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1.  INTRODUCTION

The Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (AR5) (Stocker et al.

2013, Barros et al. 2014, Edenhofer et al. 2014) is

based on large datasets of climate projections devel-

oped by the Coupled Model Intercomparison Project

Phase 5 (CMIP5) (Taylor et al. 2012) and coordinated

by the World Climate Research Programme. Twenty-

five modelling groups worldwide performed a large

set of coordinated climate simulations in which over

50 variants of global climate models (GCMs) were

run for a common set of experiments, sampling un-

certainties in emission scenarios, model structures

and initial conditions. Compared with CMIP3, CMIP5

used a much larger ensemble of more complex

 climate models with higher spatial resolution, better

description of climate forcing, more detailed repre-

sentation of feedbacks associated with carbon cycles

and with clouds, more types of emission scenario and

more climatic variables and diagnostics stored for

later use. The CMIP5 simulations are driven by a new

set of emission scenarios consistent with new Repre-

sentative Concentration Pathways (RCPs) (Moss et al.

2010). These are different from the emission scenarios

described in the IPCC Special Report on Emissions

Scenarios (SRES), which included no policy interven-

tion and were used in the earlier IPCC Fourth Assess-

ment Report (AR4) (Nakicenovic & Swart 2000, Parry

et al. 2007, Solomon et al. 2007). The RCPs include
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mitigation measures to achieve specific emission tar-

gets. The 4 RCPs formulated are based on a range of

projections of future population growth, technological

development and societal re sponses: RCP8.5 (rising),

RCP6.0 (stabilisation without overshoot), RCP4.5 (sta-

bilisation without overshoot) and RCP2.6 (peak and

decline) (Moss et al. 2010). The labels, e.g. RCP8.5,

provide estimations of the radiative forcing, e.g.

8.5 W m−2, by 2100 relative to preindustrial con di -

tions. All RCPs should be considered as plausible,

and do not have probabilities attached to them. It was

required from all GCMs to provide climate pro -

jections for long-term experiments up to 2100 and

 beyond for RCP4.5 and RCP8.5.

Although a direct comparison between SRES and

RCP emission scenarios could be problematic, Knutti

& Sedlacek (2013) proposed a consistent probabilistic

framework for such comparison, which takes into

account uncertainty in climate sensitivity. The au -

thors used the reduced-complexity carbon-cycle and

climate model MAGICC (Meinshausen et al. 2011) to

compare climate scenarios based on the SRES and

RCPs. They found that the median of global temper-

ature increase by 2100 predicted for the SRES B1

scenario is similar to the prediction for RCP4.5,

although temperatures in RCP4.5 rises faster than in

SRES B1 until mid-century, and more slowly after-

wards. The predicted global temperature increase

for the SRES A1FI scenario of 4.7°C by 2100 is close

to the predicted RCP8.5 increase of 4.6°C, while tem-

peratures in RCP8.5 rise more slowly than in SRES

A1FI during the period between 2035 and 2080 and

faster during other periods (Knutti & Sedlacek 2013).

Impact studies and risk assessments provide the

scientific basis to explore adaptation options to a

changing climate (Barros et al. 2014). Models used in

impact assessments of climate change are typically

process-based, e.g. models of crop growth, flood risk

or invasive species, and require climate information

on a local scale with high temporal and spatial reso-

lutions (Wilby et al. 2009). Using the output from

GCMs directly with process-based impact models is

challenging, because of coarse spatial resolution of

GCMs and the existence of biases in model outputs

(Wang et al. 2014). There are several approaches to

downscaling GCM climate projections to local-scale

climate scenarios, ranging from dynamical downscal-

ing with nested regional climate models to the appli-

cation of various statistical techniques, each of which

has its own advantages and disadvantages (Wilby et

al. 2009). Downscaling with a stochastic weather

generator (WG) (Wilks 1992, Semenov & Barrow

1997) has been used extensively in impact assess-

ments, because WGs deliver climate scenarios that

match the statistical properties of observed weather.

WGs are computationally inexpensive, provide daily

or even hourly meteorological variables preserving

statistical interrelationships between variables, and

allow generation of arbitrarily long weather series

(Wilks 2012). This is particularly important for evalu-

ating the statistics of extreme events (Kysely et al.

2013, Semenov et al. 2014).

The objective of this paper is to describe integra-

tion of climate projections from the CMIP5 ensemble

with the LARS-WG weather generator (Semenov &

Stratonovitch 2010, Calanca & Semenov 2013). For

computer-intensive impact assessment studies where

exploration of potential impacts for each GCM re -

quires substantial resources and computing time, we

propose to use climate sensitivity indices (CSIs) in

order to limit the number of GCMs used to construct

local-scale scenarios. By selecting a small number of

GCMs from the ensemble with high and low climate

sensitivity over a region of interest, we would be able

to preserve the diversity in climate projections repre-

sentative of the whole CMIP5 ensemble. This should

allow us to quantify uncertainty in predictions from

impact models underpinning better-informed deci-

sion making. In our case study, we describe the use of

the Sirius wheat simulation model (Jamieson et al.

1998, Jamieson & Semenov 2000, Lawless et al. 2005,

Semenov et al. 2014) to design in silico wheat ideo-

types that are optimised for future climates in Eu -

rope, sampling uncertainty in GCMs, emission sce-

narios, time periods and European locations with

contrasting climates. Despite large uncertainty in

future climate projections, we were able to identify

target traits for wheat improvement which may assist

breeding for high-yielding wheat cultivars with

increased yield stability.

2.  INTEGRATION OF CMIP5 CLIMATE

 PROJECTIONS WITH LARS-WG

LARS-WG is a stochastic weather generator that

has been widely used in numerous studies on impact

assessment of climate change for nearly 2 decades

(Racs ko et al. 1991, Semenov & Barrow 1997). The

latest examples include studies by Agarwal et al.

(2014), Hassan et al. (2014), Luo et al. (2014), Persson

& Hoglind (2014), Semenov et al. (2014), Storkey et

al. (2014) and Vanuytrecht et al. (2014). Recently, its

application has been facilitated by integrating a

dataset of site parameters for the baseline 1980−2010

European climates (Semenov et al. 2010, 2013) and
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integration scenarios based on the CMIP3 ensemble

of GCMs (Semenov & Stratonovitch 2010) and the

EU-ENSEMBLE ensemble of regional climate mod-

els over Europe (Calanca & Semenov 2013). This has

created a unique repository of climate scenarios,

ELPIS (Semenov et al. 2010), that can be accessed

directly within the LARS-WG interface. A logical

step is the integration of the latest CMIP5 multi-

model ensemble (Taylor et al. 2012), which was used

in the latest IPCC AR5 (Stocker et al. 2013, Eden-

hofer et al. 2014).

2.1.  Local-scale scenarios based on WG

We describe briefly the use of WG in construction

of future climate scenarios. Let us consider to be

an observed daily time series of a suite of climatic

variables at a site s for a period t of several years —

e.g. 1980−2010 is currently used to represent the

baseline climate in impact assessment studies. Using

ob served data, WG estimates a set of parameters of

distributions of climate variables at a site s for a

period t:

(1)

Some WGs use parametric distributions to approxi-

mate distributions of climatic variables with relative ly

few parameters to estimate (Richardson 1981, Racs ko

et al. 1991, Wilks 1992). Other WGs use semi-empiri-

cal distributions, where observed distributions are

approximated by empirical cumulative proba bility

functions (Qian et al. 2004, Semenov 2008, Semenov

et al. 2010). Typically, 20−30 yr of observed daily

weather are required to estimate site parameters

accurately.

Site parameters are used by WG to generate

synthetic daily time-series for a site s which could

be considered as samples of typical weather for a

period t:

(2)

The number of generated years of synthetic daily

weather could be arbitrarily long and does not

need to be equal to the number of years of observed

weather that was used to estimate distribution

parameters. For example, to analyse the impact of

extreme weather events on crop yields, 300 yr of

daily weather were generated and used in conjunc-

tion with a crop simulation model (Semenov &

Shewry 2011). Individual years of generated weather

should be considered as samples of weather typical

at a site s for a period t. Similarity between observed

and generated weather could be tested by var-

ious statistical tests, such as the Kolmogorov−

Smirnov test, a nonparametric test for the equality of

1-dimensional probability distributions, or t-test, a

statistical test for the equality of the means of 2 sam-

ples (Semenov et al. 1998). Extreme statistics, such as

return periods or return values, are also used to com-

pare observed and generated weather, particularly

in applications where accurate reproduction of ex -

tremes is important (Kysely & Dubrovsky 2005, Qian

et al. 2008).

GCMs, M, are used to predict evolution of climate

in response to changes in climate forcing, e.g. CO2,

aerosols, solar activity, volcanoes and so on. These

physical models are run over a grid, , with

individual grid-cell size varying from 75 to 300 km

(see Table 1). For a grid cell g and a period t (baseline

or future), the climate model simulates time-series of

climatic variables . Statistical prop -

erties of the climate model output could be very

different from properties of observed weather at a

site s located inside a grid cell g. Despite extensive

efforts to improve GCMs’ performance in the simula-

tion of various aspects of the climate system in the

CMIP5 project, there are still substantial temperature

biases and deficiencies in the GCMs’ outputs (Knutti

& Sedlacek 2013). One recent study shows that even

the CMIP5 ensemble mean (averaged over 22 GCMs,

which typically performs better than any individual

GCM from the ensemble) of the annual mean sea

surface temperature has biases up to −3°C in the

Northern Hemisphere and up to +3°C in the South-

ern Hemisphere (Wang et al. 2014). These biases and

errors in some regions can be linked with biases and

errors at faraway locations, which implies that im -

proving modelling of regional processes may not re -

sult in overall better model performance, because the

effects of remote biases may outweigh them. Climate

projections from GCMs need to be downscaled to

local-scale climate scenarios. One of the commonly

used downscaling techniques is based on WGs and

climatic change factors derived from GCMs (Wilks

1992, Barrow & Semenov 1995, Wilby et al. 1998,

Semenov 2007).

Despite biases and errors in GCM outputs, we can

assume that, by analysing climate projections for the

baseline and future periods, we could derive changes

in climate which would be free from bias. This is

valid only under the assumption that GCM biases are

invariant in time (Christensen et al. 2008). Change

factors are defined as differences in climate statistics

between future tf and baseline tbs periods for each

grid cell g:
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(3)

For example, for temperatures, absolute changes in

monthly mean temperatures are used as a change

factor. For precipitation, relative changes in monthly

mean total precipitation are more common. These

change factors describe changes in mean climate. To

describe changes in climatic variability, other climate

statistics can be used, e.g. relative changes in

monthly mean of the length of wet or dry spells,

which affect changes in daily precipitation and daily

temperature in a nonlinear way (Semenov 2007). On

occasion, change factors could have unrealistically

large differences either between neighbouring grid

cells or between consecutive months for a single grid

cell. Spatial and temporal kernel average smoothers

(KAS) are, therefore, applied to obtain a more robust

climate signal (Calanca & Semenov 2013):

(4)

Change-factors are calculated for a grid cell

g. Change factors for a specific site s, , are esti-

mated by using the change factors for neighbouring

grids and applying inverse-distance weighting (IDW)

interpolation (Calanca & Semenov 2013):

(5)

Using site parameters for the baseline derived

from observed daily weather and change factors

describing changes in climate as predicted by

GCM, we can compute site parameters for the

future period tf:

(6)

The adjustment of site parameters depends on spe-

cific parameterisations and assumptions of individual

WGs (Wilby et al. 1998, Wilks 2012, Calanca &

Semenov 2013). This set of parameters is used by

WG to generate local-scale daily climate scenarios

for the future period tf:

(7)

All these steps have been incorporated in a new

version 6.0 of the LARS-WG stochastic weather gen-

erator which integrates climate projections from the

CMIP5 ensemble.

2.2.  Climate sensitivity of the CMIP5 ensemble

A subset of 18 GCMs from the CMIP5 multi-model

ensemble was incorporated into the LARS-WG

weather generator (Table 1). Two RCPs were inte-

grated, i.e. RCP8.5, which represents a rising ra -

diative forcing pathway leading to 8.5 W m−2 in 2100

(Riahi et al. 2007), and RCP4.5, which represents a

stabilisation without overshoot pathway leading to

4.5 W m−2 radiative forcing at stabilisation after 2100

(Smith & Wigley 2006, Wise et al. 2009). Correspon-

ding CO2 concentrations (ppm) for RCP4.5 and

RCP8.5 are presented in Table 2.

The CMIP5 multi-model ensemble has more than

twice as many models and many more experiments

compared with the CMIP3 ensemble. It might not al-

ways be practical to use all climate models from the

CMIP5 ensemble in a particular impact assessment

study, as substantial resources and computer time are

required for evaluation of each climate scenario. To

assist with the selection of GCMs for a specific impact

study in a region of interest, we computed a CSI for

each GCM incorporated into LARS-WG for 21 re -

gions as defined in Giorgi & Francisco (2000) (our

Table 3). CSI is de fined as the spatial average (calcu-

lated over a region land-mask only) of differences be-

tween mean values for the future, 2080−2100, for

RCP8.5 and mean values for the CMIP5 baseline,

1995−2005. CSI was computed for mean air tempera-

ture calculated as differences in temperatures (°C),

and for precipitation calculated as a relative change

in precipitation total (%). Fig. 1 presents CSIs for the

Mediterranean Basin (MED) and Northern Europe

(NEU) for 18 GCMs. All GCMs predicted an increase

in annual precipitation in NEU (by up to 25% for

MIROC-ESM), and a decrease in annual precipitation

in MED (by up to −36% for IPSL-CM5A-MR).

Changes in mean annual temperature were similar

for both re gions, NEU and MED, and varied from

+3.1°C for INMCM4 to +6.6°C for MIROC-ESM. An-

nual CSIs for 21 regions and 18 GCMs are presented

as heat maps in Table 4 for temperature and in

Table 5 for precipitation.

3.  ADAPTING WHEAT TO AN UNCERTAIN

FUTURE

As an illustration, we demonstrate how new

CMIP5-based scenarios were used in designing

wheat ideotypes optimised for future climate condi-

tions in Europe (Donald 1968). Ideotype design is a

computationally intensive problem, which requires

several hours of computation on a powerful multi-

processor workstation for a single combination of

Site × GCM × RCP × Period.

Increasing yield potential for major cereals is

needed to meet the projected in creased demand for
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world food supply of about 70% by

2050 (FAO 2009). Europe is the largest

producer of wheat, the third most

widely grown cereal crop after maize

and rice. Considering the limitations

on expanding crop- growing areas in

Europe, a significant in crease in crop

productivity will be needed (Parry et

al. 2011). Wheat growth and develop-

ment is highly sensitive to climatic and

environmental variations (Porter &

Seme nov 2005). Climate change is

characterised by shifts in weather pat-

terns, increases in climatic variability

and extreme weather events (Fischer

et al. 2013), and, therefore, represents

a considerable challenge to achieving

the 70% increase in target for world

food production. New wheat cultivars

with an optimal combination of traits

for future climatic conditions will be

required. However, the inherent un -

certainty of climate predictions pres-

ents a challenge to breeders who have

limited time and re sources and must

select the most appropriate traits for

improvement (Semenov & Halford

2009, Foulkes et al. 2011, Semenov &

Shewry 2011). Modelling provides a

rational framework to design and test

in silico new wheat ideotypes opti-

mised for target environments and fu-

ture climatic conditions (Hammer et al.

2006, Tardieu & Tuberosa 2010, Se-

menov et al. 2014).

Here, we used Sirius, a crop simula-

tion model, to design wheat ideotypes

optimised for future climatic projec-

tions for 2 climate models with very

different climate sensitivity, Had GEM

2- ES (number 9 in Fig. 1) and GISS-

E2-R-CC (number 8 in Fig. 1), and 2

RCPs, RCP4.5 and RCP8.5. This al-

lowed us to optimise and compare

wheat ideotypes for 4 contrasting fu-

ture scenarios which represent the

range of uncertainty within the CMIP5

ensemble. HadGEM 2-ES projections

for 2080−2100 are nearly the hottest

and driest (during summer) projections

for both northern (NEU) and southern

(MED) Europe (Fig. 1). GISS-E2-R-CC

projections are nearly the coolest pro-
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jections with changes in precipitation close to the

CMIP5 ensemble average (Fig. 1). We selected 2 con-

trasting sites in Europe, Rothamsted, UK, and Seville,

Spain (Table 6). A wheat ideotype is described by 9

cultivar parameters of Sirius considered most promis-

ing for improvement of yield potential under climate

change (see Table 7). We used an evolutionary algo-

rithm with self-adaptation to optimise these para -

meters for future climatic conditions (Stratonovitch &

Semenov 2010).

3.1.  Cultivar parameters for optimisation

The detailed description of cultivar parameters se -

lected for optimisation is given in Semenov (Seme -

nov et al. 2014). The ranges of parameter values are

presented in Table 7. Here, we briefly de scribe these

parameters.

Photosynthesis. We assume that

a 10% increase in light conversion

efficiency could be achieved in

the future (Tambussi et al. 2007).

In addition, in Sirius, radiation use

efficiency (RUE) is proportional to

[CO2] with an increase of 30% for

a doubling of [CO2] compared

with the baseline of 338 ppm,

which is in agreement with the

recent meta-analysis of field-scale

experiments on the effects of

[CO2] on crops (Vanuyt recht et al.

2012).

Phenology. Three cultivar para -

meters are directly related to phe-

nological de velopment of wheat:

phyllo chron Ph, day length re-

sponse Pp and duration of grain fill-

ing Gf (Table 7). Modifying the du-

ration and timing of crop growth

cycle in relation to seasonal varia-

tions of solar radiation and water

availability may have significant

ef fects on yield (Tambussi et al.

2007). An optimal flowering time

has been the single most important

factor in maximising yield in dry

environments (Richards 1991). In-

creasing the duration of the grain-

filling period Gf has been sug-

gested as a possible trait for

increasing yield potential in wheat

(Evans & Fischer 1999).

Canopy. Two cultivar parameters to be optimised

are re lated to cano py, i.e. maximum area of flag leaf

layer A, and duration of leaf senescence S. By vary-

ing the maximum area of the flag leaf layer, we

change the rate of canopy expansion and the maxi-

mum achievable leaf area index (LAI). This in turn

will change the pattern of light interception and tran-

spiration and, therefore, will affect crop growth and

final grain yield. One of the strategies to increase

grain yield is to maintain green leaf area longer after

anthesis, the so-called ‘stay-green’ trait (Triboi & Tri-

boi-Blondel 2002).

Tolerance to drought. Both daily biomass produc-

tion (photosynthesis) and leaf senescence depend on

the drought stress factor SF calculated daily as the

ratio of actual to potential evapotranspiration. Pro-

duction of new daily biomass decreases proportion-

ally to the drought biomass reduction factor Wsa. In

Sirius, the rate of leaf senescence can be accelerated
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Name                                      Acronym               Latitude                Longitude

Australia                                     AUS                  45°−11° S             110°−155° E

Amazon Basin                            AMZ               20° S−12° N              82°−34° W

Southern South America           SSA                   56°−20° S               76°−40° W

Central America                        CAM                  10°−30° N            116°−83° W

Western North America           WNA                  30°−60° N            130°−103° W

Central North America             CNA                  30°−50° N            103°−85° W

Eastern North America             ENA                  25°−50° N              85°−60° W

Alaska                                         ALA                  60°−72° N            170°−103° W

Greenland                                  GRL                   50°−85° N            103°−10° W

Mediterranean Basin                MED                  30°−48° N          10° W−40° E

Northern Europe                       NEU                  48°−75° N          10° W−40° E

Western Africa                           WAF               12° S−18° N          20° W−22° E

Eastern Africa                            EAF                12° S−18° N              22°−52° E

Southern Africa                          SAF                   35°−12° S           10° W−52° E

Sahara                                        SAH                  18°−30° N          20° W−65° E

Southeast Asia                           SEA                11° S−20° N              95°−155° E

East Asia                                     EAS                   20°−50° N            100°−145° E

South Asia                                  SAS                     5°−30° N              65°−100° E

Central Asia                               CAS                  30°−50° N              40°−75° E

Tibet                                            TIB                   30°−50° N              75°−100° E

North Asia                                  NAS                  50°−70° N              40°−180° E

Table 3. List of regions as defined in Giorgi & Francisco (2000) for which 

climate sensitivity indexes were calculated

              2000   2010   2020   2030   2040   2050   2060   2070   2080   2090

RCP4.5   369     389     411     435     460     487     509     524     531     533

RCP8.5   369     389     415     449     489     541     604     677     758     844

Table 2. CO2 concentrations (ppm) for RCP4.5 and RCP8.5 Representative Con-

centration Pathways (www.pik-potsdam. de/ ~mmalte/rcps/index. htm# Download)
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by nitrogen shortage. water, or temperature stresses

in order to sustain grain filling. Earlier leaf sene s -

cence will reduce grain yield. Increasing tolerance to

drought stress (reducing Wss) will make leaves stay

green longer under water stress and potentially

increase grain yield.

Root water uptake. In Sirius, plants can extract up

to 10% of available soil water from the top layer in

any single day and only root water uptake (Ru) (%)

from the bottom layer at the maximum root depth. A

faster water uptake reduces stress experienced by

the plant and stimulates plant growth.  However, in

dry environments with a likely drought at the end of

the growing season, a slower water uptake may

achieve, on average, higher yields (Manschadi et al.

2006).

The latest version of Sirius incorporates responses

to high temperature during flowering and seed sets

(Stratonovitch & Semenov in press). From the begin-

ning of flowering, wheat cultivars could be sensitive

to high temperature at 2 key development stages

(Grant et al. 2011). First, during meiosis, tempera-

tures exceeding 30°C are reported to cause abnor-

mal development of both ovary and anthers, which

re duces floret fertility and the number of developing

grains (Wheeler et al. 1996, Ferris et al. 1998,

Algha  bari et al. 2014). Then, at the beginning of

grain filling, temperatures above 35°C affect the

development of the endosperm, which limits maxi-

mum grain size (Hawker & Jenner 1993). To account

129

Change in mean temperature (°C)
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Fig. 1. Absolute changes in mean annual temperature and

relative changes in annual mean precipitation calculated

over Northern Europe (NEU, red) and Mediterranean Basin

(MED, blue) regions for RCP8.5 between future 2080−2100

and global climate model (GCM) baseline 1995−2005 for 18

GCMs from the CMIP5 ensembles. Numbers inside the

squares refer to model numbers shown in Table 1. Values

are calculated for land grid-cells from a 1-degree land mask
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for the im pacts of high temperature around flower-

ing and at the beginning of grain filling, the calcula-

tion of po ten tial grain number and potential grain

weight has been modified in Sirius (Stratonovitch &

Seme nov in press). To account for the effect of high

temperature on meiosis and fertilisation, the number

of grains produced per unit of ear dry mass linearly

decreases when, during the 10 d prior to anthesis,

the maximum canopy temperature exceeds a

threshold temperature TN. The potential weight of

each grain linearly decreases if the maximum cano -

py temperature during a period from 5 to 12 d after

anthesis ex ceeds a threshold temperature TW. In our

simulations, we did not vary parameters affecting

grain numbers and grain weight. Instead, we con-

sidered future wheat ideotypes to be heat-tolerant

(HT) or heat-sensitive (HS) and optimised only 9

remaining cultivar parameters (Table 7). For the HS

ideotype, the parameter values for grain number

and grain weight reductions were derived from

Prasad & Djana guiraman (2014), i.e. TN = 27°C and

TW = 30°C. In their experiment, the cultivar ‘Chinese

spring’ was used because of known sensitivity to

heat stress at flowering and at the beginning of

grain filling (Qin et al. 2008).

3.2.  Wheat ideotype optimisation set-up

One hundred years of site-specific daily weather

were generated by the LARS-WG weather generator

at 2 sites, RR and SL, for 2 GCMs, HadGEM2-ES

(HadGEM) and GISS-E2-R-CC (GISS), for 2 RCPs,

RCP4.5 and RCP8.5, and for 2 future periods, 2050

and 2090 (Semenov & Stratonovitch 2010). Cultivar

parameters of new ideotypes were optimised inde-

pendently for each climate scenario and each site;

ideotypes were considered to be HS or HT. The ob-

jective for optimisation was to maximise the 100 yr

mean yield. Ideotypes with a coefficient of variation

(CV) of yield exceeding 15% were excluded from op-

timisation to guarantee high yield stability. During

optimisation, we discarded from selection ideotypes

for which the 90th percentile of harvest index ex -

ceeded 0.64, which is considered the theoretical max-

imum for wheat (Foulkes et al. 2011). The stopping

rule for optimisation was: (1) no further im prove ment

was possible (the search found a local optimum, or

EA-SA [evolutionary algorithm with self-adaptation]

prematurely converged); or (2) the 95th percentile of

yield (Y95) exceeded a specified threshold of 20 t

ha−1. All simulations were assumed to be water-

limited, but no N limitation was simulated.
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4.  RESULTS AND DISCUSSION

4.1.  Management adaptation

First, we explored changes in sowing dates as a

potential management adaptation. For the baseline

climate, the default sowing date is 20 October at site

RR and 30 December at site SL. We changed sowing

dates in 2 wk increments from −4 to +4 wk from the

default sowing. Fig. 2 shows 100 yr mean yields for

HT and HS ideotypes optimised independently for

2050 climate scenarios based on 2 GCMs and 2 RCPs

at 2 sites, RR and SL. Earlier sowing resulted in

higher mean yield at both sites for each combination

of GCM × RCP. At RR (Fig. 2A,C), the differences in

yields be tween HT and HS ideotypes were relatively

small, because maximum temperature during anthe-

sis and the beginning of grain filling did not exceed

temperature thresholds that trigger heat stress re -

sponses often enough to result in noticeable changes

in mean grain yield. At site SL, the situation was dif-

ferent (Fig. 2B,D). HS ideotypes re sponded strongly

to changes in sowing dates, with 50−65% yield

increase for −4 wk offset of sowing compared with

default. At SL, HT ideotypes produced higher grain

yields, 28−40% increase for hotter HadGEM and

13−20% increase for cooler GISS compared with HS

ideotypes.

4.2.  Yield potential

Fig. 3 shows simulated mean yields for ideotypes

optimised for 2050 (Fig. 3A,B) and 2090 (Fig. 3C,D)

climate scenarios. The uncertainty related to the

choice of GCMs is shown for both periods in

Fig. 3A,C and the uncertainty related to the use of

different RCPs is shown in Fig. 3B,D. Sowing dates

were set to optimal values, i.e. −4 wk from the default

sowing. Differences in yields resulting from the use

of 2 contrasting GCMs were relatively small for both

HT and HS ideotypes at RR and HT ideotypes at SL.

However, HS ideotypes at SL had 14.5 and 18.5%

higher yields for cooler GISS for 2050 and 2090,
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Site                  Country       ID          Coordinates           Annual       Mean minimum Mean maximum   Wheat     Sowing 

                                                                                      precipitation     temperature         temperature     cultivar       date

                                                                                            (mm)          in January (°C)       in July (°C)

Rothamsted         UK           RR       51.8° N, 0.35° W           693                     0.3                       20.8              Mercia     20 Oct

Seville               Spain         SL     37.42° N, 5.88° W          524                     4.3                       35.2             Cartaya     30 Dec

Table 6. Characteristics of 2 European sites

Parameter                              Symbol            Range

Photosynthesis                                                    

Light conversion efficiency       L                 1−1.10 

                                                               (dimensionless)a

Phenology

Phyllochron                               Ph                70−140 

                                                                         (°D)b

Daylength response                 Pp              0.05−0.70 

                                                                     (leaf h−1)c

Duration of grain filling           Gf               500−900 

                                                                         (°D)d

Canopy                                                                

Maximum area of flag leaf       A              0.003−0.01 

                                                              (m2 leaf m−2 soil)e

‘Stay-green’                                S                    1−2 

                                                                (dimensionless)

Drought tolerance                                              

Response of photosynthesis   Wsa             0.1−0.21 

to water stress                                        (dimensionless)

Maximum acceleration of      Wss               1.2−1.9 

leaf senescence                                      (dimensionless)

Root water uptake                                              

Rate of water uptake                Ru               1−7 (%)f

aUsing a model of canopy photosynthesis, it was shown

that 10% in L could be achieved if λ (Rubisco specificity

factor) was optimised (Zhu et al. 2010)
bGenetic variations of Ph up to 20% were observed for

wheat (Mossad et al. 1995, Ishag et al. 1998)
cVarietal difference in number of days till heading under

long and short day conditions varied between 9.74 and

107.40 in a photoperiodic response experiment (Kosner

& Zurkova 1996)
dGenetic variations of Gf up to 40% were observed for

wheat (Robert et al. 2001, Charmet et al. 2005, Akkaya

et al. 2006)
eThe reported range of genetic variations for flag leaf

area under unlimited water and nitrogen supplies was

up to 40% (Fischer et al. 1998, Shearman et al. 2005)
fLarge genotypic variation in root characteristics and

water uptake was reported (Asseng et al. 1998, Man-

schadi et al. 2006)

Table 7. Sirius cultivar parameters with the value ranges

used in optimisation for high-yielding ideotypes (Semenov 

et al. 2014)
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respectively, compared with HS ideotypes optimised

for hotter HadGEM. The [CO2] is predicted to be 11

and 58% higher for RCP8.5 scenario compared with

RCP4.5 for 2050 and 2090, respectively. In Sirius,

RUE is proportional to [CO2]. Therefore, higher

yields were simulated for HT ideotypes (and HS

ideotypes at RR) for the RCP8.5 scenarios compared

with RCP4.5 for both 2050 and 2090, 2−4 and 8− 10%,

respectively (Fig. 3B,D). However, at SL, HS ideo-

types have slightly higher yields only for RCP8.5 in

2090, and lower yields in 2050, because of nonlinear

responses to heat stress around flowering and at the

beginning of grain filling.

4.3.  Uncertainty in phenology

Warmer climate scenarios should bring anthesis

forward, on average. For warmer scenarios based on

HadGEM, anthesis for HS ideotypes is 5.9 and 17.2 d

earlier compared with scenarios based on GISS for

2050 and 2090, respectively (Fig. 4). The uncertainty

of the anthesis date is less for HT ideotypes. For

RCP8.5 scenarios, anthesis for both HS and HT ideo-

types was about 12 d earlier compared with RCP4.5

scenarios in 2090. At SL, the difference in anthesis

between HS and HT ideotypes could be as high as

3 wk, with HS ideotypes developing earlier. How-

ever, there were little differences in the grain filling

duration (GFD) between HS and HT ideotypes at

both sites. In contrast, between sites the difference

was large: GFD at RR (70.5 d) is nearly 2 wk longer

compared with GFD at SL (56.7 d). This can in part

explain consistently higher yields at RR.

4.4.  Stress indexes

Fig. 5A shows the 95th percentile of the drought

stress index (DSI95). The drought stress index is

defined as a proportion of the yield lost due to water

stress: DSI = 1 − YWL/YP, where YWL and YP are water-

limited and potential grain yields. At RR, DSI95 is

approximately half of the values at SL. Simulations

for the current cultivars, Mercia and Cartaya, for

2050 climate scenarios showed that their DSI95 was

substantially higher compared with optimised ideo-

types, i.e. 4.2-fold higher at RR and 2.8-fold at SL
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(Semenov et al. 2014). This can be explained by opti-

mal phenology for ideotypes and improvements in

responses to water stress (see Fig. 6). Fig. 5B shows

the 95th percentile of the heat stress index (HSI95).

The heat stress index is defined in a similar way for

HS ideotypes as a proportion of the yield lost due to

heat stress: HSI = 1 − YHS/YHT, where YHS is yield of

HS ideotype and YHT is yield of the same ideotype if

heat tolerance is incorporated. At RR, HSI95 is equal

to 0 for all scenarios. At SL, HSI95 varies in the range

0.25−0.45, with lower values for 2090 scenarios

(Fig. 5B).

4.5.  Optimal cultivar parameters

Fig. 6 shows normalised values of 8 cultivar param-

eters of HS and HT wheat ideotypes which were opti-

mised for 2050 climate scenarios for all combinations

of GCM × RCP × Sites. Normalised values can vary

between 0 and 1, corresponding to the minimum and

maximum parameter values defined in Table 7.

At site RR (Fig. 6A), despite high uncertainty in cli-

mate scenarios, 5 parameters for both HS and HT

ideotypes converged to their optimal values, regard-

less of which climate scenario was used. Grain fill

duration Gf, maximum area of flag leaf A and ‘stay

green’ S reached their maximum values, and re -

sponse of photosynthesis to water stress Wsa and

maximum acceleration of leaf senescence Wss con-

verged to their minimum values. There was no con -

ver gence to a single value in parameters related to

wheat phenology, phyllochron Ph and daylength re -

sponse Pp. There are 2 reasons for this. Firstly, be -

cause of a difference in temperature increases be -

tween different combinations of GCM × RCP,

pheno logy parameters need to be tuned exactly for

each combination of GCM × RCP to deliver an opti-

mal anthesis date. Secondly, Ph and Pp both affect

development, and even for a single scenario, differ-
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ent combinations of Ph and Pp could deliver optimal

anthesis. There was no convergence in water uptake

parameter Ru, which probably means that there is no

optimal rate of water uptake at RR.

At site SL (Fig. 6B), convergence of cultivar param-

eters for HT ideotypes was similar to that at RR. How-

ever, HS ideotypes demonstrated different behav-

iour. It appears that the most important trait to

optimise for HS ideotypes at SL was to bring anthesis

earlier in the season to avoid the damaging effect of

heat stress. For the 2050 HadGEM (RCP8.5) scenario

(the hottest), the mean anthesis date for a HS ideo-

type was more than 3 wk earlier compared with an

HT ideotype: 66.3 and 88.5 d, respectively (Fig. 4A).

By avoiding heat stress at anthesis, HS ideotypes also

avoided drought stress. For the 2050 HadGEM

(RCP8.5) scenario, mean DSI for an HS ideotype was

half of DSI for an HT ideotype. That could explain the

lack of convergence in the drought-tolerance cultivar

parameters Wsa and Wss. Although Gf, A and S did

not reach their maximum values, most of them were

above 0.75.

One of the emerging messages from our analysis is

that wheat phenology must be tailored to specific cli-

mate scenarios to achieve maximum yield potentials.

Because of uncertainty in future climate projections,

optimal phenological parameters for the 2050s can-

not be specified at present. A prudent breeding strat-

egy would be to keep sufficient genetic diversity in

wheat to control wheat phenology to be able to adapt

wheat development to a changing climate.

However, there are some wheat traits which can

improve yield potential regardless of the climate sce-

nario selected. One of them is extended duration of

grain filling, which results in an increased harvest

index. This is only possible if both ‘sink’ and ‘source’

capacities are increased. The ‘source’ capa city can

be increased if the plant is able to maintain healthy

leaf area until the end of grain filling. In water-

limited environments, improvement in drought toler-

ance,whichdelays leafsenescence,couldbeessential.

The ‘sink’ capacity can be in creased if the number of

fertile florets at anthesis and, as a result, the number

of grains at maturity, increase. The floret survival

rate in most wheat cultivars varies in the range

25−40%; so, in principle, there is a large potential for

improvement (Gonzalez et al. 2011). Our simulation

showed that the lack of heat tolerance in wheat could

impose serious limitations on yield potential in

Southern Europe (Prasad & Djana guiraman 2014).

For the 2050 HadGEM (RCP8.5) scenario at SL, the

mean yield of a HT ideotype was 40% higher com-

pared with the yield of a HS ideotype (Fig. 3).

5.  CONCLUDING REMARKS

We describe integration of climate change projec-

tions from the multi-model CMIP5 ensemble with the

LARS-WG weather generator, which delivers an at -

tractive option for downscaling of large-scale climate

projections from GCMs to local-scale climate scenar-

ios for impact assessments. This work further ex -

tended 2 repositories of local-scale climate scenarios,

ELPIS for Europe (Semenov et al. 2010) and ELPIS-JP

for Japan (Iizumi et al. 2012), with the most up-to-

date climate projections used in the latest IPCC AR5

(Barros et al. 2014, Edenhofer et al. 2014, Field et al.
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2014). A subset of 18 GCMs from the CMIP5 ensem-

ble and 2 RCPs, i.e. RCP4.5 and RCP8.5, were inte-

grated with LARS-WG. It is important to understand

that all combinations of GCM × RCP should be

treated as equally possible, and no probabilities

should be attached to impact outcomes based on

these climate projections (Stephenson et al. 2012).

CSIs for temperature and precipitation were com-

puted for all 18 GCMs and for 21 regions defined in

Giorgi & Francisco (2000). For computationally de -

manding impact assessments, where it is not practi-

cal to explore all possible combinations of GCM ×

RCP, CSIs could be used to select a subset of GCMs

from the CMIP5 ensemble with contrasting climate

sensitivity. This should allow assessment of uncer-

tainty in impacts resulting from the CMIP5 ensemble

by conducting fewer simulation experiments. An

alternative approach to limit the number of GCMs for

an impact study could be to consider the ‘reliability’

of present-day GCM simulations with respect to ob -

servations and select those GCMs which performed

better over a region of interest (Yokohata et al. 2013).

We describe in silico design of wheat ideotypes

optimised for future climates in Europe, sampling

uncertainty in GCMs, emission scenarios, time peri-

ods and European locations with contrasting cli-

mates. Despite large uncertainty in future climate

projections, we were able to identify target traits for

wheat improvement which may assist breeding for

high-yielding wheat cultivars with increased yield

stability.
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