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1 Introduction

Developing a mathematical model to describe a physical system involves an iterative process [13] which
includes 1) the formalization of properties and relationships within the system, 2) the abstraction of those
concepts into mathematical relationships, 3) the inclusion and formalization of uncertainty in the model,
4) the analysis of the numerical solution, 4) the comparison of the output of the model to the data or
real system, 5) the incorporation of changes in the model based on this comparison and then 6) the cycle
starts again. One hidden step in this process is that there may be multiple possibilities for how to describe
the relationships or processes within the system. For example, consider a structured population model for
Daphnia magna, a modern day “canary in the mine shaft” in ecology. In developing a model for D. magna
[1, 25], data was collected in the laboratory where the daphnia were fed green algae. In this modeling
process, it was necessary to incorporate the growth of the green algae into the structured population model
for Daphnia magna. However, how does one determine which growth model (logistic, Bernoulli, Gompertz,
etc.) best describes the growth of green algae? This is accomplished using model comparison techniques.
Model comparison techniques have been widely developed for deterministic models [7, 10, 14, 15, 16, 22];
however, they are still in their infancy for stochastic models. In a paper by Banks and Joyner [11], an
extension of the residual sum of squares technique for model comparison was successfully used to compare
two nested stochastic models. In this paper, we seek to extend the Akaike Information Criterion (AIC)
[7, 14, 15, 16, 22] for stochastic models which are not nested using the conceptual basis presented in [11].

Two models are considered nested when one model can be obtained from the other by assuming a
restricted parameter space ΩH

q ⊂ Ωq such that ΩH
q = {q ∈ Ωq : Hq = h}. For example, the logistic growth

model,
dx

dt
= rx(t)

(

1− x(t)

κ

)

, (1)

and Bernoulli growth model,

dx

dt
= rx(t)

(

1−
(

x(t)

κ

)β
)

, (2)

are considered nested models, because the logistic model can be obtained from the Bernoulli model when
the parameter β in the Bernoulli model is set equal to 1. In both of these models, the parameter r describes
the growth rate and κ the limiting capacity. The Gompertz growth model,

dx

dt
= αx(t) (log κ− log x(t)) = αx(t) log

(

κ

x(t)

)

, (3)

is another growth model where growth is slowest at the beginning and when the population reaches its
limiting capacity, κ. Here α denotes a scaling parameter. Although the Gompertz model is related to the
logistic model through a limiting process [25], it is not a nested model with either the logistic or Bernoulli
growth models. In other words, one model cannot be obtained from the other by restricting the parameter
space. If one wanted to compare a stochastic Gompertz growth model to a stochastic logistic or Bernoulli
growth model, one could not use the techniques developed in [11] since the models aren’t nested. Therefore,
in this paper, we focus on a model comparison technique for stochastic models which are not nested. In
particular, we concentrate on the continuous-time Markov chain (CTMC), stochastic differential equation
(SDE) and random differential equation (RDE) models for multiple growth models. The stochastic models
we use for validation purposes are given in Section 2. In Section 3, we summarize how one can approximate
a stochastic model with a deterministic model as in [11], and then, in Section 4, we summarize how one can
then use the Akaike Information Criterion for model comparison of the various stochastic models. We give
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the results using synthetic data from CTMC, RDE and SDE growth models in Section 5 and discuss the
benefits and limitations with this method. Finally, in Section 6, we apply this technique to experimental
longitudinal data for algae and then conclude the paper with some final remarks in Section 7.

2 Models

Deterministic models, like the growth models in Equations (1)-(3), incorporate no randomness; therefore,
given the same set of parameters and initial conditions, the output of a deterministic model will always
produce the same unique trajectory. Continuous-time Markov chain (CTMC), stochastic differential equation
(SDE) and random differential equation (RDE) models all add randomness in the model but in different
ways and thus result in infinitely many possible trajectories. A CTMC model satisfies the Markov property,
or memoryless property, which means that the next state depends only on the value of the current state and
not on the history of the process [3]. CTMC models are formulated as the probability of a transition from
one state to all others and, therefore, the change in state no longer occurs with certainty. An Itô SDE model
also incorporates randomness into the model, but in a different manner. The general form for an Itô SDE
can be derived from a CTMC model and is given by

dX(t) = µ(t,X(t))dt+B(t,X(t))dW (t), t ≥ 0, (4)

where

µ(t,X) =
E(∆X)

∆t
, B(t,X) = V 1/2 with V =

E(∆X∆XT )

∆t
,

and W is a Wiener process such that W (0) = 0 and

W (t)−W (s) ≈ N (0, t− s).

In a CTMC model, there are infinitely many different trajectories due to the different transition probabilities.
In the SDE model, there are still an infinite number of trajectories possible; however, in the SDE model, it
is due to the Wiener process term. In a RDE model, the randomness is included through the parameters. A
general random ordinary differential equation (RDE) containing random parameter values can be written as

dx

dt
= g(t,x,Q), x(0) = x0 (5)

where Q is a m-dimensional random vector. For example, one may formulate a logistic RDE model by
assuming that one or both of the parameter values in the model (r or κ) are random variables which behave
according to some known distribution. For example, let R ∼ N (µR, σ

2
R) and assume κ is constant, then

dx(t;Q)

dt
= Rx(t;Q)

(

1− x(t;Q)

κ

)

(6)

is a random differential equation with random variable parameter Q = R. The growth models we consider
in this paper are the logistic growth model, Bernoulli or generalized logistic growth model, the Gompertz
model, dynamic carrying capacity model, power law model, von Bertalannfy model, exponential growth
model and exponential-linear growth model. The deterministic systems are given in Table 1 together with
the total number of parameters in the system with and without assuming the initial condition is unknown.
A comparison of the different trajectories for a sample of parameters is shown in Figure 1. We note that the
number of parameters is important when using the AIC model comparison technique as increased complexity
results in a penalization term in AIC formulation. We give each type of stochastic growth model in Sections
2.1 - 2.8.
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Table 1: Deterministic Growth Models for Model Comparison

Model Equation No. Param w/o IC No. Param w/ IC

Logistic
dx

dt
= rx

(

1− x

κ

)

2 3

x(0) = x0

Bernoulli
dx

dt
= rx

(

1−
(x

κ

)β
)

3 4

(Generalized Logistic) x(0) = x0

Gompertz
dx

dt
= ax log

(κ

x

)

2 3

x(0) = x0

Dynamic Carrying
dx

dt
= ax log

(κ

x

)

2 4

Capacity
dκ

dt
= bx2/3

x(0) = x0; κ(0) = κ0

Power Law
dx

dt
= axµ 2 3

x(0) = x0

von Bertalanffy
dx

dt
= axµ − bx 3 4

x(0) = x0

Exponential
dx

dt
= ax 1 2

x(0) = x0

Exponential
dx

dt
= a0x, t ≤ τ 2 3

Linear
dx

dt
= a1, t > τ

x(0) = x0; τ =
1

a0
ln

(

a1
a0x0

)

2.1 Logistic Stochastic Models

The deterministic logistic model was given above in Equation (1). There are multiple different birth-death
CTMC models [3] for which the limiting deterministic model is given by Equation (1). In this paper, we
only consider the CTMC model given by

Prob(∆X = j|X(t) = x) =



























rx∆t+ o(∆t) j = 1
rx2

κ
∆t+ o(∆t) j = −1

1−
(

rx+
rx2

κ

)

∆t+ o(∆t) j = 0

o(∆t) j 6= 1,−1, 0.

(7)

We note that the differences exhibited in realizations for two different CTMC models limiting to the same
deterministic model can be substantial when considering small population sizes [3]; however, for the popu-
lation sizes we consider in this work, the differences in the realizations are not substantial (see [3] and [11]
for examples).
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Figure 1: This figure shows the various trajectories for the nine models given in Table 1 with model pa-
rameters given by: Logistic (r = 1, κ = 1000), Bernoulli (r = 1, κ = 1000, β = 1.5), Gompertz (a = 1.2,
κ = 1000), Dynamic Carrying Capacity (a = 1, b = .4), Power Law (a = 2.2, µ = 0.7), von Bertalanffy
(a = 2.2, µ = 0.8, b = 0.3), Exponential (a = 0.6), and Exponential-Linear (a0 = 0.7, a1 = 200).

Using the technique outlined in [3], the Itô SDE model equivalent to the logistic CTMC model in Equation
(7) is given by

dX(t) = rX(t)

(

1− X(t)

κ

)

+

√

rX(t)

(

1 +
X(t)

κ

)

dW. (8)

As explained above, a random differential equation model is determined by assuming one or more parameters
in the deterministic model are random variables. Equation (6) is one example where the growth rate is
the only random variable parameter. One can compare the consequence of assuming fixed versus random
variables in [12]; however, in generating synthetic data, we only assume the growth rate R ∼ N (µR, σ

2
R) is

a random parameter as in Equation (6).

2.2 Bernoulli Stochastic Models

The deterministic Bernoulli growth model is described previously and given by Equation (2). As mentioned,
although there are multiple CTMC models which have an equivalent deterministic approximation, we only
consider the CTMC Bernoulli model given by

Prob(∆X = j|X(t) = x) =



























rx∆t+ o(∆t) j = 1

rx
(x

κ

)β

∆t+ o(∆t) j = −1

1−
(

rx+ rx
(x

κ

)β
)

∆t+ o(∆t) j = 0

o(∆t) j 6= 1,−1, 0.

(9)
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An Itô SDE model can be derived from the CTMC model in Equation (9) and is given by

dX(t) = rX(t)

(

1−
(

X(t)

κ

)β
)

+

√

√

√

√rX(t)

(

1 +

(

X(t)

κ

)β
)

dW. (10)

One RDE Bernoulli growth models can be found by assuming the growth parameter R is a random variable,
R ∼ N (µr, σ

2
R), and κ is constant,

dx(t;Q)

dt
= Rx(t;Q)

(

1−
(

x(t;Q)

κ

)β
)

. (11)

Note that the logistic stochastic growth models can be obtained by setting β = 1 in the Bernoulli stochastic
growth models. Therefore, these models are considered nested stochastic models. However, the Gompertz
stochastic models given in the following section are not nested with either the logistic or Bernoulli stochastic
models.

2.3 Gompertz Stochastic Models

The deterministic Gompertz growth model is given in Table 1. In this paper, we consider the CTMC
Gompertz model given by

Prob(∆X = j|X(t) = x) =















(ax log κ)∆t+ o(∆t) j = 1
(ax log x)∆t+ o(∆t) j = −1

1− (ax log κ+ ax log x)∆t+ o(∆t) j = 0
o(∆t) j 6= 1,−1, 0.

(12)

The Itô SDE model derived from the CTMC model in Equation (12) is given by

dX(t) = aX(t) log

(

κ

X(t)

)

+
√

aX(t) log (κX(t)) dW. (13)

The RDE Gompertz growth model we consider is one in which the growth parameter a is a random variable,
A ∼ N (µa, σ

2
a), and κ is constant,

dx(t;Q)

dt
= Ax(t;Q) log

(

κ

x(t;Q)

)

. (14)

2.4 Dynamic Carrying Capacity Stochastic Models

The dynamic carrying capacity model assumes the carrying capacity κ changes with time and the change is
proportional to the value of the population at time t. The deterministic model is given in Table 1. We use
the following CTMC dynamic carrying capacity model

Prob(∆X = i,∆K = j|X(t) = x,K(t) = κ) =























(ax log κ)∆t+ o(∆t) (i, j) = (1, 0)
(ax log x)∆t+ o(∆t) (i, j) = (−1, 0)
bx2/3∆t+ o(∆t) (i, j) = (0, 1)

1−
(

ax log κx+ bx2/3
)

∆t+ o(∆t) (i, j) = (0, 0)
o(∆t) otherwise.

(15)

6



The Itô dynamic carrying capacity SDE model derived from Equation (15) is given by

dX(t) = aX(t) ln

(

K(t)

X(t)

)

+
√

aX(t) ln (K(t)X(t)) dW1

dK(t) = bX(t)2/3 +
√

bX(t)2/3 dW2

(16)

We further assume the dynamic carrying capacity RDE model has one random variable, the growth parameter
a, A ∼ N (µa, σ

2
a), and b is constant,

dx(t;Q)

dt
= Ax(t;Q) ln

(

κ(t;Q)

x(t;Q)

)

dκ(t;Q)

dt
= bx(t;Q).

(17)

2.5 Power Law Model

The power law model assumes continuous growth of the population at a rate proportional to the population.
The deterministic model can be found in Table 1 while the CTMC model is given by

Prob(∆X = j|X(t) = x) =







axµ∆t+ o(∆t) j = 1
1− axµ∆t+ o(∆t) j = 0

o(∆t) j 6= 1, 0.
(18)

The SDE model derived from Equation (18) is given by

dX(t) = aXµ(t) +
√

aXµ(t) dW (19)

and the RDE model assumes the growth parameter a is a random variable, A ∼ N (µa, σ
2
a), and µ is constant,

dx(t;Q)

dt
= Axµ(t;Q). (20)

2.6 von Bertalanffy Model

The von Bertalanffy model is a model that has been used to model the growth of organisms, animal popula-
tions, aquatic life as well as tumor growth [4, 5, 18, 19, 20, 26] where both the growth rate and natural death
rate are proportional to the population. The deterministic model is given in Table 1. We use the CTMC
given by

Prob(∆X = j|X(t) = x) =















axµ∆t+ o(∆t) j = 1
bx∆t+ o(∆t) j = −1

1− (axµ + bx)∆t+ o(∆t) j = 0
o(∆t) j 6= 1,−1, 0.

(21)

The SDE model derived from Equation (21) is given by

dX(t) = aXµ(t)− bX(t) +
√

aXµ(t) + bX(t) dW. (22)

The RDE model assumes the growth parameter a is a random variable, A ∼ N (µa, σ
2
a), while the death rate

parameter b and power of the growth rate µ are assumed to be constant,

dx(t;Q)

dt
= Axµ(t;Q)− bx(t;Q). (23)
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2.7 Exponential Growth Model

An exponential growth model assumes exponential growth with a rate of growth a. The CTMC model is
given by

Prob(∆X = j|X(t) = x) =







ax∆t+ o(∆t) j = 1
1− ax∆t+ o(∆t) j = 0

o(∆t) j 6= 1, 0.
(24)

The SDE model derived from Equation (24) is given by

dX(t) = aX +
√
aX dW (25)

and the RDE model assumes the growth parameter a is a random variable, A ∼ N (µa, σ
2
a),

dx(t;Q)

dt
= Ax(t;Q). (26)

2.8 Exponential-Linear Model

An exponential-linear growth model assumes an exponential growth for a period of time, t ≤ τ and then

constant growth after t = τ where τ = 1

a0

ln
(

a1

a0x0

)

depends on the parameters a0 and a1 for the exponential

growth rate and constant growth rate, respectively, as well as the initial population size x0. The CTMC
model is given by

Prob(∆X = j|X(t) = x) =







a0x∆t+ o(∆t) j = 1
1− a0x∆t+ o(∆t) j = 0

o(∆t) j 6= 1, 0,
(27)

if t ≤ τ and given by

Prob(∆X = j|X(t) = x) =







a1∆t+ o(∆t) j = 1
1− a1∆t+ o(∆t) j = 0

o(∆t) j 6= 1, 0,
(28)

if t > τ . The SDE model derived from Equations (27) and (28) is given by

dX(t) = a0X +
√
a0X dW t ≤ τ

dX(t) = a1 +
√
a1 dW t > τ.

(29)

The RDE model assumes the growth parameter a0 is a random variable, A0 ∼ N (µa0
, σ2

a0
), but the linear

growth rate, a1 is assume to be constant

dx(t;Q)

dt
= A0x(t;Q) t ≤ τ

dx(t;Q)

dt
= a1 t ≤ τ.

(30)

3 Approximation of Stochastic Models by Deterministic Systems

In the paper by Banks and Joyner [11], it was demonstrated how one can use deterministic methods to
compare two nested stochastic models by approximating a stochastic model by an appropriate deterministic
system. The Kurtz limit theorem, originally developed in [23] (see also [17]), justifies the approximation of
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a CTMC by a corresponding deterministic system if the population size N is sufficiently large. The theorem
is given by

Kurtz Limit Theorem Let CN (t) be a continuous-time Markov chain. Suppose that limN→∞ CN (0) = c0
and for any compact set Γ ∈ R

n there exists a positive constant ηΓ such that

|g(c)− g(ĉ)| ≤ ηΓ|c− ĉ|,
for c, ĉ ∈ Γ. Then we have

lim
N→∞

sup
t≤tf

|CN (t)− c(t)| = 0 (31)

almost surely for all tf > 0, where c denotes the unique solution to the system of ordinary differential
equations given by

ċ(t) = g(c), c(0) = c0.

In [24], Ortiz et. al. used this concept as a methodology for estimating parameters of the CTMC model
by first approximating the model with its deterministic counterpart and then applying parameter estimation
procedures for a deterministic system. Joyner et. al. [21] further tested this methodology and determined
that if the population size is ‘sufficiently large’ (the concept of ‘sufficiently large’ is model specific), this
parameter estimation method produces good estimates. Using the deterministic approximation, Banks and
Joyner explained in [11] how one could extend this concept to model comparison for nested stochastic models.
They first approximated the CTMC by an appropriate deterministic system. They then used the theory for
model comparison of deterministic systems [10] to compare nested CTMC models.

This approach can also be applied to SDEs, since the expectation of the stochastic model is given by the
deterministic model. Recall the general form of an SDE given in Equation (4); taking the expectation of the
SDE, we have

E (dX(t,q)) = E (µ(t,X(t,q))dt) + E (B(t,X(t,q))dW (t)) = µ(t,X(t,q))dt

or
E (dX(t,q))

dt
= µ(t,X(t,q))

since E(dW ) = 0. Therefore, the expected trend for an SDE is given by the expected deterministic system.
Recall that a general random ordinary differential equation (RDE) containing random parameter values

can be written as in Equation (5), given by

dx

dt
= g(t,x,Q), x(0) = x0,

where Q is a m-dimensional random vector. There are two common ways to approach random differential
equations, the mean calculus approach and the sample function approach [7]. Using the sample function
approach, one considers each realization of the random differential equation to be a deterministic differential
equation, called a sample deterministic differential equation, assumed to have a unique solution [7]. For
example, in the RDE logistic model, given in Section 2.1, for every realization r of R ∼ N (µR, σ

2
R) in

Equation (6), we obtain the deterministic differential equation given by Equation (1). In this approach
to RDE models, the solution to a random differential equation is a collection of solution trajectories to
the sample deterministic equations. Hence, in each of these stochastic models, we can approximate the
chosen stochastic model by the deterministic system. In the next section, we will discuss details of this
approximation and then how to use the Akaike Information Criterion (AIC) for model comparison.
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4 Extension of Model Selection Based on AIC for Stochastic Mod-

els

For proof of concept, for each of the stochastic growth models given in Sections 2.1 - 2.8, we first simulate data
and then attempt to recover the appropriate model when performing a model comparison test. As discussed
in the previous section, each type of stochastic model can be approximated by an appropriate deterministic
system. Therefore, to compare candidate stochastic models, we first approximate each of the stochastic
models with the appropriate deterministic model from Table 1. We then use a deterministic methodology,
specifically the Akaike Information Criterion (AIC), to compare the set of approximated deterministic models
and assume that the model selection process for the deterministic systems can provide meaningful insight
into the “best” model given a set of candidate stochastic models.

AIC is one of the most widely used methods for choosing a “best approximating” model from several
competing models given a particular data set [14, 16]. The well-known Akaike Information Criterion is given
by

AIC = −2 ln
(

L(θ̂MLE |y)
)

+ 2κθ (32)

where θ̂MLE is the maximum likelihood estimate and κθ is the total number of parameters in the model; we
note that κθ includes the number of required parameters for both the model and the assumed distribution.
The complexity of the model, as given by the total number of parameters in the model, is considered in the
criterion where, given the same level of accuracy, the simpler model is preferable to the more complex one.

In this paper, we consider the AIC under the frameworks of least squares estimation as given in [8].
Depending on the statistical model for the system, the appropriate parameter estimation technique varies.
This results in different formulations for the AIC as given below where κq is the total number of parameters
in the model only, q0 is the “true” parameter and q̂ is the estimate for q0 using the appropriate least squares
methodology (see [7] for a detailed discussion on choosing the appropriate methodology).

• If the statistical model is assumed to have absolute error given by

Yj = f(tj ,q0) + Ej , (33)

we consider an ordinary least squares (OLS) formulation of the AIC given by

AICOLS = N ln











N
∑

j=1

(yj − f(tj , q̂OLS))
2

N











+ 2(κq + 1). (34)

• If the statistical model is assumed to have constant weighted error given by

Yj = f(tj ,q0) + wjEj , (35)

we consider a weighted least squares (WLS) formulation of AIC given by

AICWLS = N ln











N
∑

j=1

w−2

j (yj − f(tj , q̂WLS))
2

N











+ 2(κq + 1). (36)
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• If the statistical model is assumed to have parameter dependent weighted error given by

Yj = f(tj ,q0) + fγ(tj ,q0)Ej , (37)

we use the iterative reweighted, weighted least squares (IRWLS) formulation of AIC given by

AICIRWLS = N ln











N
∑

j=1

w−2

j (yj − f(tj , q̂IRWLS))
2

N











+ 2(κq + 1), (38)

where wj = fγ(tj ; q̂IRWLS).

Therefore, the associated statistical model, in addition to the appropriate deterministic system, plays an
important role in the formulation of the AIC. We first note that by assuming γ = 0 in the iterative reweighted
weighted least squares formulation, the statistical model simplifies to the ordinary least squares formulation.
Hence, to determine an appropriate statistical model, one must find an appropriate value of γ. In practice,
there are different methods for determining γ. One approach is to initially assume a specific statistical model,
i.e., a specific value of γ, and then carry out the appropriate parameter estimation technique. One can then
use residual plots, as in [7], to determine whether or not the assumed statistical model is correct. If the
statistical model is appropriate, when one plots modified residuals versus tj , the residual plots will exhibit
a random pattern. Modified residuals are given by

rmod
j = rj/|yj − f(tj ; q̂)|γ = (yj − f(tj ; q̂))/|yj − f(tj ; q̂)|γ (39)

where q̂ is the estimate for q0. On the other hand, if the assumed statistical model is incorrect, the residual
plots will exhibit a non-random pattern, such as a fan-shaped pattern. One can iteratively choose varying
values for γ and repeat the process until the appropriate statistical model is determined. This process can
be extremely computationally and time intensive as it potentially involves solving a parameter estimation
problem multiple times.

Another approach for determining the correct statistical model is to use a difference-based estimation
method as proposed in [6]. In this method, one uses pseudo-measurement errors to estimate the variance; see
[6] for details on the theory and specific implementation. In this paper, we focus on such a difference-based
estimation method involving the second-order differencing of the data to calculate the pseudo measurement
errors, given by

ǫj = ǫ̂2ndj =
1√
6
(yj−1 − 2yj + yj+1). (40)

The pseudo measurement errors provide a reasonable approximation of the true measurement errors [6].
Therefore,

emod
j = ǫj/|yj − ǫj |γ (41)

provides an estimation of the modified residuals discussed in the previous approach. If one then plots
emod
j versus tj for various values of γ, one can determine which value of γ results in a random pattern,
thus indicating an appropriate value of γ for the statistical model. This process is still iterative; however,
it does not involve solving a computationally-intensive parameter estimation problem with each iteration.
This method has been shown to provide similar results to the previously described modified residuals using
method (39) but without the time-intensive calculations.

Using this second-order difference-based estimation procedure, we determine for each data set which
statistical model is appropriate. For each of the continuous-time Markov chain models, γ = 0.5 is the
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Figure 2: These figures show the modified pseudo-measurement errors (Equation (41)) versus time for
simulated Gompertz CTMC data (Equation (12)) with different values of γ where the modified pseudo
measurement errors use a second-order difference-based approximation (Equation (40)).

appropriate choice for γ. In Figure 2, we give an example of the modified pseudo measurement errors (41)
plotted against time for a simulated data set using the Gompertz CTMC model in Equation (12). For γ = 0
and γ = 0.2, there is a fan shape opening to the right where the modified pseudo measurement errors start
small and then increase with time. For γ = 0.8 and γ = 1, the modified pseudo measurement errors start
larger and then decrease as a function of time, producing an inverted fan shape. However, for γ = 0.5, the
modified pseudo measurement errors are randomly distributed. We note that γ = 0.4 and γ = 0.6 produce
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similar results to γ = 0.5; however, γ = 0.5 appears to produce a slightly more randomly distributed pattern
across all simulated data sets.

We have a similar result for SDE simulated data. An example of the modified pseudo measurement errors
plotted versus time for one of the Gompertz SDE simulated data sets (Equation (13)) is shown for three
different values of γ in Figure 3. In this case, γ = 0.6 produced slightly more randomly distributed points
than γ = 0.5; therefore, for SDE simulated data, we chose γ = 0.6 in the associated statistical model. We
note that the pattern in the pseudo measurement error plots for γ = 0 and γ = 1 produce similar shapes as
those for CTMC data given previously.

Figure 3: These figures show the modified pseudo-measurement errors (Equation (41)) versus time for simu-
lated Gompertz SDE data (Equation (13)) with different values of γ where the modified pseudo measurement
errors use a second-order difference-based approximation (Equation (40)).

For simulated RDE data, we use an ordinary least squares formulation for the statistical mode, i.e., γ = 0.
An example of the modified pseudo measurement error plot versus time for Gompertz RDE data is given
in Figure 4. It is clear that using γ = 0 produces randomly distributed points while for values of γ > 0, a
pattern is apparent in the pseudo measurement error plots.

Given the deterministic approximations to a stochastic model discussed in Section 3 and the appropriate
statistical model for the data as discussed above, we propose the following methodology for model comparison
of stochastic models and test this methodology in the next section using simulated data.

Stochastic Model Comparison using Deterministic Methodology

Step 1: Approximate each of the candidate stochastic models with an appropriate deterministic model.

Step 2: Choose an appropriate statistical model to describe the data. Using the data and a second-order
difference-based procedure as described above, one can determine an appropriate value of γ for the
statistical model.
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Figure 4: These figures show the modified pseudo-measurement errors (Equation (41)) versus time for simu-
lated Gompertz RDE data (Equation (14)) with different values of γ where the modified pseudo measurement
errors use a second-order difference-based approximation (Equation (40)).

Step 3: Use the appropriate methodology for the statistical model chosen in Step 2 to estimate the optimal
parameter q̂ for each of the candidate models.

Step 4: Use the appropriate AIC formulation (Equation (34), (36), or (38)) given the statistical model from
Step 2, to calculate the AIC value for each candidate model.

Step 5: The “best” deterministic model from the set of candidate models is given by the deterministic model
with the lowest AIC value.

Step 6: Given the results of Step 5, information can be obtained about the potential “best” stochastic model
from the set of candidate stochastic models.

5 Results using Synthetic Data from Stochastic Models

In this section, we use simulated data from each of the various stochastic growth models to test the accuracy
of determining the best candidate stochastic model using the methodology outlined in Section 4. In other
words, we first approximate the candidate models with appropriate deterministic models and then use AIC
to compare the candidate deterministic model approximations. Given the randomness in each of the data
sets, we generate five hundred different data sets for each growth model of each type (e.g. Logistic CTMC
model, Logistic SDE model, Logistic RDE model, Bernoulli CTMC model, etc.). We then perform the model
comparison test for each of these five hundred data sets of each type and tally how often the AIC value was
lowest for each of the different models. The simulated data and results are given for CTMC models in the
Section 5.1, SDE models in Section 5.2 and RDE models in Section 5.3.
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5.1 Continuous Time Markov Chain Models

In Figure 5, we show the variation in the five hundred different data sets for each of the continuous time
Markov chain models. We see similar trends in the data for the logistic growth, Bernoulli growth, Gompertz
growth and the dynamic carrying capacity models while the data for the power law, von Bertalanffy, ex-
ponential growth and exponential-linear growth exhibit a different growth behavior when compared to the
previous models but with similar trends to each other. We will discuss these similarities in more detail when
discussing the results of the model comparison.

Figure 5: These figures show simulated data for each of the CTMC models: Logistic growth model (Equation
(7)), Bernoulli growth model with β = 1.5 (Equation (9)), Bernoulli growth model with β = 1.5 (Equation
(9)), Gompertz growth model (Equation (12)), Dynamic Carrying Capacity (Equation (15)), Power Law
(Equation (18)), von Bertalanffy (Equation (21)), Exponential Growth (Equation (24)), and Exponential-
Linear Growth (Equation (28)). The model parameters used in creating the data are the same as those given
in Figure 1.

Figure 6 displays the results using the model comparison methodology outlined in Section 4. The bar
charts illustrate the frequency with which each model was chosen to be the “best” model from the candidate
models for each of the five hundred data sets generated from each growth model. Ideally, if data were
generated from a particular stochastic model, e.g., logistic CTMC model, then the model comparison would
indicate the generating model, e.g., logistic model, is the “best” model from the candidate models.

Examining the results, we see that for the simulated Bernoulli CTMC data using β = 3, the generating
model (Bernoulli model) was chosen as the best candidate model 100% of the time. In the case in which
the generating model was closer to the logistic model with β = 1.5, the generating model (Bernoulli model)
was chosen 94.8% of the time over the other candidate models using the AIC. In the remainder of the cases
(5.2%), the logistic model was chosen. Recall that the Bernoulli and logistic models are nested models, i.e.,
the logistic model can be obtained from the Bernoulli growth model by setting β = 1. We note that in the
few cases in which the logistic model was chosen as the “best” model over the Bernoulli model, the parameter
estimates in the Bernoulli model resulted in β estimates close to 1 with a median estimate of β = 1.01. For
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Figure 6: These figures depict the results of the model comparison methodology outlined in Section 4
for the Logistic Growth Model CTMC Data, Bernoulli Growth Model CTMC Data (β = 1.5), Bernoulli
Growth Model CTMC Data (β = 3), Gompertz Growth Model CTMC Data, Dynamic Carrying Capacity
CTMC Data, Power Law CTMC Data, von Bertalanffy CTMC Data, Exponential Growth CTMC Data, and
Exponential Linear Growth CTMC Data. For each type of growth model, the “model” from the candidate
models as indicated by the AIC values is displayed.

these data sets, the logistic model suffices to explain the data and did not warrant the extra complexity of
a third variable in the Bernoulli model.

16



However, when the simulated data was generated from the logistic CTMC model (the Bernoulli model
restricted to β = 1), the Bernoulli model had the lowest AIC value in 89.4% of the cases; whereas the
generating model, the logistic model, resulted in the lowest AIC value in only 10.4% of the cases. Therefore,
strictly going by the resulting AIC value, one might conclude that the proposed methodology does not
work for stochastic CTMC models. However, the resulting AIC values indicate the “best” candidate model
from the deterministic model approximations, but one must examine the results further to gain insights
into the “best” candidate model from the original stochastic models. In other words, we must also use
any relationships between the candidate models, if relationships exist, because when we approximated the
original stochastic model with the deterministic approximation, we are only getting an expected behavior of
the CTMCmodel. There will be natural spread about this expected behavior due to the inherent randomness.
In the case of the logistic model and Bernoulli model, since they are nested models, we can also examine
the resulting estimated values for β (the nested parameter). In the cases in which the Bernoulli model
was the chosen model over the logistic model, the median estimated value for β is 1.06 with first and third
quartiles given by 0.83 and 1.32 respectively. Hence, by examining the output of the AIC together with the
relationships between the models and parameter estimates for the models, in all but one case, the proposed
methodology pointed to the “best” candidate model being the Bernoulli model with β close to or equal to
1, satisfying the criterion that the data came from a logistic model, or a close logistic model, the Bernoulli
model with β ≈ 1. Therefore, the methodology, together with the parameter estimation was successful in
choosing the generating model.

If we turn our attention to the simulated data from the Gompertz CTMC model, the results at first seem
quite puzzling. In this scenario, the initial AIC results from the deterministic approximations indicate that in
46.4% of the cases the Bernoulli model is the “best” candidate model while only 32.6% of the cases resulted
in the actual generating model, the Gompertz model, as the “best” from the candidate models. However,
the dynamic carrying capacity was also considered the “best” approximating model in 19% of the cases. In
this case, the Gompertz model and dynamic carrying capacity model are clearly related models (see Table
1), although they are only considered nested models if the initial condition κ0 is also considered a parameter
in the system. In that case the Gompertz model can be obtained from the dynamic carrying capacity model
by restricting b = 0; in that case κ = κ0 is a fixed limiting capacity parameter, equivalent to the limiting
capacity parameter in the Gompertz model. However, we kept κ0 in our calculations; therefore, these were
NOT nested models in this scenario. Nonetheless, we can still compare the output of the two models since
the models are clearly related. Recall, if b ≈ 0, κ ≈ κ0, and growth parameters a are approximately equal,
then the two models describe the same population dynamics. In this scenario, the estimated values for κ
in the Gompertz model had a median value of 1048 and first and third quartile values of 1018 and 1093
respectively, which were very close to the initial value κ0 = 1000. In addition, the estimated growth rate
b in the limiting capacity differential equation for the dynamic carrying capacity model was small with a
median estimate of b = 0.16 and 1st and 2rd quartile values given as 0.08 and 0.25 respectively. Finally, the
estimated population growth rate parameters, the parameter a in both models, were almost identical in both
parameter estimation problems. The values in the Gompertz model had a median value of 1.14 compared
to a median value of 1.17 in the dynamic carrying capacity model. All these factors together indicate that
the two models, dynamic carrying capacity model and the Gompertz growth model, are both describing the
exact same dynamics and therefore, equivalent models given the estimated parameters within each of the
two models. This is similar to the case for the logistic and Bernoulli case described previously. Therefore, in
the 51.6% of the cases in which either the Gompertz model or dynamic carrying capacity model were chosen
as the “best” of the candidate models, they were describing the same dynamics indicated by the generating
model, the Gompertz model.

However, in the other 46.4% of the cases, the Bernoulli model was chosen as the“best” candidate model.
At first glance, one might suspect that it is simply because they have similar dynamics and the Bernoulli
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model has an extra degree of freedom. However, the Gompertz model is actually related to the Bernoulli
model or generalized Logistic model through a limiting process. As shown in [25], since

lim
v→∞
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Therefore, as β → 0, the generalized logistic model and the Bernoulli model will also behave similarly. In the
estimation process, the median value of β in the Bernoulli parameter estimation process is 0.008 with first
and third quartile values given as 0 and 0.2 respectively. This is consistent with the limiting relationship
between the Bernoulli and Gompertz models.

The relationship between these three models can also describe the results seen when using simulated
data from the dynamic carrying capacity model. In this case, in 71.4% of the cases, the dynamic carrying
capacity, the generating model, was initially chosen using the deterministic approximation. In 17.2% of the
cases, the Gompertz model was chosen while in 11.4% of the cases the Bernoulli model was the model with
the lowest AIC value out of the candidate models. However, in each of these cases, we can again show that
the estimated parameters give dynamics consistent with the generating dynamic carrying capacity model,
i.e., they were essentially equivalent models with the same dynamics in these cases.

When the simulated data is generated using the power law CTMC model, in 54% of the cases, the correct
generating model is chosen. In 1.2% of the cases, a nested model, the von Bertalanffy model is chosen.
However, in 21% of the cases, the dynamic carrying capacity model is the chosen “best” model while in
15.8% of the cases, the Gompertz model is chosen and in 8% of the cases, the Bernoulli is the “best” overall
model to describe the data. As described above, there is a clear relationship between the Gompertz, dynamic
carrying capacity and Bernoulli models. Intuitively, in the dynamic carrying capacity model, if the growth
rate for the carrying capacity is large while the growth rate for the overall population is much smaller, the
power law model and the dynamic carrying capacity model could exhibit similar behaviors. However, there
is not a clear, defining relationship between the power law and these other three models as in the other cases.
Similar results are seen with simulated data for the von Bertalannfy model. In only 3% of the cases was
the von Bertalannfy model chosen while in 34.4% of the cases the nested power law model was the chosen
“best” model out of the candidate models. Indeed the growth parameter, a, is much larger than the natural
death rate parameter b; therefore, the power law is a good approximating model in this case. There appears
then to be a similar dynamical relationship between the power law model and the dynamic carrying capacity
model (chosen 22.4% of the cases), the Gompertz model (chosen in 18% of the cases) and the Bernoulli
model (chosen in 21.4% of the cases).

In the case of simulated data generated from the exponential-linear model, in 83.4% of the cases, the
correct generating model was chosen using the deterministic approximation with the AIC values. In the case
of simulated data generated from the exponential model, results indicate that the power law was chosen in
59% of the cases while the von Bertalanffy model was chosen in 24.8% of the cases. The exponential model or
exponential-linear models were chosen only in 3% and 4% of the cases respectively. However, the exponential,
exponential-linear, power law and von Bertalanffy models are all nested models. The exponential model can
be attained by restricting µ = 1 in the power model and by restricting µ = 1 and b = 0 in the von Bertalanffy
model. This is indeed the dynamics found when these models are chosen as the “best” models out of the
candidate models. In the power law model, the median value for µ is given by 1.001 while the 1st quartile
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and 3rd quartile are given by 0.98 and 1.04 respectively. Similarly in the von Bertalanffy model, the median
value for µ is 0.99 while the 1st and 3rd quartile values are 0.93 and 1, respectively. Furthermore, the value
for b is much smaller than the estimated value for a in the von Bertalanffy model indicated the growth term
is the dominate term over the natural death term. Again, these dynamics are indicative of the exponential
model. Hence, by examining the output of the AIC together with the relationships between the models and
parameter estimates for the models, in 87.2% of the cases, the proposed methodology pointed to the best
candidate model being either the von Bertalanffy model with µ ≈ 1 and a >> b or the power law model with
µ ≈ 1, satisfying the criterion that the data came from an exponential model. Therefore, the methodology,
together with the parameter estimation, was successful in choosing the generating model.

5.2 Stochastic Differential Equation Models

In this section, we again implement the model comparison methodology discussed in Section 4 using SDE
simulated data. Figure 7 shows the variation in the five hundred different SDE data sets for each of growth
models. Simulated data from the SDE models are similar in behavior to that seen in the CTMC data
(Figure 5); however, there is slightly more variation and more chance of outliers in the data. Results for
model comparison are given in Figure 8.

Results are very similar to those given in the previous section for CTMC models. When the generating
model is a logistic stochastic differential equation model, the deterministic methodology indicates the “best”
model is the logistic model in only 11.8% of the cases but indicates a preference for the Bernoulli model in
88% of the cases. However, if one couples this deterministic methodology with the parameter output and
relationships between the logistic and Bernoulli model, in all 99.8% of these cases, the dynamics indicate a
slightly modified logistic model, i.e., either the logistic model or a Bernoulli growth model with β ≈ 1; the
median value of β is given by 1.07.

When the generating model in the Bernoulli growth model, in 96.8% of the cases, the Bernoulli growth
model has the lowest value of AIC, indicating the “best” model out of the candidate models, when β = 1.5.
There is 100% accuracy using just the deterministic methodology when data is generated using β = 3 in the
SDE model.

When the data is generated using the Gompertz SDE model, it is necessary to use the relationships
between the Gompertz, Bernoulli, and dynamic carrying capacity models in addition to the deterministic
AIC model selection, as the Bernoulli model is the “best” model from the candidate deterministic models in
50.8% of the cases, the Gompertz model is the “best” model in 28.2% of the cases and the dynamic carrying
capacity model is the “best” model in 15.8% of the cases. As with the CTMC data, the median estimated
value of β in the Bernoulli model is close to 0 (median value of 0.07), indicating similar population dynamics
through the limiting relationship between the two models (as discussed in the previous section). In the
dynamic carrying capacity model, the carrying capacity growth parameter is again close to 0, indicating an
almost constant value of κ0 which is close to the estimated value of κ in the Gompertz model. Therefore,
using both the deterministic approximations together with the dynamics and relationships between the
models, the correct generating model is chosen in a majority of the cases.

This relationship between these models shows up again when using simulated data from the dynamic
carrying capacity SDE model in which the correct generating model is initially chosen in 74% of the cases.
However, one can use the relationship between the Gompertz and dynamic carrying capacity to give an
indication for the 15.8% of the cases which are initially classified as originating from a Gompertz model.

When the generating model is the power law SDE model, in approximately 73.2% of the cases, the AIC
values using the initial deterministic approximation results in the correct choice of models. However this
intuitive relationship between the power law and the other models does come into play in approximately
22% of the cases. In the von Bertalanffy SDE data simulations, the growth factor has a greater impact in
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Figure 7: These figures show simulated data for each of the SDE models: Logistic growth model (Equation
(8)), Bernoulli growth model with β = 1.5 (Equation (10)), Bernoulli growth model with β = 1.5 (Equation
(10)), Gompertz growth model (Equation (13)), Dynamic Carrying Capacity (Equation (16)), Power Law
(Equation (19)), von Bertalanffy (Equation (22)), Exponential Growth (Equation (25)), and Exponential-
Linear Growth (Equation (29)). The model parameters used in creating the data are the same as those given
in Figure 1.

20



Figure 8: These figures depict the results of the model comparison methodology outlined in Section 4 for the
Logistic Growth Model SDE Data, Bernoulli Growth Model SDE Data (β = 1.5), Bernoulli Growth Model
SDE Data (β = 3), Gompertz Growth Model SDE Data, Dynamic Carrying Capacity SDE Data, Power
Law SDE Data, von Bertalanffy SDE Data, Exponential Growth SDE Data, and Exponential Linear Growth
SDE Data. For each type of growth model, the “model” from the candidate models as indicated by the AIC
values is displayed.

the dynamics than the natural birth rate causing and initial “best” deterministic model to be the nested
power law model in 42.4% of the cases.

When using exponential data, the nested relationship between this model and the power law and von
Bertalanffy models come into play with a clear indication of the exponential model when examining the
parameter estimates with each of these systems. We note that the deterministic methodology indicates the
best model is divided almost equally between the power law and the von Bertalanffy models, totally 99% of
the cases. Finally, the deterministic methodology alone is able to predict the correct generating model in
almost 94% of the cases for data simulated from the exponential linear SDE model.

Therefore, once again, we have shown that the methodology outlined in Section 4 is a feasible method to
compare stochastic differential equation models when used in conjunction with the model relationships and
parameter estimations as well.

5.3 Random Differential Equation Models

We finally test the methodology on simulated data from random differential equation models as shown
in Figure 9. The results of the model comparison are given in Figure 10. Unlike the other two types
of stochastic models, when using the sample function approach to RDEs, the solutions are collections of
differential equation solutions. Therefore, the deterministic methodology works extremely well in this case
without much need for additional insight into the parameters or relationships between the models. In all but
one model, the majority of the cases resulted in the correct originating model being chosen as the “best”
model from the candidate models. The one exception in when using von Bertalanffy data. In this case, the
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growth parameter still overpowers the natural death parameter and the power law is the chosen model in
the majority of cases. In almost all other instances, except when using the data from the Gompertz RDE
model, the correct model was chosen in almost 70% or more of the cases.

Figure 9: These figures show simulated data for each of the RDE models: Logistic growth model (Equation
(6)), Bernoulli growth model with β = 1.5 (Equation (11)), Bernoulli growth model with β = 1.5 (Equation
(11)), Gompertz growth model (Equation (14)), Dynamic Carrying Capacity (Equation (17)), Power Law
(Equation (20)), von Bertalanffy (Equation (23)), Exponential Growth (Equation (26)), and Exponential-
Linear Growth (Equation (30)). The model parameters used in creating the data are the same as those given
in Figure 1.

6 Results using Experimental Data

To this point, we have developed a model comparison methodology for use on three different types of
stochastic models: continuous time Markov chain models, stochastic differential equation models and random
differential equation models. For all three types of stochastic models, we first approximated the stochastic
model with an appropriate deterministic model. We then determined the value of γ for the statistical model
by using a second-order differencing technique [6]. Using the appropriate parameter estimation method
for the given statistical model, we estimated the parameters for each of the candidate models and then
compared the AIC value for each. We tested this model comparison method using synthetic data from each
type of stochastic model for eight different growth systems and illustrated the effectiveness of the technique
when using the results of the deterministic AIC value together with information about the growth models
themselves and the parameter estimates. In this section, we use the model comparison methodology on
longitudinal data collected from algae growth.

In a paper by Banks et. al. [9], longitudinal data was collected from four replicate population experiments
with green algae, formally known as Raphidocelis subcapitata. Four beakers were initially seeded with 1L of
Bold’s Basal Media (BBM) and then conditions were set to maintain a chemostat steady-state equilibrium
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Figure 10: These figures depict the results of the model comparison methodology outlined in Section 4 for
the Logistic Growth Model RDE Data, Bernoulli Growth Model RDE Data (β = 1.5), Bernoulli Growth
Model RDE Data (β = 3), Gompertz Growth Model RDE Data, Dynamic Carrying Capacity RDE Data,
Power Law RDE Data, von Bertalanffy RDE Data, Exponential Growth RDE Data, and Exponential Linear
Growth RDE Data. For each type of growth model, the “model” from the candidate models as indicated by
the AIC values is displayed.

system, constant volume, sufficient oxygen supply, and homogeneous state; details on the experimental
collection process can be found in [9]. Two measurements for each of the four replicates were taken twice a
day at 9 am and 5 pm daily which were averaged to minimize human measurement error for a total of 36
data points. The data is depicted in Figure 11.
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Figure 11: This figure shows the averaged longitudinal data from two measurements each of four replicates
of Raphidocelis subcapitata.

We assume the data comes from one of the twenty four different stochastic growth models discussed in
this paper, CTMC, SDE or RDE logistic, Bernoulli, Gompertz, dynamical carrying capacity, power law,
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exponential or exponential-linear growth models. Note that regardless of which type of stochastic model
we assume is the ‘true’ model (CTMC, SDE or RDE), we approximate the stochastic model with the same
deterministic model (see Table 1). Given an appropriate statistical model for the data, we can then carry
out the inverse problem formulation and use the results in the appropriate formulation for AIC. Therefore,
the first step is to determine an appropriate statistical model. In Figure 12, we show modified pseudo
measurement error plots (Equation (41)) for each of the average population data sets for varying values of
γ. There is a fan pattern for both γ = 0 and γ = 1.4. We choose γ = 0.8 for our statistical model.

Figure 12: These figures show the modified pseudo-measurement errors (Equation (41)) versus time for the
algae population data (Figure 11) with different values of γ where the modified pseudo measurement errors
use a second-order difference-based approximation (Equation (40)).

We also must modify the formulation for AIC for this data. In the original formulation of AIC, it is
assumed that the sample size is sufficiently large; thus, if the sample size is not sufficiently large relative to
the number of parameters which must be estimated, the AIC may perform poorly. In [16], it was suggested
that the AIC only be used if the sample size N is at least 40 times as large as the total number of estimated
parameters. For small sample sizes, we must modify AIC to account for the small sample size, AICc. We
use the least squares formulation of AICc as given in [8],

AICc = AIC +
2(κq + 1)(κq + 2)

N − κq

where κq are the number of parameters in the model and N is the total number of data points.
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Table 2: AICc and Weights for Model Comparison Results for Algae Data
Pop Data Log Bern Gomp Dyn Carr Cap Power von Bert Exp Exp Lin

1 AIC 251.61 243.61 241.65 300.55 285.76 291.97 373.26 285.76

wi 0.005 0.271 0.724 0 0 0 0 0

2 AIC 264.49 264.71 263.81 300.04 286.36 343.26 361.73 286.36

wi 0.303 0.272 0.426 0 0 0 0 0

3 AIC 266.85 266.91 266.23 302.38 289.30 348.96 364.26 289.30

wi 0.300 0.291 0.409 0 0 0 0 0

4 AIC 272.91 273.80 273.57 305.85 294.22 343.68 365.37 294.22

wi 0.424 0.272 0.304 0 0 0 0 0

We give the results in Table 2 with the lowest AIC highlighted in red. We note that when comparing
the deterministic model approximations, in three of the four population sets, the AIC values indicate the
Gompertz model is the best model out of the set of candidate models to describe this data. In addition to
reporting the AIC value, we also calculate Akaike weights which give a normalized relative likelihood of each
model. To define the weights, we first define AIC differences ∆i(AIC) [16, 27],

∆i(AIC) = AICi −AICmin,

where AICmin denotes the minimum calculated AIC value across all candidate models and the term AIC
will refer to AICc in this case. Akaike [2] indicates that the likelihood of model i given data set y is

proportional to exp

(
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)

; therefore, it can be used as an indication of the relative strength of evidence

for each candidate model. Normalizing the relative likelihoods, the Akaike weights wi(AIC) are defined by
[8, 16, 27],
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where K is the number of candidate models (eight in our case). We note that the weights of all candidate
models sum to 1, so the weight gives a probability that each model is the “best” model. We observe that
except for the first population data set, there are almost equal weights between the logistic, Bernoulli and
Gompertz models. In the first population data set, β is estimated to be 0.06 for the Bernoulli model while
for the other population data sets, β is between 0.4 and 0.56. Since these values are small, it could further
indicate that the Gompertz stochastic model is the “best” model for this data set since these models are
related through a limiting process.

We plot a hundred simulations of each of the resulting stochastic Gompertz models, together with the
algae data, in Figure 13. In the CTMC and SDE models, we assume mean values for the estimates of a and
κ in the model. For the RDE model, we assume both a and κ are random variables, A ∼ N (µa, σ

2
a) and

K ∼ N (µκ, σ
2
κ) where µa, σa, µκ and σκ are estimated using the methodology outlined in [12]. We note that

each of the stochastic models have similar trends when compared to the data. It is unclear, however, which
particular type of stochastic model might be “best” to describe the data. We further note that assuming x0

is a parameter might further change the overall fit for the models.
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Figure 13: The first plot and second plots show 100 simulations of the Gompertz CTMC and SDE models
respectively using the average parameters value estimates of â = 0.0275 and κ̂ = 4428. The third plot
shows 100 simulations of the logistic RDE model when assuming R ∼ N (µR, σR) and K ∼ N (µK , σK) with
estimated values µR = 0.0275, σR = 0.0017, µK = 4432 and σK = 170.

7 Conclusions and Final Remarks

In this paper, we have extended the methodology developed in [11] for comparing two nested stochastic mod-
els to a methodology which can be used for an assortment of models, not necessarily nested. Continuous-time
Markov chain models, stochastic differential equations and random differential equations can all be approx-
imated by appropriate deterministic models. In this paper, we have shown how one can first approximate
a stochastic model by an appropriate deterministic model, together with a correct statistical model given
a particular data set, and then use the Akaike Information Criterion for deterministic models to develop
insights into the potential best model from the set of candidate stochastic models.

We have illustrated first using simulated data, how this method when used with the resulting parameter
estimates and relationships between the candidate models, provides accurate results for the majority of our
simulations. We then used this methodology on multiple sets of experimental algae data. Together with
the AIC values, AIC weights, parameter estimates and relationships between the models, we illustrated
the feasibility of this methodology on experimental data as well. Thus, we have developed a methodology
which can be used to discern the “best” model from a set of candidate stochastic models of the same type
(for example, a set of candidate CTMC models). In the future, one might investigate how to develop a
methodology for determining the “best” type of stochastic model, i.e., is the continuous-time Markov chain
model, stochastic differential equation model or random differential equation model the best type of model
for the data?
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