be
quite poorly correlated, underscoring the importance
of measuring tolerance in a meaningful way. In Dro-
sophila, intraspecific comparisons have revealed lim-
ited evidence for genetic correlations between traits
such as knockdown resistance and mortality rate
(Hoffmann et al. 1997, Berrigan & Hoffmann 1998),
suggesting that different genetic mechanisms underlie
these traits (Hoffmann et al. 2003b, Rako et al. 2007,
but see Sørensen et al. 2007). Yet correlations between
these traits do appear at the interspecific level (Hori &
Kimura 1998, Berrigan 2000, Mitchell & Hoffmann
2010), which may reflect patterns of correlated selec-
tion rather than genetic correlations.

The potential for adaptation can also be usefully
explored within a demographic framework. When
population sizes fluctuate or are small, the potential for
demographic extinction exists even when populations
might possess genetic variation for adaptation (Burger
& Lynch 1995). Moreover, if effective population size is
small, the amount of heritable variation may be limited
and selection could be overwhelmed by genetic drift,
making all phenotypes or alleles effectively selectively
neutral (Lynch 1996). Thus the population may be
unable to evolve in response to selection, leaving it
vulnerable to demographic and environmental sto-
chasticity, which might, in consequence, be the domi-
nant factor in determining the fate of small populations
(Drake & Lodge 2004, Hoarau 2005).

As population size increases, evolutionary change
becomes possible, but adaptation might nevertheless
be opposed by gene flow and genetic drift during a
population bottleneck (Holt et al. 2003, 2004), and per-
haps further confounded by inbreeding depression.
These different components have rarely been com-
pared within the context of adaptation to climate
change. In a recent study, Willi & Hoffmann (2009)
examined the relative impacts of heat stress and demo-
graphic factors on experimental populations of Droso-
phila birchii. Demographic factors were more impor-
tant in small populations (20 flies), whereas heritable

variation for dealing with heat stress became impor-
tant in larger populations (100 flies) and predominated
in even larger populations (1000 flies). Although most
traits that have been examined in model organisms
(e.g. D. melanogaster) vary genetically within popula-
tions, the results of Mitchell & Hoffmann (2010) sug-
gest that this is not always the case. Moreover, the
situation becomes more complicated when different
species are compared. For example, tropical species of
Drosophila that are sensitive to desiccation have little
genetic variation for desiccation resistance when com-
pared to more widespread species that were less sensi-
tive (Kellermann et al. 2009). Similar comparative data
for other taxa are urgently required.

Small population size can also lead to inbreeding,
and inbreeding depression is often more severe under
stressful environmental conditions (reviewed in Arm-
bruster & Reed 2005). Thus climatic conditions that
are considered benign for a large population may be
highly stressful for a smaller population of the same
species. Liao & Reed (2009) found that inbreeding by
environment interactions affected extinction risk for a
wide range of population sizes and substantially
reduced the mean persistence time, compared to a
situation where such interactions were not included.
Thus, apart from considering synergistic interactions
between environmental factors, interactions between
genetic and environmental factors should be consid-
ered in future empirical and modelling studies as they
are likely have strong impacts on the distribution of
performance curves.

Because the effects of climate change on the envi-
ronment can be complex and involve altered biotic
interactions, adaptation may be slowed by the multiple
genetic changes that might be required (Van Doorslaer
et al. 2009). Thus not only could responses to selection
be constrained by genetic correlations among traits
(Blows et al. 2004) and by patterns of gene flow (Kirk-
patrick & Barton 1997, Holt et al. 2003, Bridle et al.
2009), but they might also be slowed by the fact that
the right combination of alleles for adapting to new
conditions is not available. Moreover, even when
genetic variation is present, the environment can affect
the expression thereof, such that it is not expressed
when phenotypic selection is most intense (Robinson et
al. 2009).

4.  THE BROADER CONTEXT

As indicated by the preceding discussion, the demo-
graphic context of phenotypic variation has consider-
able significance to the process of adaptation. Not only
does dispersal among patches influence the evolution
of traits and their plasticity, but the changing meta-
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community also plays a role in determining how popu-
lations respond to change (reviewed in Chown &
Terblanche 2007, Angilletta 2009; see also Holt & Keitt
2000, Ricklefs 2008, Tylianakis et al. 2008, Mitchell &
Angilletta 2009). Given this situation, predictions at
the community level seem either pointless at present or
unworthy of pursuit (see Lawton 1999, Simberloff
2004, Ricklefs 2008), especially since initial conditions,
instabilities and model errors should greatly affect the
predicted impact of climate change on ecological com-
munities. Nonetheless, one might still have hope for
forecasting the impacts of climate change on species or
populations (or more broadly at the landscape and
macroecological levels).

Mahlman’s (1998) pinball-machine-thought experi-
ment provides a useful analogy for this situation. In the
game, the path of the ball is unpredictable after a few
collisions with the machine’s bumpers, but at some
point the ball will end up in the gutter. The odds of the
ball ending up in the gutter can be altered dramatically
by changing the slope of the playing field. In this latter
scenario, the trajectory of the ball remains as unpre-
dictable as before the change in slope. Nevertheless,
one can predict that the ball will require more time to
reach the gutter. Forecasting the impact of climate
change on diversity can be viewed in a similar fashion:
many of the details of ensuing interactions will not be
especially clear, but the general trends should be
reasonably comprehensible.

Currently, 2 broad approaches are available for
understanding the interplay between physiology and
the environment, and perhaps for forecasting re-
sponses to climate change within a broader context.
The first, ‘analytical’ approach amounts to scaling up
spatially explicit studies by adopting an r × c matrix
perspective (Gaston et al. 2008, 2009). Traditionally,
cells of such a matrix would comprise the presences/
absences of species or their respective abundances at a
series of sites (e.g. Bell 2003). However, the matrix can
be populated with virtually any variable, such as criti-
cal thermal maximum of a series of populations. In a
spatially explicit form, spatial variation in an environ-
mental factor (e.g. mean temperature) might form the
first matrix. With an appropriate function relating the
environmental variable to survival or growth rate,
these data might be translated into a matrix of pre-
dicted abundances. The function matrix could be
considered invariant across space, time or taxonomy
(niche conservatism; see Wiens & Graham 2005). Alter-
natively, spatial variation in the function matrix might
reflect predicted or realized phenotypic plasticity,
which in turn could be associated with a matrix con-
taining dispersal rates among populations. Formal
mathematical approaches for investigating the rela-
tionships among matrices and for identifying signifi-

cant variation in parameters are available (see Dray &
Legendre 2008). Likewise, characteristics of matrices,
such as nestedness, can be analyzed to assess the roles
that various factors play in structuring assemblages.
Clearly, such an approach is closely related to physio-
logically based models of species’ distributions (Kear-
ney & Porter 2009), crop performance models (e.g.
Brisson et al. 1992), spatially explicit population via-
bility modelling (e.g. Carroll 2007), landscape ecology
(e.g. Werner et al. 2009) and landscape genetics
(Balkenhol et al. 2009).

The second, ‘simulation’ approach (or general simu-
lation modelling [GSM]), is similar to the analytical
approach in the sense that it is spatially explicit and
adopts a series of Cartesian layers (Gotelli et al. 2009).
However, the simulation approach diverges at this
point in a way that avoids problems associated with
curve fitting and parameters associated with the con-
catenation of multiple species models. In essence, the
simulation approach involves the settings of 3 ‘control
knobs’: dispersal limitation, evolutionary origins and
environmental gradients. Whilst these factors are the
basic settings, multiple controls are clearly required for
each (e.g. Gotelli et al. 2009). The GSM makes rela-
tively few assumptions, as do models of geometric con-
straints (see Currie & Kerr 2008) and, at least from a
‘first order perspective’, as does the metabolic theory of
ecology (Brown et al. 2004). The GSM approach there-
fore makes a useful addition to the suite of approaches
available to predict the likely impacts of climate
change, although it has yet to be tested. A comparison
of the outcomes of the GSM and analytical matrix
approaches to the same set of data might prove espe-
cially informative (see Zurell et al. 2009 for an analo-
gous approach).

5.  CONSERVATION IMPLICATIONS

Determining the biodiversity impacts of climate
change is a considerable challenge (Schwenk et al.
2009). Clearly, evolutionary physiology has much to
offer in this undertaking. For example, the suggestions
that tropical ectotherms might face the greatest risk of
extinction from warming (and drying) and might lack
the genetic variation to adapt (Hoffmann et al. 2003a,
Kellermann et al. 2009) draws immediate attention to
the conservation needs of these organisms, which
were previously considered to be at less risk than
ectotherms in other regions. A demonstration of the
significance of shade to many species for physiological
regulation, and patterns of habitat conversion, provide
further grounds for concern (Kearney et al. 2009b).

As reviewed here, substantial shifts in the ranges
and phenologies of species from an array of groups
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have occurred in response to climate change (Walther
et al. 2002, Parmesan & Yohe 2003, Nussey et al. 2005,
Parmesan 2006, Lenoir et al. 2008, Chen et al. 2009,
Steltzer & Post 2009). These observations emphasise
the importance of mitigating such shifts by maintain-
ing corridors or by securing large areas with suitable
habitats for wildlife. Without such initiatives, many
populations may become extinct due to combined
effects of environmental stress, lack of evolutionary
potential and inbreeding depression.

Evolutionary physiology can also make valuable
contributions to other areas. For example, the effects
of anthropogenically assisted biological invasions and
climate-induced range shifts will be increasingly diffi-
cult to separate (Tolley et al. 2008, Walther et al. 2009).
Physiologically based models of species’ distributions
coupled with investigations of the success of particular
genotypes during environmental change may provide
one means of separating human- and climate-induced
range shifts, especially since these genotypic differ-
ences have a profound effect on the success of inva-
sions (Keller & Taylor 2008) as well as on current
ability to forecast their ranges in new areas (Mau-
Crimmins et al. 2006, Fitzpatrick et al. 2007, Duncan
et al. 2009). Similarly, much attention is focused on
assisted translocation (Richardson et al. 2009). Whilst
this strategy will be useful for only a minority of species
designated of special interest, investigations of likely
demographic success in new areas will have to con-
sider the physiological capabilities of the species.
Moreover, although assisted translocation of entire
species may be difficult, translocation of genotypes
adapted to different conditions is likely to be much
more feasible and might provide an insurance policy
against future change (Broadhurst et al. 2008, Hedrick
& Fredrickson 2010, but see Bijlsma et al. 2010). In this
regard, assessments of movements of individuals into
areas perhaps already occupied by other populations
of the species may have to move away from the consid-
eration of neutral markers only (which will show differ-
ences based mostly on time of isolation) and consider
genes that are likely to have significance in the con-
text of environmental responses (Demontis et al. 2009,
Pertoldi et al. 2010). Genome-based evolutionary phys-
iology has much to offer here too. For example,
genome-wide breeding strategies can be used on cap-
tive populations of endangered species before trans-
location into the wild to optimize genetic variability in
physiologically important parts of the genome (Pertoldi
et al. 2010).
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