NASACONTRACTOR REPORT

ADAPTION OF EVOLUTIONARY PROGRAMMING TO THE PREDICTION OF SOLAR FLARES

by Lawrence J. Fogel, Alvin J. Owens, and Michael JWalsh

national aeronautics and space administration e Washington, d. C. - april 1966

ADAPTION OF EVOLUTIONARY PROGRAMMING TO

 THE PREDICTION OF SOLAR FLARESBy Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 5-3907 by GENERAL DYNAMICS/CONVAIR San Diego, Calif.
for Goddard Space Flight Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

[^0]Page
INTRODUCTION 1
DISCUSSION 3
CONCLUSION 68
BIBLIOGRAPHY 72
ADDENDUM 75

Introduction

Evolutionary progranming vas originally devised as an alternative means for addressing some fundamental problems of artificial intelligence. In contrast to the bionic approach and heuristic programming, evolutionary programming does not attempt to replicate human performance, either biological or psychological. Instead, attention is focused upon the logic of Darrinian evolution as a means for generating a suitable logic for overcoming a wide variety of proplems, as witness the survival of living organisms. The advent of high speed digital computers makes such replication practicable. Success in this regard may be expected to enhance our ability to analyze and understand the real-world.

Evolutionary programming was first restricted to problems of predicting binary environments. Demonstration of a considerable level of success in predicting certain difficult environments, such as the primeness of each successive positive integer, justified offering evolutionary progranming as a means for the prediction and analysis of real-world time series. An unsolicited proposal by General Dynamics/Convair resulted in Contract NAS 5-3907 which was conducted under the cognizance of Dr. J. Lindsay and Nr. W. White of Goddard Space. Flight Center/NASA. The assigned task included the following:

Prepare various time series of known mathematical properties by utilizing the computer programs and mathematical analysis developed in the reported previous research.

Offer these time series to the evolutionary prediction program as "environments". with the requirement that each next symbol be predicted prior to its "observation".

Imploy various mutation noise random number sequences in order to furnish information from which it will be possible to provide explicit statements concerning the limits of predictability of these "control environments".

Submit time series data taken from actual measurements, provided by GSF'C, to the evolutionary prediction progran so that a careful report can be made of limits of their predictability.

Perform additional studies concerned with the precoding of such empirical data in order to facilitate application of the evolutionery technique.

Employ various methods which are intended to extract the underlying "signal" from the available data. These will include both deterministic and statistical properties.

Frmploy the services of a consultant to assist in making statistical comparisons of the results obtained with the evolutionary prediction technique to those obtained by conventional statistical means.

The intent of this contract was to develop a new technique for computation which would prove suitable for the analysis and prediction of sequences of measurements and for the identification of logical dependencies which might otherwise have gone unnoticed.

During the time of this contract research was also conducted by General Dynamics/Convair under contract to the Office of Naval Research. This report also includes some of the results of this contract in that these contributed to the clarity and completeness of presentation.

Discussion

Work under this contract began with the preparation of an evolutionary program having up to 8 -symbols in either the input and output alphavets. This program was written in Fortran and symbolic language suitable for operation on the IBM-7094. Before describing this program in some detail it is well to review the fundamental concepts involved.

In essence the evolutionary program carries out a fast-time simulation of some of the logical aspects of natural evolution, at each point retaining the "organism" which appears most fit to cope with the given task. The organism takes the form of a mathematical entity which depicts a particular logic for transforming a sequence of input symbols into a sequence of output symbols. A "parent" organism is scored in terms of its ability to accomplish the desired "decision-making" on the besis of evidence at hand. This organism is mutated to yield an "offspring" which is then given the same task and scored in a similar manner. That organism which demonstrates the greatest ability to perform the required function is retained to serve as parent of a new offspring. Thus, non-regressive evolution proceeds to find better and better logical "programs" for attacking the problem at hand. At some point in real-time, or whenever a sufficiently good "program-machine" has been found, an actual decision is made. Such an evolutionary search for a most appropriate logic for the required decision-making is conducted each time new information is received.

To fulfill this sinulation it is necessary to choose some mathematical representation for the organism. For the sake of simplicity the organism was allowed to take the form of a finite-state machine, that type of logical transduction which is specified in terms of a finite
alphabet of possible input symiols, a finite alphabet of possible outnut symbols, and some finite number of possible different internal states. In order to identify such a machine each of these states must be described in terms of those symbols which would energe from the machine when the machine is in that state and receives each each of the possible input symbols. To illustrate, a three-state machine is shown in Figure 1. The alphabei of input symbols is comprised of 0 and 1 while the output alphabet is comprised of α, β, and γ (as a matter of convention, input symbols are shown to the left of the virgule, while output symbols are show to the right). As shown in the "state-diagram", an input of 1 to the machine while it is in state B will cause the machine to output an α, and change its internal state from B to C. On the other hend, the input symbol 0 causes an output symbol γ and the machine remains in state B. Thus, a sequence of input symbols is transformed into a sequence of output symbols as show in Table 1, assuming that the machine is in state C when the first input is received. Obviously the output sequence would in general be different had the machine been in another "initial state". A finite-state machine, therefore, is completely specified by the state-diagran and an identification of its initial state (that state in which the machine is found when it receives the first symbol of the input sequence under consideration). It is assumed that the machine acts only when an input symbol is received and that this operation is without error and alweys completed before the next input symbol is received.

Present State	C	B	C	A	A	B
Input Symbol	0	1	1	1	0	1
Iext State	B	C	A	A	B	C
Output Symbol	β	α	γ	β	β	α

Figure 1
A Finite-State Machine

Now suppose that it is desired to predict each next value in a sequence of measurenents. In other words, at each point in time the object is to devise an algorithm which will operate on the sequence of symbols thus far oiserved in order to produce an output symbol which is likely to agree with the next symbol to emerge from the sensed environ mert. To accomplish this, as arbitrary finite-state machine, M_{0}, is exposed to the sequence of symbols which have thus far emerged from
from the environment. As shown in Figure 2, each output symbol from the machine is compared with the next input symbol, the percent correct score being a measure of the "ability" of this machine to predict the already-experienced environment on the basis of each sequence of preceding symbols, reference Table 2.

Figure 2
Machine M_{0}

Table 2

Present State	B	A	C	C	C	C	B	C	C	B	A	B
Input Symbol	2	2	1	0	1	3	3	0	3	0	1	2
Output Symbol		1	2	1	0	1	1	0	0	1	1	1
Error Cost		1	1	1	1	1	1	0	1	1	0	

The flirst row of this table indicates the sequence of states of the machine as it responds to the sequence of input symbols shown in the second row. State B was arbitrarily assumed to be the initial state. The most recently experienced symbol is shown to the immediate left of the vertinal line, while the symbol to the inmediate right of this line is the symbol to be predicted. The third row shows the sequence of symbols resulting from the transduction. Note that these symbols are show each displaced one position to the right in order to facilitate comparison. The output symbol show to the right of the vertical line is then this machine's prediction of the as yet unknown symbol.

The last row is generated by referencing the goal which is expressed in terms of an error-cost matrix, $A=a_{i j}$. For this example, $a_{i j}=0$ if $i=j$, and $a_{i j}=1$ if $i \neq j$. The "cost". of each transaction is found from the error-cost matrix; i referencing the machine output, and j referencing the next symbol of the input sequence. A measure, P_{i}, of the ability of the machine to predict each nexi symbol is calculated by summing the cost of the error and dividing this sum by the number of terms. Thus, the average cost of the errors of machine M_{0} is found to be

$$
P_{1}=\frac{\text { Sun of the Error Costs }}{\text { Number of Terms }}=\frac{8}{10}=0.8
$$

An "offspring" of this machine is then produced through mutation, that is, through a single modification of the "parent" machine in accordance with some mutation noise distrioution. The mode of mutation is determinea by the interval within which a number selected from a random number table lies. The intervals are chosen in accorciance with a probability
distribution over the permitted modes of mutation. Additional numbers are then selected in order to determine the specific details of the mutation. Thus the offspring is made to differ from its parent either by an output symbol, a state-transition, the number of states, or the initial state. In the case of a 2-symbol environment, a deterministic procedure can be used to replace this type of mutation. As each symbol from the environment is predicted on the basis of the preceding symbols, score is maintained of the relative frequency of success of each statetransition. A predictive-fit score of greater than 0.5 can then be ensured by the reversal of output symbols on those state-transitions which were "more often wrong than right". For example, the offspring of M_{0}, M_{1}, might appear as shown in Figure 3 where the two differing output symbols were set deterministically.

Fisure 3. Machine M_{1}

Table 3 indicates the evaluation of the prediction capability of tinis machine over the same sequence of experience (this being termed the "recall").

Table 3

Present State	B	A	C	C	C	C	B	C	C	B	A	B
Input Symbol	2	2	1	0	1	3	3	0	3	0	1	2
Output Symbol		1	2	1	3	1	3	0	3	3	1	2
Error Cost	1	1	1	1	1	0	0	0	1	0		

The resulting average cost of the errors, P_{I}, is found to be 0.6 . This offspring, therefore, demonstrates a superiority over its parent with respect to the given task, hence the original parent, M_{0}, is discarded and the offspring, M_{1}, is retained to serve as a parent. If machine M_{1} had a predictive-error in excess of 0.8 , it would have been discarded and the next evaluated ofispring would be generated by mutating machine M_{0}.

At any point in tine the remaining machine can be used for actual prediction. As seen in Table 2, the machine M_{0} had predicted that the next symbol to emerge from the environment would be a 1 . This was incorrect. Table 3 indicates that the machine M_{1} correctly predicted the next symbol to emerge from the environment. The risk associated with each prediction is roughly related to the average of the errors in "predicting" the past.

Machine H_{1} is now used to parent succeeding offspring which are evaluated over the sane recall. Thus the evolution continues in fasttime in preparaition for an actual prediction. Such prediction may take place periodically, aperiodically, or upon request. It may be made whenever the average score in "preaicting" the past has fallen below some specifieả value, when some prechosen number of offspring have been evaluated, or when an appropriate number of generations have occurred.

Of course, in general, the longer the time interval before each prediction, the greater the expectation of success. Similarly, the greater the speed of the computer facility (increase in the number of evaluated. offspring) or the larger the available menory (increase of their permissible size) the greater the evolutionary prediction capability.

The process continues in this same manner. After each actual prediction the remaining machine serves to generate successive offspring. In essence, the evolutionary program provides two processes: there is the iterative mutation and selection of machine...a continual search for that decision-logic which would have been "best" had it been used in the past, and there is the read-out procedure which carries the remaining machine one step into the future to yield an actual prediction whenever such a prediction is required. If it should happen that sone of the data from the environment are found to have been in error, it is only necessary to make the appropriate changes to correct the recall.

The goal, as referenced above, was expressed in terms of a particular set of costs associated with each of the possible correct and incorrect preaictions of the next symbol to emerge from the environment. Note that the goal is not restricted to this set. For example, if the goal is to minimize the magnitude of the error of the prediction of each next symbol, the elements of the error-cost matrix would talse the values $\dot{a}_{i j}=(i-j)$. If it is desired to minimize the mean squared error of such prediction the elements would become $a_{i, j}=(i-j)^{2}$. Of, if "a miss is as good as a mile", the error matrix should have equal non-zero off-diagonal terms and zero on the diagonal. In lact, iry there is some greater worth associated with correctly predictiņ a certain symool, this can be reflected
in the cost matrix expression of the goal. For example, the goal expressed in Table 4 indicates that it is mosi important to properly predict the symbol 0 , less important to correctly predict the symbol 1 , and least important to correctly predict the symbol 2. At the same time, this goal expresses the fact that it is more desirable to err by predicting a 1 when the actual symbol is a 0 as opposed to predicting a 0 when the actual symbol is a 1 . The relative worth of each possible outcome is expressed in such a statement of goal. And there is no additional cost in using such a complex goal. As each output symbol of the machine under evaluation is compared to the next symbol which actually emerged from the environment, reference is made to the given goal matrix. The sum of the associated costs provides the desired measure of the worth of the particular machine in terms of its ability to predict the sequence of symbols which have already been experienced. In general, then, the sequence of machines which will evolve will be a function of the goal. Further, there is no need to restrict the evolution to a single invariant goal. If the goal is changed as real-time experience proceeds, the sequence of retained nachines will gradually reflect the change of goal. Of course, all that has been said concerning goals expressed in the form of penalty matrices applies equally well if the goal is expressed in the form of pay-orf matrices.

Table 4
Predicted

		0	1	2
	0	0	3	4
	1	4	1	4
	2	4	4	2

The evolutionary technique offers even greater versatility. For example, the desire to predict each second symbol in the future can be satisfied simply by scoring each offspring in terms of the correspondence between its output symbols and those symbols which emerge from the environment two symbols later. By the same token, appropriate scoring of the offspring permits the prediction of any particular future symbol, the average of some set of future symbols, or inaeed, any well-defined function over the future.

Note that the evolutionary program as described above is suitable for the prediction of multivariate enviroments. The symbols of the sensed parameters of the environment may be combined into a new alphabet of symbols which describes the environnent in an unambiguous manner. The resulting predictions are made in the same alphabet so that they may be interpreted in terms of separate predictions for each of the parameters. Of course, the number of symbols in such a languages rises rapidly as a function of the number of variables. However, in principle, there is no restriction.

But the purpose of evolutionary prograrming need not be restricted to prediction in any sense. For example, problems of interdiction may be addressed by cormering the input variable derived from the environment with another parameter of the environment which exists concurrently but can only be measured in retrospect. Here is the case of diagnosis. A number of parameters of the systen under consideration are measured. The intent is to determine some other paraneter which is not open to imrediate measurement.

Note that in the case of interdiction the input and output languages of the evolving machines might be different. The input symbols may be individually associated with a set of possible stimuli; the output symbols with a set of alternative responses, and the goal is to optimize the performance with respect to some well-defined evaluation of the response. A distinction need no longer be made between prediction and the translation of the prediction into a response. The evolutionary program recormends each action in the light of its expected over-all worth with respect to the given goal.

In greatest generality, a goal is completely specified only if it includes a statement of the relative inportance to the decision-maker of each point in future time and there is a complete penalty or payoff matrix expressed for each point in the future. To this point, it has been tacitly assumed that the importance function of the goal-seeking entity has been restricted to a single point in its future time. That is to say, if the concern is to predict the next symbol no importance is associated with the second symbol into the future, or for that matter with any other symbols farther into the future. In principle, it is possible to accept a more complex importance weighted expression of goal in that each offspring can be continued to yield its prediction over the indefinite future. Each of these can be translated into their relative worth. Once the actual environment becomes known, the evaluation of the logic is then found by corbining these metrics by means of relative importance weighting. Note the importance of having available actual information concerning the environment. The prediction of sequences of symbols becomes of interest in situations wherein measurements of the environment can only be raede at certain times. In its most general form
evolutionary prograrmint provides a means for seeling any well-define goal in a manner consistent with the allowable costs. Each offspring is evaluated in terms of its ow total worth as an organism... the value of its sequence of actions in the light of previous circumstances is degraded by the cost of its very existence.

Efficiency of the simulated evolution can be inproved in a number of ways. For example, any available information concerning the underlying logic of the environment can be used effectively by translating this logic into the form of a finite-state machine which would express a proper logic for the desired decision-making under such environment. This machine may then serve as the initial machine. If this "hint" is reasonably correct, the evolution ray require fewer generations to attain the same score. If it is incorrect, this introduction of "false" information in no way precludes solution of the problem, although it may be expected to reduce the efficiency of the procedure.

By the same toren, the evolutionary technique permits the examination of "tentative results" at any point during the process. If a sufficiently worthwhile design has not yet evolved, the evolution may be reinstituted using as the initial machine the previously resulting machine. In this manner the procedure may be extended until some suitable goal-directed complexity-costed "organism" has evolved or the available expenditure has been exhausted.

The maxim of parsimony may be directly incorporated into the evolutionary procedure by increasing the penalty of each machine by a measure of its complexity. The amount of this penelty may be influenced by the particular charecteristics of the conputer facility upon which the simulation is to be carried out. For example, the penalty for complexity
might take the form of a constant times the number of states in the machine under evaluation. If the available memory is severely restricted, it might be desirable to use a constant multiplied by the square of the number of states or some other suitable expression. In any case, the procedure should restrict the offspring from growing to size beyond the available memory of a computer. In general, the cost for complexity may take any form so long as its value may be directly computed from the specification of the machine.

If the environment is primarily statistical in nature, it is reasonable to suspect that a smaller machine will provide a suitable representation for the decision logic. Such a machine may characterize conditional dependencies and because of its small size have considerable statistical validity associated with each transition. On the other hand, such a small machine might present an over simplified "view" of a complex deterministic environment. It becomes evident that the penalty for complexity provides a parameter which can be adjusted over a scale ranging from a purely statistical view to a purely deterministic view of the environment. The investigator can have the selection of this parameter at his disposal. However, if his decision is made on insufficient grounds, he may have imposed an unnecessary restriction on the evolutionary capability. If is, of course, possible to provide a procedure which will continually optimize the cost for complexity as the program is exercised on the environment. For example, this procedure might include the comparative evaluation of a pair of machines prior to the generation of each offspring. The "functional-fit" (average cost of the error) indicates which of tlesse machines is most suitable. Rererence to its penalty for complexity as compared with that of the other machine furnishes a basis
for its suitable modification. Thus, as the evolutionary program proceeds, it should continually revise its "opinion" as to the nature of the environment; this ranging over a scale from purely statistical to purely deterministic.

Thus, at each point in time, the evolutionary technique provides a nonregressive search through a domain of finite-state machines under the constraints imposed by the available computation capability for that machine which is most likely to achieve the given goal. This search may be viewed as a selective random walk, a "hill climbing" procedure, in a hyperspace defined to include the finite-state machines and an additional coordinate on which is measured the average cost of the error score. The danger of becoming trapped on a secondary peak can be overcome by permitting rultiple mutation, with the multiplicity being a function of the difference in the average error score of successive generations. Thus, as the search nears a peak greater and Ereater "attention" may be devoted to generating more radical offspring in the hope of striking a point which may lie higher on the slope of another peak.

In general, a suitable choice of the mutation noise can increase the efficiency of evolution. For example, an. increase in the probability of adding a state generates a wider selection of larger machines which should benefit evolution against a complex environment. In fact, the probability distribution over the modes of mutation can be made to depend unon the evidence acquired within the evolutionary process itself. Thus, an experienced greater relative frecuency of success for, say, changing the initial state might be made to increase the probability of this mode of mutation.

Evolutionary programing can be used even in the face of nonstationary environments because it provides an iterative search for a "best" logic. But selection of only the single best logic may be an overly-severe policy. Certainly all those offspring which demonstrate a significant "decision" capability in their evaluation over the recall characterize the environment in some meaningful manner. Why not mimic natural evolution and save the best machines at each point in time? In general, the "best" offspring is most likely to give rise to a superior offspring, thus it should receive most attention in terms of mutative reproduction. Lower-ranked offspring may be regarded as insurance against gross nonstationarity of the enviroment. The distribution of mutative effort may well be in proportion to the normalized evaluation scores. Evaluated offspring are inserted into the rank order table of retained offspring and a generation is said to occur whenever an offspring is found which has a score equel to or greater than the score of the best machine. All of the retained machines need not lie on the slopes of the peak. which is identifled by the best machine. Thus, saving the best few offspring may maintain a "cognizance" over several peaks, with the relative search effort being distributed in proportion to the expectation of significant new discoveries.

The recombination of individuals of opposite sex appears to benefit natural evolution. By analogy, why not retain worthwhile "traits" which have survived separate evaluation by combining the best surviving machines through some genetic rule; muta'ing the product to yield offspring? Note that there is no need to restrict this mating to the best two surviving "individuals". In fact the most obvious genetic rule, majority logic; only becones meaningful with the combination of more than two machines.

It is always possiŋこe to draw a sincle state-diagram which expresses the majority logic of an arraj of fintte-state machines. Each state of the majority logic machine is the composite of a state from each of the original machines. Thus the majority machine may have a number of states as great as the product of the number of states in the original machines. Each transition of the majority machine is described by that input symbol which caused the respective transition in the original machines, and by that output symbol which results from the majority element logic being applied to the output symbols from each of the original machines. To illustrate, Figure 4 indicates three original machines and their individual probabilities of success, p_{i}. The initial state of each machine is indicated by a short arrow pointing to that state. The output of these machines is to be combined through a majority logic element which weights the importance of each output by the demonstrated probability of success of that machine. The resulting majority machine is shown in Figure 5.

So long as there are only two original machines the weighted majority logic machine reduces to the better of these two machines. A more interesting situation occurs when there are three original machines, these being rani-ordered so that $p_{1} \geq p_{2} \geq p_{3}$. In the $2-s y m b o l$ case, in view of the above described deteministic output symbol reversing technique, these scores cannot be less than 0.5 ; therefore, it will always be true that $p_{1} \leq p_{2}+p_{3}$. Because of this inequality the weighted majority machine reduces to the simple unweighted majority machine.

The score for the majority machine, p, can be expressed as the sum of the ways in which success can be attained, that is,

$$
p_{M}=p_{1} p_{2} p_{3}+p_{1} p_{2} q_{3}+p_{1} q_{2} p_{3}+q_{1} p_{2} p_{3}
$$

Figure 4 Individual machines to be combined

Figure 5 The resulting majority logic machine
where q_{i} is the pronability of failure, so that $p_{i}+q_{1}=1$. This expression can be simplified to

$$
p_{1}=p_{2} p_{3}\left(1-2 p_{1}\right)+p_{1}\left(p_{2}+p_{3}\right)
$$

Now the majority machine is only of velue if $p_{M} \geq p_{1}$. That is if $p_{M}-p_{1} \geq 0$. Substituting yields the inequality

$$
p_{2} p_{3}\left(1-2 p_{1}\right)+p_{1}\left(p_{2}+p_{3}\right)-p_{1} \geq 0
$$

This relationship can be expressed in graphical form for specific values of p_{1} and solved for maximum value oi p_{1}. Figure 6 shows the regions in which pairs of values of p_{2} and p_{3} yield a $p_{M} \geq p_{1}$ for these values of p_{1}. Table 5 indicates the corresponding values for the maximum $p_{M^{*}}$

The Maximum p_{M}	$\frac{\text { Table } 5}{\text { Related to Specific } p_{1}}$
$\frac{p_{1}}{0.6}$	$\frac{\text { Max } p_{M}}{}$
0.7	0.648
0.9	0.784
0.99	0.972
	0.9997

This same procedure can be used for the evaluation of the benefit to be achieved through a majority logic element over any number of original nachines; however, the required calculations rapidly become cumbersome. Further, for lawe numbers of original nachines it becomes worthWhile to eramine the behavior of the weightec majority logic machines as opposed to the simple majority logic machine. Clearly, this opens the door to many new possibilities. For example, it might prove fruitful to explore the combining of the best machines of several dififerent

Figure 6. Majority Logic Improvement Domains
generations in the hope of finding a model of the models which had this far proven to be "most successful".

Thus fan it has been tacitly assumed that each offsoring is to be evaluated over the entire available experience. Obviously, this is not always the best policy. For exanple, if the environment changes its statistical properties it may be better to restrict the recall to some past sequence of symools in order to enhance the probability of finding a most suitable decision logic for the present. In the face of complete ignorance concerning the logical construction of the environment, the choice of a particular length of recall might prove to be disastrous. It is, however, possible to use a procedure similar to that which was suggested above for determining successively more appropriate values for penalties for complexity. At each point in time, two or more machines are evolved cver different recall lengths and their individual worth is compared resulting in a means for determining the next lengiths of recall to be considered. So long as possible, the complete experience should be retained so that the recall length may be allowed to frow if this appears to be desirable. The probler becomes increasingly difficult with the recoriction of the available memory to the point where the only alternative is "slide"; that is, keeping the recall length fixed.

All of these procedures which are intended to increase the efficiency of evolution offer a danger if the environment is interactive. An intelligent adversary might discover the specific procedure and use this lnowledse to construct an obverse strategy.

Significant dirficulties are encountered in attempts to express the principles of evolutionary programing in terms of conventional
matheratics. The succession of finite-state machines which are considered is dependent upon the statistical process of mutation and upon the environnent. Thus, any formal representation of the process would have to be restricted to a special class of environments. But the very point of evolutionary programming is its versatility. Here is a procedure which includes a random process in order to generate a neverending sequence of alternative hypotheses concerning suitable logic and decision-making, However, information from this source is selected in the light of the given goal and the experienced enviroment.

Classical techniques for decision-maling are based on the presumption that the environment is independent of the decision-maker and that the environment is stationary or can be viewed as stationary through a simple transformation. Neither of these classical assumptions is required for evolutionary programming. Its worth is achieved through the inheritance of logical properties and through the extensive search made possible by the advent of high speed digital computers.

The narrative description of the logical flow of an 8-symbol evolutionary program can better be followed by referring to Figures 7,8 , and 9. In order to properly identify each computer run the input data is first read-in and printed-out. The initial trial machine is then exercised over the recall in order that the experience gained can be utilized in deterministically setting the output for each state-imput pair so that a minimum machine score over the recall is attained. This is done by detemining that output of those required for each state-input pair winch results in the smallest error sub-score for each transition. Error terns are determined by reference to the goal matrix. The output

LOGICAL FLOW OF AN EVOLUTIONARY PROGRAM

FIGURE NO. 7

LOGICAL FLOW OF AN EVOLUTIONARY PROGRAM (CONTINUED)

FIGURE NO. 9
for a state-input pair not erercisea over the recall is set to that symool which has so far been experienced most frequently. Next, the error score for the trial machine is computed over the recall by reference to the goal matrix. The penalty factor (in it is to be considered) is now added to the error score.

Next a test is made to determine whether or not the specified number of machines have been remembered. If not, the trial machine is stored in the computer memory.

A probability distribution by means of range intervals for selection of the next machine to be nutated is then computed in the following manner: the reciprocals of the error scores are summed. (The error score is understood to be the sum of the error sub-scores for each state-input pair plus the penalty factor, if applicable.) Each reciprocal is divided by this sum in order to obtain normalized scores. Range intervals are calculated as the cumulative sum of the normalized scores. The range interval associated with each stored machine is inversely proportional to its ernor score.

The machine to be mutated is detemine by a random number R (where $0 \leq R<1$) falling within the range interval associated with a stored machine. The selected machine is moved to the trial area.

Selection of a mutation type is determined by a random number falling within'a mutation type distribution interval which was read in as invut data. After the trial machine is mutated a test is made to determine whether or not an additional matation is to occur. If so, mutation type seleciion and rutation occurs as described. If on the other hand, no furiner mutuion is regured, a transfer is made to that portion of the orogran winerein the output symbol for each state-input pair is set deterministically.

Attention is returned to the test which detemines whether or not the specified number of rachines has been stored. Assuming the required nu:ber of rachines has been remembered, a comparison is made of the trial score and the lareest score of the remembered machine scores. If the trial score is less than or equal to the largest score of the stored machines, that machine is replaced by the trial machine.

A further comparison is then made of the score of the trial machine and the smallest score of the remernbered machines. If the trial score is less than or equal to the smallest score, a generation is said to have occurred. A comnarison of the number of generations occurring since the last prediction is made with the maximum number of generations pernitted per prediction (a number read in as input data). If the maximum permitted number of generations per prediction has been attained a prediction is required.

The last. knom synhol of the recall together with the final internal statn of the triel machine having tinc lowest oxnor score, a suate-ingut par, is usec as input in stimulating the machine for an actuel precisction of the next symbol.
i. corparicon of the wreci.ctech sumol with the next symbol to merce from the enviroment as well as other pertinent information is then written as output.

The next test devermines whether on rot cata processing is to continue. If not, the progran temmintes. Hoveron, if further prediction is required, e test is made to determine whether growth or slide is desired. Growth dictates adins the latest symbol to energe from the enviroment to the recall with corresponding adiustment of the error scores of each remeribered machine to include the error term:
would appear that this last increase in the noise level (from 39.67 in Experiment 4 to $43.8 ;$ in Experiment 5) resulted in significantly degraded prediction of the environment.

Figure 12 indicajes the degree of correspondence between the sequence of predictions and the signal in these experiments. Note that arter the first 76 predictions the signal was predicted in Experiment 5 as well as it was in Experiment 4 in spite of the fact that a larger percentage of the signal-symbols had been disturoed. This may be due to the fact that in the last experiment the symbols remained closer to the original signal. Such "consicieration" for the magnitude of deviations is a result of using a distance-weignted error matrix, in this case the weighting being the magnitude of the symbol difference. In essence this choice converts the nominal scale of symbols to an ordinal scale.

It is of interest to examine each of the predictor-machines as representations of the periodic properties of the environment. The characteristic cycle for any finite-state machine is found by starting it in its initial state tocrether with the first symbol of the recall then driving it by each of its successive output symbols until the output sequence is periodic. All or the characteristic cycles in Experiment 2 were eight symools in length. The first 73 corresponded perfectly with the pattern of the signal but this "insight" was lost in the la'er predictions which were in error by one or two symbols. Aftex the $14^{\text {th }}$ prediction the characieristic cycle remained 13576430 .

The higher noise level. of the third experinent resulted in characteristic cycles of varying length until the $26^{\text {th }}$ prediction. From then on until the $70^{\text {th }}$ prediction the characteristic cycle remained
maximum number of permitted rutations has been attained. If so, a transfer is effected to σ, othervise, a transfer is effected to β. Consider again the test for the comparison of the number of generations since the last prediction with the marimum mumer of generations permitted per prediction. Assuming the maximum has not been attained a transfer is effected to a test of the number of mutations per prediction attained and the Iogic proceeds as before.

Unless otherwise indicated all of the following experiments started with the same aribitrary five-state machine, see pigure 10. The recall was permitted to grow with experience starting with 40 symbols before the first prediction. The penalty for complexity was chosen to be 0.01 times the number of states in that machine. Single, double, or triple mutation of each parent-machine occurred with equal. probability and a maxinum of 40 offspring or ten generations were permitted before each successive actual prediction.

The first set of 8-symbol experiments concerned the prediction of an environment composed of a cyclic sigmal created by repetition of the simple pattern 13576420 which was disturbed by increasing levels of noise. With the environment consisting only of the undisturbed signal (Experiment 1) the evolutionary technique discovered a perfect one-state predictor-machine within the first eighteen evaluated ofispring. The environment for Experiment 2 was generated by corrupting this signal by the equally-likely addtion of +1 or -1 to certain symbols, these being identified by skipping a number of symbols from the last disturbed symbol in accordance with the next digit drawn from a uniformy distributed random number table. Quite arbitrarily, addition to the symbol 7 and subtraction from the symbol 0 .were assumed to leave these symbols undisturbed. Thus, 82.5% of the symbols were left undisturbed.

The Arbitrary Initial 8-Symbol Machine

Figure 10

As shom in Figure 11, 59.3; of the first 81 predictions were correct, there being only 6 errors in the last 30 predictions. During the evolution 3,241 different offspring were evaluated, the predictor-machines growing in size to eight states.

The environment of Experiment 3 was obtained by disturbing the enviromment used in Experiment 2 once again in the same manner. Thus, 28.9% of the symbols were disturbed by $\pm 1,1.5 \%$ were disturbed by ± 2; leaving 69.6\% undisturbed. As shown in Figure 11, 39.5% of the first 8I predictions were correct, there being a general increase in score in the last 20 predictions. During the evolution 3,236 different offspring were evaluated, the predictor-machines growing in size to fifteen states.

The environment for Experiment 4 was obtained by disturbing the environment used in Experiment 3 again in the same manner. Thus, 37.0\% of the symbols were disturbed by $\pm 1,2.5 \hbar_{j}^{f}$ were disturbed by ± 2, and 0.1% were disturbed by ± 3; leaving 60.4% of the symbols undisturbed. As shown on Figure 11, 23.5\% of the first 81 predictions were correct. During the evolution 3,214 different offspring were evaluated, the predictor-machines growing in size rather steadily to nineteen states.

The environment of Experiment 5 was obtained by disturbing a randomly chosen 50% of the symbols in the signal. Thus, 43.8% of the symbols were disturoed by ± 1 (the difference being due to the adopted rule concerning acdition to 7 and subtraction fron 0): leaving 56. 2 if undisturbed. As show in Figure 11, 22. \mathcal{L}^{\prime}, of the first 81 predictions were correct. During the evolution 3,195 differen's offspring were evaluated, the predictormacinines growing in size somewhat irregularly io seventeen states. It

EVOLUTIONARY PREDICTION OF THE ENVIRONMENT

generated by the additional transduction of the new, longer recall. Slide requires not only the above additions but also the discard of the first symbol of the recall and the subtraction of the error term associated with the first transduction of each remembered machine.

After either growth or slide have been accomplished a test determines whether or not the last prediction was correct. If the prediction was correct, a transfer is effected to σ, that portion of the program predicting the next symool to emerge from the environment utilizing the evolved machine having the lowest score. That is, a correct predictor is retained as a predictor until a prediction error occurs.

If a prediction error occurred, transfer is effected to β, that portion of the program computing the range interval for selection of a machine to be matated.

Attention is directed to the test at location $\mathcal{\eta}$. Assuming that the trial machine score is greater than the largest score of the stored machines, retention of the trial machine is not required and it is discarded. A test is then made to determine if the maxinum permitted number of mutations per prediction has been attained. If not, a transfer is effected to $\mathbb{\alpha}$, that portion of the progrem wherein a machine is selected for mutation. On the other hand, if the maximum jermitted mutations per prediction has been attained transfer is effected to σ.
llote again the comparison of the trial error score with that of the smellest score oit the remempered machines. Assuming the trial error score is the larger, a next test determines whether or not a

EVOLUTIONARY PREDICTION OF THE SIGNAL

FIGURE 12

1357643113576430 , this being in error one syrabol out of every two cycles of the signal. As expected, the result of Experiment 4 was more erratic with the length of characteristic cycle jurming from eight to sixteen symbols and remaining the same after the 73rd prediction. Each of the last 24 characteristic cycles were $62.5{ }_{i}^{j}$ correct. Experiment 5 revealed even greater variability in the characteristic cycles. A majority of these were eight or sixteen symbols in length and reflected the basic pattern of the signal although there was little one-to-one correspondence.

The environment for Experiment 6 was generated by disturbing every symbol of the signal by +1 or -1 with equal probability. At first glance it is surprising to find the prediction of the signal improved as shown in Figure 13, but note that with the disturbance of every symbol one aspect of the randomness of the enviroment was removed. In essence the signal had taken on a new form...the boundaries of the original signal 24677531 or 02465310, each having equal probability at each point in time. In the first 81 predictions this new signal was properly identified 70.4% of the time. In fact, the characteristic cycle of the last predictormachine was 02267731102665331 . Tnis can be seen to lie on the boundaries of the original signal excent for one symbol of every seventeen. In order to provide a basis for comparison the percent correct prediction of the environnent is also show as well as the result of Experiment 5 with respect to the new signal.

It is natural to inquire as to the extent the prediction capability will be degraded by "wild noise" (each disturbed symbol being replaced by a randonly chosen sympol from the input alphabet). The environments of Fiperiments 7 and 8 were generajed by imposing this kind of disturbance on the oniginal signal once and twice, respectively. As empected,

COMPARISON OF EXPERIMENTS 5 AND 6

FIGURE 13
the ability of the evolutionary nrocrai: to predict the environment, as shown in Figure 14, was somewhat poorer than in the comparable Experiments 2 and 3. Figure 15 indicates the degree of correspondence between the sequence of predictions and the signal in these same experiments. Here again the additional degree of randomness within the noise degrades the performance. Carrying this noise to the extreme results in a perfectly random environment which cannot be predicted. Experiment-9 revealed no significant ability of the evolutionary program in its attempt to predict such an enviroment.

The introciuction of randomness always introduces questions of repeatavility. In order to examine this point Experiment 2 was repeated nine additional times, the results being show in Figure 16. As expected, the variability is an inverse function of the score. The second set of experiments were concerned with the prediction of purely stochastic enviroments. Experiment 10 required the prediction of a zeroth-order 8-symbol Narikor environment generated by combining two displayed normally-distributed variables over 5-symbols each to vield the himodal enviroment shom in Table 6. A sample of 269 symbols was generated, this sample having the relative frequencies snow in this same teble. Wioh a penalty-for-complexity of 0.01 per state the predictor-machines grew in size to thirty-nine states. The relative frequency of each symol in the sequence of predictions suitably reilects the relative frequencies show: in the semple. Experinent 11 was conducted with an increase of the renalty-for-complexity in order to decrease the sensỉivituy of tine segnence of predictions to the difierence in the relative frequency of the rodes. With a penalty-for-compleatioy

EVOLUTIONARY PREDICTION OF THE ENVIRONMENT

FIGURE 14

EVOLUTIONARY PREDICTION OF THE SIGNAL

Figure 15

STATISTICS OF EXPERIMENT 2

FIGURE 16
of 0.1 per state the precictor-machines rew in size only to eleven states and, as shom in faile 6, the predictions were in closer correspondence with tine statistics of the environment.

Symbol	Intended Probability	Table 6		
		Relative Treq. of Sample	Exp. 10 Rel. Freq. of Predictions	Exp. 11 Rel. Freq. of Predictions
0	0.0176	0.00374	0.08	0.005
1	0.06785	0.0825	0.115	0.061
2	0.3413	0.299	0.223	0.303
3	0.07925	0.1050	0.058	0.081
4	0.07925	0.0787	0.017	0.015
5	0.34 .13	0.348	0.521	0.520
6	0.06785	0.0637	0.033	0.015
7	0.0116	0.0187	0.025	0

Emperinent 12 required the prediction of a zeroth-order, 4-symbol Kankov enviroment, the arbitrarily chosen probabilities being 0.1, 0.2, 0.3, and 0.4. This information, as prior linovlede, would diciate the continual prediction of the nost probably symol giving the asymptotic score of 40, At the other extreme, perfectly random prediction would have an expected score of $25 f_{j}^{\prime}$. As shom in Figure 17 , the evolutionery score setiled oetveen these extremes thus demonstratins the purposeful extraction of infomation from the previous symbols.

The first ondor erviroment of Expemiment 13 was generated in such a Wey as to proance theoretically the remits shom in Mable 7. Specifically, after an ini"ial arbitrary symbol, each next symol of the envirorment was cenerated utilizing the relative frequency distributions

EVOLUTIONARY PREDICTION OF ZEROTH-ORDER MARKOV ENVIRONMENT

FIGURE 17
of the next symbol fiven a prececing symbol as indicated by the rows of the matrix show in Table 7 where the symbols in the first row are the next symbols following the preceding symools in the left column, The actual environment generated had the transition matrix of relative frequencies show in Table 8.

Table 7

	0	1	2	3
0	0	0.8	0.1	0.1
1	0.1	0	0	0.9
2	0.2	0.1	0	0
3	0	0.1	0.8	0.1

Table 8

	0	1	2	3
0	0	0.822	0.071	0.107
1	0.035	0	0	0.965
2	0.915	0.085	0	0
3	0	0.077	0.862	0.061

The marginal frequencies of this environment were $0.236,0.241,0.249$ and 0.274 , respectively.

With prior knowledge that the process is first-order it would be possible to attain the score of $89.5 \rho^{\prime}$ on the $200^{\text {th }}$ prediction in the manner show in Figure 28. But even without this finowledge the evolutionary prediction technioue attained this same score. Analysis of the sequence of predictions revealed that at the end of this experiment the enviroment was properly characterized by the maximum transition probabilities of each row. Other experiments were conducted on first and second order processes with satisfactory results.

To generate a more difficult environment, the powers of 2 and 3 were rare ordered and reduced modulo 8, thus producing the sequence 12340103001 $03001003010030100300 \ldots$ This erviroment was predicted in Experiment 14.

E VOLUTIONARY PREDICTION OF A FIRST-ORDER MARKOV ENVIRONMENT

Specifically, the problem of rank ordering the powers of 2 and of 3 may be simplified by writing all of the powers in terms of a common base. For example, the powers of 3 may be written in terms of powers of 2 taking $2^{1.584925}$ as an approximation. Since $2^{\mathrm{x}}>2^{\mathrm{v}}$ if, and only if, $\mathrm{x}>\mathrm{v}$ the problem is reduced to one of ordering the positive integers and the integral multiples of 1.584925 . Since this basic exponent is in error by less than $10^{-7}, 10^{7}$ powers of 3 may be considered before an incorrect ordering could occur.

Taking a modulus of this increasing series constrains the numbers to the alphabet available for the evolutionary program. With respect to modulo 8 the power of 2 yield the residues 2 , 4 , followed by 0 's, while the powers of 3 are alternately 3 and 1 . To see this note that $2^{1}=2(\bmod 8), 2^{2}=4(\bmod 8)$ and $2^{3}=0(\bmod 8)$. For $k>3,2^{k}=2^{3} \cdot 2^{k-3}=0 \cdot 2^{k-3}(\bmod 8)=0(\bmod 8)$. Similarly, $3^{1}=3(\bmod 8)$, $3^{2}=1(\bmod 8)$ so that for n even, that is $n=2 k, 3^{2 k}=\left(3^{2}\right)^{k}=1^{k}(\bmod 8)=1(\bmod 8)$; while for n odd, that is $n=2 k+1,3^{2 k+1}=3^{2 k} \cdot 3=1 \cdot 3(\bmod 8)=3(\bmod 8)$.

With respect to modulo 7 , the powers of 2 form the repeating sequence 2,4 , $1,2,4,1, \ldots$ while powers of 3 form the repeating sequence $3,2,6,4,5,1,3$, $2,6,4,5,1, \ldots$ This can be seen by noting that $2^{3}=1(\bmod 7), 2^{3 \mathrm{k}}=\left(2^{3}\right)^{\mathrm{k}}=1^{\mathrm{k}}$ $(\bmod 7)$ and $1^{k}=1(\bmod 7) ; 2^{3 k+1}=\left(2^{3^{k}}\right) \cdot 2=1 \cdot 2(\bmod 7)=2(\bmod 7)$ while $2^{3 k+2}$ $=\left(2^{3 k}\right) 2^{2}=1 \cdot 4(\bmod 7)$. Similarly, since $\left.3^{6}=1(\bmod 7), 3^{6}\right)^{k}=1^{k}(\bmod 7) ; 3^{6 k+1}$ $3=3(\bmod 7) ; 3^{6 \mathrm{k}+2}=3^{6 \mathrm{k}} \cdot 3^{2}=3^{2}(\bmod 7)$ and $9=2(\bmod 7) ; 3^{6 \mathrm{k}+3}=3^{6 \mathrm{k}} \cdot 3^{3}=27$ $(\bmod 7)$ and $27=6(\bmod 7) ; 3^{6 \mathrm{k}+4}=3^{6 \mathrm{k}} \cdot 3^{4}=81(\bmod 7)$ and $81=4(\bmod 7) ; 3^{6 \mathrm{k}+5}$ $=3^{6 \mathrm{k}} \cdot 3^{5}=243(\bmod 7)$ and $243=5(\bmod 7)$.

Therefore, to form the sequence of residues modulo 8 it is only necessary to order the integers and the integral multiples of 1.584925 , that is, the sequence 2,4 , followed by all 0^{\prime} s is inserted in successive positions corresponding to the integers
while the repetitive sequence 3,1 , . . is inserted in the successive positions corresponding to the multiples of 1'584925. Similarly, for modulo 7 the integer sequence $2,4,1,2,4,1$, . . is interlaced with the sequence $3,2,6,4,5,1$, 3 , . . . which corresponds to the multiples of 1.584925 . The resulting sequences are not periodic although sub-periods are embedded throughout. This lack of periodicity results since in higher multiples of 1.584925 the successive decimal digits influence the integral part and thus upset any pattern imposed by the more significant digits.

After the first 300 predictions (Experiment 14) the percent correct score reached 88.7. 1,401 different offspring were evaluated using an "all-or-none" error matrix. (All off-diagonal elements have a value of 7 and all main diagonal elements a value of 0 .) The predictor-machines were generally of six states. In order to avoid the reduction to 3 symbols in the latter portion of the sequence, the powers of 2 and 3 were rank ordered reduced modulo 7 yielding the sequence 1234122641425411243122461424512143122461 . . . After the first 216 predictions (Experiment 15), the percent correct score was 56.6, this being found through the evaluation of 3,671 offspring, which were generally of about twenty-one states. The score for the last fifty predictions was 78\%. Certainly the prediction capability was far better than chance would yield. Prediction of this sequence based on the most probable symbol up to each point in time yields a score of only 8.5%

Fith the capability of the evolutionary procram demonstrated, pilot eaperiments vere conducted in order to predict solar flare data as found in IGY Solar Activity Report Series, Pumber 17, dated May 1, 1962, (Vorld Data Center A, High Altitude Observatory, University of Colorado, Boulder, Colorado). Analysis of these data reveals that there were about 1.75 importance 3 flares, 7.75 inportance $2+$ flares and 63.3 importance $1+$ flares for every importance $3+$ flare occurring in 1957. Relative to this same datum, there were 0.5 importance $3 *$ flares, 1.125 importance 3 fiares, 5.375 importance $2+$ flares, 7 importance 2 flares, 26.75 importance 2^{-7} flares and 42 importance $1+$ flares in the year 1958. A suitable data base was arbitrarily taken to include flares of importance 2^{-}and greater, these being encoded into an 8 -symbol language by doubling the importance number and counting + as an additional unit. The enviroment contained no temporal information other than the order of flare occurrence.

In the first experiment, a magnitude-of-the-difference error-weight payoff matrix was used: That is to say, a prediction of the importance of each next flare is based upon the importance of the preceding flares and their temporal order with the penalty for incorrect predictions being equal to the magnitude of error. Forty flares were taken as the initial recall. Of the first 300 predictions $57.7_{\%}^{\%}$ were correct, these predj.ctions being made by a one-state machine which quickly evolved to demonstrate the statistical dominance of importance 2^{-} flares and that inportance 3 flares are best predicted by persistence (that is, they may be expected to be followed by another flare of similer importance).

In order to evaluate the significance of this result, another computer program vas written which would predict these same data on the basis of the maximum marginal probability, the maximum first-order conditional probability, the maximum second-order conditional probability, and any of these with the program choosing that one which had highest score up to that time. After the first 300 predictions, these conventional techniques showed scores ranging from 55.4% up to 56.1%; this highest score being achieved by the maximum marginal predictor. Thus, it would seem that the evolutionary program had discovered a suitable logic for prediction in that its score was slightly superior than this score. Unfortunately, this ability is not considered to be significant because no particular capability has been demonstrated for the successful prediction of the more important flares.

To improve this situation, the error-cost matrix was made to reflect a linear weighting favoring the more important flares, as show in Table 9. Another experiment was then conducted.

Table 9

	2^{-}	2	2	3	$3+$
2^{-}	4	5	6	7	7
2	5	3	4	5	6
$2+$	6	4	2	3	4
3	7	5	3	1	2
$3+$	7	6	4	2	0

As a result, within the last 50 predictions, 18 of the 27 importance 2^{-}filares, 2 of the 12 imoorvance 2 flares, one of the 8 inoortance

 predicted. It would anpear that the evolutionary profram was still not placing sufỉicient veichs on the rejative importance of correctly predicting the large flares.

To further improve the situation, another experinent was performed on these sane data but with the error cost matrix show in Table 10.

Table 10

	2^{-}	2	$2+$	3	$3+$
2^{-}	9	10	11	12	13
2	11	4	5	6	7
$2+$	12	6	2	3	4
3	13	7	4	1	2
$3+$	14	8	6	3	0

A penalty of 0.01 was used. Analysis of the results reveal that 26.8% of the 2^{-}fianes mere cornectlir jredicted, 45.1\% were incorrectly predictea as jeins of imporvance 2, 2^{4}. Ef: were incorrectly predicted as importance 2^{-1}, $1.7 ;$ were incorrectly predicted as being of importance 3 and 2.3% reme inccrrectly precicted as inportance $3+$. Of tine importance 2 flares minct occurred, 23.1% were incorrectly predicted as importance 2^{-}, 57. N, were comectiy prediated, 18.5% wore incorrectiv predicied as being $2+$, anc 17.4 ; ierc incorrecivy predicted as beins 3 . Of the importance $2+$

 $27.3 ;$ yere comectij nreaieted, and 2.3% were incornecily predicted as
beine of importance 3. OE the imporiance 3 flares wich occurred, 50\% were incorrectly predicted as beins 2^{-}, 23% were incorrectly predicted as being 2 ana 25_{i}^{\prime} were correctly predicted. Of the importance 3^{+-}flares which occurred, $16.7 \%_{j}^{\prime}$ were incorrectly predicted as being 2^{-}, 50% were incorrectly predicted as being 2 and 33.3% were incorrectly predicted as being $2+$.

It is apparent that further adjustment of the error cost matrix is desired; however, the adjustment of the error-cost matrix already achieved. demonstrates a siçnificant improvement in that the predominance of the least importance flares is mitigated as a factor in determining the sequence of predictions. In general, this revised description of the goal Generally encourages false alarms as opposed to missed flares. No further effort was made to improve the prediction of these data in view of the practical importance of predicting both the magnitude and the time of occurrence of each next flare.

At this point attention was therefore focused upon the problem of finding a more suitable data base, one mich micht increase the probabilita゙ of correct prediction of large flares by considering each previous flare only within the context of directly relevant data. An attempt was made to sroup the above referenced flare data by location into the associated plage bư a suitiable quanititaive criterion was unavailable. Upon hearing of this difficultu tiss D. Wotter of the Hicin Altitude Onservatory, Boulder, Colonecio, fumished a serie: on revort entitsed "Solar Activity Summary" (5, $0-42$ through $: 100-34$, excen fon FHO-4C), coverine the time period from
 ance present uctuiar catic concerning major flares and the accompanying radio noise. Unfortunately, the regions are sicnificanily large so that they may simultaneously contain a number of separate plases. Niss Trotter was kind enough to soparately jdenitiy the moveth numbers for the piages within each
recion; hovever; it would be $\overline{\text { iffinicult }}$ if not impossible to separate the flare data contained in these reports into the associated plages in successive rotations. Further, fov flares are reported within each specific listing.

As a result of a request to Mr. D. Robbins of MASA/Houston, the draft of a forthcoming report on the solar activity for Calendar Year 1956 was received and copied (the original being returned to him). This repori catalogues plage data, ilare data, sun spot data, and additional terrestrial effects. Analysis of these data allowed the compilation of the data contained in Table 17 which lists the plage family, individual plage data, and flare data within that plage. Specirically, the plage family number designates a particular plage which may survive several rotations of the sun. For example, plage family 2 was first identified. with Mcl.ath plage ""4355 winch was later identified as plase 4440 , then as plage 4445, and lastly as plage 4i83. Throrghout this history from Jenuary 11.5 throunh April 4.5 (CPP Gr. Day) a total of 12 flares were separately idertified, these rencing in im, ortance from I through 3. lost of the finilies rere less suitably identified in terms of the number of flanes orer thouch some existed for many more rotations.

In order to attack this problem, attention was turned to "Ilational Pureau of Standards List of IGY flares with Mormalized Valued in Importance find Area" by C. S. Marrich, Series "̈ll, dated líay 1, 1962. This report covers the same tire eriod as the above reference data and was e:amined in detail in the hone that a more compete listing of the associajed flares could ice obtained. Unrortunateiy, becisions or mery of the

Table 11

Plage McM. CMP Mean MeanAve. Max. No. Age In Identi- Gr. Beg. End Max Family Plage No. Gr. Day Long. Lat. Int. Area Flares Rotation fication Day UT UT UT Imp. Position

Table 11 (Cont'd.)

9	4449	12	316°	N12	2.5	9500	31	3	4410	Mar	0030	0042	0034	1	N11E12
										11					
	4449									$\begin{aligned} & \text { Mar } \\ & 12 \end{aligned}$	0024	0233	0037	$2+$	N08E02
10	4465	22.5	177°	N21	3	7000	66	1	NEW	26	0036	0040		1	N21W50
	4465									Mar	1833	1922	1838	2	N20W85
										28					
	$4465{ }^{\text {' }}$.								29	1630	1637	1632	$1+$	N21W90
11	4469	$\begin{aligned} & \mathrm{Mar} \\ & 25 \end{aligned}$	144°	N25	3	6000	19	1	NEW	29	1447	1507	1449	1	N26W70
12	4476	28.5	98*	S12	3.5	15000	90	2	4442a	$\begin{aligned} & \text { Mar } \\ & 23 \end{aligned}$	0947	1445	1005	3+	S14E78
	4476									Mar	0944	1421	1000	$2+$	S16W20
										30					
	4476									$\begin{aligned} & \text { Mar } \\ & 31 \end{aligned}$	0005	. 0036	0014	2	S17W22
	4476									Mar 31	0038	0130	0052	2	S08W23
	4476									$\begin{aligned} & \text { Mar } \\ & 24 \end{aligned}$	1607	1643		1	S15E57
	4476									$\begin{aligned} & \text { Mar } \\ & 25 \end{aligned}$	0557	0626	0603	2	S15E50
	4476									$\begin{aligned} & \text { Mar } \\ & 27 \end{aligned}$	1534	1710	1552	2+	S16E23
	4476									$\begin{aligned} & \text { Mar } \\ & 28 \end{aligned}$	1703	1904	1714	2+	S15E09
13	4478	30	78°	S22	3	6000	29	2	4438	$\begin{aligned} & \text { Mar } \\ & 28 \end{aligned}$	1030	1152	1038	2	S24E26
	4478									$\begin{aligned} & \text { Mar } \\ & 29 \end{aligned}$	2042	2131	2047	2	S24E21
	4478									$\begin{aligned} & \text { Mar } \\ & 29 \end{aligned}$	1819	- 1915	1823	2	S24E08
14	4493	9.5	300°	N16	3	5000	34	2	4453	$\begin{aligned} & \text { Apr } \\ & 07 \end{aligned}$	1010	1215	1025	3	N14E32
15	4508	$\begin{aligned} & \text { Apr } \\ & 21.5 \end{aligned}$	141°	S21	3.5	7500	30	1	NEW	$\begin{aligned} & \text { Apr } \\ & 21 \end{aligned}$					
16	4519	26	349°	N09	3.5	6000	6	1	NEW	$\begin{aligned} & \text { Apr } \\ & 30 \end{aligned}$	b 1932	2015	1940	$1{ }^{+}$	N10W50
17	4530	3	82°	S15	3.5	11000	77	1	NEW	$\begin{aligned} & \mathrm{Apr} \\ & 30 \end{aligned}$	a 1930	2005	1940	$1{ }^{+}$	S17E27
	4530									$\begin{aligned} & \text { May } \\ & 1 \end{aligned}$	2115	2241	2130	3	S18E15
	4530									$\begin{aligned} & \text { May } \\ & 5 \end{aligned}$	0356	0457	0415	3	S18W29
18	4548	15.5	184°	S21	3.5	13000	49	2	4516	$\begin{aligned} & \text { May } \\ & 15 \end{aligned}$					
	4598	$\begin{aligned} & \text { June } \\ & 11.5 \end{aligned}$	187°	S20	3	7000	10	3	4548	June 05	1615	1656	1631	$2+$	S18E69
	4636	08	$196{ }^{\circ}$	S22	3.5	8000	42	4	4598	June	1712.5	1722.5	1717.5	1-	S23E32
										04	1747.	1755	1750	1-	S23E32
19	4596	10	207°	N28	3.5	10000	30	1	NEW	$\begin{aligned} & \text { June } \\ & 10 \end{aligned}$					
	4634	07.5	$203{ }^{\circ}$	N28	3	9000	23	2	4596	June 07	0020	0414	0110	$3+$	N25W08
	4634									$\begin{aligned} & \text { June } \\ & 12 \end{aligned}$	2317	2330	2330	1	N26W78
20	4597	10	207°	N43	3	7000	77	1	NEW	$\begin{aligned} & \text { June } \\ & \text { io } \end{aligned}$					
21	4607	$\begin{aligned} & \text { June } \\ & 18 \end{aligned}$	101°	N12	3.5	7000	52	3	4563	$\begin{aligned} & \text { June } \\ & 14 \end{aligned}$	2112	2146	2118	1	N14E38
	4607									June 19	0940	1210	1010	3	N14W21

Table 11 (Cont'a.)

Table 11 (Cont'd.)

34	4743	9.5	$76{ }^{\circ}$	N17	3	6000	17	1	NEW	Sept					
35	4750	14.5	11*	S10	3	9000	20	2		09 Sept	0728	0938	$\cup 830$	3	S11W53
3							20			18	0728	058	U830	3	S11ws3
36	4764	20	299°	N23	3.5	6000	22	3.4	4711°	Sept					
										20					
37	4777	24	245°	N30	3	3000	7	1	NEW	Sept	2046	2108	2054	1 -	N32W66
										28					
38	4781	30	166^{*}	S10	3.5	7500	22	1	NEW	Oct	2143.	2201	2148	1	S06W38
										02					
39	4806	Oct	27°	N13	3.5	3000	6	2	4748	Oct	1510	1528	1522	1 -	N12E25
		10.5								08					
40	4826	20.5	255^{*}	S02	3.5	6500	50	1	NEW	Oct	2316	0127	2330	$2+$	S04W22
										21.					
	4826									Oct	1432	1801	1457	$2+$	S05W57
										24					
41	4829	22.5	$229{ }^{*}$	S10	3	9000	36	2	4779	Oct					
										22					
	4877	18	240°	S12	3	11000	4	3	4829	Nov	0036	0207	0046	3	S19E51
										14					
42	4838	Oct	163^{*}	S30	2	2000	5	1	NEW	Oct	1655	1803	1728	1	S32E50
		27.5								23					
43	4849	Nov	71°	S15	3	6000	49	1	4817	Nov					
		3.5								03					
	4897	Nov	75°	S18	2.5	12000	31	3	4849	Nov					
		30.5								30					
	4934	28	73°	S17	3.5	10000	48	4	4897	Dec	0545	0730	0624	$2+$	S15E66
										23					
	4934									Dec	1656	1741	1703	3	S18W54
										31					
44	4851	3.5	71°	N08	3	5500	11	1	NEW	Nov					
										03					
45	4883	24.5	154°	S12	3.5	12000	34	1	NEW	Nov	1607	1907	1621	3	S11W08
										24					
46	4884	25.5	141°	N22	3	6000	33	1	NEW	Nov	1857	1909	1859	1	N18W12
										27					
	4884									27	2354	0020	2356	1	N19W19
47	4898	Dec	55°	N15	2.5	7600	8	3,4	4854	Nov	2240	2308	2250	1-	N13E22
		02								30					
	4898									Dec	1642	1735	1654	1	N10W90
										09					
48	4911	Dec	316°	N 16	3	9000	31	1	NEW	Dec					
		09.5								09					
49	4913	12	$283{ }^{\circ}$	S03	3.5	9500	. 69	3	4873	Dec	0219	0306	0221	2	N01E20
										10					
	4913									Dec	1312	1514	1318	1	S03E18
										10			1428		
	4913									Dec	1545	1612	1550	1-	S02E00
										11					
	4913									Dec	1640	1707	1647	1-	S02E10
										11					
	4913									Dec	1705	1745	1720	$1-$	S02E00
										11					
	4913									Dec	1802	1842	1812	2	S02E00
										11					
	4913									Dec	1850	1917	1857	1-	S02W02
										11					
	4913									Dec	1930	2012	1933	2	S02E02
										11					
	4913									Dec	1229	1547	1304	2-	S03W08
										12					
	4913									Dec	2.535	1550	1538	1-	S04W49
										15					
	4913									Dec	1040	1115	1041	1	S04W82
										17					
50	4905	Dec	$9 *$	S07	2.5	3000	5	I	NEW	Dec	1740	1755	1745	$1-$	S07W88
		5.5								11					
51	4919	15	$2+4{ }^{3}$	N10	3	5000	10	1	NEW	Dec	1855	1927	1900	$1+$	N07W35
										17					
52	4936	29	59 9°	N 16	3.51	15000	30	4,5	4898	Der:					
										29					

able for determining the particular extent and shape of the plage at the time of the considered flare. To illustrate, flare "it5464 shown to occur at 5801140732 I7S34W was judged to fall outside of the relevant plage domain even though it is only about 10 degrees away from the expected position.

Table 12 indicates those flares which appear to have been associated with the second plage family. All of the flares indicated to exist within this family in Table 17 were not exactly identified. Further, certain discrepancies were noted between the listings furnished by Robbins and Warwick. In any event, these data appeared to be unsuitable as a basis for prediction because of the significant absence of that half of the information which is generated on the far side of the sun. In view of the present difficulty in obtaining such information, it was considered more suitable to examine data which occurs within a single crossing of the solar disc in greater detail in the belief that information derived during passage over the eastern hemisphere will prove helpful in the prediction of proton events which might occur as a result of flare activity in the western hemisphere. The scarcity of such events in the eastern hemisphere indicates the need for additional data in terms of other parameters such as plage age, shape, intensity, the nature and number of sunspots, magnetic intensity, etc. A search was made for such data on a dally basis or even for cach 6 hour time interval. A review of the literature revealed a recent Russian book on the forecasting of solar activity. As a matter of interest the table of contents, chapter 3 , and the conclusion were translated and are included in this report as an addendum.

At the suggestion of Dr. C. Warwick, contact was made with Dr. F. Ward of AFCRI, who indicated that the Air Force is presently devoting about seven

Table 12

$\begin{gathered} \text { FLARE } \\ \text { NO. } \end{gathered}$	YR	MO	DA	FIRST BEG	$\begin{aligned} & \text { LAST } \\ & \text { END } \end{aligned}$	$\begin{aligned} & \text { COR } \\ & \text { IMP } \end{aligned}$	AREA SQ DEG	MEAN	
								LAT	CMD
5296	58	01	07	0304	0313	1-	.7	18S	41 E
5297		"		0315	0322	1-	1.5	16 S	45E
5298		"		0413	0434	1-	1.5	16S	44 E
5299		1		0858	0905	1-	-	17S	45 E
5303		"		1820	1939	2-	8.6	16 S	39 E
5311	58	01	08	0141.	0151	1-	1.5	13S	48 E
5315		"		0751	0800	1-	1.0	14S	42E
5318		"		1731	1746	1-	. 8	18S	44 E
5322		"		1935	1941	1-	. 3	12 S	33E
5323		"		2008	2013	1-	. 4	16 S	41 E
5336	58	01	09	1029	1038	1-	3.5	17S	32 E
5337		"		1116	1143	1-	1.4	19S	29 E
5343		"		1506	1524	1	2.8	10S	25E
5344		"		1525	1552	1-	2.4	13S	25 E
5348		"		1546	1552	1-	. 4	12S	23 E
5352		"		1930	1947	1-	. 6	15 S	28 E
5353		"		2142	2202	1-	. 5	11S	20 E
5365	58	01	10	0843	1000	1	1.8	16S	17E
5373		"		1106	1151	1-	2.0	15S	11 E
5375		"		1321	1342	1-	1.3	14S	18E
5381		"		1628	1644	1-	. 6	15S	07E
5387		"		2120	2145	$1-$	2.6	13S	11 E
5388		"		2212	2222	1-	. 7	15S	04E
5397	58	01	11	1657	1717	1-	1.4	12S	01W
5398		"		1722	1742	1	2.6	16S	03W
5399		"		1810	1836	$1-$	-	15S	01W
5401		"		1902	1947	1	4.6	11S	04W

Tablel2 (continued)

$\begin{gathered} \text { FLARE } \\ \text { NO. } \end{gathered}$	YR	MO	DA	FIRST BEG	$\begin{aligned} & \text { LAST } \\ & \text { END } \end{aligned}$	$\begin{aligned} & \mathrm{COR} \\ & \mathrm{IMP} \end{aligned}$	AREA SQ DEG	MEAN	
								LAT	CMD
5402	58	01	12	0630	0651	1	2.9	18S	09W
5403		"		1236	1248	1-	2.2	16 S	15W
5410		"		1424	1527	1-	1.4	11S	12W
5411		"		1443	1453	1-	. 4	18 S	14W.
5417		"		1927	1935	1-	. 6	17S	16W
5439	58	01	13	2037	2047	1-	1.1	11S	40W
5444		"		2215	2232	1-	. 6	11 S	41W
5446		"		2232	2241	1-	. 6	14S	42W
5450	58	01	14	0034	0041	1-	. 4	15S	43W
5454		"		0140	0148	1-	. 4	15S	43W
5457		"		0230	0238	1-	. 6	16 S	52W
5460	"	"		0301	0306	1-	. 6	15S	44W
5462		"		0543	0608	1-	-. 6	14S	44W
5465		"		0955	1010	1-	-	15S	44W
5468		"		1351	1400	1-	1.5	13S	41W
5470		"		1540	1755	1+	3.6	16S	43W
5472		18		2142	2215	1	1.8	18 S	42W
5473	58	01	15	0056	0106	1	. 5	115	58W
5476		"		0500	0641	1	3.4	13S	53W
5478		1		0747	0755	1-	1.3	13S	55W
5481		11		1017	1032	1	1.6	135	54W
5485		"		1640	1757	3-	8.5	145	58W
5489		"		2056	2102	1-	. 8	12S	65W
5490		"		2106	2118	1	. 6	10S	66 W

Table 12(continued)

Flare				FIRST			AREA	ME	
NO.	YR	MO	DA	BEG	END	IMP	SQ DEG	LAT	CMD
5890	58	02	09	1330	1501	1+	6.7	20 S	01W
5900	58	02	10	0834	0845	1-	-	22 S	08W
5908		"		1256	-	1-	-	215	11W
5913		"		1540	1617	1-	2.0	22 S	14W
5916		"		1900	1907	1-	. 4	17 S	23W
5926	58	02	11	0745	0817	1-	1.9	20S	25w
5932		"		0915	0919	1-	. 6	17S	38W
5934		"		0941	1035	1-	. 9	19S	46W
5985	58	02	13	1018	1110	1+	3.8	18S	49W
5997	58	02	14	1223	1231	1-	. 7	16 S	57W
6003	58	02	15	0158	0216	1	-	15 S	67W
6006		"		0711	0732	1	. 8	22S	72W
5896	58	02	09	2108	2302	2	13.5	11S	15W
5916	58	02	10	1900	1907	1-	. 4	17 S	23W
5937	58	02	11	1319	1342	1-	1.0	23S	25W
5938	58	02	11	1342	1542	1+	5.4	22S	27W
5958	58	02	12	0937	1012	$1+$	4.9	21S	35W
5902	58	02	10	0917	0918	1-	-	13S	69W
5909		"		1320	1411	2-	3.5	13S	65W
5915		"		1900	2030	$1+$	3.1	12S	64W
5928	58	02	11	0820	0836	1	. 4	13 S	80W
5946		"		2237	2247	-	. 8	18S	86W
-				-		-		-	
\bullet				-		-		\bullet	
-				-		-		-	

men full time to the task of collating, coding and keypunching astrophysical data as this might relate to solar flares. This work is in conjunction with that of National Bureau of Standards and information is being drawn from observatories here and abroad. It was anticipated that this information will be available in about six month's time. However, until then, Dr. Ward preferred to keep these data undisclosed and undisturbed. At his suggestion, and at the suggestion of Dr. Warwick, contact was made with Dr. R. Howard of the Mount Wilson-Palomar observatories.

A meeting with Dr. Howard revealed that although a considerable number of measurements are currently being taken on the magnetic field strength in the vicinity of solar activity, the resulting data is not considered to provide a sufficiently valid data base in view of gaps and inaccuracies. A review was made of the suggested data reduction technique in which information derived from IGY Solar Activity Report Series \#12, dated 25 June 1960, "McMath-Hulbert Observatory Working List of IGY Flares" by Helen W. Dodson and.E. Futh Hedeman, was used in conjunction with the CRPL-F Part B solargeophysical data in an effort to provide a consistent tabulation of plages in terms of their individual history. That is, the former listing provides an identification of each flare together with its McMath plage number. The latter provides an identification of the previous McMath plage number on the listed plages. The hope was to separate plages in terms of their chronology and identify each set of plages as pertaining to the same "underlying source of activity". This attempt at generating a data base failed primarlly because of the incomplete listing of plages in the latter reference and uncertainty associa亡ed with the previous plage in a number of cases. Further, the supervening difficulty of l4-day gaps in the data makes this an unlikely base for meaningful prediction of flare activity.

Dr . Howard suggested that a complete and valid data base can be obtained in terms of the number of sunspots, as listed in "The SunspotActivity in the Years 1610-1960" by Prof. M. Waldmeier. In particular, he suggested that an attempt be made to predict the daily sunspot relative numbers over recent years as well as the Wolf number for the solar disk once every half-rotation and once every rotation. In this manner, the data would have less and less redundancy and should, therefore, become more and more difficult to predict. The prediction itself should reveal the obvious cycles and might indeed provide additional insight.

Data for the years 1957 and 1958 was analyzed in terms of the distribution of the daily number of sunspots and their first differences. These distributions were then partitioned into eight almost equally probable sections, these being $0,131,152,169,186,205,226,252$, and $+\infty$ for the daily number and $-\infty,-24,-12,-6,0,+6,-12 ;-24$, and $+\infty$ for the first differences. A magnitude of the difference error-cost matrix was used with growth of experience permitted for each prediction. A penalty per state of 0.05 permitted only one state prediction machines to evolve. Decreasing the penalty to 0.01 resulted in more explicit descriptions of the apparent logic within the data base. In the next experiment 35.5% of the first 110 predictions were correct and 76.4% of these were correct within one symbol, these predictions being made by machines of increasing complexity ending in a 12 state predictor-machine. This experiment was repeated but with an increase in the length of the initial recall to 150 symbols. This resulted in the evolution of a 13 state machine in the first 40 predictions with 35% of these being correct, 87. 5% being correct within one symbol. A repeat of this experiment with
a change of the random number basis of mutation resulted in a similar 13 state predictor-machine and a score of 27.5% correct, 72.5% of these predictions were correct within one symbol. For the sake of comparison this same environment was given to the Markov prediction program. After 150 predictions the following scores were attained: $0.245,0.231,0.400$, $0.433,0.388,0.390,0.371$, and 0.411 . The first two of these scores were generated by presuming the environment to be a zeroth-order Markov provess. In the first of these each prediction corresponded to the symbol having highest marginal probability. The second score was generated in a similar manner but with prediction deferred in cases of equal probability of two or more symbols. The third pair of scores are generated under the presumption that the environment is a first-order Markov process, the second of these being the result of "conservative" prediction. The third pair were generated under the presumption of a second order Markov process while the last pair was generated by presuming that at each point in time the environment is of that order which has thus far exhibited the highest score over the zeroth-, first-, and second-order presumptions. Comparison of the scores appears to indicate that the evolutionary program had discovered scme of the low order dependencies within the data but did not prove superior to consistently predicting on the basis of the best Markov presumption.

Turning attention to the first difference data base, with an initial recall of 40 symbols and a penalty of 0.01 complex machines of 26 states evolved but with littie success, the percent correct score being 7.65% and 22.4% correct within one symbol. Such scores do not look too bad in comparison to those produced by the Narkov program. After the first 150 predictions these scores were $0.164,0.168,0.145,0.129,0.151,0.180$, 0.108 and 0.100 , these being given in the same order as above.

A new environment was then formed by placing the coded number of sunspots for the first day of each month in sequence. Using a penalty per state of 0.01 resulted in the evolution of a 22 state machine after the first 110 predictions. At this point the percent correct had reached 24.5% and the percent correct within one symbol had reached 47.2%. In comparison the Markov program produced the scores $0.164,0.164,0.278,0.329,0.272,0.247$ and 0.284 after the first 150 predictions. This environment was then converted to first differences yielding 20.9% correct prediction and $4.1 .8 \%$ correct within one symbol. Recognizing that the first day of each month is a rather imperfect measure of the monthly activity level, attention was turned to predicting the sequence of monthly average number of sunspots. Here the evolutionary program produced an 18 state predictor-machine after the first 210 predictions and a score of 26.4% coxrect, 66.3% correct within one symbol. By way of comparison the Markov program produced $0.218,0.218,0.398,0.375$, $0.447,0.432,0.423$, and 0.388 against the above stated presumptions. In general then these experiments tend to demonstrate that there are no significant short term dependencies within the sunspot activity as measured on a daily or monthly basis. These same experiments also indicate that there is no short term periodicity within these same data. At this point it is important to raise a caveat: the data as analyzed by the programs was encoded according to a rather reasonable but otherwise arbitrary rule...maximize the information content in the 8 -symbol sequence of symbols (at least at the marginal level.). If complex physical dependencies exist within the source of the data some other mule might well be required. Further, the encoding is based upon only the sample or real-world data upon which analysis was performed. Taking a broader picture might well afford a new and worthwhile bias. Then too, the data themselves were based upon a reasonable but otherwise arbitrary dictum which combines the observed number of spots and their area into a single measure.

Even with these difficulties clearly defined it appeared reasonable to proceed to develop a 64-symbol evolutionary program in the hope that with the added precision it might be possible to find some otherwise unexpected dependencies. Progress was made in this direction until some recent work by P. D. Jose was brought to our attention. In his paper entitled "Sun's Motion and Sunspots" Dr. Jose demonstrates a strong correspondence between solar activity as measured in terms of Wolf number and the gravitational field on the surface of the sun. For example, he states that the period determined from mechanical considerations is 178.77 years, $\sigma=0.34$ while the period determined from sunspot activity is 178.55 years, $\sigma=1.05$. Certainly this is a strong demonstration of gross correlation. It would appear unreasonable to expect an evolutionary program to find the long term dependencies in view of the shortness of the sample with respect to this period. At the other extreme dependencies may exist within the data but these might best be found through a search for causal relations which relate various physical parameters. At this point in time such data is not available although a project is currently underway at AFCRC (under the direction of Dr. F. Wara) which is intended to draw together all available data in this regard. With such data in hand and with the kind of information which will be received from a solar probe it may be more meaningful to once again attempt to develop a more extensive evolutionary program for analysis of data.

Dr. Fred Ward of AFCRL indicated that his group is nearing completion of the first phase of their task...the compilation of all flare data for the years 1955 through 1964. These data will be ready in about a month in the form of a magnetic tape containing some 80 to 90 thousand flares by time, area, and importance. Every effort is being made to correct the areas reported for each flare but no effort is being made to correct the importance since these are defined in terms of the area. In Dr. Ward's opinion, only the corrected area data has any real validity. In the months which will follow, the data base will be increased to include plages, active regions, magnetic measurements, and sunspots. This more complete data base should be ready in about six months.

Conclusion

Brolutionary programing offers a versatile means for the prediction and analysis of time series. Initial effort under this contract was devoted to the preparation of an evolutionary program suitable for prediction of environments which are described in terms of up to eight different symbols. With this program debugged and documented experiments were conducted to evaluate its capability in terms of predicting environments of increasing difficulty. The first series of experiments concerned environments which consisted of an arbitrary repetitive 8 -symbol length sequence disturbed by increasing levels of different kinds of noise. In fact, in one case the noise was pernitted to become so severe as to completely obscure the repetitive sienal except for its probabilistic shadow. But even in such a case significant prediction was accomplishea and the predictor-machines identified the remaining shadow.

The next series of experiments were conducted against stochastic environments of increasing order of dependency. It soon becane evident that although the implicit memory of finite-state machines can cortribute to successful prediction of higher-ordered Markov processes, the limitation of explicit memoxy to the first conditional depenaency served as a fundamental consiraint. A predicting technique has been developed which provides extended memory to the evolving organism so that it may prove suitable for the predicむion of any finite-ordered Marav process within the available size of the alphabet. lore specificaily, the precoaing consists of identifying each fixed lencth crerlappine suid-sequence of the incoming data with an unique syrbol in a larger alphacet then performine convertional evolution in this nev alphabet.

Having met with success in this resard attention was turned to the prediction of nonstationary environments. For the sake of having an available point of comoarison environnents were constructed which were deterministically generated but did appear to be nonstationary when examined in terms of their statistical properties. In situations wherein this nonstationarity consisted of a gradual trend the prediction achieved considerable success through growth of the recall. Since then further related experiments have been performed in which the environment proceeded in a stationary fashion until some point at which it grossly changed its properties to those of a new stationary process. For sucin environments it is well to Lirnt the recall and at the same tiree extend the menory of the evolving automata. luch remains to be determined concernine these parameters. Beyond this point a number of experiments vere conducted which demonstrated the capability of the evolutionary progran! for the prediction of multivariate environments.

With these results as sufficient justification, attention was turned to the prediction of real-world data. The magnitude and temporal order of solar flares were coded into an 2 -symiol language and predicted with a score slichtly higher than that which was accompished by predicting the same data under the assumption of individual low-order laveov properties. Unforturatel:", the laree flares were so rare in the data base as to preclude their prediction With any significant confiaence. Recognition of the need for greater specificiuy of time of occurrence dictated a fresh orientation in the data base. Obviously, partition of the data base by locale on the solar disli mignt increase the rrediccability of simificant everts throuth the reduction of irrelevant data vithin the data base. A review of the literature revealed a number of significant difficulties. Firs , hale of the data concerning solar activity is missing (presently unobservable). This introduces further defects in the data in that piages which pass beyond the rim cennot always be identified with certainty as bo their return. An atterpt ins race to separase ;iate anc flane ciata in
terms of life span. It was hoped that this procedure would permit constructing a data base comprised of flares or plages which were born while under observation (thus separating the physics of birth from that of later growth decay and burnout). Unfortunately, the data base was insufficient for accomplishing this. An attempt was made to examine correlative parameters such as type and area of sunspots, magnetic field strength, position, etc. But here again difficulty was encountered in finding an internally consistent data base.

This problem was reviewed with a number of specialists in the field of solar physics. At the suggestion of Dr, R, Howard of the Palomar - Mount Wilson Observatory, attention was focused upon sunspot data as published by. Waldmeier. These data provided an adequate time sequence, were single dimensional, and are presumed to be reasonably accurate. The data, classified into 8-symbols in various ways, was predicted by the evolutionary program with results comparable to those obtained by assuming various low-orders of Markov dependency.

A number of experiments were performed in this regard, both on the evolutionary program and on a Markov prediction program. The results indicate that no low-order dependencies in the sequences of symbols which represented daily number, first difference of daily number, first day of successive months, average monthly number, and first difference of average monthly number of sunspots. The prediction capability of the evolutionary program appeared comparable to that of the Narkov program. Although any cyclic properties within the data would be called out by the evolutionery preaicticn program, none was evidenced. Of course, the failure of these experiments to yielo significent results may be due to use of an inappropriate encoding of the real-world data, inadequacy of the sample size, or
errors which rest within the observed data as expressed in terms of Wolf number. Serious consideration was given to the possibility of enlarging the evolutionary program to a 64-symbol alphabet capability until recent work by P. D. Jose demonstrated a strong correlation between solar activity and the gravitational force on the surface of the sun. For example, according to Jose the period determined from mechanical considerations is 178.77 years $(\sigma=0.34)$ while the period determined from sunspot activity is 178.55 years ($\sigma=1.05$). With such strong evidence in hand it is considered inappropriate to search for hidden statistical dependencies at a level of precision which promises to be well within the noise level of the encoding. Murning attention toward short term prediction would require a more adequate data base than is currently available. There is a strong possibility that a currently active project under the direction of Dr. F. Ward (AFCRC) will provide a firm data base for very short term prediction and analysis of solar activity. The significant gaps in current measurements will have to aweit the advent of solar probes.

Bibliography

"The Effect of Disturbance of Solar Origin on Cormunications", edited by G. J. Gassman, The Hacmillan Co., New York, 1963.

Gumbel, E. J., "Statistics of Extremes", Columbia University Press, New York, 1958.

Weiss, L., "Statistical Decision Theory", McGraw-Hill Book Co., Inc., New York, 1961.

Siegel, S., "Nonparametric Statistics for the Behavioral Sciences", McGraw-Hill Book Co., Inc., New York, 1956.
"Time Series", 2nd Edition, Almquist and Wiksell, Stockholm, 1954.
Bharucha-Reid, A. T., "Elements of the Theory of Merkov Processes and Their Applications", Mc-Graw-Hill Book Co., Inc., New York; 1960.

Dodson, H. W. and Hedeman, E. R., "l:cliath-Hulbert Observatory Working List of IGY Flares", IGY Solar Activity Report Series, Ifumber 12, dated June 25, 1960, World Data Center A, High Altitude Observatory, University of Colorado, Boulder, Colorado.

List of IGY Flares with Normalized Values of Importance and Area, IGY Solar Activity Report Series, ITumber 17, dated liay 1, 1962, Norld Data Center A, High filtitude Observatory, University of Colorado, Boulder; Colorado.

Warwick, C. S., "Mormalized Solar Flare Data July 1955 Through June $1957^{\text {" }}$, IGY Solar Activity Keport Series, Iumber 29, dated Ioveraber 16, 1964, High Altitude Observatony, University of Colorado, Boulder, Colorado.

Trotter, D. E. and Roberts, V. O., "Solar Activity Surmary Reports", coverini: 13 January 1953 throusth 2 January 1959, Reports HAO-42, 43, 44, and 45 , High Altituie Ooservatory, University of Colorado, Boulder, Colorado.

Tanner, B.; Trotter, D. E.; and Roverts, N.O., "Solar Activity Surmary Report", coverins 2 January 195y throuch 25 Harch 1959, Report HAO-46, Figin Altitude Ovservatory, University of Colonado, Boulder, Colorado.

Irotter, D. E, and Roberts, W. O., "Solar f.ctivity Reports" covering 25 : iarch: 1959 through 22 December I95\%, isports HAO-47, 49, 50, Hici: Altitude ODservatory, University of Colorado, Botilder, Colorado.

Tanner, D.; Trotter, D. E.; and Athay, R. G., "Solar Activity Surn:ary Seport', coverins 23 Decemiver $19=5$ frouch 13 lianci: 20 , Peport HAO-51, High Altitude ODservatory, UnEversity of Colorado, Boilder, Colorado.

Trotter, D. E. and Roosrts, R. O., "Bolar hctivity Murmary Report", covering 14 l:arch loco whrou: I July 1960 , Report HAO-52, High Altitude Observatory, University of Colorado, Boulder, Colorado.

Tanner, B.; Trotter, D. E. and Roberts, IT. O., "Nolar Activity Report", covering 1 july 1960 throuch 20 Septemer 1960, Report YAO-53, High Altitude Coscrvatory, University of Colorado, Boulder, Colorado.

Henderson, D.; Trotter, D. E., and Poverts, W. O., "Solar Activity Report", covering 20 September 1960 through 7 January 1961, Report HAO-54, High filtituce Ooservatory, University of Colorado, Boulder, Colorado.
"Forecasting Solar Flares: A Reviev of the Wor:- of A. B. Severny in the Feriod 1960-1962", AID Report F-63-43, dated 28 larch 1963, Aerospace Information Division, Library of Congress.

Takahashi, 0., "Statistics of Solar Flares", Part I, Technical Noted under Contract AF 49(633)-637, Instituto Geofisico del Peru, 1962.

Avery, L.; Billings, D. E., "Flare Prediction from Solar Limb Observations", Astro-Georhysical Memoranaum No. 163, High Altitude Observatory, Boulder, Colorado, 5 May 1964.

Vitinski, V. I., "Prognozy Solnechnoi Activrosti" (Forecastine Solar Activity), Izdatel'stvo Akademir Naul: SSSR, Moscow, 1963.

Bucoslavsiayra, E. Ya., "Solar Activity and the Ionosphere", translated by G. O. Harding, Pergamon Press, Jew York, 1962.
"Study of the Aoplication of Perceptrons for Prediction of Solar Flares, Solar Fiare Forecauting Vith a Recognizirs hutonation", Final Report for Phase I Project PiTP, Contract IA. 5 - 2262 , daded January 1964, Cornell Aeronautical Laivoratory, Inc., Siffalo, Nev York.

Waldmeir, M., "The Sunspot Activi'vi in the Years 1610-1960", Zurich Schulthess and Co., A.G., 1961.

Bell, 3. and Kenzel, D. H., "Research Directed Torard the Investigation Of Solar Phenomena", Final Report on Contract AF 19 (604_{4})-4962, dated February 1964, Report AECRL-Gi-275, Air Force Carbridge Research Laboratories, Bedford, Nassachusetts.

Tandoerg-Hanssen, E., "Solar Fiares and the Associated Ejection of Particles", GTAR Report iv 65-15492, Hich Altitude Ooservajory, Boulder, Colorado.

Delastus, H. L. and Menzel, D. H., "Research Directed Toward the Observation and Interpretation of Solar Phenomena", Final Report on Contract AF 19(604)-4961, dated October 1964, Report 1\%o. AFCRL-64-712, Air Force Canbridge Fesearch Labonavories, Bedford, Hassachusetts.

Malitson, H. E., "Predicting Laree Bolar Comic Ray Events", Astronatics and herospece Enginearing, ifarch 2963 , pp. 70-73.

Guss, D. E., "Distribution in Heliographic Longitude of Flares which Produce Energetic Solar Particles", Physical Review Letters, Vol. 13, No. 12, dated̃ 21 September 1964, pp, 363-364.

Gopasyuk, E. I., Ogir, M. B., Severny, A. G., and Shaposinikova, E. F., "The Strecture of lagnetic Fields and Their Variations in the Region of Solar Flares", translated from the Russian by J. W. Palmer and D. K. Gilibey, Library Translation ITo. 1.074, Royal Aircraft Establishment, lifnistry of Aviation, London, F. C. 2, August 1964.

Vedidell, J. B. and Leavell, P. J., "Long Range Prediction of Solar Flares from Calcium Plage keasurenents", Report Ho. SID 63-347, dated March 1963, INorth American Aviation, Inc., Dowey, California.

Shore, B. W., "Usefulness of Solar Outburst Prediction", Journal of the American Rocket Society, IJovember 1962, pp. 1737-1739.

Smith, H. J. and Smith, E. P., "Solar Flares", The Macmillan Co., New York, 1963.

Evans, J. W.; Yu, C.; and Wtte, B., "Prelininary Resulis of Flare Observations from 15 February 1950 to 15 November 1950, Special Report No. 34, under Al'C Contract M19-122AC-17, dated 5 January 1951, Harvard University, Cambriage, Hassachusetts.

Mclish, A. G., and Lincoln, J. V., "Prediction of Sunspot Fumbers", Transactions of the American Geophysical Union, Vol. 30, No. 5, October 1949, pp. 673-685.

Witte, B., "A Contribution to the Study of the Relations Between Solar Flares and Sunspot Groups', Solar Research hemorandurn, 23 October 1951, nervard University, Cambridge, liassachusetts.

Jonah, F. C., Dodson-Prince, A., and Hedeman, E. R., "Catalog of Solar Activity During 1950', Report IIO. CO. 003 , dated 20 Aucust 1964, under contract iAS 9-2469, Linc-remco-Voucht, Inc., Dallas, Texas.

Scler-Geophysical Data, Part I, Reports CRPL-F 156 througa F 179, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado.

Jose, P. D., "Gun's kotion and Sunspots", The Astronomical Journal, Vol. 70, 1\%o. 3, f.pril 1965, pp. 193-200.

Yen, K. T., "On A Solar lociel and Its Laboratory Erperimentation", Report No. Roj-GDC, lissile and Ssace Diviaion, General Electric, Piniladelphia, Eemsilvania, April 1965.

ADDENDUM

FORCASTING SOLAR ACTIVITY

By U. I. Vitinskii

"Prognozy Solnechnoi Aktivnosti." Glavnaia Astronomicheskaia Observatoriia, Izdatelstvo Akademii Nauk SSSR, Moskow, 1963

$$
\cdot
$$

Introduction

Chapter 1 Basic regularities of solar cyclic recurrence
Para. 1 General remarks
Para. 2 Schwabe-Wolf law
Para. 3 Sporer law
Para. 4 Relationship between the Schwabe-Wolf and Sporer laws
Para. 5 Certain characteristics in the development of sunspot groups
Para. 6 Active longitudes
Para. 7 The 22-year sunspot cycle
Para. 8 The 80-90 year sunspot cycle
Para. 9 Nonsymmetric formation of sunspots in the northern and southern solar hemisphere
Para. IO Solar activity fluctuations
Para. 11 Notes on long term solar cycles
Para. 12 Concluding remarks

Chapter 2 Prediction of solar activity one year and several years in advance

Para. I Introduction
Para. 2 The Waldmeier method
Para. 3 Cyclic curve method
Para. 4 Gleissberg method
Para. 5 The latitude method
Para. 6. The S. M. Kozik method
Para. 7 The method of regression
Para. 8 The Mac Nish method
Para. 9 The method of predicting Wolf numbers within an 11-year cycle

Chapter 3 Mean-term predictions of solar activities
Para. 1 General consideration
Para. 2 The Mayot method
Para. 3 Method of predicting quarterly Wolf numbers for the following quarter.
Para. 4 Method of predicting quarterly Wolf numbers two quarters in advance
Pare. 5 Method of predicting average monthly Wolf numbers
Para. 6 Method of predicting observed monthly wolf numbers
Para. 7 Analogy method for predicting quarterly Wolf numbers
Chapter 4 Very long term preaictions of solar activities
Fara. I General remarks
Para. 2 Method of superposition
Para. 3 The Gleissberg method
Para. 4 The A. I. Ol' method
Para. 5 Methods related to the 23-year cycle characteristics
Para. 6 The M. S. Eigenson method
Para. 7 The Shove method
Para. 8 The method of predicting sunspot areas
Para. 9 Concluding remarks
Chapter 5 Predictions of the basic characteristics of the twenty-year cycle
Para. I General consjderations
Fara. 2 The A. IA. Dezrukova predictions
Para. 3 The Minnis predictions
Para. 4 The Gleissberg predictions
Para. 5 The A. I. O1' predictions
Para. 6 The IU. I. Vitinsky predictions
Para. 7 The Baur predictionsPara. 8 Sunmary of results
Conclusions
Reference
Appendix
Table I
Table II
Table III

```
Chapter 3. Fredictions of Mean Term Solar Activities.
```

1.

General Considerations
As already mentioned in the introduction predictions of mean term solar activities shall be meant to cover the prediction of monthly and quarterly solar indexes, within which we shall here limit ourselves to predicting sunspot numbers.

From Tables I and III in the Appendix it can be seen that the quarterly, and especially the monthly, Wolf numbers are very variable quantities. As a result, the task of predicting these numbers is significantly difficult and in the case of fluctuating solar activity the predictions are usually marked by considerable errors.

Unlike the annual Wolf number, which can be predicted several years in advance, the monthly numbers of sunspots (if their smoothed values are not taken into account) can be predicted only one month in advance with the present methods. The situation is somewhat betier with respect to quarterly Wolf numbers. However, all methods for mean-time prediction yield sufficiently high errors so that the probability of these predictions is lower than the predictions of annual numbers of sunspots.

Since a number of methods for predicting quarterly and monthly Wolf numbers are based on the initial idea of the Mayot method we shall start with this very method, even though, strictly speaking, it was initially developed for monthly number of sunspots and, therefore, it should be considered somewhat later.

We note, that Mayot's method was subsequently expanded to the annual Wolf numbers but the probability of the given method, in this case, turned out to be so low that it scarcely deserves any mention.

2. The Mayot Method

In his paper Mayot (1947) starts out with the assumption that Wolf numbers for a number of years can be expressed in form of

$$
\begin{equation*}
I^{\prime}(l)=F(i)+E, \tag{3.1}
\end{equation*}
$$

where $F(t)$ is the sum of trigonoretic or exponential functions, and E a random quantity.

In this case the quantities W_{i} can be expressed by the formulas which take on the form

$$
\left.\begin{array}{l}
W_{i}=a_{1} W_{i-1}+a_{2} W_{i-2}+\ldots+a_{i} W_{0}+\varepsilon_{i} \tag{3.2}\\
W_{i+1}=a_{1} W_{i}+a_{2} W_{i-1}+\ldots+a_{i} W_{1}+\varepsilon_{i+1} \\
\cdot \\
W_{n}=a_{1} W_{n-1}+a_{2} W_{n+2}+\ldots+a_{i} W_{n-i}+\varepsilon_{N} .
\end{array}\right\}
$$

Here, the coefficients a_{1}, a_{2}. . , a_{i} are determined by the method of least square error provided the condition exists' that $\sum_{k=i}^{n} \varepsilon_{k}^{2}$ is a minimum.

Originally, the Mayot method was worked out for smoothed monthly Wolf numbers which differ from the observed numbers in that their fluctuations are significantly less noticeable. For the known data this method gave a very small standard deviation of ± 1.9. However, when it is used for predictions the accuracy of the Mayot method decreases significantly.

Since the suggested Mayot formula for predicting smoothed monthly Wolf numpers appears to be erroneous (Vitinskii, 1956a) we shall not give it here. The correct formula will be given further on in conjunction with the corresponding method for preふicting smoothed monthly numbers of sunspots.

Let us mention here one more circumstance. Mayot attempted to calculate the Wolf number for the same month and obtained a standard deviation of ± 9.2 for the numbers of sunspots for the months of January between the years of 1896 and 1944. However, here too, the error significantly increases when this is applied to predictions. Moreover, in this case, Mayot's basic premise is completely erroneous. The fact is, that the annual variation of Wolf numbers
is far from manifest in all cycles, and at that, it is so weak that it could hardly serve as a guide.

As mentioned earlier, Moyot's method in the case of quarterly and monthly Wolf numbers results in considerable errors. But even though these numbers may deviate to either side by 20 to 25%, owing to the accidental variations of the coefficient k, as we shell see below, nevertheless these errors insure a sufficiently accurate prediction. Therefore, the application of the Mayot method to the mean term predictions appears to be sufficiently justified. As far as the prediction of monthly number of sunspots is concerned Mayot's method appears to be unique.
3. Method for Predicting quarterly Wolf Numbers for the Following Quarter

For the prediction of Quarterly Wolf numbers (for the following quarter) U. I. Vitinskii (1956b, 1960a, 1961c) suggested the following three methods: The regression method, the Mayot method and the modified Mayot method. First let us look at the Mayot method. As already mentioned in the preceding paragraph, in order to apply this method it is first necessary to solve the system of equationsshown in (3.2). Such a system can be solved only if the coefficients of standard equations are sufficiently well developed. Therefore, it is expedient to use data which ends after the period of the maximum of the solar cycle or near to it, since especially during this period the Wolf numbers are sufficiently large and thus can ensure that the stated condition will be fulfilled. U. I. Vitinskii used the Zurich quarterly Wolf numbers for the years of 1944 to 1959. As a result of solving the systems of equations (3.2), the following relationship was obtained which can be used in predicting quarterly wolf numbers for the following quarter:

$$
\begin{equation*}
W_{5}=0.92 W_{4}+0.01 W_{3}+0.25 W_{2}-0.24 W_{1} \tag{3.3}
\end{equation*}
$$

The data for 1945 to 1959 obtained with the aid of the relation (3.3) gave a standard deviation of ± 24 for $\bar{W}_{i}=106$, that is, a relative standard deviation of $\pm 24 \%$. It should be mentioned, that the greatest deviations of calculated quantities from the observed were associated with strong fluctuations of the Wolf numbers. In these cases the relative error was as high as 47%.

The modified Mayot method is also based on Mayots idea, but it differs from this author's ordinary method in that it does not use the quarterly Volf numbers themselves but rather the deviation of these numbers from an average curve. This method was applied with the goal to improve the development of coefficients of standard equations when using Zurich data for the years 1940 to 1955.

The average curve for Wolf numbers was obtained by the following methods. Let us assume that the average lengths of sunspots cycle is about 11 years as is apparent from observations. For such a cycle it is possible to construct an average curve of annual numbers of sunspots using the formula by stewart and Penofski (1.10) with the coefficients $\mathrm{a}=+7.1832$ and $\mathrm{b}=+1.2013$ per Gleissberg (1951a). It will be expedient to start out here with the intensity of the cycle $W_{m}=100$, that is $F=0.3473$. The quantity θ is figured from the period of the minimum of the solar cycle.

If we assume that a and b are constant throughout all cycles, we can normalize such a curve for any concrete cycle on the basis of the ratio of its intensity to $\mathrm{W}_{\mathrm{m}}=100$. The intensity of the cycle will be determined as the average of three annual Wolf numbers taken during the year of the maximum, the year after, and the year after that. The curve for the current cycle was constructed on the basis of predicted numbers with the aid of the method given in Chapter 2. Figure 10 shows examples of such curves for the cycles 17, 18 and 19.

Pinc. 10.

Now, by taking the smoothed quarterly Wolf numbers \bar{W}_{i} from the average curves we can plot the difference between these and the observed numbers of sunspots W_{i}^{\prime}.

$$
\begin{equation*}
\Delta W_{i}=W V_{i}^{0}-W_{i} \tag{3.4}
\end{equation*}
$$

Solution of the system of equation of the form

$$
\begin{align*}
& \Delta W_{i}=a_{1} \Delta W_{i-1}+ \\
& +a_{2} \Delta W_{3-2}+: \cdots+ \\
& +a_{i} \Delta I W_{0}+\varepsilon_{i} \quad(3.5) \tag{3.5}
\end{align*}
$$

by the method of least square we cen obtain then the desired relationship for the prediction of the quantity ΔW_{i}. Let us look at the solution of the system in the type (3.5) with 6 unknowns. The results which will also give the relationship

$$
\begin{equation*}
\Delta W_{7}=-0.61 \Delta F_{0}: 0.17 \Delta F_{5}+0.20 \Delta 1 F_{4}-0.12 \Delta H_{1} . \tag{3.6}
\end{equation*}
$$

The values ΔW_{3} and ΔW_{2} are omitted since they are negligibly small.
By knowing the corresponding quantity W_{i}, obtained from the average curve, we can obtain the desired quarterly Wolf number by the formula

$$
\begin{equation*}
W_{7}=\dot{W}_{7}+\Delta W_{7} \tag{3.6a}
\end{equation*}
$$

The quarterly Wolf numbers for the years 1941 to 1955 obtained with the equations (3.6) and (3.6a) gave a standard deviation of ± 20 for the mean value of the quarterly number $W_{i}=6 I$, that is, a relative standard deviation of $\pm 33 \%$.

The modified Mayot method, as seen from the above numbers, gives a relatively low accuracy. To a significant degree this is due to the condition that the given method appears to be dual. On the one hand it is guided by the Stewart-Panofski curve which is based on the very long-term predictions of the current cycle. On the other hand it includes the predictions of the disturbed part of ΔW_{i}. Since this is the case, it must be expected that the accuracy of the given method is lower than any of the other methods contained within it.

Speaking of the shortcomings of the modified Mayot method one must mention that it also has the weak point that it is not possible to predict even nearly accurately the quarterly numbers of sunspots during a period of strong filuctuations.

The method of regression suggested by A. I. Olem (1954) for predicting ennual Wolf numvers may be applied with sufficient success, as demonstrated by the statistical survey of the Zurich material for 19 incomplete solar cycles, and also for the quarterly values of this index.

In order to apply the method of regression it is necessary to know fairly accurately the period of maximum and minimum of solar cycles. The methods of predicting these values will be discussed in Chapter 4, and therefore, we shall not dwell on them here. Let us only mention that we are entirely satisfied when we determine the periods of the extremes with an accuracy of one quarter.

Examination of the Zurich data for an increasing portion of the 19 solar cycles resulted in the following equations of regression as well as the corresponding coefficients r and the stendard deviations σ :
$\left.\begin{array}{lll}W_{m+1}=1.08 W_{m}+4 & r=+0.55 & \sigma= \pm 4 \\ W_{m+2}=1.36 W_{m+1}+3 . & r=+0.70 & \sigma= \pm 6 \\ W_{m+3}=0.691 V_{m+2}+3 & r=+0.81 & \sigma= \pm 4 \\ W_{m+4}=1.08 W_{m+3}+5 & r=+0.71 & \sigma= \pm 8 \\ W_{m+5}=1.42 W_{m+4} & r=-0.99 & \sigma= \pm 9 \\ W_{m+6}=1.20 W_{m+5}^{r}+6 & r=+0.92 & \sigma= \pm 10 \\ W_{m+7}=1.11 W_{m+6}+7 & r=+0.90 & \sigma= \pm 12 \\ W_{m+8}=1.13 W_{m+7}+4 & r=+0.94 & \sigma= \pm 12 \\ W_{m+9}=0.98 W_{m+5}^{r}+12 & r=+0.91 & \sigma= \pm 15 \\ W_{m+10}=1.17 W_{m+9}^{r}-7 & r=+0.94 & \sigma= \pm 17 \\ W_{m+11}=0.96 W_{m+10}^{r}+11 & r=+0.95 & \sigma= \pm 17 \\ W_{m+12}=1.26 W_{m+11}-2 & r=+0.97 & \sigma= \pm 13 \\ W_{m+13}=1.09 W_{m+12}-3 & r=+0.97 & \sigma= \pm 10 \\ W_{m+14}=1.1 S W_{m+13}^{r}-8 & r=+0.96 & \sigma= \pm 14 \\ W_{m+15}=0.92 W_{m+14}+9 & r=+0.90 & \sigma= \pm 11 \\ W_{m+16}=1.40 W_{m+15}^{r}-10 & r=+0.88 & \sigma= \pm 15 \\ W_{m+17}=1.20 W_{m+26}+1 & r=+0.97 & \sigma= \pm 9\end{array}\right\}$

From equation (3.7) can be seen that predictions of quarterly Wolf numbers for the first four quarters cannot be considered sufficiently reliable. For all increasing portions $\sigma= \pm 12$ when $\bar{W}_{i}=49$, i.e., the corresponding standard deviation is about $\pm 24 \%$.

Similarly, for the decreasing portion were obtained the following equations of regression:

For the entire increasing portion $\sigma= \pm 14$ when $\bar{W}_{i}=52$, that is the relative standard deviation was equal to $\pm 27 \%$. If we compare the accuracy of all three methods, described above on the basis of known data we find that the method of regression and the Mayot method result in less errors than the modified Mayot method. However, if we take into account the characteristic of the Mayot method that by changing over from actual data to predicted data the quantities predicted by this method, become increasingly more erroneous, than we can assume that the most favorable method is the
method of regression. Unfortunately, for solar cycles with increasing portions of more than 17 quarters or with decreasing portions of more than 26 quarters one can use only the ordinary and modified Mayot method for the corresponding quarters.

Iet us mention yet a technical detail which is related to all the methods of predicting quarterly Wolf numbers for the following quarter. Since the prediction must be made at the end of the preceding quarter it is necessary to use the preliminary values of quarterly relative numbers of sunspots for 83 to 84 days (out of 90 to 91). In general this has little effect on the accuracy of the predictions except in the case of strong fluctuations of solar activity.

Finally, at the present time it seems possible to obtain a judgement on the probability of predicting quarterly Wolf numbers with the data already Obtained and with the aid of the modified Mayot method. The examination of the material from the first quarter of 1956 to the third quarter of 2960 shows that the standard deviation for this period amounted to ± 27 when $\bar{W}_{i}=162$, that is $\left(1-\frac{\sigma}{\bar{W}_{i}}\right) 100 \%=84 \%$. This is significantly greater than the value (1- $\frac{\sigma}{W}$) 100% obtained with known data (67%). 4. Method of Predicting Quarterly Wolf Numbers two Quarters in Advance For many practical purposes, especially for certain problems in geophysics and radiophysics, it is very important to increase the short term predictions of quarterly Wolf numbers. A direct approach to solving this question by way of multiple or even dual predictions leads to considerable error and therefore, can hardly be considered applicable.

In the first step towards solving this, let us narrow down the task to working out a method of predicting quarterly numbers of sunspot for two quarters in advance. To this end, we should use the follwoing quantities: ordinary semi-annual Wolf numbers W_{i}^{\prime}; semi-annual Wolf numbers obtained by shifting the half-year one quarter back, which subsequently will be called $W_{i}^{\prime \prime}$. quarterly Wolf numbers either observed $W_{i}{ }^{0}$ or predicted W_{i}.
U. I. Vitinskii (1960g, 1961c) proposed two approaches for solving this problem.

The first approach consists of making preliminary computations of the ordinary and separate semi-annual Wolf numbers which, together with observed quarterly Wolf numbers will enable one to predict quarterly numbers of sunspots for two quarters in advance. For this the relationship can be used

$$
\left.\begin{array}{l}
W_{I}=2 W_{I}^{\prime \prime}-2 W_{I I}^{\prime}+W_{I I I}^{0} \\
W_{I I}=2 W_{I}^{\prime}-2 W_{I}^{\prime \prime}+W_{I V}^{0}, \\
W_{I I I}=2 W_{I I}^{\prime \prime}-2 W_{I}^{\prime}+W_{I}^{0} \tag{3.9}\\
W_{I V}=2 W_{I I}^{\prime}-2 W_{I I}^{\prime \prime}+W_{I I}^{\prime}
\end{array}\right\}
$$

Here, in the case of the quantities W_{i}^{\prime} and $W_{i}^{\prime \prime}$ the indexes I and II designate respective half years and in the case of W_{i} and $W_{i}{ }^{0}$ the indexes I to IV designate the quarters of the corresponding year.

The second approach consists in predicting ordinary and separate semiannual Wolf numbers as well as quarterly Wolf numbers, whereby a combination of these will give a means for predicting quarterly numiers of sunspots with the aid of the relationship.

$$
\left.\begin{array}{l}
w_{1}=2 W_{I}^{\prime \prime \prime}-W_{1 V}^{\prime} \tag{3.10}\\
W_{I I}=2 W_{I}^{\prime}-W_{1} \\
w_{I I}=2 V_{I I}^{: \prime \prime}-W_{H} \\
W_{I V}=2 W_{H I}^{\prime}-W_{H I}
\end{array}\right\}
$$

As mentioned earlier, for a similar type of prediction it is necessary to make preliminary computation of semi-annual Wolf numbers. To this end, two methods can be used: the method of regression, and the Mayot method.

On the basis of examined Zurich data of 19 incomplete cycles the following equations of regressions were obtained for the jncreasing and decreasing portions of the solar cycle as well as the corresponding values of r and σ for ordinary semi-annual Wolf numbers:
$\left.\begin{array}{lll}W_{m+1}^{\prime}=1.53 W_{m}^{\prime}+3 & r=+0.64 & 0= \pm 5 \\ W_{m+2}^{\prime}=1.30 W_{m+1}^{\prime}+6 & r=+0.59 & \sigma= \pm 13 \\ W_{m+3}^{\prime}=1.21 W_{m+2}^{\prime}+12 & r=+0.81 & 0= \pm 14 \\ W_{m+4}^{\prime}=1.28 W_{m+3}^{\prime}+9 & r=+0.89 & \sigma= \pm 16 \\ W_{m+5}^{\prime}=1.25 W_{m+1}^{\prime}+7 & r=+0.95 & 0= \pm 14 \\ W_{m+6}^{\prime}=1.01 W_{m+5}^{\prime}+14 & r=+0.92 & \sigma= \pm 17 \\ W_{m+7}^{\prime}=1.14 W_{m+6}^{\prime}+2 & r=+0.96 & 0= \pm 14 \\ W_{m+8}^{\prime}=1.37 W_{m+7}^{\prime}-8 & r=+0.85 & 0= \pm 18\end{array}\right\}$

The known data have on the increasing portion a standard deviation of ± 14 when $\bar{W}_{i}=51$, that is, a relative standard deviation of $\pm 27 \%$. For the decreasing portion the standard deviation amounted to ± 10 when $\bar{W}_{i}=56$, that is, the relative standard deviation equals $\pm 18 \%$. Let us mention that
according to the relationship (3.11), the prediction of W_{i} for the first two half years of the increasing portion appears to be unreliable.

For separate semi-annual Wolf numbers, based on the same material, the following equations of regression were obtained for the increasing and decreasing portions of the solar cycle and the corresponding values of r and σ :

In this case the standard deviation for the increasing portion was ± 13 for $\bar{W}_{i}^{\prime \prime}=51$, that is, the relative standard deviations amounted to $\pm 25 \%$. For the decreasing portion the standard deviation was equal to ± 11 for $\bar{W}_{i}^{\prime \prime}=52$ which corresponds to relative standard deviation of $\pm 21 \%$. The prediction for the first separate half year of the increasing portion is unreliable as can be seen from the relationship (3.13).

In the application of the Mayot method we used ordinary and separate semi-annual Wolf numbers of the Zurich series for the year of 1935 to 1959. In both cases this material gave sufficiently well developed coefficients for the standard equations.

For the prediction of ordinary semi-annual numbers of sunspots the following relationship can be used:

$$
\begin{equation*}
W_{s}^{\prime}=1.22 W_{4}^{\prime}+0.09 W_{3}^{\prime}-0.28 W_{2}^{\prime}-0.10 W_{1}^{\prime} \tag{3.15}
\end{equation*}
$$

The data obtained by this formula gave a standard deviation of ± 19 for $\bar{W}_{i}^{\prime}=82$, that is, a relative standard deviation of about $\pm 23 \%$.

For determining the separate semi-annual wolf numbers with the aid of the Mayot method the following relationship was obtained.

$$
\begin{equation*}
W_{s}^{\prime \prime \prime}==0.91 W_{4}^{\prime \prime \prime}+0.60 W_{3}^{\prime \prime \prime}-0.37 W_{2}^{\prime \prime}-0.22 W_{i}^{\prime \prime} \tag{3.16}
\end{equation*}
$$

In this case the standard deviation amounted to ± 21 for $\bar{W}_{i}^{\prime \prime}=80$ which amounted to a standard deviation of $\pm 26 \%$.

From the above it can be seen that there are eight methoce which can be used for predicting the quarterly wolf numbers for two quarters in advance:

1) The method for regression for ordinary and separate semi-annual Wolf numbers by using the formulas (3.9), (3.11), (3.12), (3.13) and (3.14);
2) The Mayot method for ordinary and separate semi-annual Wolf numbers by using the formalas (3.9), (3.15), (3.16);
3) The method of regression for ordinary and separate semi-annual numbers and the modified Mayot method for quarterly Wolf numbers by using the formulas (3.10), (3.11), (3.12), (3.13), (3.14), (3.6) and (3.6a);
4) Method of regression for ordinary and separate semi-annual Wolf numbers and Mayot method for quarterly Wolf numbers by using the formulas (3.10), (3.11), (3.12), (3.13), (3.14) and (3.3);
5) Method of regression for ordinary and separate semi-annual Wolf numbers and the method of regression for quarterly Wolf numbers with the use of the formulas (3.10), (3.11), (3.12), (3.13), (3.14), (3.7) and (3.8);
6) The Mayot method for ordinary and separate semi-annual Wolf numbers and modified Mayot method for quarterly Wolf numbers with the use of the formulas (3.10), (3.15), (3.16), (3.6) and (3.6a);
7) The Mayot method for ordinary and separate semi-annual Wolf numbers and the Mayot method for quarterly Wolf numbers by using the formulas $(3.10),(3.15),(3.16),(3.3) ;$
8) The Mayot method for ordinary and separate semi-annual Wolf numbers and the method of regression for quarterly Wolf numbers with the use of the formulas (3.10), (3.15), (3.16), (3.7) and (3.8).

Each of these methods has its own merits and shortcomings. Above all it should be noted that methods 3,4 and 5 give much smaller errors than the remaining methods. Acutally, the known data for 1945 to 1959 gave the following standard deviations o and corresponding probability:

$$
\left(1-\frac{3}{\bar{W}_{i}}\right) 100 \%
$$

$$
\left(1-\overline{\bar{w}_{i}}\right)+100 \%
$$

1)	± 36	66%
2)	± 44	55
3)	± 31	70
4)	± 26	75
5)	± 25	76
6)	± 36	63
$7)$	± 32	67
S)	± 41	59

The methods $1,3,4$, and 5 are based on the method of regression which can only be used for specific intervals of time from the period of minimum and a period of maximum of the solar cycle (corresponding to 4.5 years and 6 years). This led to the fact that with the aid of the mentioned method the known data from the fourth quarter of 1953 to the fourth quarter of 1954 could not be used.

One other very important circumstance regarding the method of regression must be mentioned. In order to be able to use this method it is necessary to know beforehand the periods of the extremes of the solar cycle. The method developed to date, which will be described in Chapters 4 and 5, in each case allows one to determine this period within an accuracy of half year.

The method of regression is much less sensitive to strong fluctuations than the Mayot method, as can easily be seen by comparing the respective relationships.

The shortcomings of the Mayot method have already been mentioned earlier. Let us dwell on another shortcoming of the modified Mayot method which makes itself felt especially when combined with the Mayot method for semi-annual Wolf numbers. Generaly, the quarterly numbers of spots at the very beginning of the increasing portion of the solar cycle are higher when calculating by this method which causes the predicted quarterly numbers for two quarters in advance, obtained by the method no. 1 , to be significantly lower. In this case as a very rough approximation a correction of +44 could be introduced in the first two years of the cycle. However, it should be mentioned that this is a very rough method even though it decreases the standard deviation from ± 38 to. ± 26.

Since the Mayot method gives greater errors than the method of regression, naturally, more emphasis was put on methods 1, 3, 4 and 5 which are based on the method of regression. In order to increase the accuracy of quarterly Wolf numbers for two quarters in advance it is necessary to take the average values obtained with various method, whereby quantities calculated by methods $1,3,4$ and 5 will be assigned category 2 and the remaining quantities assigned category l. This approach, as was illustrated by the known data for the period of 1945 to 2959 , significantly decreased the errors. The standard deviations of the predicted quarterly Wolf numbers, averaged by the stated method, was ± 25 when $\bar{W}_{i}=98$, which means that the probability of the known data was equal to 75\%. This figure was entirely adequate if one considers that with the methods of predicting quarterly Wolf numbers for the following quarter gave results having practically the same probability. As far as the basic shortcomings are concerned, the large errors of predictions made during the periods of strong fluctuations also applies in this case.

5. Method of Predicting Snoothed Monthly Wolf Numbers

As mentioned already in Section 2 of this Chapter the prediction of smoothed monthly Wolf number was first developed by Mayot (1947). Based on the same material as that used by Mayot (1931 to 1944) U. I. Vitinskii obtained in place of Mayot's erroneous formula the following relationship for prediction of the average monthly Wolf numbers, W_{i}, for the following month:

$$
\begin{equation*}
\bar{T}_{:}=0.99 T_{4}+1.29 \bar{T}_{3}-1.701 \bar{T}_{2}+0.49 T_{1} \tag{3.17}
\end{equation*}
$$

From the known data for these years a ± 1.9 standard deviation was Obtained with the aid of equation (3.17). Such a small error makes this method very attractive. However, owing to the characteristics of calculating
smoothed numbers of spots we are immediately faced with a great difficulty.

We know that the W_{i} numbers are generally determined with the aid of equation (2) of the Introduction. As can be seen from this equation it is not possible to find smoothed monthly Wolf numbers more than six months in advance to at any given moment. If all these values are predicted successively by the Mayot method then in the final result the errors will increase to such an extent that the advantages (with respect to its accuracy) offered by this method is practically reduced to zero. In order to bypass this difficulty U. I. Vitinskii (1956c) suggested use of the relationship between the observed and smoothed monthly Wolf numbers. The relationship is characterized by a coefficient of correlation of $r=+0.93$ and the equation of regression:

$$
\begin{equation*}
W_{i}=0.9 \mathrm{SI}_{i}+2 \tag{3.18}
\end{equation*}
$$

Undoubtedly, the given approach decreases the accuracy when predicting with the Mayot method, especially in case of soler activity fluctuations where the smoothed numbers of spots found by the relationship (3.18) may be noticeably higher. Nevertheless, in this case the errors are smaller than when using the other method suggested by Mayot for Wolf numbers for same-name-months.

Let us mention yet another technical detail. In order to make predictions with the stated method, it is entirely sufficient to use preliminary monthly numbers of spots from 23 to 27 days (out of 30 to 31 days).

An examination of the data for the period from January 1956 to October 1959 showed that the application of the Mayot method for predicting smoothed monthly k Holf numbers for the following month gave a standard deviation of ± 27 at an average value of $\mathrm{W}_{\mathrm{i}}=168$, which corresponds to a mean probability of 84%.

We have already mentioned that the application of equation (3.18) can introduce false fluctuations into the prediction of smoothed numbers of spots. This can be seen clearly from Figure 11 in which the solidline curve represents the plot of smoothed monthly Wolf numbers for 1957 to 1958 , computed on the basis of observed values, and the dotted-line curve shows the plot of numbers predicted with the Mayot method.

Fig. 11

In order to significantly counteract this shortcoming and, what is just as important, to get even shorter term predictions of smoothed monthly Wolf numbers, U. I. Vitinskii proposed a regression interpolation method which has the pleasant distinction of being simple and sufficiently accurate. Here is the description of this method.

In the previous paragraph we described a method of regression for ordinary and individual semi-annual Wolf numbers. The semi-annual numbers of spots can be considered as peculiar snoothed quantities insofar as they represent the average value of 6 monthly values of solar indexes we have used. Therefore these numbers can be applied to predicting smoothed monthly Wolf numbers. By knowing the semi-annual Wolf numbers for the first half of the given year (and relating it to April) and predicting it with the aid of the method of regression for the second half year (and relating it to October) it is possible, by way of interpolation to obtain predicted smoothed Wolf numbersfor July, August, September and October of that year. Similarly,
with separately predicted and observed semi-annual relative numbers of spots we obtain predicted smoothed Wolf numbers for October, November, December and January or for April, May, June, and July. With ordinary semiannual numbers it is possible to obtain the values of the index examined by us for January, February, March and April.

Thus, the application of the regression interpolation method permits us to predict smoothed monthly Wolf numbers, even under least favorable cases, (in February, May, August, and November) for two months in advance and sometimes even for four months in advance (in March, June, September, and December). In this case the curve of the predicted smoothed monthiy numbers of spots is much flatter than when using the Mayot method. This can be seen in Figure 11, where the numbers computed with the aid of the regression interpolation method are shown with the dot-dash line.

The known data for the period of January 1956 to October 1959 obtained by this method gave a standard deviation of ± 12 at a mean value of $\bar{W}_{i}=168$, that is a mean probability of 93%. In addition, if we take into account the fact that the regression-interpolation method permits us to make even significantly shorter short-term predictions of smoothed monthly wolf numbers it becomes obvious that this method is more desirable than the Mayot method.

Let us discuss the method of predicting smoothed monthly wolf numbers to the end of the current solar cycle worked out by Herrink (1958, 1959). This method is based on Anderson's (1954) assumption that there exists a 169-year cycle of solar activity. The agreement with the Wolf numbers for the period of 1749 to 1785 and 1918 to 1954 seems to be sufficiently precise.

Starting out with this, Herrink compared smoothed monthly numbers of spots at the beginning of the increasing portion of the $4-$ th and the $\mathbf{1 9}-$ th solar cycle whereby July 1784 was taken to be the beginning of the fourth
cycle and April 1954 the beginning of the 19-th cycle. He obtained the following equation of regression:

$$
\begin{equation*}
\bar{W}_{19}=1.488 \bar{T}_{4}-12.5 \tag{3.19}
\end{equation*}
$$

Here the indexes indicate the number of the 11 -year solar cycle.

A prediction based on this formula gives a standard deviation equal only to ± 1.6.

Striving for even more accurate predictions, Herrink used the data from April 1954 to October 1958 and obtained a new equation of regression:

$$
\begin{equation*}
\widetilde{W}_{19}=1.527 \bar{W}_{i}-13.4 \tag{3.20}
\end{equation*}
$$

This equation differs very little from Equation (3.19). Equation (3.20) can be used for predicting smoothed monthly Wolf numbers to the end of the 19-th cycle.

In Table 10 are given the smoothed monthly Wolf number predicted for 1957 to 1958 by equation (3:19)(p) and for 1959 to 1969 by equation (3.20). For the purpose of comparison the observed figures (n) for 1957 to 1958 have also been given here.

Table 10. Predicted Smoothed Monthly Wolf Numbers for the 19-th cycle (per Herrink).

Таб.7ица 10

Х\%	1931		19 s		19:3	[50	15.31	19%	1903	1903	19:5	${ }_{1965}$	1967
	п.	11.	n.	н.									
1	172	170	190	198	10.1	187	93	81	62	46	29	15	0
1 I	175	173	189	199	$16: 3$	130	91	S1	61	49	2 S	14	0
11	10:	17%	187	20.3	1 L	$12: 1$	\because	79	59	50	23	11	0
I^{-}	$1 \cdots$	1×3	14.1	195	11.5	12	87	78	58	4	19	11	0
V	1®	15.	$17!$	191	167	117	SC	77	57	48	19	9	0
VI	1 13	Is:\%	175	159	163	111	56	76	55	4.3	10	6	0
VII	$1!11$	$1!11$	176	157	160	10.5	$8 \overline{7}$	75	51	40	19	5	0
YIII	180	$1!0$	177	182	157	1015	85	73	52	4	19	2	0
IX	191	19-1	178	183	153	10:3	83	71	50	36	16	1	0
x	196	19 i	174	$1{ }^{1} 1$	$1: 17$	100	S1	70	49	33	17	1	0
XI	197	197	169	IS1	143	97	S0	(6)	4	31	16	0	0
XII	197	197	167	150	140	95	S2	64	46	28	15	0	0

From Hovember 1966 Equation (3.20) gives negative values which Herrink substituted by zeros.

With all its advantages the Ferrink method has two significant shortcomings:

1. It is based on the existence of the 169 -year cycle but it does not consider the established 88 to 90 -year cycle sufficiently reliable. Owing to this, it is not sufficiently flexible and, strictly speaking, we should use it only for the l9-tin cycle, and that not for the entire cycle.
2. Herrink's assumption that the iwo decreasing portions of the 4-th and the 19-th cycle are equal is obviously arbitrary. According to many papers the period of the minimar of the $20-$ th cycle is expected to occur not later than 1966. According to A. I. Olen (1960) it should fall in 1965.2. Therefore, the quoted values for 1964, 1965. are obviously too high.

Nevertheless, with slight modification the Herrink method can be used both for the prediction of smcothed monthly Wolf number as well as for predictions of quarterly wolf numbers, nct only for the 19-th solar cycle but also for any other cycle of the solar activity, especially for the extremely high intensity cycles.
6. Method of predicting Observed lionthly Wolf Numbers

As already mentioned in the Introduction the observed monthly wole numbers are highly fluctuating quantities. Therefore, the prediction of monthiy numbers of spots, even one month in advence, represents a more complicated problem than long-term prediction of solar activity. This situation makes it permissible to consider predictions of these quantities with errors up to 25% entirely satisfactory because monthly wolf numbers cannot be determined within these limits.

The only methoo oy which monthly Wolf :umbers for one month in advance can be precicted seens to be the Nayot method. By using the Zurich data for 2951 to 1956 U. I. Vitinskii (1960a) obtained for the prediction of morthly reletive numbers of spots the following equation:

$$
\begin{equation*}
W_{5}=0.81 W_{4}-0.1 / 1 W_{3}+0.51 W_{2}-0.19 T_{1} \tag{3.21}
\end{equation*}
$$

Applying this formula to the data oi 1944 to 1956, geve a standard deviation of ± 22, or a reletive standard deviation of 27%.
jext, in: order to increase the confidence level of the Mayot method application, an equation was worked out on the besis of Zurich data for 1954 to 1958 which more ascurately cnaracterizes the correct cycle:

$$
\begin{equation*}
W_{5}=1.32 H_{4}^{\circ}-0.611 W_{3}+0.82 H_{2}^{\prime}-0.52 W_{1}^{\prime} \tag{3.22}
\end{equation*}
$$

This equation gave for the knowri data a standard deviation of $\dot{\underline{I}} 22$ for $\bar{W}_{i}=123$, which corresponds to a relative standard deviation of 18%.

The Mayot method gives the greatest errors during the period of strong fluctuations of solar activity. Therefore, in order to increase the accuracy of the predicted monthly Wolf numbers it is necessary to use certain artificial devices. Above all, one should note that at the present time we cannot preaict even nearly reliably the beginning of strong fluctuations, not even within a quarter. Therefors, the epproaches described bejow are mainly directed tovard foreseeing the duration of fluctuations.

The examination of statistical material shows that, with the exception of rare cases, after a sharp increase the solar activity begins to fall off in the month following this increase. Therefore, in a very rough approximation these ircreases can be disregarded and, instead, the values taken from curves reflecting the general trend of increasing or decreasing activity in a given cycle can be used for predictions.

Second order approximations can be used for examining the development of long-lived groups of suspots since fluctuations of solar activity are often caused by such groups. The basic characteristics of the development of long-lived groups of sunspots have been already described in paragraph 5 of Chapier I. The application of these properties enables one to make purely quantitive juagements on the rate of decrease or the solar activity for the next revolution of the sun.

Finally, one more approximation can be performed. The active longitudes contribute significently to the fluctuations of solar activity. The study of processes taking place at the active longitudes showed that they have a characteristic rhythm of an average period of 4 to 5 revolutions of the sun (Vitinskii, Rubashev, 1957). Considering that at any given time - interval, as a mule, one of the active longitudes diminishes, it will be possiule to know with some degree of certainty when the next fluctuation of solar activity might be expected. However, it is necessary to make one important reservation, In the cited reference the active longitudes were computed with indexes of areas of sunspot groups which sometimes behave differently than the wolf numbers. Therefore, the given results are not sufficiently reliable to be used for prediction if we deal with Wolf numbers and not with areas.

Finally, at the present time there seems to be availaile a method by which the probability of predicted monthly kolf numbers for the following month, ootained with the aid of the Mayot method, can be judged. The examination of cata for the period from July 1957 to September 1960 shows that the standard deviation for this period amounts to ± 28 for $\bar{W}_{i}=168$, that is (1- $\frac{\sigma}{W_{i}}$) $100 \%=83 \%^{\prime}$. This is a slightly higher probability than the one obtained with known dsta while from the characteristics of the Mayot method for smoothed Wolf number the opposite could be expected.

Let us also mention that at the present time there does not exist a possibility of obtaining a method which would permit predicting observed Wolf numbers even two months in advance. 7. Analogy Method for Predicting Quarterly Wolf Numbers

A small modification of the Herrink method, described in Section 5 of this chapter, makes it wossible to predict querterly Wolf numbers for the Whole decreasing portion of the current cycle. By virtue of earlier indicated shortcomings of this method we shall be dealing with a slightly different initial coridition. We shall base this on the two following facts: 1. According to Xanthakis (1959) one of the most important characteristics of the solar cycle appears to be the length of its increasing portion and therefore, we shall start out first with this characteristic; 2. In most cases the length of the decreasing portion of similar cycles differs from the length of this portion of the cycle under study. Therefore, its length can be estimated only with the help of existing methods for predicting the period of minimum of solar cycles.

Since the method suggested by U. I. Vitinskii (1960d, 1961c) is primarily based on the choice of analogy cycle for a given cycle we shall subsequently refer to it as the method of aralogys.

The selection of similar cycles will be based on two criteria: Equal (or nearly equal) length of the increasing portion of the cycle under study or any given cycle and the closest relationship of the quarterly Wolf numbers on the increasing portion of both cycles, this expressed in terms of the coefficient of correlation. It nust be mentioned here thet the eliowable difference cannot exceed one quarter in the ratio of the period of growth of the cycle under study and any given cycle (during the period of increase). Even if all obtained coefficients of correlations are high the cycle with the highest coefficient r is selected. In the cases when more than one
cycle has the same coefficient of correlation all of the cycles are used.

The application of this method and the enunciation of the initial Herrink principles turn out to be entirely satisfactory. Actually, if we start out with the assumption that a 169 -year solar cycle exists then the 17th and 18th 31 -year cycles are supposed to be similar to the 2 nd and 3 rd cycles. However, as shown by U. I. Vitinskii the l7th cycle is similar to the loth cycie and the l8th cycle is similar to the lith cycle. And what is more, on the same basis the 4 th and l3th cycle can be consdered to be similar to the 19th cycle.

In order to predict quarterly kolf numbers on the decreasing portion toward the end of the cycle, it is necessary to make a comparison of the numbers on the increasing portion of the given cycle and those of the similar cycle in order to develop equations of regression similar to those developed by Herrink for the smoothed monthly numbers of spots. The known data for the decreasing portion of the 17 th and 18 th cycle, worked out with the aid of equations of regressions obtained for these cycles, gave a probability of approximetely 63 and $7{ }^{2} \%$. Such a difference in probability can be explained by the fact that weaker cycles fluctuate more whereby the period of strong fluctuations of the different cycles seldom coincide within an accuracy oî one quarter.

On the dasis of U. I. Vitinskii's method of analogy the following equation of regression was obtained for the 19th cycle:

$$
\begin{align*}
& W_{19}^{-}=1.49 W_{4}+2, \tag{3.23}\\
& W_{19}=2.41 W_{23}+2 . \tag{3.24}
\end{align*}
$$

Here the indices designate the number of the cycle.

On the basis of known data for the period from the first quarter 1958 to third quarter 1960 the application of formula (3.23) gave a relative standard deviation of 17% and the application of equation (3.24) gave 16%. Insofar as both similar cycles used have approximately the same characteristics, we took the average values predicted on the basis of these. This also seems advantageous because the fourth cycle distinguished itself by an abnormally long decreasing portion (contrast of the l3th cycle) and therefore, would cause an increase in the values predicted for the last years of the currert cycle. The average of the known data for the period of the first quarter 1958 to the third quarter 1960 resulted in a relative standard deviation of 15%.

Our examination showed that with the analogy method it is possible to predict quarterly wolf numbers only for the decreasing portion. Since the decreasing portion has many different characteristics than the increasing portion it might be useful from the behavior of the decreasing to improve the accuracy of predicted numbers by bringing in additional data and recalculating the equation of regression.

If we bring in the data for the decreasing portion of the l9th cycle through the $3 r d$ quarter of 1960 , we obtain the following equation of regression:

$$
\begin{align*}
& H_{19}=-1.39 H_{4}+3 \tag{3.25}\\
& H_{18}=2.37 H_{33}-9 . \tag{3.26}
\end{align*}
$$

The difference between these equations and equation (3.23), (3.24) is insignifficant, but it is advantageous to use them since they reflect the trend of the decrease in soler activity in the current cycle.

Table 11 gives predicted quarterly Wolf numbers, which turn out to be the averages of quantities ontained with equation (3.25) and (3.26) for the
period of 4 th quarter 1960 to lst quarter 1965. The period of minimurn of the 20th cycle turns out to be 1965.2, in agreement with A. I. Olem (1960). This data which was computed in a similar manner but with the aid of equation (3.23) and (3.24), gives the quarterly numbers of spots for the period of first quarter 1958 to third quarter $1960^{\circ}(\mathrm{p})$ and their deviations from observed zurich quarterly numbers ($p-n$).

Table 11
Predicted quarterly Wolf numbers from 1958-1965 (per Vitinskii)

Quarter	1958		1959		196			1962	1963	1964	1965
	p	$p-n$	p	$\mathrm{p}-\mathrm{n}$	p	$\mathrm{p}-\mathrm{n}$					
I	204	+18	168	-14	157	+42	88	62	67	38	21
II	183	+2	170	-11	127	+1	86	87	52	38	
III	220	+22	171	-27	108	-22	64	60	37	35	
IV	190	+16	162	+42	104		81	66	39	40	

It should be noted that the tabulated data for 1964 to 1965 obviously appear to be higher, since even the length of the decreasing portion of the 13th cycle is greater than the predicted length of decreasing portion of the 19th cycle.

CONCLJSIONS

Having reviewed the basic empirical-statistical methods for long-term predictions of the Wolf numbers we come to the conclusion that the reliability of the results obtained is very far from that desired.

What are the possible roads along which solar activity predictions could be developed in the future? First of all, in order to solve this complicated problem it is necessary to have a complex approach. Even the most perfect theory on solar activity, if we can imagine that one could be developed in the future, will not be able to give completely reliable results. At the present time there is not even a likeness nor even a sufficiently developed outline of such a theory. Therefore, the first step must be to seek a way by which good results would be achieved even if unrelated theories on the physics of the sun would be applied.

The methods stated here have practically nothing to do with the morphology of solar activity. Nevertheless, the morphological approach to the problem of predicting solar activity could in our opinion give some insight. It will be particularly important in developing the method for short term predictions. The morphological method calls for examining the development of the centers of activity that is, all the layers of the solar atmosphere from top to bottom. Thanks to this, it will be possible to judge the future development of the activity responsible for sunspot formation by specific advanced changes in other layers of the solar atmosphere. In addition, by observing the radio emission of the sun in the centimeter band it.will be possible to get a glance of the invisible solar hemisphere one or two days before the appearance of a group of sun spots on the eastern limb of the visible hemisphere (Molchanov, 1959; Ikhsanova, 1960). Consequently, the application of this data will give one of the ways by which a short term solar activity prediction could be made.

The morphological approach so far has been used little for monthly predictions. If applied at all, it was used as sort of a supplement to the statistical method. In this sense, it would be very interesting to develop the morphological method for monthly predictions to such a degree that it would be equal with the statistical method of Mayot, now in existence.

At the present time the only means for predicting solar activity (discounting the area of spots) seems to be the Wolf numbers, $\bar{i} \mathrm{if}$ if are not concerned with extremely long term predictions, it would be very valuable to develop a method of predictions in which different sclar activity indices would be used. It is possible that parallel predictions of different solar indices could be used to check the reliabilijty, even if not of all then at least of many, of the predicted quantities.

Finally, the most important thing which would help predicting would be the development of a complete theory of solar activity. It could serve mainly as basis for developing theoretical method for predicting solar indices. Even if the first attempt made by B. M. Rubashev in 1954 did not yield sufficiently good results, the very formulation of this type of problem is in itself very valuable. Let us hope that in the not too distant future scientists will unlock the basic mysteries of the sun: whet causes solar activities and what are their mechanisms? Not too long ago the hydrodynamic theory of solar activity by Bjerkmes (I926) seemed entirely reliable. Next appeared the Al'fev theory (1952) which just about completely repudiated the Bierknes structure and substituted in its place the magnetohydrodynamic wave. At the present time we are witnessing the synthesis of these two directions which is being reverberated in the rapid development of magnetodydrodynamics. Tnis is not the place to discuss the many questions which have been posed or even been solved by this young branch of physics and astrophysics. Let us only mention that at the present there is hardly a doubt that a fullfledged theory of solar activity could be developed without taking into account magnetic phenomena.

On the other hand, many scientist devote a lot of attention to studying the characteristics of the differential rotation of the sun and its connections with magnetic solar energy.

In short, these are the basic ways by which problems of predicting solar activities could be solved. Briefly stated, any studies related to the activities on the Sun, regardless of the direction they take, will in one way or other help to solve this most important question.

[^0]: For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $\$ 1.35$

