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Abstract 

 
A critical part of adapting to the higher temperatures that climate change brings will be the deployment 
of existing technologies to new sectors and regions. This paper examines the evolution of the 
temperature-mortality relationship over the course of the entire 20th century in the United States both 
for its own interest but also to identify potentially useful adaptations that may be useful in the coming 
decades. There are three primary findings. First, the mortality impact of days with a mean temperature 
exceeding 80° F has declined by about 70%. Almost the entire decline occurred after 1960. There are 
about 14,000 fewer fatalities annually than if the pre-1960 impacts of high temperature on mortality still 
prevailed. Second, the diffusion of residential air conditioning can explain essentially the entire decline 
in hot day related fatalities. Third, using Dubin-McFadden’s discrete-continuous model, we estimate that 
the present value of US consumer surplus from the introduction of residential air conditioning (AC) in 
1960 ranges from $83 to $186 billion ($2012) with a 5% discount rate. The monetized value of the 
mortality reductions on high temperature days due to AC accounts for a substantial fraction of these 
welfare gains. 
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I. Introduction 
 

The accumulation of greenhouse gases (GHGs) in the atmosphere threatens to alter the climate 

dramatically and in a relatively short period of geological time. While much attention has been devoted 

to reducing GHG emissions, comparatively little has been devoted to understanding how societies will 

adapt to climate change. Adaptation, according to the Intergovernmental Panel on Climate Change 

(IPCC), is defined as "adjustment in natural or human systems in response to actual or expected climatic 

stimuli or their effects, which moderates harm or exploits beneficial opportunities" (IPCC 2007). These 

adjustments can take the form of alterations in the uses of existing technologies and/or the invention of 

new technologies. The poor state of knowledge about adaptation opportunities and adaptation’s costs 

proves a challenge both for developing reliable estimates of the costs of climate change and for 

identifying solutions to the risks that climate change poses.  

The health and broader welfare consequences of increases in temperatures are an area of 

special concern. For example, the identification of adaptation opportunities that can reduce the human 

health costs of climate change is recognized as global research priority of the 21st century (WHO 2008; 

NIEHS 2010). This need is especially great in developing countries where high temperatures can cause 

dramatic changes in life expectancy (Burgess et al. 2014). High temperatures, beyond their health 

consequences, can have a range of other negative consequences, including causing workers to be less 

productive, making it difficult for children to study, and generally leading to less pleasant lives (Hsiang 

2010, Sudarshan et al. 2014).  

This paper provides the first large-scale empirical evidence on long-run adaptation opportunities 

through changes in the use of currently existing technologies. The empirical analysis is divided into three 

parts. The first part documents a remarkable decline in the mortality effect of temperature extremes: 

the impact of days with a mean temperature exceeding 80° F has declined by about 70% over the course 

of the 20th century in the United States, with almost the entire decline occurring after 1960. The result 

is that there are about 14,000 fewer fatalities annually than if the pre-1960 impacts of mortality still 

prevailed. At the same time, the mortality effect of cold temperatures declined by a substantially 

smaller amount. In effect, U.S. residents adapted in ways that leave them largely protected from 

extreme heat. 

The second part of the analysis aims to uncover the adaptations that muted the relationship 

between mortality and high temperatures. We focus attention on the spread of three health-related 

innovations in the 20th century United States: residential electricity, access to health care, and 



3 
 

residential air conditioning (AC). There are good reasons to believe that these innovations mitigated the 

health consequences of hot temperatures (in addition to providing other services). Electrification 

enabled a wide variety of innovations including fans, refrigeration, and later air conditioning. Increased 

access to health care allowed both preventative treatment and emergency intervention (e.g., 

intravenous administration of fluids in response to dehydration, see Almond, Chay and Greenstone 

(2006)). Air conditioning made it possible to reduce the stress on their thermoregulatory systems during 

periods of extreme heat.  

The empirical results point to air conditioning as a central determinant of the reduction of the 

mortality risk associated with high temperatures during the 20th century. Specifically, the diffusion of 

residential AC after 1960 is related to a statistically significant and economically meaningful reduction in 

the temperature-mortality relationship at high temperatures. Indeed, the adoption of residential air 

conditioning explains essentially the entire decline in the relationship between mortality and days with 

an average temperature exceeding 80 °F. In contrast, we find that electrification (represented by 

residential electrification) and access to health care (represented by doctors per capita) are not 

statistically related to changes in the temperature mortality relationship. 

The mortality analysis is conducted with the most comprehensive set of data files ever compiled 

on mortality and its determinants over the course of the 20th century in the United States or any other 

country. The mortality data come from newly digitized state-by-month mortality counts from the United 

States Vital Statistics records, which is merged with newly collected data at the state level on the 

fraction of households with electricity and air conditioning and on the number of doctors per capita. 

These data are matched to daily temperature data, aggregated at the state-month level, for the 1900-

2004 period.  

These data are used to fit specifications that aim to produce credible estimates of the 

relationship between mortality rates and high temperatures, as well as the adaptations that modify that 

relationship. Specifically, the baseline specification includes state-by-month (e.g., Illinois-by-July) fixed 

effects and year-by-month (e.g., 1927-by-March) fixed effects, so the estimates are identified from the 

presumably random deviations from long-run state-by-month temperature distributions that remain 

after non-parametric adjustment for national deviations in that year-by-month's temperature 

distribution. The baseline specification also includes a quadratic time trend that varies at the state-by-

month level and in the preferred specification state-level per capita income that is allowed to have a 

differential effect across months. Further, the models control for current and past exposure to 

temperature, so the estimates are robust to short-term mortality displacement or “harvesting”.  
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Although quasi-experimental variation in AC adoption is unavailable, three sets of additional 

results lend credibility to the findings about the importance of residential AC. First, residential AC 

penetration rates do not affect the mortality consequences of days with temperatures below 80 °F, 

suggesting that the adoption of AC is not coincident to factors that determine the overall mortality rate. 

Second, the protective effect of residential AC against high temperature exposure is substantially larger 

for populations that are more vulnerable (i.e., individuals age 65 or older and blacks, relative to whites). 

Third, residential AC significantly lessened mortality rates due to causes of death that are physiologically 

and epidemiologically related to high temperature exposure (e.g., cardiovascular and respiratory 

diseases). In contrast, residential AC is not associated with causes of death where there is little evidence 

of a physiological or epidemiological relationship with high temperature exposure (e.g., motor vehicle 

accidents or infectious diseases).  

The third part of the analysis develops a measure of the full consumer surplus associated with 

residential AC, based on the application of Dubin-McFadden’s (1984) discrete-continuous model. This 

analysis is conducted with household-level Census data on AC penetration rates and electricity 

consumption, as well as data on electricity prices. We find that AC adoption increases average 

household electricity consumption by about 1,100 kwh or 11.6%. We estimate that the gain in consumer 

surplus associated with the adoption of residential AC ranged from $5 to $10 billion (2012$) annually at 

the 1980 AC penetration rate, depending on the assumptions about the shape of the long run electricity 

supply curve. This translates into an increase in consumer surplus per U.S. household in 1980 of $120 to 

$240. The present value of US consumer surplus from the introduction of residential AC in 1960, which is 

the first year in which we measure the AC penetration rate, ranges from $83 to $186 billion ($2012) with 

a 5% discount rate. 

The paper contributes to several literatures. First, a nascent literature that aims to uncover 

adaptation opportunities that are available in response to climate change with existing technologies 

(e.g., Auffhammer and Schlenker (2014), Klein et al. (2014), Hsiang and Narita (2012)). Second, there is a 

voluminous literature that explains the tremendous increases in life expectancy over the course of the 

20th century that has to date not recognized the systematic role of air conditioning (e.g., Cutler et al. 

2006). Third, an important literature has examined the welfare consequences of technical progress in 

household production, especially in appliances (e.g., Bailey (2006), Coen-Pirani et al. (2010), Greenwood 

et al. (2005)). 

The paper proceeds as follows. Section II presents the conceptual framework where we review 

the physiological relationship that links temperature and health, and the mechanisms that link the 
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modifiers to the temperature-mortality relationship. Section III describes the data sources and reports 

summary statistics. Section IV presents the econometric models used to examine the evolution of the 

temperature-mortality relationship and the causes of its change over the 20th century, as well as the 

results from fitting these models. Section V develops a measure of the consumer surplus associated with 

the adoption of residential AC. Section VI interprets the results and Section VII concludes.  

 

II. Conceptual Framework 

 

This section reviews evidence on the temperature-mortality relationship and discusses the three 

innovations that are candidate explanations for the decline in hot day mortality rates. It also outlines 

how we estimate the welfare effects of residential AC, which the empirical section finds as easily the 

most important of the three innovations.  

 

A. The Temperature-mortality Relationship 

The human body can cope with exposure to temperature extremes via thermoregulatory 

functions. Specifically, temperature extremes trigger an increase in the heart rate to increase blood flow 

from the body to the skin, which can lead to sweating in hot temperatures or shivering in cold 

temperatures. These responses allow individuals to pursue physical and mental activities within certain 

temperature ranges. However, exposure to temperatures outside these ranges or exposure to 

temperature extremes for prolonged periods of time endangers human health and can result in 

mortality.  

An extensive literature has documented a non-linear relationship between temperature and 

mortality. Hot temperatures are associated with excess mortality due to cardiovascular, respiratory, and 

cerebrovascular diseases (see, e.g., Basu and Samet 2002 for a review). For one, hot temperatures are 

associated with increases in blood viscosity and blood cholesterol levels. Exposure to cold days has also 

been found as a risk factor for mortality (e.g. Deschenes and Moretti 2009). Exposure to cold 

temperatures causes cardiovascular stress due to changes in blood pressure, vasoconstriction, and an 

increase in blood viscosity (which can lead to clots), as well as increased levels of red blood cell counts, 

plasma cholesterol, and plasma fibrinogen (Huynen et al. 2001). For these reasons, the empirical model 

allows for a non-linear relationship between daily temperatures and mortality. 

 

B. Three Innovations 
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We focus on three important technological and public-health innovations of the 20th century 

United States that are plausible explanations for the changing temperature-mortality relationship. These 

innovations are access to health care, electricity, and residential air conditioning. Utilization and 

availability of these innovations varied across states and over time, which help identification of their 

effects on the temperature-mortality relationship. Some of these innovations have more direct effects 

on heat-related mortality by mitigating health impacts as they happen, e.g. air conditioning. However, 

any of the innovations could reduce heat-related mortality indirectly by raising health capital 

throughout the year and, thus, mitigating mortality risk from a heat-related health shock (or any health 

shock for that matter).    

Access to Health Care. Health care could mitigate heat-related mortality risk by treating heat-

related health complications such as heart attacks and heat stroke as they occur (Kovats et al 2004). It 

could also raise overall health capital, which would help populations tolerate the additional stress from 

exposure to temperature extremes. As we discuss below, both access and the returns to health care 

varied substantially over time, which has implications for identification.  

Medical personnel and hospitals are two potential measures of “access to health care” at the 

state-level. For medical personnel, one could use doctors and/or nurses per capita. For hospitals, one 

could use number of hospitals or numbers of hospital beds. All of these measures are imperfect proxies 

without detailed data on location, distance, prices, incomes, and, during later periods, insurance. We 

focus on doctors per capita, largely because they provided, and continue to provide, the majority of 

patient care outside and inside hospitals.1 To the extent that doctors per capita is a noisy measure of 

access, we expect our estimates to be biased downward for measurement error reasons. 

Any measure of health care access is complicated by changes in quality of care over time. In the 

early part of the twentieth century doctors had limited ability to improve health, which, according to the 

Flexner Report (1910), was at least partially due to the poor quality of most medical schools and doctors 

(Hiatt and Stockton 2004). Medical historian Edward Shorter concluded, “It would be unwise to 

exaggerate the therapeutic accomplishments of the modern doctor before 1935.”2 So, one might expect 

that mortality would be unaffected by – or possibly negatively affected by – doctors and hospitals. 

By the mid-1940s, public health and medical training had improved, sulfa drugs were available, 

antibiotics were becoming available, and hospitals were better able to offer meaningful care (Rosenberg 

                                                 
1 Roemer (1985) provides some insight into this. Families with median income had 2.5 physician contacts and 0.06 
hospital visits per person per year in 1928-1931. In 1981, families with median income had 4.6 physician contacts 
and 0.12 hospital visits per year.   
2 Shorter (1996) quoted in Murray (2007), p. 108. 
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1987, Duffy 1993). Health stock was largely attributable to primary care doctors, who had the most 

contact with the patients and could treat some heat-related complications, like heat exhaustion and 

heat stroke. Individuals with heart attacks were better off trying to reach hospitals, although the 

protocols for treatment were not particularly well developed (Fye 1996). Overall, there was a much 

stronger case to believe that access to health care reduced the mortality effects of hot days by the 

1940s. 

By the 1960s and 1970s, access to medical care was improving on multiple fronts. More doctors 

were available per capita thanks to expansion of medical schools, and these doctors were better trained. 

Due to programs like Hill-Burton, far more counties had hospitals or were adjacent to counties with 

hospitals than ever before.3 In hospital treatment of heat-related illness had progressed as well due to 

advances in intravenous and oral rehydration and improvements in treatment protocols for heart 

attacks (Rosamond et al 1998). These health advances, in particular, may have dampened the 

relationship between heat shocks and mortality. With these trends in mind, our empirical model allows 

the health care access modifier to have differential impacts across the pre-1960 period and post-1960 

period.  

Access to Electricity. In 1900, only 3 percent of households had electricity, and virtually all of 

these homes were in urban areas. Urban areas were electrified first, because of the dense location of 

housing and limited transmission distances.4 Rural regions were not economically attractive to electric 

utilities. By 1930, 68 percent of dwellings had electricity. Eight-five percent of urban and rural non-farm 

dwellings had electricity, while only 10 percent of farm dwellings had electricity. By 1943, 81 percent of 

dwellings had electricity, though still only 40 percent of farm dwellings. In 1956, the last year national 

summaries are available, 99 percent of all dwellings and 96 percent of farm dwellings had electricity.5 

Residential access to electricity can modify the impact of temperature extremes on health 

through at least three channels. First, electricity access made the pumping of water feasible on a wide 

scale, bringing running water into many households for the first time. Indoor water reduced the chances 

of dehydration, reduced exposure to disease like hookworm and typhoid that are associated with 

outdoor toilets (Brown 1979), and improved hygiene that helped prevent the spread of bacteriological 

and viral conditions whose spread varies with temperature. Second, electricity allowed the mechanical 

                                                 
3 Hill Burton was designed to address shortages of hospitals and hospital beds in some regions of the United 
States.  In 1948, 22 percent of counties did not have a hospital.  From 1947 to 1971, $3.7 billion in construction 
subsidies were provided to build or modernize hospitals.  For more on the program, see Chung et al. 2012.  
4 On the history of electrification, see Nye (1990). 
5 Carter et al (2006). Table Db234–241 Electrical energy – retail prices, residential use, and service coverage: 1902–
2000. http://hsus.cambridge.org/HSUSWeb/toc/tableToc.do?id=Db234-241  

http://hsus.cambridge.org/HSUSWeb/toc/tableToc.do?id=Db234-241
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refrigeration of food that made it possible to store more food for longer periods of time, postponing 

and/or preventing spoilage and associated food poisoning during heat. Third, electricity permitted 

artificial indoor temperature control by fans and electric heaters that could contribute to lowering 

excess morality associated with temperature extremes. 

As with access to health care, the returns to electrification likely varied over time. Our estimates 

of the effect of electrification are driven primarily by variation in rural areas, between 1929 and 1960. 

Thus, these results should be interpreted as acting through the technology of the period available in 

rural areas, and largely independent from air conditioning (as explained in the next subsection).  

Residential Air Conditioning. Access to AC at home or in cooling centers is often at the top of the 

list of medical guidelines to treat and prevent heat-related illness (CDC 2012). Thermoregulation is the 

physiological process by which core body heat produced through metabolism and absorbed from 

ambient temperatures is dissipated to maintain a body temperature of 37 °C or 98.6 °F. A rise in the 

temperature of the blood by less than 1 °C activates heat receptors that begin the process of thermal 

regulation by increasing blood flow in the skin to initiate thermal sweating (Bouchama and Knochel 

2002). Heat-related illness results from the body’s inability to dissipate heat produced by metabolic 

activity. Due to the strong connection between ambient temperature and heat-related illness, air 

conditioning is probably the most prominent technology used to reduce the risks of heat stress. 6  

In terms of policy prescription, electrification is a necessary condition for adopting air 

conditioning. Consequently, the estimated effect of air conditioning will necessarily only be externally 

valid to settings where electricity is readily available.  

 

C. Welfare Consequences  

The empirical section finds that residential AC is the most important of these three innovations 

for reducing hot day mortality, so estimates of AC’s welfare consequences are naturally of interest to 

researchers and policymakers. Below, we estimate the welfare consequences of the reductions in hot 

day mortality by multiplying the number of avoided fatalities by the value of a statistical life. However, 

the full welfare effects of AC extend well beyond mortality and certainly include reduced rates of 

morbidity, increased indoor comfort, and greater productivity. Indeed, it has been claimed that the 

availability of residential AC is a major reason for the population shift to the South over the last several 

decades (Gordon (2000), Holmes (1998)). To obtain a more complete measure of the welfare effects of 

                                                 
6 Rogot et al. (1992) report cross-tabulations of in home AC status and mortality and finds that mortality is reduced 
in summer months among the population with residential AC. 
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the introduction of AC, we estimate the area between the electricity demand curves of households with 

and without AC, using the discrete-continuous two-stage model pioneered by Dubin and McFadden 

(1984).  

 

III. Data and Summary Statistics 

 

The empirical exploration of the temperature-mortality relationship is conducted with the most 

comprehensive set of data files ever compiled on mortality and its determinants over the course of the 

20th century in the United States or any other country. These data are complemented with micro data 

on electricity prices and quantities, along with AC penetration, that allows for estimation of the demand 

for electricity among households with and without AC. This section describes the data sources and 

presents some summary statistics. 

  

A. Data Sources 

Vital Statistics Data. The data used to construct mortality rates at the state-year-month level for 

the 1900-2004 period come from multiple sources. Mortality data are not systematically available in 

machine-readable format before 1959. The unit of analysis is state-year-month because these are the 

most temporally disaggregated mortality data available for the pre-1959 period.7 For the years prior to 

1959, state-year-month death counts were digitized from of the Mortality Statistics of the United States 

annual volumes. Death counts by demographic group (e.g. over 65 years old, white, etc.) or information 

by cause of death (e.g. cardiovascular) are not available at the state-year-month level in these data.  

From 1959 to 2004, our mortality data come from the machine-readable Multiple Cause of 

Death (MCOD) files. These data have information on state and month of death for the universe of 

deaths in the United States. However, geographic information on state of residence in not available in 

the public domain MCOD files starting after 2004, which explains why we limit our sample to the years 

up to 2004. Note that the MCOD data also include information on the demographic characteristics of 

the decedent as well as the cause of death. Therefore, for the 1959-2004 period, we can estimate 

impacts on demographic groups that are potentially more vulnerable to heat-related health shocks. For 

this latter period, we separately explore the relationship between temperature and causes of death that 

                                                 
7 States began reporting mortality statistics at different points in the early 1900s. For example, only 11 states 
reported mortality data in 1900, but 36 states were reporting by 1920. Texas was the last state to enter the vital 
statistics system in 1933. See Appendix Table 1 for the year in which each state enters the vital statistics 
registration system.  No vital statistics data were reported in 1930. 
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are plausibly related to high temperatures (e.g., cardiovascular and respiratory deaths) as well as causes 

of death that are unrelated to high temperature (e.g., infectious disease).  

We combine the mortality counts with estimated population to derive a monthly mortality rate 

(per 100,000 population). Population counts are obtained from two sources. For the pre-1968 period, 

we linearly interpolate population estimates using the decennial Census (Ruggles et al. 2010). For the 

years 1969 through 2004, we use state-year population estimates from the National Cancer Institute 

(2008). 

The final sample consists of all available state-year-month observations for the continental 

United States over the 1900-2004 period. Per capita income is only available for 1929 onwards (Bureau 

of Economic Analysis 2012). Further, as noted earlier, vital statistics were not reported in 1930, so our 

preferred specifications that control for per capita income focus on the 1931-2004 period.  

Weather Data. The weather station data are drawn from the National Climatic Data Center 

(NCDC) Global Historical Climatology Network-Daily (GHCN-Daily), which is an integrated database of 

daily climate summaries from land surface stations that are subjected to a common set of quality 

assurance checks. According to NCDC, GHCN-Daily contains the most complete collection of U.S. daily 

climate summaries available. The key variables for the analysis are the daily maximum and minimum 

temperature as well as the total daily precipitation.8,9  

To construct the monthly measures of weather from the daily records, we select weather 

stations that have no missing records in any given year. On average between 1900 and 2004 there are 

1,800 weather stations in any given year that satisfy this requirement, with around 400 stations in the 

early 1900s and around 2,000 stations by 2000. The station-level data is then aggregated to the county 

level by taking an inverse-distance weighted average of all the measurements from the selected stations 

that are located within a fixed 300km radius of each county’s centroid. The weight given to the 

measurements from a weather station is inversely proportional to the squared distance to the county 

centroid, so that closer stations are given more weight. Finally, since the mortality data are at the state-

year-month level, the county-level variables are aggregated to the state-year-month level by taking a 

                                                 
8 Wind speed can also affect mortality, especially in conjunction with temperature.  Importantly for our purposes, 
there is little evidence that wind chill factors (a non-linear combination of temperature and wind speed) perform 
better than ambient temperature levels in explaining mortality rates (Kunst et al. 1994).   
9 Daily humidity data are not available in the GHCN-Daily data. Using U.S. data from the 1973-2002 period, Barreca 
(2012) shows that controlling for humidity has little impact on aggregate estimates of the effect of temperature on 
mortality since temperature and humidity are highly collinear. As such, the absence of humidity data is unlikely to 
be an important concern here.  Nevertheless, we consider a model where precipitation and temperature are 
interacted. 
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population-weighted average over all counties in a state, where the weight is the county-year 

population. This ensures that the state-level temperature exposure measure correspond to population 

exposure, which reduces measurement error and attenuation bias. 

Doctors Per Capita. We have collected state by decade counts of physicians from the decennial 

censuses of 1900 to 2000 (Ruggles et al. 2010). The 1900, 1980, 1990, and 2000 censuses are 5% 

samples, and the 1910, 1920, 1930, 1940, 1950, 1960, and 1970 are 1% samples. We construct 

physicians per 1,000 by dividing the physician counts by the total population.10 Finally, we linearly 

interpolate the rates across the census years. 

Electrification Data. We collected information on the share of US households with electricity for 

the years between 1929 and 1959. We focus on this period since per capita income data are available 

for these years, and electrification coverage was nearly 100% by 1959. The electrification data come 

from digitized reports of the Edison Electric Institute and its predecessor, the National Electric Light 

Association.11 These reports list the number of electricity customers by state and year. To our 

knowledge, these are the most comprehensive data available on electricity for this time period. For 

example, the US Census Bureau’s (1975) standard reference, Historical Statistics of the United States, 

uses these data. The denominator of the electrification rate (i.e., the number of occupied dwellings) 

comes from the decennial US Census of Population.12 

Residential AC Data. We construct a data series on AC ownership rates for the 1960-2004 period 

at the state-year level from the 1960, 1970, and 1980 U.S. Census of Population. For the 1960-1980 

period, we linearly interpolate state-year ownership rates between each decennial census. We then 

linearly extrapolate state-year ownership rates from 1980 to 2004 using the annual rate of change 

between the 1970 and 1980 censuses, and bound the AC ownership rate at 100%. The state-year series 

on AC ownership rate (like the other modifiers we consider) is then merged to the state-year-month 

                                                 
10 The occupational codes are based on 1950 definitions for consistency across censuses.  
11 The data are from: The Electric Light and Power Industry (1930); The Electric Light and Power Industry in the 
United States (1940, 1950); and the Electric Utility Industry Statistics in the United States (1959). Bailey and Collins 
(2011) use these same data to investigate the role that electrification played in the post-World War II baby boom.  
The Census of Electrical Industries provides another possible electricity data source. We chose not to use these 
data because much of the state data do not distinguish domestic or residential from commercial and industrial 
customers; and because some state-year cells are suppressed or combined for confidentiality reasons. 
12 The 1940, 1950, and 1960 come from Haines (2005).  For 1930 only, we digitize housing data from a printed 
volume of the 1930 census. The 1930 census did not record the number of occupied dwellings. However, the 1930 
census does record the number of “homes,” as distinct from the number of “dwellings.” In the Historical Statistics 
of the United States (US Census 1975), the 1930 census count of “homes” is equated with the number of “occupied 
housing units.” 
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data on mortality rates.  Thus AC ownership rates are restricted to be constant across months within a 

year. 

The decennial censuses, despite the limited temporal coverage, are the best data for our 

purposes given we require state-level identifiers. Detailed housing and energy expenditure surveys like 

the American Housing Survey (AHS) and Residential Energy Consumption Survey (RECS) contain 

information on AC ownership beginning in the mid-1970s. However, in the AHS the smallest 

geographical identifier is the MSA of residence, while in RECS it generally is the Census division.13 Given 

that our analysis is conducted at the state level, data from AHS and RECS is not detailed enough 

geographically to construct a data series at the state-year level. 

We address the possible concerns related to imputation though linear interpolation in an array 

of ways. First, we note that any measurement error in the AC ownership rate series will be unrelated by 

construction to other key variables in the regressions models, namely mortality rates and temperature. 

Thus, this measurement error would tend to attenuate the estimated protective effect of AC. Second, 

we show in Appendix Figure 1 that the interpolated data are highly correlated with independent 

estimates from other nationally representative surveys that do not include state-level identifiers. Finally, 

we conduct a robustness check based on alternative specifications and restricting our estimation sample 

to the years immediately preceding/following the 1960, 1970, and 1980 census (i.e., the years with fresh 

AC ownership information in the Census) so as to mitigate measurement error with the interpolation of 

AC ownership rates. As we show below, the estimated effects are very similar to those found in the full 

sample are and statistically significant. 

Electricity Quantities and Price Data. We use household-level data from the 1980 U.S. Census of 

Population to infer electricity consumption quantities.14 Specifically, the sample is limited to occupied 

dwellings with non-missing air conditioning and non-missing electricity expenditure data. We define 

electricity consumption as the reported electricity expenditure divided by the residential-sector 

electricity price. The data on prices comes from the State Energy Database System (SEDS), which we 

obtained from the Energy Information Agency (EIA). The final estimation sample includes 3.7 million 

                                                 
13 In some years, RECS reports AC ownership statistics for the 4 largest population states is reported (CA, TX, NY, 
FL). 
14 The U.S. Census of Population contains information about AC ownership in 1960, 1970, and 1980. However, the 
necessary information on annual electricity expenditure (which we use to derive annual electricity consumption) is 
only available in 1970 and 1980. We focus on the 1980 sample only since the 1970 one contains relatively fewer 
households and because 1980 represents the middle of the post-1960 sample period relevant in the rest of this 
paper (1960-2004). 



13 
 

unique households. Quantities are measured in thousands of kilowatt-hour and prices are in ($2012) 

dollars per kilowatt-hour. More details about the sample construction are presented in the appendix. 

 

B. Summary Statistics 

Weather and Mortality Rate Statistics. The bars in Figure 1 depict the average annual 

distribution of daily mean temperatures across ten temperature-day categories over the 1900-2004 

period. The daily mean is calculated as the average of the daily minimum and maximum. The 

temperature categories represent daily mean temperature less than 10 °F, greater than 90 °F, and the 

eight 10 °F wide bins in between. The height of each bar corresponds to the mean number of days of 

exposure per year for the average person; these national means are calculated as population-weighted 

means. In terms of high temperature exposure, the average person is exposed to about 20 days per year 

with mean temperatures between 80 °F and 89 °F and 1 day per year where the average temperature 

exceeds 90 °F.15  

Our core empirical model estimates a non-linear temperature-mortality relationship using these 

ten bins. As we discuss below, the model restricts the marginal effect of temperature on mortality to be 

constant within 10 °F ranges. Further, the station level temperature data is binned and then the binned 

data is averaged as described in Section III A.; this approach preserves the daily variation in 

temperatures, which is important given the considerable nonlinearities in the temperature-mortality 

relationship (Barreca 2012, Deschenes and Greenstone 2011).  

Table 1 summarizes the mortality rates and temperature variables for the whole U.S. and by U.S. 

climate regions as defined by the National Oceanic and Atmospheric Administration (NOAA). Within this 

classification, each state is assigned to one of nine regions with similar climates (Karl and Koss 1984).16 

The focus on climate regions allows us to test the hypothesis that the impact of temperature extremes 

on mortality is inversely related to baseline climates, as basic adaptation theory would suggest. 

To highlight differences over time, Table 1 reports averages separately for the 1900-1959 and 

1960-2004 periods. Over the 1900-1959 period the average annual mortality rate was 1,111 per 100,000 

population, and this rate declined to an average of 885.8 over 1960-2004. Temperatures were increasing 

over our sample period. For example, the average number of days with daily average temperature 

ranging from 80-89°F is 23.3 over 1900-1959 and 26.0 over 1960-2004. There is also sizable variation 

                                                 
15 On days where the daily mean temperature exceeds 90°F, the daily maximum temperature was 106 °F, on 
average. The minimum daily temperature on these days was 80 °F, on average. 
16 Other definitions of climate zones based on county or other sub-state boundaries exist. 
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across the different climate regions. Average exposure to 80-89 °F days in the South is about 70 days per 

year but only 2 in the Northwest.  

There was also an increase in >90 °F days over the two sample periods. There were 0.5 days and 

1.1 day per year in the 1900-1959 and the 1960-2004 periods, respectively. Not surprisingly, the national 

mean number of >90°F days masks important variation across climate zones. For example, there is 

almost no exposure to >90°F temperature-days in the climate zones at higher latitudes (i.e. from the 

Northeast to the Northwest). The West, Southwest, and South have the highest number of >90 °F days. 

Notably, the remarkable increase in exposure to >90°F temperature-days in the Southwest (from 3 to 

14) is driven to a large extent by changes in population within this area after 1960. When pre-1960 

population weights are used, the post 1960 average annual days per year in excess of 90°F is about 7. 

Thus, population mobility played an important role in explaining increased exposure to high 

temperatures after 1960. The primary specifications in the below analysis are weighted to reflect 

contemporaneous population, the qualitative findings for the 1960-2004 period are unchanged when 

each state’s observation is weighted by its average population from the 1900-1959 period.  

Modifiers of the Temperature-Mortality Relationship. Table 2 summarizes the trends over time 

in the three modifiers of the temperature-mortality relationship. Importantly for identification purposes, 

there is both cross- and within-state variation in the rate of diffusion of the modifiers or technologies. 

The subsequent analysis exploits this variation, while also adjusting for likely confounders. 

Doctors Per Capita. Through the 1930s, the number of physicians per capita actually declined as 

the medical profession focused on training fewer individuals to a higher standard. This change was 

recommended in the influential 1910 Flexner Report. As Table 2 illustrates, the number of physicians 

per capita was relatively constant through 1960, at which point it began to rise (Blumenthal 2004). The 

2004 average is 2.9 doctors per 1,000 population.  

Electrification. Table 2 reports that 69% of US households had access to electricity by 1930. 

Notably, only 36-37% of households in the South and Southeast had electricity by 1930 compared to 

90% of households in the Northeast. By the early 1960s, essentially all households in the US had access 

to electricity. Thus, variation in adoption rates in the pre-1960 period will drive the estimates of the 

impact of electrification on the temperature-mortality relationship.  

 Residential Air Conditioning. Table 2 illustrates the fraction of households with residential AC in 

the United States. Prior to the mid-1950s, the share of households with AC was negligible, even though 

residential AC had been developed and marketed since the late 1920s (Biddle 2008). At the same time, 

many office buildings, movie theaters and shops offered AC to their patrons, so a large share of the 
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population was likely aware of the benefits of this technology. Following a 1957 regulatory change that 

allowed central AC systems to be included in FHA-approved mortgages, central air conditioning became 

more common (Ackermann 2002). The percent of households with AC was 12% in 1960, 55% in 1980, 

and 87% in 2004.  

Table 2 also highlights some of the key geographical differences in residential AC adoption. 

Although South and Southeast states were slower to receive residential electricity, they were quicker to 

adopt AC with our diffusion measuring reaching complete adoption by 2004. Residential AC is likely to 

offer more indoor comfort and health benefits to a resident of a warm climate than to a resident of a 

more moderate climate.  

Electricity Quantities and Prices.  

The last 3 columns of Table 2 report summary statistics for household-level electricity consumption 

(measured in thousands of kwh) and state-level prices. The underlying micro data from the 1980 Census 

of Population allows us to separate between the households that owed and did not owned AC units in 

1980. There are clear differences in electricity consumption across the nine climate zones, reflecting in 

part differences in climate and electricity prices. Not surprisingly, households with AC units consume 

about 2,500 kwh per year more than households without. The AC contrast is especially notable in some 

of the warmer group of states (South, Southeast) where the difference across AC status exceeds 4,000 

annual kwh. 

 

IV. The Evolution of the Temperature-mortality Relationship over the 20th Century 
 

 This section describes the models that we estimate to infer the relationship between mortality 

and daily temperatures, as well as factors that modify that relationship. It then describes the results 

from fitting these models.  

 

A. Econometric Approach 

We begin by describing the regression models used to estimate the temperature-mortality 

relationship. These models are identified by plausibly random inter-annual variation in state by month 

weather distributions. Specifically, we estimate variants of the following equation:  
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where log(Ysym) is the log of the monthly mortality rate in state s, year y, and month m. The vector of 

control variables, Xsym, includes the share of the population living in urban areas and the share of the 

state population in one of four age categories: less than one (infants), 1-44, 45-64 and 65+ years old.17 

All of these covariates are interacted with month indicators. Whenever possible, the vector also includes 

interactions of log per capita income with calendar month to account for the possibility that changes in 

annual income provide relatively greater health benefits across months of the year. In practice, per 

capita income is available at the state level from 1929 onwards, and since there are no vital statistics 

data in 1930, the preferred specification sample that controls for per capita income interacted with 

month indicators begins in 1931. Finally, the vector also includes a quadratic time trend that is allowed 

to vary at the state-month level to control for smooth changes in local mortality rates over time.  

  The specification also includes a full set of state-by-month fixed effects (αsm) and year-month 

fixed effects (ρym). The state-by-month fixed effects are included to absorb differences in seasonal 

mortality (which is the largest in the winter months and smallest in the summer months). These fixed 

effects adjust for permanent unobserved state-by-month determinants of the mortality rate, such as 

fixed differences in hospital quality or seasonal employment. The year-by-month fixed effects control for 

idiosyncratic changes in mortality outcomes that are common across state (e.g., the introduction of 

Medicare and Medicaid).  

The variables LOWPsym and HIGHPsym are indicators for unusually high or low amounts of 

precipitation in the current state-year-month. More specifically, these are defined as indicators for 

realized monthly precipitation that is less than the 25th (LOWPsym) or more than the 75th (HIGHPsym) 

percentiles of the 1900-2004 average monthly precipitation in a given state-month. In the interest of 

space, we do not report the estimated coefficients associated with these variables. In the remainder of 

this paper, we refer for the specification of the control variables that includes the state-by-month fixed 

effects, year-by-month fixed effects, quadratic time trend interacted with state-month indicators, the 

two precipitation indicators, the share of population living in urban areas and the share of the state 

population in one the four age categories (all interacted with month indicators) as the ‘baseline set of 

covariates’. 

The variables of central interest are the measures of temperature TMEANsymj. These TMEAN 

variables are constructed to capture exposure to the full distribution of temperature and are defined as 

                                                 
17 There is no data available at state-year-month level that identifies vital statistics separately for rural and urban 
populations. As such, we control for urban population shares interacted with month in all specifications to account 
for the possibility that trends in urbanization are correlated with changes in high temperature exposure. 
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the number of days in a state-year-month where the daily mean temperature is in the jth of the 10 bins 

used in Figure 1. In practice, the 60–69 °F bin is the excluded group so the coefficients on the other bins 

are interpreted as the effect of exchanging a day in the 60 °F – 69 °F bin for a day in other bins.18 The 

primary functional form restriction implied by this model of temperature exposure is that the impact of 

the daily mean temperature on the monthly mortality rate is constant within 10 °F intervals. The choice 

of 10 temperature bins represents an effort to allow the data, rather than parametric assumptions, to 

determine the temperature-mortality relationship, while also obtaining estimates that are precise 

enough that they have empirical content.  

We also use a more parsimonious model that focuses entirely on the upper and lower tails of 

the daily temperature distribution. Specifically, we focus on 3 “critical” temperature-bin variables: the 

number of days below 40° F, the number of days between 80 and 89° F and the number of days above 

90 °F. Thus the number of days in the 40° F – 79° F bin is the excluded category in this case. This choice 

of degree-days bins is informed by the estimated response function linking mortality and the 10 

temperature-day bins. As we show below, estimates of the θ parameters associated with high daily 

temperatures (i.e., 80-89 °F and >90 °F) are very similar across the different models so we will heavily 

rely on the parsimonious approach to present the estimation results.  

Regardless of the functional form of the weather variables, the θj parameters are identified from 

inter-annual variation in temperature realizations. Specifically, the specification exploits inter-annual 

variation in month of the year (e.g., June) temperatures after adjustment for the covariates and non-

parametrically controlling for national shocks to the mortality rate at the month by year (e.g., June 

1956) level. It is difficult to think of potential confounders that would remain after fitting such a rich 

specification, suggesting that the identifying assumption is likely to be credible. 

The aim of equation (1) is to capture changes in the mortality rate that are associated with 

meaningful changes in life expectancy. However, it is has been shown that spikes in daily or weekly 

mortality rates are often immediately followed by periods of below trend mortality (Braga et al. 2001). 

Thus, examinations of the day-to-day correlation between mortality and temperature may overstate the 

substantive effect of temperature on life expectancy. In the other direction, the possibility of delayed 

effects (e.g., cold temperature leading to pneumonia that leads to death several weeks later) means 

that day-to-day temperature mortality associations may understate the loss of life expectancy.  

                                                 
18A normalization is necessary since the number of days in a given month is constant and the temperature-day bins 
always sum to that constant. 
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Our model has two safeguards against the possibility of both of these forms of inter-temporal 

mortality displacement. First, it is estimated at the monthly level, rather than daily-level, so these 

dynamics will naturally be less of a concern. Second, the preferred model includes temperature 

variables for the current and prior month and the below tables report the cumulative dynamic estimate 

of temperature effects by summing the estimated coefficients for each of the two months. This is a 

conservative modeling approach since 2 months is a longer exposure window than has been used in 

much of the previous literature.19 Longer exposure windows are examined as a robustness check in 

Table 5 and Appendix Figure 2.  

We now describe the augmented models used to quantify the effects of each modifier on the 

temperature-mortality relationship. In this case, equation (1) is augmented by adding interactions of the 

temperature variables with state-by-year measures of our three modifier variables. Specifically, we 

estimate:  
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Equation (2) is identical to equation (1), except for the addition of main effects for the modifiers 

(denoted by MODsy) and their interactions with the temperature variables. The modifier variables 

control for determinants of annual mortality rates at the state-by-year level that covary with the 

adoption of the relevant modifier. The 60–69 °F temperature bin is again the excluded group among the 

j temperature ranges. Thus, the interaction of a modifier with a temperature bin variable measures 

whether the effect of an additional day in a given temperature range on the mortality rate is affected, 

relative to the effect of the modifier on the mortality impacts of a day in the 60–69 °F range. For 

example, in the case of AC, this specification assess whether the availability of AC alters the mortality 

effect of a day where the temperature exceeds 90 °F, relative to the effect of AC on the mortality effect 

of a day in the 60–69 °F range.  

Our hypothesis is that the coefficients on the interaction terms (δj) will be negative at the 

extreme temperature categories. A negative coefficient would be interpreted as evidence that the 

diffusion of a particular modifier reduced a population’s vulnerability to temperature extremes, relative 

to the modifier’s effect on the mortality impact of days in the 60–69 °F range. In particular, the modifier 

variables are expected to play a key role in dampening the mortality effects of high temperatures (e.g. 
                                                 
19 Most papers in the epidemiology literature consider displacement windows of less than 3 weeks.  Deschenes and 
Moretti (2009) use a window of 1 month in their baseline specification, Barreca (2012) uses a two-month exposure 
window, and Deschenes and Greenstone (2011) implicitly use a window of up to 1 year. 
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days >90 °F). Further in the case of air conditioning, the interaction between AC and low temperatures 

(e.g., below 60 °F) serves as a placebo check since AC will not directly protect people from low 

temperatures. This underscores that any threats to internal validity need to differentially affect 

mortality on days with temperatures at either end of the temperature distribution.  

More broadly, the variation in the modifiers is not experimental, nor is it based on inter-annual 

variation in weather realizations, so it is natural to question whether the estimated δj coefficients are 

likely to be unbiased. For concreteness, consider the interaction of AC prevalence with the variable for 

the number of days where the temperature exceeds 90 °F. Since the regressions include state-by-month 

fixed effects and state-by-month trends, any source of bias cannot operate through fixed state-by-

month differences (e.g., Arizona has a high AC penetration rate and high number of >90 °F days, along 

with a sick population) or gradual changes in seasonal mortality (e.g., the Arizona population is gradually 

becoming more vulnerable to summer temperatures and increasing the adoption of AC). Rather, the 

threat to identification comes from unobserved determinants of mortality that covary with both a year’s 

realization of > 90 °F days and the AC adoption rate. So, for example, if households tended to purchase 

AC in a given year and there was also an increase in purchases of fans for personal cooling in that year, 

then the beneficial effects of AC would be overstated due to confounding AC with the effects of fans. 

Alternatively if people installed AC in abnormally hot months that coincided with increases in latent 

mortality risk, the beneficial effects of AC would be understated.  

Our judgment is that such potential sources of bias are unlikely to be important factors in the 

estimation of equation (2), although we cannot rule them out. As one further check on this concern, the 

key robustness check table for the effect of AC (Table 8) report on specifications that control for the 

interaction between the temperature variables and a linear time trend. This allows for the possibility 

that mortality risk from exposure to temperature extremes parametrically changed over time for 

reasons unrelated to the modifiers.  

Finally, two additional econometric issues bear noting for the estimation of equations (1) and 

(2). First, the standard errors are clustered at the state level, which allows the errors within states to be 

arbitrarily correlated over time.20 Second, we estimate the models using GLS, where the weights 

correspond to the square root of the contemporaneous state population. The estimates of mortality 

rates from large population states are more precise, so GLS corrects for heteroskedasticity associated 

                                                 
20 This approach is more conservative (though possibly less efficient) than modelling the pattern of serial 
correlation directly. Bertrand, Duflo, and Mullainathan (2004) and Cameron and Miller (2013) find that this 
approach to estimating the confidence region obtains hypothesis tests with correct size even with panel data of 
around 50 states that include a variety of fixed effects. 
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with these differences in population size. Further, the GLS results reveal the impact on the average 

person, rather than on the average state. 

 

B. Estimates of the Temperature-Mortality Relationship 

Daily Mean Temperatures. Figure 2 (a) presents estimates of the temperature-mortality 

relationship from the fitting of the 10 bin version of equation (1) to data from 1900-2004. Recall that the 

temperature exposure window for all figures is 2 months and that the figure reports the associated 

cumulative dynamic estimates. The specification includes the baseline set of covariates, but exclude 

month×log per capita income interactions (since these data are only available beginning in 1929). The 

figure plots the regression coefficients associated with the daily temperature bins (i.e. the θj’s) where 

the 60-69 °F bin is the reference (omitted) category. That is, each coefficient measures the estimated 

impact of one additional day in temperature bin j on the log monthly mortality rate, relative to the 

impact of one day in the 60-69° F range. 

The figure reveals that mortality risk is highest at the temperature extremes, and particularly so 

for temperatures above 90 °F. The point estimates underlying the response function indicate that 

swapping a day in the 60-69 °F range for one above 90 °F increases the mortality rate by approximately 

1% (i.e. 0.98 log mortality points), while an additional 80-89 °F day increases the mortality rate by about 

0.2%. Cold temperatures also lead to excess mortality: the coefficients associated with the lowest three 

temperature bins (i.e. < 10, 10-19, and 20-29 °F) range from 0.7% to 0.8%. All estimates associated with 

temperature exposures above 80 °F and below 60 °F are statistically significant at the 5% level. This U-

shaped relationship is consistent with previous temperature-mortality research (see Deschenes 2014 

and NIEHS 2010 for reviews of the literature), although these are the first comprehensive estimates of 

the temperature-mortality relationship over the entire 20th century.  

Figure 2 (b) plots estimates from the same specification as 2 (a), except that controls for 

interactions between log per capita income and month are added to the model. As explained above, 

since the data on per capita income are only available from 1929 onwards, there is no vital statistics 

reported in 1930, and since we use a 2 months exposure window, the sample period is 1931-2004. 

Comparison between Figures 2 (a) and (b) indicate that the estimates are robust to controlling for log 

per capita income, as well as beginning the sample in 1931. 

Figures 2 (c) and (d) illustrate how the temperature-mortality relationship has changed over 

time. Specifically, Figures 2 (c) and (d) plot the estimated coefficients on the temperature bin variables 

for the 1931-1959 and 1960-2004 periods, respectively. The estimates are adjusted for the same 
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controls as in Figure 2 (b). The “breakpoint” of 1960 was chosen since virtually all U.S. households had 

electricity by then but only a small fraction had residential AC as of 1960.  

Two key results emerge from Figures 2 (c) and (d). First, there is a sharp decline in the mortality 

impact of high temperature days after 1960. Specifically, the relative impact of >90 °F days on mortality 

declined by a factor of 6 (or by 84%) after 1960. There is a similarly large decline in the mortality impact 

of days in the 80-89° F range. Second, there is a considerably smaller decline in the impact of low 

temperatures on mortality. For example, the mortality impact of a <10 °F day declined by only 49%. In 

sum, vulnerability to temperature extremes declined over the 20th century at both ends of the 

distribution, but the mortality impact of very high temperatures declined more dramatically. 

Technologies that interact with high temperatures, therefore, are more likely explanations for these 

changes, compared to broad health policies and changes in health capital that generically reduce 

mortality rates.  

Figure 3 explores the historical change in the temperature-mortality relationship with more 

temporal detail. Specifically, it reports estimates of the temperature-mortality relationship based on 3 

critical temperature bins (<40°F, 80-89°F, and >90°F) and the specification of equation (1) for 8 distinct 

periods: 1900-1929, 1931-1939, 1940-1949, 1950-1959, 1960-1969, 1970-1979, 1980-1989 and 1990-

2004.21 As in Figure 2, the plotted coefficients represent the sum of the coefficients on the current and 

lagged month’s temperature bin variables. Two set of estimates are reported. The estimates depicted by 

the dashed red line (circle markers) are based on models that exclude month*log per capita income 

interactions but include all other controls, fixed effects and interactions listed in the description of 

equation (1). The preferred estimates are denoted by the blue line (square markers) and are based on 

models that add month*log per capita income interactions to the specification. Figures 3(a), 3(b), and 

3(c) report the evolution of the coefficient on >90 °F, 80-89 °F, and <40 °F days, respectively. 

The results confirm the basic finding in Figures 2(c) and 2(d) that the mortality effect of >90 °F 

days fell dramatically over the course of the 20th century, especially compared to colder ends of the 

temperature distribution. Moreover, Figures 3 (a) provide compelling evidence that the biggest period 

to period decrease in the mortality effect of >90 °F days measured in ln points (-0.0091) occurred 

between the 1950s and 1960s.22 This decadal change represents roughly 50% of the post-pre 1960 

                                                 
21 Estimates for 1900-1929 are pooled to increase the statistical precision since exposure to >90°F days is relatively 
low before the mid-1920s due to the geographical distribution of the U.S. population. 
22 The apparent increase in the mortality impacts of >90 °F days between 1900-29 and 1930-39 is largely an 
artefact of the imprecision of the earlier period’s estimate; this is evident in the 95% confident interval that ranges 
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change in the estimated effect of >90° F on log mortality rates. The adoption rate of residential AC 

greatly increased during the 1960s, so this figure provides some suggestive evidence that this 

technology may have played an important role. The decline in the mortality effect of days in the 80-89° 

F range is also notable although it appears that much of it occurred before the widespread adoption of 

AC. The next subsection more formally tests the hypothesis that air conditioning explains the declines in 

the mortality effects of hot days. 

Table 3 provides an opportunity to quantify the qualitative impressions from Figures 2 and 3 

more precisely. In the interest of making the table accessible, the model is simplified to include only 

three temperature-bin variables: the number of days below 40° F, the number of days between 80-89°F 

and the number of days above 90°F (thus the number of days with mean temperature between 40°-79° 

F is excluded). This simpler functional form is motivated by the estimates in Figure 2 that suggested that 

the θj’s were approximately equal in the below 40° F and 40° - 79° F categories. As in Figures 2 and 3 

and the remainder of the paper (unless otherwise noted), we use cumulative dynamic models that 

include the current and previous month’s temperature bins and allow their effects to differ; the 

reported entries for each temperature bin are the sum of coefficients from the two months. All 

estimates are adjusted for the full set of covariates outlined in the description of equation (1) and that is 

henceforth referred to as the baseline specification. Finally, the three columns of Table 3 correspond to 

different estimation periods used in Figure 2: 1931-2004, 1931-1959, and 1960-2004. 

 The Table 3, Panel A results confirm the findings above that temperature extremes increase 

mortality risk and that there was a sizable decline in the temperature-mortality relationship across 

decades. Over the 1931-2004 period, for example, one additional day with a mean temperature above 

90 °F leads to a 0.9 percent increase in the monthly mortality rate (relative to one day between 40-79 

°F). A comparison of columns (2) and (3) reveals that this effect declined by more than 80% between the 

1931-1959 and 1960-2004 periods (from 2.16% to 0.34%). The mortality impacts of days between 80-

89°F and days below 40°F also fell across the two sample periods (1931-1959 and 1960-2004), with a 

comparable percent decline in the effect of days in the 80-89°F range and a smaller decline in the effect 

of cold days.  

Panel B reports on a specification that decomposes daily average temperature into its daily 

minimum and maximum temperatures components, but is otherwise identical to the model used in 

Panel A. This specification allows for an examination of potential non-linear effects at temperature 

                                                                                                                                                             
from -0.0264 to 0.0417.  Indeed, the null that the 1900-29 and 1930-39 coefficients are equal cannot be rejected at 
conventional levels (p-value = 0.44). 
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extremes that could be missed in the mean temperature analyses.23 Specifically, there are three 

separate daily temperature bins for a day’s maximum and minimum, respectively, thus the effect of any 

bin is conditional on the effects of the other bins.  

The evidence confirms our core finding above that there was a significant dampening of the 

temperature-mortality relationship at high temperatures, but also suggests that the change was not 

uniform across the diurnal temperature range. Specifically, there is a relatively larger decline in the 

effects of high daily minimum temperatures (i.e., >80° F and 70-79° F) in the later period, as opposed to 

a decline in the effect of high daily maximum temperature (i.e., >100°F). For example, the >80° F 

minimum coefficient declines by roughly 95% from 0.0208 to 0.0010, while the percent decline in the 

coefficient on days with a maximum above 100 °F is smaller. 

With regards to the mechanisms underlying the results in Panel B, it is important to note that 

minimum temperatures are typically achieved at nighttime as opposed to daytime for maximum 

temperatures. A potential explanation of the Panel B results is that the reduction in the mortality impact 

of high temperatures is due to changes in the home environment, instead of the workplace 

environment. This would tend to point to increased usage of residential AC leading to reductions in 

thermal stress in the evenings and night. As one caveat to this interpretation, even when holding daily 

maximum temperature constant, changes in the daily minimum temperature are likely to be correlated 

with other climatic factors, e.g. humidity and rainfall that might affect mortality independent of the daily 

minimum.24  

Heterogeneity by Climatic Region. Table 4 estimates the temperature-mortality relationship 

separately by the NOAA U.S. climatic regions defined in Tables 1 and 2. It allows us to document any 

heterogeneity in the response functions across climate areas and test whether areas that are more 

accustomed to temperature extremes have adapted better such that they have a more muted 

temperature-mortality relationship. For example, regions that experience high temperature-days more 

frequently (e.g., West, South, and Southwest) may have higher adoption rates of technologies that 

mitigate the detrimental impacts of heat or be more familiar with self-protection techniques (e.g., 

proper hydration).  

The estimates reported in Table 4 are from a single regression where the temperature bin 

variables are interacted with indicators for the nine climate regions by two time periods. In five (six) out 

                                                 
23 The results are similar when we control for daily minimum and maximum temperature-bins in the same 
regression models or if these variables enter in separate regression models. 
24 The spread of temperatures, which might be important for health outcomes, is also mechanically determined by 
diurnal temperatures.  



24 
 

of nine regions, the impact of >90°F and 80-89 °F days on mortality is positive and statistically 

significant, both in the pre-1960 and post 1960 periods. The mortality impact of hot days tends to be 

largest in the regions (e.g., Northeast, Central, East North Central, and West North Central) where such 

days are the least frequent. Using an F-test, we can easily reject the null hypothesis (p-values < 0.01) 

that the estimated effect of >90°F days is equal across climate zones in the pre-1960 and post-1960 

samples, respectively.25 This finding of larger effects in cooler places is consistent with the idea that 

hotter places adapt to the higher temperatures and the heterogeneity suggests that these adaptations 

are costly (otherwise all places would undertake them).  

With respect to changes over time, the post 1960 estimates of hot days on mortality are 

generally smaller than their pre-1960 counterparts. For example, the null hypothesis of equality across 

periods within the following five climate zones is rejected for the >90° F coefficients: Central, East North 

Central, West, and Southwest, and South. There is less evidence of within climate zones declines for the 

80-89°F coefficients. See Barreca et al. (2015) for a more thorough examination of the regional 

differences in the impacts of hot days on mortality rates and the implications for adaptation to climate 

change. 

Robustness tests. Table 5 reports on our efforts to probe the robustness of the estimated effect 

of hot days on mortality and how it changed before and after 1960. The rows detail how the control 

variables, subsamples, and fixed effects are varied. Columns (1) and (2) report the coefficients for days 

>90F and columns (3) and (4) report the coefficients for days 80-89F.  

The baseline estimates from Table 3, Panel A are reported in row 1 and are intended to be 

compared with the subsequent rows. It is apparent from row 2 that the results are qualitatively 

unchanged by allowing for two additional lags of temperature. Further, it is evident from rows 3-4 that 

the qualitative results are unchanged by stratifying the sample by states that that are above and below 

median per capita income.26 The results are also robust to adding controls for state-year estimates of 

the fraction living on farms, the fraction black, and the fraction of state residents born in a different 

state (row 5).27 Row 6 adds interactions between the temperature variables and the precipitation 

variables (LOWP and HIGHP) and reports the marginal temperature effects evaluated at the sample 

means. This addresses the possibility of temperature effects that depend on the degree of humidity, as 
                                                 
25 The analogous null hypothesis for 80-89° F days is not rejected for the period 1931-1959 (p-value = 0.15), but 
easily rejected for the 1960-2004 sample (p-value < 0.01).  
26 The medians are calculated over all sample years (and weighted by population), so the assignment of a state to a 
below or above median group remains constant across all years.     
27 All of these variables are obtained from Decennial population censuses and interpolated across census years. 
See Almond, Chay and Greenstone (2006) on differential access to health care by race  
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warmer and wetter days are generally humid. Across all additional specifications, there is no meaningful 

change in the effects of 80-89°F and >90 °F days. 

In addition, we also estimated a variant of the baseline specification (row 1) augmented to 

include leads in the temperature variables as a “placebo” test: any significant difference in the estimates 

from the model including leads and the baseline specification would be an indication that the main 

results may be driven by trends or factors that we fail to control for. There is virtually no difference in 

the point estimates of the mortality impact of 80-89°F and >90°F temperature-days in the model where 

leads are added to the baseline specification. Further, the estimated lead coefficients are very small and 

statistically insignificant.28 29 

Overall, Table 5 fails to contradict the earlier findings of an important relationship between 

mortality rates and hot days prior to 1960 and a marked decline in the magnitude of this effect after 

1960. The next subsection explores the roles of increased access to health care, residential electricity, 

and residential air conditioning in muting the temperature-mortality relationship during the 20th 

century. 

 

C. The Impact of the Modifiers of the Temperature-Mortality Relationship 

Table 6 presents the results from the fitting of several versions of equation (2). It reports on 

tests of whether the share of the residential population with electricity, log doctors per capita, and the 

share of the population with residential AC modify the relationship between mortality and daily 

temperatures. The specifications includes temperature variables for the number of days below 40° F, 

the number of days between 80-89°F, and the number of days above 90°F (so the number of days with 

mean temperature between 40°-79° F is excluded). Due to the pattern of the preceding results, the 

table only reports the relevant modifier interactions (i.e., δj) on the >90 °F and 80-89° F days variable, 

because the preceding results revealed that the mortality effects of hot days changed the most 

                                                 
28 We also performed other robustness analyses that are not reported here due to space limitations.  Specifically, 
we have re-estimated the baseline specification for 1960-2004 using 1940 population weights (as opposed to 
annual population weights for all sample years).  1940 was chosen as it pre-dated the central city to suburban 
areas mobility that began in the 1950s (see e.g., Baum-Snow 2007).  Such mobility could confound our estimates if 
urban heat island effects are important, and if suburban mobility reduces high temperature exposure (see Arnfield 
2003 for a review of urban heat island studies).  The estimates are qualitatively unchanged when the fixed 1940 
population is used as the weight.  We also experimented with interacting population density with the temperature 
variables in the baseline model: the null that these interactions are equal to zero cannot be rejected. 
29 Specifically, for the pre-1960 sample, the lead coefficients (standard errors) on the >90°F, 80-89°F and <40°F 
temperature variables are respectively, 0.0015 (0.0015), 0.0002 (0.0002), 0.0000 (0.0003). The corresponding 
estimates for the post-1960 sample are: -0.0009 (0.0005), -0.0002 (0.0002), -0.0003 (0.0002) 
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throughout the 20th century. The coefficients for the interactions of the potential modifiers and the <40° 

F days are reported in Appendix Table 2. Finally, the specifications include the full set of baseline 

controls and the estimates are based on the current and previous month’s temperature realizations.  

 Columns (1a) through (3a) focus on the 1931-59 period, and columns (1b) through (3b) analyze 

1960-2004 data. In 1960 virtually all households in the United States had access to electricity and few 

households had air conditioning. As such, the estimated modifying effect of electrification is only 

reported in Panel A, and the estimated modifying effect of residential AC is only reported in Panel B. The 

effect of doctors per capita can be estimated in both samples. This approach allows the effects of 

doctors per capita to vary across these two sample periods, which is important given the substantial 

improvements in the efficacy of treatments for heat stress in the 1950s and 1960s (see Section II). We 

consider specifications where the effect of each modifier enters individually, as well ones where 

multiple modifiers enter the same specification.  

Over the 1931-1959 period, the share of the population with residential electricity and doctors 

per capita appear to have little beneficial effect on reducing hot day mortality. Indeed, the coefficients 

on the interaction of these two modifiers with the number of >90 °F days variable are perversely sign. 

That is, they suggest that these modifiers increase the hot day mortality rate, although they would all be 

judged to be statistically insignificant by conventional criteria. In the case of the interactions with the 

variable for the number of days in the in the 80-89 °F range, there is little evidence that the number of 

doctors or the share of houses with electricity modify the mortality effects of these days. In contrast, 

Appendix Tables 2 indicates that electrification is associated with statistically significant declines in 

vulnerability to <40 °F days in this period. 

Panel B indicates that the diffusion of residential air conditioning is associated with a sizeable 

and statistically significant decrease in mortality due to hot days in the 1960-2004 period. The estimates 

in columns (2b) and (3b) suggest that each 10 percentage point increase in residential AC ownership is 

associated with a decrease in the mortality effect of >90 °F days by 0.002 log points; this is roughly 10 

percent of the effect of a >90 °F day in the pre-1960 period. Thus, the regressions imply that an increase 

in AC coverage from 0% to 59% (which is the average share of the population with residential AC in the 

1960-2004 period) reduces the effect of >90°F days on log monthly mortality rates by 0.0132 (=0.59*-

0.0223). In the case of the effect of 80-89°F days, an increase in AC coverage of 59% reduces the effect 

of an additional day in this range on the monthly mortality rate by .0039 (=0.59*-0.0066). 

Panel B also lends insight into the effect of doctors per capita on the monthly mortality rate. It is 

evident that increasing doctors per capita did not contribute to reducing the mortality effect of a >90 °F 
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day. There is some evidence that the number of doctors reduces the mortality effects of days in the 80-

89 °F range in column (1b) but this finding disappears in the richer column (3b) specification that adjusts 

for air conditioning and its interactions with the temperature variables. Overall, the increase in doctors 

per capita does not appear to have played a substantive role in the twentieth century’s decline in heat-

related mortality.30 31  

Figure 4 lends further insight into the air conditioning finding. It plots the coefficients (i.e., the 

δj’s) on the interaction of the air conditioning variable with the 9 daily temperature bin variables from 

the estimation of a version of equation (2) where AC is the only modifier and includes the baseline 

coefficients. For the >90 °F and 80-89 °F temperature bins, the interaction estimates are nearly identical 

to those in Table 6, indicating that AC reduces the mortality effect of high-temperature days. Consistent 

with AC use during hot weather being the driving mechanism, the estimated AC-temperature 

interactions are small, precisely estimated and statistically insignificant, for all temperature bins below 

80°F. Any relationship between unobservables, AC, and mortality would need to change in a 

discontinuous manner around 80°F to bias estimation.  

Estimates by Age, Race and Cause of Death. Table 7 presents the air-conditioning modifier 

analysis by age group, race, and cause of death using the more detailed Multiple Causes of Death data. 

Based on the results from Table 6, Table 7 only reports the interaction effect between residential air-

conditioning and high temperature days (i.e., 80-89°F and >90 °F) from the baseline specification where 

AC is the only included modifier. Residential AC continues to be measured at the state-by-year level.  

It is apparent in Panels A and B that there is a stronger protective effect of AC for more 

vulnerable populations. The effect of residential air conditioning in mitigating the mortality impact of 

high temperatures is largest for infants and for the 65+ population. While AC is protective against days 

where the temperature exceeds 90° F for both whites and blacks, the point estimates suggest that it is 

more than twice as protective for blacks (although the 95% confidence intervals overlap). In contrast if 

the point estimates are taken literally, AC does more to mitigate the mortality effects of 80-89° F days 

for whites. 

 The estimates in Panel C suggest that the protective effects of AC operate through reduced heat 

stress, as opposed to alternative channels. Specifically, we find that AC reduces the impacts of high 

                                                 
30 In contrast, the estimates in Appendix Tables 2 suggest that an increase in the number of the doctors in the 
population played a role in reducing the mortality effects of days <40 °F over the 1960-2004 period. 
31 In additional analyses, we also considered alternative proxies for access to health care such as nurses per capita 
and number of hospital beds in a state-year.  These additional measures lead to qualitatively similar results as 
doctors per capita. 
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temperature days on cardiovascular-related and respiratory-related mortality (columns (1) and (2)). In 

contrast, there is no significant interaction effect on fatalities due to motor vehicle accidents or 

infectious disease, suggesting that the AC results do not simply reflect an unobserved reduction in 

mortality risk due to hot days that is correlated with AC adoption (columns (3) and (4)). A potentially 

puzzling result is the finding that AC is also associated with reductions in the impacts of >90 °F days on 

The evidence on neoplasm mortality is mixed, with a statistically significant effect of >90 °F and a 

smaller and statistically insignificant corresponding estimate for 80-89°F. Overall, these findings are 

broadly consistent with the decline in hot weather deaths operating through the thermoregulatory 

channel that has been established in the epidemiology literature (e.g., Basu and Samet 2002).  

  Robustness Tests. Table 8 presents a detailed robustness analysis of our key findings with 

regards to air conditioning. Column (1) reports estimates from the baseline specification (i.e., Table 6, 

Panel B, column 2b). Column (2) reports on a specification that models the state-by-month time trend 

with a cubic, instead of with a quadratic, which more flexibly controls for unobserved trends that may 

be correlated with the patterns of AC adoption. These estimates are qualitatively identical to the 

baseline ones. 

Recall, we construct the state-year measure of the share of households with AC using data from 

the 1960, 1970, and 1980 Censuses of Population by interpolating across census years and then 

extrapolating beyond 1980. The reliance on interpolation raises legitimate questions about the role of 

measurement error and other concerns in the baseline results. To explore these questions, column (3) is 

based on a regression with the observations for 1959-61, 1969-1971, and 1979-1981 only, resulting in a 

sample of 4,655 observations. Centering these windows around the 3 census years where AC 

information is available mitigates the bias from imputation-related measurement error.32,33 Remarkably, 

the point estimates in column (3) are very similar to those reported in column (1), although they 

naturally have larger standard errors due to the smaller sample.34 

 The table reports on two additional exercises. Column (4) adds year-by-temperature trends (i.e., 

interactions between calendar year and the 3 temperature bin variables) in the baseline specification to 

control for unobserved factors that may lead to a smooth and secular reduction in vulnerability to 

temperature extremes. This specification leads the coefficient on the interactions of the AC variable with 

                                                 
32 We thank an anonymous referee for suggesting this approach. 
33 We also estimated a corresponding model for county-year-month data for 1960, 1970, 1980 and found 
qualitatively similar estimates. 
34 Further, if we restrict the sample to only 1960, 1970, 1980, (N=1,715), the point estimate on the interaction 
between AC and >90°F is similar (-0.0305), but with a twice larger standard error (0.0701). 
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the >90° F variable to double and with the 80-89° F variable to increase by more than 40 percent, 

suggesting that the baseline specification might understate the true effect. Finally, the estimates in 

column (5) extend the baseline specification to include a 4-month exposure window, leading to a slightly 

larger estimate of the protective effect of AC on high-temperature days.35 In sum, the robustness checks 

in Table 8 support our key finding that the diffusion of residential AC led to a large reduction in heat-

related mortality.  

 

V. Developing a Measure of the Consumer Surplus from Residential Air Conditioning  

 

The preceding section finds that the proliferation of residential AC played a critical role in reducing the 

incidence of heat-related fatalities, yet AC offers other benefits too. These other benefits include 

increased comfort, reduced morbidity, and increased productivity (Cooper 2002, Biddle 2008), but they 

can be difficult to measure.36 AC has also been linked with fundamentally changing the population 

distribution of the United States by making living and working in the South and Southwest more 

comfortable, although this too is difficult to measure. 

Rather than trying to piece together a measure of the welfare benefits by summing the benefits 

across a wide variety of sectors, we turn to estimating the full consumer surplus associated with AC. This 

is measured as the area between the electricity demand curves of households with and without 

residential AC after correction for selection into AC ownership. Specifically, we apply Dubin and 

McFadden’s (1984) discrete-continuous model for estimating demand to electricity and AC. The basic 

idea is that households make a joint decision regarding whether to purchase an AC unit and then how 

much electricity to consume, conditional on the AC ownership decision.  

Following this approach, we specify the conditional electricity demand function as: 

 

                                                 
35 We also estimated additional models to investigate how the protective effect of AC on high-temperature days 
may have changed over time. Specifically, we estimate the regression underlying the results in column (1) of Table 
8 by decade (1960-69, 1970-79, 1980-89, 1990-04) and found that the protective effect is significant in all decades, 
but declines over time. The point estimates (standard errors) for the temperature >90°F × AC interaction are 1960-
69: -0.0484 (0.0098), 1970-79: -0.0337 (0.0105), 1980-89: -0.0294 (0.0049), 1990-04: -0.0213 (0.0033). Similarly, 
the temperature 80-89°F × AC interaction are: 1960-69: -0.0038 (0.0022), 1970-79: -0.0100 (0.0021), 1980-89: -
0.0082 (0.0010), 1990-04: -0.0070 (0.0012). 
36 Some studies have attempted to measure these benefits.  See, for example, Burch and DePasquale (1959) on the 
benefits to air conditioning hospital wards.   
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where qis denotes the annual consumption of electricity by household i, residing in state s (measured in 

million Btu), ACis is an indicator variable denoting the ownership of a AC unit, pis denotes electricity price 

in state s, and Xis denotes a vector of household-level and state-level predictors of electricity demand, 

including indicators of climate (the long-term average of the temperature bins variables used earlier in 

the paper), household income, size, number of rooms, number of units in the building, and age of the 

structure.37 All household-level and state-level predictors of electricity demand are modelled using 

dummy variables. The error term, εis, represents unobserved differences across households in the 

demand for electricity. 

 The coefficients of interest in the demand equation (3) are β1 and β2, which measure the effects 

of AC ownership and electricity prices on electricity demand, respectively, after conditioning on the 

demand shifters in Xis. These parameters can be used to infer how electricity demand curves differ for 

households who do and do not own conditioning units. However, electricity demand and AC ownership 

decisions are unlikely to be independent. For example, households who prefer cooler temperatures may 

decide to purchase an air conditioning unit and consume more electricity conditional on their air 

conditioning choice. Hence, the distribution of εis among households who decide to purchase air 

conditioning units may differ from the unconditional distribution of εis, and failure to account for this 

correlation would lead to biased estimates of the parameters in equation (3). In practice, this 

interdependence is embodied in the model by allowing the error terms in the indirect utility function 

underlying the decision to own or not own an AC unit to be correlated with the error terms in the 

electricity demand equation.  

We follow Dubin and McFadden’s control function solution to this garden-style problem of 

identification. Specifically, we assume that the errors in the AC ownership decision equation are iid 

extreme value type I and that the errors in the electricity demand equation are functions of the errors in 

the AC ownership decision equation. In this case, selection correction terms for households that do and 

do not own AC are P0isln(P0is)/(1-P0is) + ln(P1is) and P1isln(P1is)/(1-P1is) + ln(P0is), respectively, where P1is = 

Pr(ACis=1|pis,Xis,Zis) and P0is = Pr(ACis=0|pis,Xis,Zis). In practice, we obtain estimates of these response 

probabilities by fitting the following logit equation for owning an AC unit: 

 

                                                 
37 Sub-state electricity price information is not available for our sample. 
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where Xis is defined as above and Zis includes interactions between electricity prices and the climate 

indicators, dummy variables in the number of rooms, and dummy variables in household size. Thus, 

identification comes from a combination of the logit functional form and the exclusion of the 

interactions from the demand equation.  

Table 9 reports the estimates of the key parameters from the electricity demand equation. The 

dependent variable is annual electricity consumed per household (in thousand kWh) and the electricity 

price is measured in ($2012) dollars per kWh. Column (1) reports estimates from a model that only 

includes electricity price and the AC indicator as predictors of electricity demand, while column (2) adds 

an interaction between electricity price and the AC indicator in order to detect if AC ownership changes 

the slope of the electricity demand curve. Column (3) adds the full set of controls to the specification in 

(1).  

The column (1)-(3) estimates reflect the assumption that cross-state differences in electricity 

prices do not reflect unobserved variation in residential electricity demand. Typical problems of price 

endogeneity are less relevant here than in many settings partly because the census microdata let us 

include rich household- and dwelling-level controls for determinants of heating demand. Additionally, 

much of the cross-sectional variation in electricity prices is due to differences in fuel shares across 

states. For example, the availability of cheap hydropower in the West or coal in Appalachia contributes 

to those states’ low electricity prices.  Because large differences in fuel shares are across regions of the 

country, because regional electricity integration helps link electricity prices across states within regions 

of the country, and because state-level electricity prices may suffer from measurement error, we also 

report estimates which instrument for electricity prices using Census division indicators (column 4).38 

Finally, we add selection correction terms to the instrumental variables regressions (column 5).39 Since 

our measure of electricity prices only varies at the state level, the reported standard errors are clustered 

at the state level. 

There are three key results in the upper panel of Table 9. First, the residential electricity demand 

curve is downward sloping, with statistically significant point estimates ranging from -53. 6 to -92.3 

(these imply price elasticities of demand ranging from -0.8 to -1.3). Second, AC ownership shifts the 

electricity demand curve to the right as shown by the positive and statistically significant estimates on 

                                                 
38 The F-statistics on the excluded instruments in columns (4) and (5) are: 10.18 and 10.16, respectively, both with 
p-values less than 0.001. 
39 Davis and Killian (2011, p. 223) provide analogous arguments for the validity of applying the Dubin-McFadden 
methodology to cross-sectional energy prices, and they also report results using census region dummies as 
instruments for natural gas prices. 



32 
 

the AC ownership indicator. Households with residential AC consume more electricity, ranging from 1.1 

to 3.4 thousand additional kwh per year, depending on the specification.40 The more robust 

specifications suggest an increase of about 1.1 thousand kwh per year, which is about 11.6% of annual 

electricity consumption of 9.5 thousand kwh during this period. Third, the inclusion of the selection 

correction terms (which are statistically significant) and instrumenting for electricity prices leads to 

modest reductions in coefficients. All in all though, the point estimates are qualitatively unchanged and 

remain statistically significant at the 1% level.41 

With these estimates of the slope of the demand curve for electricity and some assumptions 

about the shape of the long-run elasticity of electricity supply curve, it is possible to estimate the gain in 

consumer surplus associated with the adoption of residential AC. Figure 5 illustrates the consumer 

surplus inferred from shifts in the electricity demand curve due to residential AC that is measured by the 

parameter β1 associated with the AC indicator in the regression for electricity demand. Figure 5a depicts 

the case where the supply curve is perfectly inelastic and here the gain in consumer surplus is the 

shaded trapezoid abcd. With a linear supply curve (Figure 5b) passing through the origin, the consumer 

surplus is necessarily smaller and is measured by the difference between trapezoid efgh and trapezoid 

p0p1gi. We emphasize that these changes in demand and consumer surplus are driven not by changes in 

primitive properties of consumer tastes but rather by the availability of residential AC. 

 The lower panel of Table 9 uses the parameter estimates from the residential electricity 

demand function to develop empirical estimates of the consumer surplus associated with residential air 

conditioning. To proceed with this calculation, we need to invert the estimated demand equation and 

solve for pis. Then we compare the consumer surplus in the residential electricity market at observed 

prices and demand against the consumer surplus in the residential electricity market that would prevail 

if no AC was available. The complete derivations underlying this calculation are presented in the 

Appendix. 

 The estimated gains in consumer surplus are substantial. We estimate that the gain in consumer 

surplus associated with the adoption of residential AC ranged from $5 to $10 billion (2012$) annually at 

the 1980 AC penetration rate, depending on the assumptions about the shape of the long run electricity 

supply curve. This translates into an increase in consumer surplus per U.S. household in 1980 of $120 to 

$240. These estimates are statistically significant in all but one of the specifications considered. 

                                                 
40 We also experimented with a specification that allows the effect of AC on electricity demand to depend on the 
frequency of >90°F days. We found that AC users in warmer places use about 500 additional kwh per year, 
although the estimate is not statistically significant. 
41 Nevertheless, the selection correction terms enter the equation statistically significantly  
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 Some complementary statistics help to interpret these estimates. First, these gains in consumer 

surplus are calculated at the 1980 AC penetration rate and it will naturally be larger in later years as AC 

proliferated. For example, our interpolation procedure suggests that AC penetration rates were at 85% 

nationally in 2004, relative to 53% in 1980. This higher rate of penetration would suggest a gain in 

consumer surplus of roughly $15 to $17 billion with perfectly elastic supply and about $8 billion with 

linear supply. Second, it is instructive to compare the gain in consumer surplus to the total expenditures 

on electricity in the residential sector in 1980, which were 90 billion ($2012). Third, the present value in 

1960 of the consumer surplus associated with the introduction of residential AC is $83 to $186 billion 

($2012), with a 5% discount rate. This is calculated with each year’s AC adoption rate through 2004 and 

then that is assumed to hold constant for the indefinite future.42  

 There are several caveats to these calculations. First, the consumer surplus calculation does not 

account for the capital costs of AC. Second, the calculations are not adjusted for the social costs of 

greater electricity consumption, primarily local pollution (Chen et al. 2013) and greenhouse gas 

emissions (Greenstone and Looney 2012). Third, climate change is causing higher temperatures around 

the world and that is increasing the demand for AC—these estimates do not account for this increase in 

demand for electricity (Deschenes and Greenstone 2011). Fourth, these calculations will understate the 

welfare gains from residential AC because they exclude producer surplus in electricity and/or air 

conditioning markets. Further, there may be interdependencies or externalities in consumption and 

production that depend on residential AC penetration that are not captured in household demand for 

electricity. For example, it is often argued that AC made the South hospitable to a much wider share of 

the population and that this in turn may have created a cultural and economic boon for the South 

(Gordon (2000), Holmes (1998)). And, of course, these estimates of the value of residential AC do not 

account for the productivity benefits of AC in the workplace (Cooper 2002).  

 

VI. Interpretation 

 

The paper’s mortality results can be interpreted in several lights. Perhaps the most 

straightforward is to turn these changes in mortality rates into more readily economically interpretable 

                                                 
42 Greenwood, Seshardri, and Yorukoglu (2005) estimate that the introduction of household technologies, like 
washing machines and vacuum cleaners, that helped to increase women’s labor supply increased U.S. GDP by over 
25 percent and led to even larger welfare gains.  The source of the increase in female labor supply is a topic of 
considerable debate with the role of the pill, social norms, and (the potentially endogenous to technology changes) 
increases in educational opportunities for women likely all having some claim on the truth. 
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measures.  During the 1931-1959 period, the United States population was 144.1 million and the typical 

American experienced 1.06 days per year where the temperature exceeded 90° F and 24.1 days in the 

80-89° F range. Taking the estimates in Table 3 Panel A literally, there were approximately 12,442 

premature fatalities annually due to these high temperature days in this period. The available data do 

not allow for a precise calculation of the loss in life expectancy, but, due to the choice of the 

specification, these were not gains of a few days or weeks and were all a minimum of two months. It 

seems reasonable to presume that the loss of life expectancy for infants (recall Table 7) was 

substantially longer than two months, perhaps even full lives.  

By comparison during the 1960-2004 period, there were an average of 232.2 million Americans 

and they faced an average of 1.47 days with temperatures above 90° F and 21.7 days in the 80-89° F 

range. The analogous calculation using the estimates in Table 3 Panel suggests that there were roughly 

6,000 premature fatalities annually due to high temperatures in this period. If the earlier period’s 

mortality impact of hot days prevailed over 1960-2004, the annual number of premature fatalities would 

have been about 20,000.  

What role did air conditioning play in this dramatic reduction in vulnerability to hot temperature 

days? Using the by-age category estimates of the protective effect of residential AC on hot days from 

Table 7, we find that the diffusion of residential AC during the 1960-2004 period reduced premature 

fatalities by about 17,000 annually. In light of the sampling errors, it is apparent that we cannot reject 

that, the widespread adoption of residential air conditioning explains the entire reduction in hot day 

mortality.  

How much was this reduction in mortality worth? We estimate this as the sum of the products 

of the average annual lives saved and the value of a statistical life (VSL) in different age categories. 

Among the roughly 17,000 lives that were saved annually between 1960 and 2004, 684 were in the 0-1 

age category, 803 in the 1-44 age group, 1225 in the 45-64 category, and 14326 in the 65+ age groups.43 

                                                 
43 The average annual number of saved lives due to residential AC in each age category was calculated in the 
following way.  For the > 90° F days, let ystk denote the annual mortality rate in state s, year t, and age group k, 

90
,kACδ represent the estimated protective effect of AC on >90°F mortality for age group k (from Table 7), ACst 

denote the average residential AC ownership rate in state s in year t, and 90
stTMEAN  represent the realized 

number of >90°F days in state s and year t. Then, the avoided deaths on >90°F temperature days due to AC in state 
s, year t, and age group k is given by: 

9090
,

90
stk

ˆAVOID )5( ststkACstk TMEANACy ×××= δ  

The left hand side is summed across all 50 states for each year in the 1960-2004 period and we then take the 
average across all years.  This exercise was then repeated for the 80-89° F days .   
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Using Ashenfelter and Greenstone’s (2004) estimate of the VSL of $2.4 million ($2012) and applying 

Murphy and Topel’s (2006) method for deriving age group-specific VSLs, we find that residential AC 

generated hot day mortality reductions that were worth roughly $7.4 billion annually on average over 

the period 1960-2004.  

 The relevant VSL is very likely a function of the remaining life expectancy and this has 

implications for the estimation of the willingness to pay for the mortality reductions that are not 

reflected in the previous paragraph’s calculations. For example, many individuals would value lives that 

are extended by a few days less than those that are extended by several years. To investigate this issue, 

we estimated versions of equation (1) that include the number of days in the various temperature 

categories for the current month and each of the preceding 11 months. Appendix Figures 2 A and B plot 

cumulative estimated impacts of days above >90° F and in the 80-89° F range separately for exposure 

windows of 1 through 12 months, respectively.44     

Both figures reveal evidence of harvesting, such that the estimated impact of a hot day declines 

with the amount of time that the day is allowed to influence the mortality rate. Although the effect of a 

>90° F day declines as its impact is calculated over longer time periods, it still increases the mortality 

rate by 1% even when its impact is allowed to emerge over 12 months. It is evident that these days led 

to the death of individuals with substantial remaining life expectancy. In contrast, we cannot reject that 

the effect of a 80-89° F day is zero when the estimate is summed over 6 months or longer, suggesting 

that these days hasten the death of individuals with relatively short (i.e., less than 6 months) remaining 

life expectancy. An alternative, and extreme, measure of willingness to pay for the health improvements 

from residential AC would continue to use the above approach for the >90° F days and assign zero value 

to the 80-89° F days. Such an approach suggests that the residential AC generated hot day mortality 

reductions were worth roughly $1 billion annually in the 1960-2004 period.  

Before proceeding, it is worth noting that these back-of-the-envelope VSL-based valuation 

approaches involve several assumptions. Further, we have ignored the statistical uncertainty in these 

estimates, based on the standard errors of the estimated coefficients (including of the VSL). Even with 

these limitations in mind, it seems reasonable to conclude that the mortality benefits account for a 

substantial share of the estimated gain in consumer surplus due to the adoption of residential air 

conditioning. 

                                                 
44 Since everyone dies eventually, the estimate coefficient will equal zero when the cumulative dynamic estimate is 
calculated over a long enough time frame. 
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A second way to interpret these results is through the lens of climate change and the degree to 

which currently available technologies can be deployed to limit the damages of climate change and 

amplify the benefits. State of the art climate change models with business as usual scenarios predict 

that the United States will have 38.0 additional days per year where the temperature falls into 80-89°F 

and 42.3 additional days per year where the temperature exceeds 90° F by the end of the century (see 

e.g., Deschenes and Greenstone 2011). If residential AC adoption were at the 1960 rate of adoption and 

population was at 2004 levels, then the 1960-2004 Table 6 estimates suggest that the increase in 80-

89°F and >90° F days would cause an additional 68,000 deaths annually at the end of the century. 

However at 2004 rates of residential AC adoption, the null hypothesis that additional 80-89°F and >90° F 

days would have no impact on mortality cannot be rejected. It is apparent that air conditioning has 

positioned the United States to be well adapted to the high temperature-related mortality impacts of 

climate change.  

 However, many other countries, especially poor ones in the tropics, are currently quite 

vulnerable to temperature related mortality. As just one measure of the stakes, the typical Indian 

experiences 33 days annually where the temperature exceeds 90 °F, but this is projected to increase by 

as many as 100 days by the end of the century (Burgess et al. 2014). Indeed using data from 1957-2000, 

Burgess et al. (2014) find that one additional day above 90 °F, compared to a day in the 60-69° F range, 

increases the annual mortality rate in India by about 1% which is roughly 20 times the corresponding 

response in the United States during essentially the same period. 

 Are this paper's results instructive for today's poor countries who will need to adapt to climate 

change? It is challenging to apply results from one country and period to another one in a different 

period when culture, technology, and many other factors differ. However, climate change is regarded as 

the biggest global health threat of the 21 century (Costello 2009) and it is critical to develop effective 

and efficient adaptation strategies, especially for today's poor countries.  

 In an earlier version of this paper, we showed that there are some striking similarities between 

the United States before 1960 and developing countries today (Barreca et. al 2012). For example, life 

expectancy at birth in the United States in 1940 was 63, compared to 65 and 68 in India and Indonesia 

now, respectively. Infant mortality rates per 1,000 are also comparable, with the US at 47 in 1940, and 

India and Indonesia at 50 and 27, respectively.  

 Further, the levels of the three ‘modifiers’ in the historical United States are comparable to 

today’s developing countries. The fraction of the residential population with electricity was 74% in 1940 

in the United States, compared to approximately 65-66% in both India and Indonesia today. The number 
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of physicians per 1000 population was higher in the 1940 United States than in India or Indonesia today; 

however, the medical technologies were likely worse in the 1940s United States compared to modern 

day developing countries. Perhaps most importantly given this paper's results, it is striking that no 

individual had access to residential AC in the United States in 1940, which is qualitatively similar to rural 

India and Indonesia today and is home to 72% of Indians and 54% of Indonesians.  

Given the large benefits of AC for the US population found in this paper, it may be surprising 

that AC adoption rates are so low in developing countries. One important difference is the electric grid—

many Indians lack electricity and those who have it face frequent blackouts and brownouts. But a 

broader explanation is that adoption of many technologies follows an S-curve, and developing countries 

like India and Indonesia may not yet be into the middle of that curve. Even in the U.S., AC adoption was 

not complete almost 50 years after AC became available. An important question for future research is 

how tradeoffs between health investments like air conditioning and other expenditures occur in 

developing countries where incomes and the value of health may be lower than in countries like the U.S. 

The similarity between the United States before 1960 and many developing countries today 

suggests that the greater use of air conditioning in these countries would significantly reduce mortality 

rates both today and in the future. Consequently, a primary finding of this paper is that the wider use of 

residential air conditioning should be near the top of the list of adaptation strategies to consider in 

response to climate change-induced warming of the planet.  

At the same time, it is probable that the greater use of residential air conditioning will speed up 

the rate of climate change because fossil fuels (e.g., coal and natural gas) that cause climate change are 

the most inexpensive sources of energy. Further the abundant supply of coal and dramatic increase in 

the supply of inexpensive natural gas in the last few years due to advances in unconventional drilling 

mean that in the absence of a significant global price on greenhouse gas emissions, they are likely to 

remain the cheapest source of energy for the foreseeable future. It therefore seems that residential AC 

is both the most promising existing technology to help poor countries mitigate the temperature related 

mortality impacts of climate change and a technology whose proliferation will speed up the rate of 

climate change. In many respects, this underscores the complicated nature of trying to mitigate the rate 

of climate change when any solution requires reductions in greenhouse gas emissions by countries with 

very different income levels. 
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VII. Conclusion  

 

Using the most comprehensive set of data files ever compiled on mortality and its determinants 

over the course of the 20th century in the United States or any other country, this paper makes two 

primary discoveries about mortality during the 20th century. First, we document a remarkable decline in 

the mortality effect of temperature extremes: The impact of days with a mean temperature exceeding 

80° F has declined by about 70% over the course of the 20th century in the United States, with almost 

the entire decline occurring after 1960. The result is that there are about 14,000 fewer fatalities 

annually than if the pre-1960 impacts of mortality still prevailed. 

Second, the empirical results point to air conditioning as a central determinant in the reduction of 

the mortality risk associated with high temperatures during the 20th century. Specifically, the diffusion of 

residential air-conditioning after 1960 is related to a statistically significant and economically meaningful 

reduction in the temperature-mortality relationship at high temperatures. Indeed, the adoption of 

residential air conditioning explains essentially the entire decline in the relationship between mortality 

and days with an average temperature exceeding 80 °F. In contrast, we find that electrification 

(represented by residential electrification) and access to health care (represented by doctors per capita) 

are not statistically related to changes in the temperature mortality relationship. 

The final part of the analysis aims to develop a measure of the welfare consequences of 

residential AC adoption. Specifically, we estimate that AC adoption leads to a $5 to $10 billion (2012$) 

annual increase in consumer surplus at the 1980 AC penetration rate, depending on the assumptions 

about the shape of the long run electricity supply curve. The present value of US consumer surplus from 

the introduction of residential AC in 1960 (the first year where we measure the AC penetration rate) 

ranges from $83 to $186 billion ($2012) with a 5% discount rate. It is noteworthy that the monetized 

value of the mortality improvements account for a substantial fraction of this gain in consumer surplus. 

Adaptation is going to be a critical part of the world’s climate strategy. This study has 

documented that there are tremendous opportunities available to mitigate climate change’s impacts on 

mortality through the use of an existing technology. There are surely meaningful opportunities to deploy 

existing technologies in many other domains to limit climate damages and this is an urgent area for 

research. Also of great importance is research into the development of new technologies that have 

value in a changed climate. Adaptation of both forms offers great promise but it should not be lost that 

it requires resources that could be used for other purposes. Ultimately, it is a cost of climate change too. 
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Figure 1: Distribution of Daily Average Temperatures, 1900-2004 

 
Notes: Figure 1 shows the historical average distribution of daily mean temperatures across 10 
temperature-day bins.  Each bar represents the average number of days per year in each 
temperature category over 1900-2004, weighted by the total population in a state-year.  See the 
text for more details.  
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Figure 2: Estimated Temperature-Mortality Relationship 
 
(a) 1900-2004 

 
 
(b) 1931-2004, including controls for log per capita income 

 

Notes: at end of Figure 2 (d) 
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Figure 2: Estimated Temperature-Mortality Relationship (Continued) 

(c) 1931-1959, including controls for log per capita income 

 

(d) 1960-2004, including controls for log per capita income 

 
 
Notes: Figure 2 plots the response function between log monthly mortality rate and average 
daily temperatures, obtained by fitting equation (1). The response function is normalized with 
the 60°-69° F category set equal to zero so each estimate corresponds to the estimated impact of 
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an additional day in bin j on the log monthly mortality rate relative to the mortality rate 
associated with a day where the temperature is between 60°-69° F. The dependent variable is 
the log monthly mortality rate. Temperature exposure window defined as 2 months and 9 
temperature-day bin variables are included in the model. Cumulative dynamic estimates are 
reported. All regressions are weighted by the relevant population. The estimates underlying 
Figures 2 (b), (c), and (d) include the baseline set of covariates.  The estimates underlying Figure 2 
(a) are based on same specification, but exclude month×log per capita income interactions. 
Standard errors clustered on state.  
 

  



Figure 3: Estimated Temperature-Mortality Relationship, by 10 Year Period 

(a) Temperature-days above 90° F 

 

(b) Temperature-days in 80-89° F 

 

  

-0
.0

1
0.

00
0.

01
0.

02
0.

03
0.

04
P

ar
am

et
er

 e
st

im
at

e

1900-29 1930-39 1940-49 1950-59 1960-69 1970-79 1980-89 1990-04
Year

Model with income controls 95% C.I.
Model without income controls

-0
.0

1
0.

00
0.

01
0.

02
0.

03
0.

04
P

ar
am

et
er

 e
st

im
at

e

1900-29 1930-39 1940-49 1950-59 1960-69 1970-79 1980-89 1990-04
Year

Model with income controls 95% C.I.
Model without income controls



Figure 3: Estimated Temperature-Mortality Relationship, by 10 Year Period (continued) 

(c) Temperature-days below 40° F 

 

Notes: Dependent variable is log monthly mortality rate. Temperature exposure window defined 
as 2 months and 3 critical temperature bins (<40°F, 80-89°F, and >90°F) are included in the 
model. Estimates for period 1900-29 are pooled to increase precision. Otherwise, all estimates 
are for 10 year periods listed on the horizontal scale. Estimates denoted by the red (blue) dashed 
line are based on models that exclude (include) month*log per capita income interactions. 
Otherwise, baseline set of covariates is included in both regressions. All regressions are weighted 
by the relevant population. Standard errors clustered on state. See the text for more details.   
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Figure 4: Impact of Residential Air Conditioning on the Mortality-Temperature Relationship, 1960-
2004 

 
Notes: Figure 4 plots the δj’s coefficients associated with the interactions between the share of 
the population with residential AC and the 9 temperature-day bin variables from the fitting of 
equation (2) to 1960-2004 data. The dependent variable is the log monthly mortality rate and the 
specification includes the baseline set of covariates.  Standard errors are clustered on state.  See 
the text for additional details.  
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Figure 5: Consumer Surplus Associated with Shift in Electricity Demand Functions 

(a) Perfectly inelastic long-term supply curve 

 

 

(b) Linear long-term supply curve 

  



Table 1: Summary Statistics on Vital Statistics and Exposure to Temperature Extremes 

Notes: All statistics are weighted by the relevant population.  Mortality rate per 100,000 population. US climate 
regions are defined as follows: Northeast = CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT; Central = IL, IN, KY, MO, 
OH, TN, WV; East North Central = IA, MI, MN, WI; West North Central = MT, NE, ND, SD, WY; Northwest = ID, OR, 
WA; West = CA, NV; Southwest = AZ, CO, NM, UT; South = AR, KS, LA, MS, OK, TX; Southeast = AL, FL, GA, NC, SC, 
VA. 

 

 

 

 

 

  

All-Age Mortality Rate: Annual Days With Mean Temperature:
<40° F <40° F 80-89° F 80-89° F > 90° F > 90° F

1900-59 1960-04 1900-59 1960-04 1900-59 1960-04 1900-59 1960-04

A. National Estimate: 1,110.5 885.8 85.6 73.7 23.3 26.0 0.54 1.14

A. By U.S. Climate Region
1. Northeast 1,242.8 950.8 110.8 106.6 8.0 9.0 0.1 0.1

2. Central 1113.6 946.6 97.4 100.7 18.7 13.9 0.4 0.1

3. East North Central 1038.9 874.4 141.5 139.5 8.0 5.6 0.1 0.0

4. West North Central 946.4 903.1 141.3 139.2 11.5 9.3 0.5 0.1

5. Northwest 997.4 821.2 76.7 67.3 1.6 2.1 0.0 0.0

6. West 1060.8 748.5 9.1 7.1 9.8 15.0 1.0 2.4

7. Southwest 1036.7 701.6 95.1 74.5 17.7 30.5 3.4 14.1

8. South 945.9 849.9 32.7 29.9 70.7 73.4 2.2 2.0

9. Southeast 1013.8 906.0 33.6 31.2 44.9 53.8 0.1 0.1



Table 2: Summary Statistics on the Modifiers of the Temperature-Mortality Relationship and 
Electricity Consumption in 1980 

 
Notes: All statistics are weighted by the relevant population.  US climate regions are defined as follows: Northeast 
= CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT; Central = IL, IN, KY, MO, OH, TN, WV; East North Central = IA, MI, 
MN, WI; West North Central = MT, NE, ND, SD, WY; Northwest = ID, OR, WA; West = CA, NV; Southwest = AZ, CO, 
NM, UT; South = AR, KS, LA, MS, OK, TX; Southeast = AL, FL, GA, NC, SC, VA. Residential electricity consumption in 
thousand kilowatt hour per year. Residential electricity price in $2012 per kWh.  

Number of Doctors Share of Households With Share of Households Electricity Consumption 
Per With Electricity With Residential and Prices, 1980

1000 Population Air Conditionning

1930 1960 2004 1930 1960 2004 1960 1980 2004 Consumption Consumption Prices ($2012)
(HH with AC) (HH w/o AC) (per kWh)

A. National Estimate: 1.24 1.33 2.90 0.69 1.00 1.00 0.12 0.55 0.87 10.6 8.1 0.14

A. By U.S. Climate Region
1. Northeast 1.36 1.74 3.90 0.90 1.00 1.00 0.10 0.45 0.76 7.6 6.3 0.17

2. Central 1.25 1.19 2.67 0.66 1.00 1.00 0.12 0.60 0.99 11.1 8.7 0.12

3. East North Central 1.23 1.06 2.69 0.73 1.00 1.00 0.06 0.42 0.80 7.9 7.7 0.13

4. West North Central 0.95 1.17 1.93 0.49 1.00 1.00 0.12 0.51 0.82 10.4 9.7 0.10

5. Northwest 1.41 1.15 2.70 0.81 1.00 1.00 0.05 0.18 0.36 20.0 18.7 0.06

6. West 1.78 1.62 2.59 0.96 1.00 1.00 0.05 0.41 0.77 7.6 5.6 0.14

7. Southwest 1.56 1.71 2.52 0.63 1.00 1.00 0.13 0.52 0.88 9.2 7.3 0.14

8. South 1.03 1.03 2.47 0.37 1.00 1.00 0.26 0.80 1.00 12.1 7.0 0.12

9. Southeast 0.93 0.94 2.81 0.36 1.00 1.00 0.13 0.71 1.00 13.8 9.6 0.13



Table 3: Estimates of the Impact of High and Low Temperatures on Log Monthly Mortality Rate 

 
Notes: Dependent variable is log monthly mortality rate. Temperature exposure window defined as 2 
months. Cumulative dynamic estimates are reported. Regressions are weighted by the relevant 
population. All regressions include baseline set of covariates. Standard errors clustered on state. 
Asterisks denote p-value < 0.05 (*), <0.01 (**), <0.001 (***). 
  

Sample:
1931-2004 1931-1959 1960-2004

(1) (2) (3)
A. Daily Average Temperature
Number of Days Above 90°F 0.0092** 0.0216*** 0.0034***

(0.0028) (0.0029) (0.0009)

Number of Days Between 80-89°F 0.0015*** 0.0037*** 0.0012***
(0.0003) (0.0004) (0.0003)

Number of Days Below 40°F 0.0041*** 0.0057*** 0.0033***
(0.0004) (0.0007) (0.0003)

B. Daily Minimum and Maximum Temperature

Daily Minimum Temperature
Number of Days Above 80°F 0.0025 0.0208** 0.0010

(0.0023) (0.0077) (0.0007)

Number of Days Between 70-79°F 0.0011 0.0034*** 0.0006
(0.0006) (0.0007) (0.0005)

Number of Days Below 30°F 0.0036*** 0.0051*** 0.0027***
(0.0006) (0.0009) (0.0004)

Daily Maximum Temperature
Number of Days Above 100°F 0.0038*** 0.0052*** 0.0015*

(0.0005) (0.0012) (0.0006)

Number of Days Between 90-99°F 0.0002 0.0002 0.0005
(0.0003) (0.0004) (0.0003)

Number of Days Below 50°F 0.0015** 0.0021** 0.0014***
(0.0005) (0.0007) (0.0004)

Observations 43,464 17,004 26,411



Table 4: Estimates of the Impact of High and Low Temperatures on Log Monthly Mortality Rate, By US 
Climate Regions 

 
Notes: The dependent variable is the log monthly mortality rate. Temperature exposure window defined as 2 
months. Cumulative dynamic estimates are reported. Regressions weighted by the relevant population. All 
regressions include the baseline set of covariates. US climate regions are defined in the notes of Table 1.  Standard 
errors clustered on state. Asterisks denote p-value < 0.05 (*), <0.01 (**), <0.001 (***). See the text for more 
details.  

Number of Days Number of Days Number of Days 
Above 90°F Between 80-89F° below 40°F

1931-1959 1960-2004 1931-1959 1960-2004 1931-1959 1960-2004
(1a) (1b) (2a) (2b) (3a) (3b)

By U.S. Climate Region
1. Northeast 0.0540 0.0129 0.0042*** 0.0025*** 0.0038*** 0.0025***

(0.0288) (0.0146) (0.0008) (0.0007) (0.0007) (0.0004)

2. Central 0.0337*** 0.0183** 0.0036*** 0.0019** 0.0043*** 0.0024***
(0.0036) (0.0067) (0.0006) (0.0006) (0.0009) (0.0004)

3. East North Central 0.0898*** -0.0316 0.0041*** 0.0051*** 0.0018* 0.0015***
(0.0229) (0.0160) (0.0007) (0.0007) (0.0009) (0.0002)

4. West North Central 0.0347*** 0.0524*** 0.0066*** -0.0015* 0.0021** 0.0010*
(0.0040) (0.0049) (0.0012) (0.0006) (0.0006) (0.0005)

5. Northwest 0.0316 0.0987* 0.0039 0.0138*** 0.0068*** 0.0042***
(0.2493) (0.0425) (0.0070) (0.0013) (0.0010) (0.0006)

6. West 0.0259 0.0056*** 0.0049* 0.0037*** 0.0225*** 0.0160***
(0.0212) (0.0005) (0.0024) (0.0006) (0.0034) (0.0041)

7. Southwest 0.0062** 0.0013* -0.0013 -0.0012 0.0039** 0.0024
(0.0021) (0.0005) (0.0034) (0.0009) (0.0013) (0.0012)

8. South 0.0166*** 0.0026* 0.0027*** 0.0008* 0.0083*** 0.0052***
(0.0017) (0.0011) (0.0007) (0.0004) (0.0019) (0.0014)

9. Southeast 0.0453 0.0402** 0.0027*** 0.0000 0.0114*** 0.0053***
(0.0386) (0.0138) (0.0006) (0.0002) (0.0014) (0.0009)



Table 5: Estimated Mortality Impact of Temperature-Days Above 90°F, Alternative Samples and Specifications  

  
Notes: Dependent variable is log monthly mortality rate. Unless noted otherwise, temperature exposure window is defined as 2 months. 
Cumulative dynamic estimates are reported. Regressions are weighted by the relevant population. All regressions include the baseline set 
of covariates. Standard errors clustered on state. Asterisks denote p-value < 0.05 (*), <0.01 (**), <0.001 (***). The entries in columns (3) 
and (6) are the p-values for the test of equality of the pre-1960 coefficients and the post-1960 coefficients. 
  

Number of Days Above 90°F Number of Days Between 80-89°F
1931-1959 1960-2004 Pre/Post Diff 1931-1959 1960-2004 Pre/Post Diff

P-Value P-Value
(1) (2) (3) (4) (5) (6)

1. Baseline (Table 3, Panel A) 0.0216*** 0.0034*** 0.004 0.0037*** 0.0012*** <0.001
(0.0029) (0.0009) (0.0004) (0.0002)

2. Exposure Window of 4 Months 0.0211*** 0.0024*** <0.001 0.0024** 0.0005 <0.001
(0.0029) (0.0006) (0.0008) (0.0003)

3. Log Real Per Capita Income Below Median 0.0220*** 0.0041*** <0.001 0.0036*** 0.0013*** 0.021

(0.0030) (0.0008) (0.0004) (0.0003)

4. Log Real Per Capita Income Above Median 0.0199*** 0.0025* 0.003 0.0040*** 0.0010*** 0.016
(0.0032) (0.0011) (0.0007) (0.0003)

5. Including Fraction Black, Fraction Living on Farm 0.0218*** 0.0036*** 0.005 0.0037*** 0.0011*** <0.001
Fraction Movers as Additional Controls (0.0029) (0.0009) (0.0004) (0.0003)

6. Including Temperature*Rainfall  Interactions 0.0196*** 0.0040*** 0.003 0.0041*** 0.0013*** <0.001
(0.0029) (0.0009) (0.0004) (0.0003)



Table 6: Interaction Effects Between Modifiers and Number of Temperature-Days Between 80-89°F and Above 90°F 

 
Notes: Each column corresponds to a separate regression. Dependent variable is log monthly mortality rate. Temperature exposure 
window defined as 2 months. Cumulative dynamic estimates are reported. Number of temperature-day variables for days < 40°F, 
80-90°F, and >90°F and their interactions with log doctors per capita, share with residential electricity, and share of residential AC 
are included. All regressions include the baseline set of covariates. Standard errors clustered on state. Asterisks denote p-value < 
0.05 (*), <0.01 (**), <0.001 (***). 
 

[A] Sample: 1931-1959 [B] Sample: 1960-2004

(1a) (2a) (3a) (1b) (2b) (3b)

Temperature Above 90°F
Number of Days Above 90 ° F × 0.0059 --- 0.0077 -0.0022 --- -0.0007
Log Doctors Per Capita (0.0058) (0.0066) (0.0025) (0.0030)

Number of Days Above 90 ° F × --- 0.0225 0.0237 --- --- ---
Share with Residential Electricity (0.0114) (0.0129)

Number of Days Above 90 ° F × --- --- --- --- -0.0223*** -0.0217**
Share with Residential AC (0.0056) (0.0067)

Temperature in 80-89°F
Number of Days in 80-89 ° F × 0.0005 --- 0.0007 -0.0026* --- 0.0005
Log Doctors Per Capita (0.0011) (0.0010) (0.0010) (0.0006)

Number of Days in 80-89 ° F × --- -0.0019 -0.0024 --- --- ---
Share with Residential Electricity (0.0016) (0.0019)

Number of Days in 80-89 ° F × --- --- --- --- -0.0066*** -0.0070***
Share with Residential AC (0.0011) (0.0012)



Table 7: Effect of Residential Air Conditioning on Heat-Related Mortality, By Age, Race, and Cause of Death, 1960-2004 

 
Notes: Each entry is from a separate regression. Dependent variable is log monthly mortality rate. Temperature exposure window defined as 2 
months. Cumulative dynamic estimates are reported. Number of temperature-day variables for days < 40°F, 80-90°F, and >90°F and their 
interactions share of residential AC are included. All regressions include the baseline set of covariates. Standard errors clustered on state. Asterisks 
denote p-value < 0.05 (*), <0.01 (**), <0.001 (***). 
  

(1) (2) (3) (4) (5)
A. By Age Group

Infants (Age 0-1) Age 1-44 Age 45-64 Age 65+
Number of Days Above 90 ° F × -0.0230 0.0000 -0.0141** -0.0273**
Share with Residential AC (0.0170) (0.0172) (0.0046) (0.0093)

Number of Days in 80-89 ° F × -0.0083* -0.0026 -0.0013 -0.0050***
Share with Residential AC (0.0034) (0.0024) (0.0019) (0.0010)

B. By Race
White Black

Number of Days Above 90 ° F × -0.0197*** -0.0474***
Share with Residential AC (0.0054) (0.0124)

Number of Days in 80-89 ° F × -0.0056*** -0.0036
Share with Residential AC (0.0012) (0.0020)

C. By Cause of Deaths
Cardiovascular Disease Respiratory Diasease Motor-Vehicle Infectious Disease Neoplasm

Accidents
Number of Days Above 90 ° F × -0.0221*** -0.0556* -0.0098 -0.0249 -0.0094***
Share with Residential AC (0.0047) (0.0263) (0.0162) (0.0253) (0.0024)

Number of Days in 80-89 ° F × -0.0058*** -0.0231*** -0.0031 0.0101 -0.0020
Share with Residential AC (0.0015) (0.0033) (0.0034) (0.0081) (0.0017)



Table 8: Robustness Analysis of the Effect of Residential Air Conditioning on the Temperature-Mortality Relationship, 1960-2004  

 
Notes: Each column is from a separate regression. Dependent variable is log monthly mortality rate. Temperature exposure window defined 
as 2 months. Cumulative dynamic estimates are reported. Number of temperature-day variables for days < 40°F, 80-90°F, and >90°F and 
their interactions share of residential AC are included. The specification of the regression follows the description at the bottom of the table. 
See the text for more details. Standard errors clustered on state. Asterisks denote p-value < 0.05 (*), <0.01 (**), <0.001 (***). 
  

(1) (2) (3) (4) (5)

Number of Days Above 90 ° F × -0.0223*** -0.0239*** -0.0317* -0.0461*** -0.0223*
Share with Residential AC (0.0056) (0.0063) (0.0147) (0.0060) (0.0106)

Number of Days Between 80-89 ° F × -0.0066*** -0.0051*** -0.0057* -0.0094*** -0.0052*
Share with Residential AC (0.0011) (0.0010) (0.0022) (0.0016) (0.0020)

Number of Days Below 40 ° F × 0.0004 -0.0007 0.0027 0.003 0.0001
Share with Residential AC (0.0009) (0.0008) (0.0023) (0.0015) (0.0015)

Baseline controls yes yes yes yes yes
State-month cubic time trends no yes no no no
Two year window around census years no no yes no no
Temperature*year trends no no no yes no
Exposure window = 4 months no no no no yes

Observations 26,411 26,411 4,704 26,411 26,264



Table 9: Estimates of the Electricity Demand Function, and Implied Estimates of National Consumer Surplus Associated with 
Residential Air Conditioning 

 
Notes: Each column is from a separate regression. Number of observations = 3,699,613. The dependent variable is the annual 
household-level electricity consumption in 1980, measured in thousand kWh. Electricity price is the state-level residential sector 
electricity price (from SEDS) in $2012 per kwh. Air conditioning is an indicator variable equal to 1 if the household owns a central or 
room air conditioning. Full set of controls include climate variables, indicators for household size, household income, homeownership, 
number of rooms, age of structure, and number of units in the structure. Electricity price is instrumented using U.S. census division 
indicator variables (columns 4 and 5). The selection correction terms in column 5 follow from Dubin and McFadden (1984). Derivation 
of national consumer surplus explained in the text. Standard errors clustered on state. Asterisks denote p-value < 0.05 (*), <0.01 (**), 
<0.001 (***).  

(1) (2) (3) (4) (5)

Electricity price -92.29*** -88.97*** -62.77*** -54.16*** -53.56***
(15.89) (21.27) (11.43) (11.48) (11.35)

Air conditioning 2.45*** 3.44 1.26*** 1.24*** 1.11***
(0.39) (2.60) (0.15) (0.16) (0.14)

Electricity price × air conditioning --- -7.31 --- --- ---
(17.54)

Air conditionning × above median annual 90° F days --- --- --- --- ---

Full  set of controls no no yes yes yes
Electricity price instrumented no no no yes yes
Selection ccrrection terms no no no no yes

Implied National Consumer Surplus from AC (Billion $2012 Per Year)
Perfectly elastic supply case 10.89*** 9.34** 8.63*** 9.82*** 8.37***

(2.78) (2.92) (1.78) (2.37) (2.41)

Inelastic supply case (l inear supply curve) 4.88** 3.17 4.57*** 5.57*** 4.88**
(1.57) (3.45) (1.11) (1.52) (1.61)



APPENDIX --- FOR ONLINE PUBLICATION 
  



Details from Application of Discrete-Continuous Model (Section V.) 

This appendix describes an approach to using the residential electricity market to estimate the consumer surplus 

from AC. Including selection terms in the model described in the main approach gives 

 

𝑞𝑖𝑠 = 𝛽0 + 𝛽1𝐴𝐶𝑖𝑠 + 𝛽2𝑝𝑖𝑠 + 𝑋𝑖𝑠𝛾 + 𝛽3 �𝐴𝐶𝑖𝑠 �
𝑃�𝑖𝑠0𝑙𝑛𝑃�𝑖𝑠0
1− 𝑃�𝑖𝑠0

+ 𝑙𝑛𝑃�𝑖𝑠1� + (1 − 𝐴𝐶𝑖𝑠)�
𝑃�𝑖𝑠1𝑙𝑛𝑃�𝑖𝑠1
1 − 𝑃�𝑖𝑠1

+ 𝑙𝑛𝑃�𝑖𝑠0�� 

 

Solving for prices gives: 

 

𝑝𝑖𝑠 =
𝑞𝑖𝑠 − 𝛽0 − 𝛽1𝐴𝐶𝑖𝑠 − 𝑋𝑖𝑠𝛾 − 𝛽3 �𝐴𝐶𝑖𝑠 �

𝑃�𝑖𝑠0𝑙𝑛𝑃�𝑖𝑠0
1 − 𝑃�𝑖𝑠0

+ 𝑙𝑛𝑃�𝑖𝑠1� + (1 − 𝐴𝐶𝑖𝑠) �𝑃
�𝑖𝑠1𝑙𝑛𝑃�𝑖𝑠1
1 − 𝑃�𝑖𝑠1

+ 𝑙𝑛𝑃�𝑖𝑠0��

𝛽2
 

 

Assuming that the quantity supplied at 𝑃 = 0 is zero, the (inverse) electricity supply function is 𝑃𝑆(𝑞) = 𝑃∗

𝑄∗
𝑞, 

where 𝑃∗ and 𝑄∗ are observed equilibrium price and quantity. So if residential AC did not exist, the new 

equilibrium quantity 𝑄∗′  would be given by: 

 

𝑄∗′ =
−𝛽0 − 𝑋𝑖𝑠𝛾 − 𝛽3 �𝐴𝐶���� �

𝑃�𝑖𝑠0𝑙𝑛𝑃�𝑖𝑠0
1 − 𝑃�𝑖𝑠0

+ 𝑙𝑛𝑃�𝑖𝑠1� + (1 − 𝐴𝐶����) �𝑃
�𝑖𝑠1𝑙𝑛𝑃�𝑖𝑠1
1 − 𝑃�𝑖𝑠1

+ 𝑙𝑛𝑃�𝑖𝑠0��

𝑃∗
𝑄∗ 𝛽2 − 1

 

 

where 𝐴𝐶���� is the population share with AC in the data. If AC did not exist, the equilibrium price would be:  

 

𝑃∗′ =
�−𝛽0 − 𝑋𝑖𝑠𝛾 − 𝛽3 �𝐴𝐶���� �

𝑃�𝑖𝑠0𝑙𝑛𝑃�𝑖𝑠0
1 − 𝑃�𝑖𝑠0

+ 𝑙𝑛𝑃�𝑖𝑠1� + (1 − 𝐴𝐶����) �𝑃
�𝑖𝑠1𝑙𝑛𝑃�𝑖𝑠1
1 − 𝑃�𝑖𝑠1

+ 𝑙𝑛𝑃�𝑖𝑠0���
𝑃∗
𝑄∗

�𝑃
∗

𝑄∗ 𝛽2 − 1�
 

 

Note that in all these calculations, the equilibrium price 𝑃∗ is the mean observed price, and the equilibrium 

quantity 𝑄∗ is given by: 

 

𝑄∗ = 𝛽0 + 𝐴𝐶 �����𝛽1 + 𝛽2�̅� + 𝑋�𝛾 + 𝐴𝐶����𝛽3 �
𝑃�𝚤𝑠0𝑙𝑛𝑃�𝚤𝑠0
1 − 𝑃�𝚤𝑠0

+ 𝑙𝑛𝑃�𝚤𝑠1�
��������������������������

+ (1 − 𝐴𝐶 �����)𝛽3 �
𝑃�𝚤𝑠1𝑙𝑛𝑃�𝚤𝑠1
1 − 𝑃�𝚤𝑠1

+ 𝑙𝑛𝑃�𝚤𝑠0�
��������������������������

 



 

To calculate the consumer surplus from air conditioning, we compare the consumer surplus in the electricity 

market at observed prices and demand (𝐶𝑆) against the consumer surplus that would prevail if no AC was 

available (𝐶𝑆′). Then we get the following consumer surplus under cases where air conditioning is and is not 

available: 

𝐶𝑆 =
1
2

⎝

⎜
⎛
𝐴𝐶����
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𝐶𝑆′ =
1
2
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Appendix Figure 1: Comparison of interpolated and nationally representative estimates of AC 
ownership rate 
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Appendix Figure 2: Cumulative Estimated Impact of 80-89°F and >90°F Temperatures on Log Monthly 
Mortality Rate, By Length of Exposure Window (Lags) 

(a) Impact of >90°F Temperatures on Log Monthly Mortality Rate, 1931-1959 

 
 
(b) Impact of 80-89°F Temperatures on Log Monthly Mortality Rate, 1931-1959 

 
Notes: Appendix Figure 2 plots the estimated cumulative dynamic estimates of the effect of 
>90°F and 80-89°F temperature on log monthly mortality as a function of the exposure window.  
For example, the model with a 1 month exposure window only controls for current month 
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temperature, while the model with a 12 month exposure controls separately for the last 12 
months of temperature.  In all cases, the estimate reported in the figure corresponds to the sum 
of the coefficients attached to each month’s temperature over the exposure window. Three 
critical temperature bins (<40°F, 80-89°F, and >90°F) are included in the model and the 
specification includes the baseline set of covariates.  Standard errors are clustered on state. 
  



Appendix Table 1: Year of Entry of States in Vital Statistics Registration System 
 

 State U.S. Climate Region Entered sample 
1 Connecticut Northeast 1900 
2 District of Columbia Northeast 1900 
3 Indiana Central 1900 
4 Maine Northeast 1900 
5 Massachusetts Northeast 1900 
6 Michigan East North Central 1900 
7 New Hampshire Northeast 1900 
8 New Jersey Northeast 1900 
9 New York Northeast 1900 
10 Rhode Island Northeast 1900 
11 Vermont Northeast 1900 
12 California West 1906 
13 Colorado Southwest 1906 
14 Maryland Northeast 1906 
15 Pennsylvania Northeast 1906 
16 South Dakota West North Central 1906 
17 Washington Northwest 1908 
18 Wisconsin East North Central 1908 
19 Ohio Central 1909 
20 Minnesota East North Central 1910 
21 Montana West North Central 1910 
22 North Carolina Southeast 1910 
23 Utah Southwest 1910 
24 Kentucky Central 1911 
25 Missouri Central 1911 
26 Virginia Southeast 1913 
27 Kansas South 1914 
28 South Carolina Southeast 1916 
29 Tennessee Central 1917 
30 Illinois Central 1918 
31 Louisiana South 1918 
32 Oregon Northwest 1918 
33 Delaware Northeast 1919 
34 Florida Southeast 1919 
35 Mississippi South 1919 
36 Nebraska West North Central 1920 
37 Georgia Southeast 1922 
38 Idaho Northwest 1922 
39 Wyoming West North Central 1922 
40 Iowa East North Central 1923 
41 North Dakota West North Central 1924 
42 Alabama Southeast 1925 
43 West Virginia Central 1925 
44 Arizona Southwest 1926 
45 Arkansas South 1927 
46 Oklahoma South 1928 
47 Nevada West 1929 
48 New Mexico Southwest 1929 
49 Texas Southwest 1933 
 

  



Appendix Table 2: Interaction Effects Between Modifiers and Number of Temperature-Days Below 40°F 

 
Notes: Each column corresponds to a separate regression. Dependent variable is log monthly mortality rate. Temperature exposure 
window defined as 2 months. Cumulative dynamic estimates are reported. Number of temperature-day variables for days < 40°F, 
80-90°F, and >90°F and their interactions with log doctors per capita, share with residential electricity, and share of residential AC 
are included. All regressions include the baseline set of covariates. Standard errors clustered on state. Asterisks denote p-value < 
0.05 (*), <0.01 (**), <0.001 (***). 
 

[A] Sample: 1931-1959 [B] Sample: 1960-2004

(1a) (2a) (3a) (1b) (2b) (3b)

Number of Days Above 40 ° F × -0.0018 --- -0.0010 -0.0013** --- -0.0014*
Log Doctors Per Capita (0.0009) (0.0007) (0.0005) (0.0005)

Number of Days Above 40 ° F × --- -0.0066* -0.0056* --- --- ---
Share with Residential Electricity (0.0026) (0.0024)

Number of Days Above 40 ° F × --- --- --- --- 0.0004 0.0008
Share with Residential AC (0.0009) (0.0010)


