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Abstract. Two-dimensional (2D) freehand ultrasound is the mainstay
in prenatal care and fetal growth monitoring. The task of matching cor-
responding cross-sectional planes in the 3D anatomy for a given 2D ultra-
sound brain scan is essential in freehand scanning, but challenging. We
propose AdLocUI, a framework that Adaptively Localizes 2D Ultrasound
Images in the 3D anatomical atlas without using any external tracking
sensor. We first train a convolutional neural network with 2D slices sam-
pled from co-aligned 3D ultrasound volumes to predict their locations in
the 3D anatomical atlas. Next, we fine-tune it with 2D freehand ultra-
sound images using a novel unsupervised cycle consistency, which
utilizes the fact that the overall displacement of a sequence of images
in the 3D anatomical atlas is equal to the displacement from the first
image to the last in that sequence. We demonstrate that AdLocUI can
adapt to three different ultrasound datasets, acquired with different ma-
chines and protocols, and achieves significantly better localization ac-
curacy than the baselines. AdLocUI can be used for sensorless 2D free-
hand ultrasound guidance by the bedside. The source code is available
at https://github.com/pakheiyeung/AdLocUI.

Keywords: Freehand ultrasound · Slice to volume registration · Domain
Adaptation.
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Fig. 1. Localization of 2D freehand ultrasound images in the 3D anatomical at-
las (i.e. fetal brain). 2D slices sampled from the 3D atlas using image locations
predicted by the baseline [24] and AdLocUI are presented, where our predictions
show better correspondence (i.e. emphasized by the red arrows) with the ultra-
sound images, suggesting more accurate 3D localization prediction by AdLocUI.

1 Introduction

Two-dimensional (2D) freehand ultrasonography is one of the most routinely
deployed medical imaging modalities in prenatal care. The nature of ultrasound
images is unique when compared to other modalities. While magnetic resonance
imaging (MRI) and computerised tomography (CT) capture the complete 3D
anatomy, each 2D ultrasound image is just a 2D cross-sectional view of an in-
herently 3D anatomy. It also differs from other 2D imaging modalities, such as
X-ray which captures a projectional view of the 3D body. Such fundamental
differences make image localization in the 3D anatomy a unique but important
task for 2D freehand ultrasonography, especially for neuroimaging [21] (Fig. 1).

Experienced sonographers are often able to locate the 2D ultrasound images
by mentally reconstructing the 3D anatomy [10]. However, training a network
to achieve this is very challenging, mainly due to the difficulty of acquiring
the training data (i.e. 2D freehand ultrasound images and their corresponding
locations in the 3D anatomy). In this paper, we overcome this limitation by using
only a small number (i.e. 50) of 3D ultrasound volumes, co-aligned to a common
3D anatomical atlas, for the training. It can then be fine-tuned by our proposed
unsupervised cycle consistency to adapt to 2D ultrasound images acquired
from different machines and protocols. The only manual annotation required in
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our work is the co-alignment of the 3D training volumes, which could be further
automated with volumetric registration algorithms, such as [19].

A related task, namely standard plane detection, has been attempted in nu-
merous prior works, using convolutional neural networks (ConvNet) [1,8,9] and
reinforcement learning [5,15]. A recent study [6] extended standard plane detec-
tion to a guidance system using an external motion sensor. Despite their excellent
performance, the overarching problem of locating a 2D freehand scan in the 3D
anatomy remains unexplored. Volumetric reconstruction with motion-tracked
probe is another related research topic [17, 18]. However, freehand ultrasound
scanning of the fetus is challenged by the fact that the subject is not stationary,
particularly before the third trimester. A tracking sensor, therefore, can only
record the probe position but not the plane position due to the relative motion
between the fetus and the probe. This limits the tracking sensors’ practical ap-
plication in our problem setting. Inspired by [13], Yeung et al. [24] proposed to
use 2D slices sampled from 3D ultrasound volumes to train a network to predict
the 3D locations of 2D ultrasound images. Our work extends this by proposing
a framework that adapts the trained network to generalize to 2D ultrasound
images acquired from diverse machines and protocols, which are essential for
realistic scenarios in which data are acquired from different clinical centres.

In this paper, we propose AdLocUI, a framework that Adaptively Localizes
2D Ultrasound Images in a predefined 3D anatomical atlas (i.e. fetal brain). Our
work makes the following contributions: firstly, we propose a framework for the
aforementioned localization task. We demonstrate that a single model, trained
with minimal manual annotation (i.e. co-alignment of a set of 3D volumes), can
be fine-tuned in an unsupervised manner and adapted to 3 different datasets
of ultrasound images, acquired from diverse machines and acquisition protocols
differing from those of the training data. Secondly, we propose a novel way to
fine-tune the trained model to adapt to the target domain 2D ultrasound images,
which utilizes the fact that the overall displacement of a sequence of images in
the 3D anatomical atlas is equal to the displacement from the first image to the
last in that sequence. As our third contribution, we show, with ablation studies,
that the introduction of our proposed fine-tuning step leads to a significant
improvement on localization accuracy when compared to the baseline [24], and
that fine-tuned by popular domain adaptation (DA) algorithms [7, 16, 23]. Our
framework can be used for sensorless volumetric reconstruction [25] and freehand
guidance for training and facilitating more objective analysis and diagnosis.

2 Methods

2.1 Problem Setup

We consider each ultrasound acquisition from different machines as a different
domain. In general, given a sequence or set of m 2D ultrasound images, I =
{I1, I2, . . . , Im}, acquired from any domain, our goal is to predict their locations,
LImg = {L1,L2, . . . ,Lm}, in a predefined 3D anatomical atlas, R3

atlas.
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Fig. 2. Pipeline of our proposed framework, AdLocUI. During training, 2D slices,
Si, sampled from co-aligned 3D volumes are used to train a regression ConvNet
to predict the locations, Li, and displacement Dik, of the 2D slices in the 3D
anatomical atlas. The ConvNet is then fined-tuned unsupervisedly with 2D
freehand ultrasound images, Ii, based on the proposed cycle consistency. We can
then use the fine-tuned ConvNet to localize Ii of the same domain (i.e. acquired
with the same machines and protocols) in the predefined 3D anatomical atlas.

We formulate this problem in 3 stages (Fig. 2). In training, we train a regres-
sion ConvNet, ψ(·; θ), parametrized by θ, with n 2D slices, S = {S1,S2, . . . ,Sn},
sampled from the corresponding plane locations, LS = {L1,L2, . . . ,Ln}, of a set
of 3D ultrasound volumes co-aligned in R3

atlas. After that, we retrain (i.e. fine-
tune) ψ(·; θ) with S and I, using cycle consistency in an unsupervised manner.
ψ(·; θ) can then be used on I or images of the same domain as I during infer-
ence. For clarification, we will refer to 2D slice sampled from the 3D training
volumes as S and the target domain 2D ultrasound image as I.

2.2 Training with Sampled 2D Slices from 3D Volumes

Conventionally, training ψ(·; θ), requires paired training data (i.e. {Ii,Li}), where
Li (parameterization of L is detailed below) needs to be manually annotated,
which is very challenging and time-consuming. A prior study [24] proposed to
use 2D slices, S, sampled from aligned 3D ultrasound volumes, as the training
data. Therefore, the corresponding plane locations, LS , of the 2D slices are au-
tomatically known, voiding the need for further manual annotation. We adopt
the same strategy in this study.

Data preparation pipeline. We affinely registered a set of 3D ultrasound
volumes, to a common predefined anatomical atlas, R3

atlas, either manually, or
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by alignment algorithms such as [19], followed by minor manual correction. This
is the only manual annotation required by AdLocUI. 2D slices, S, were then
randomly sampled from the aligned volumes, using Fibonacci sphere sampling
of polar coordinates [13], on the fly during training. The details are described
in [24].

Training objectives. With a set of n paired training data, {Si,Li}ni=1, a re-
gression ConvNet, ψ(·; θ), is trained. ψ(·; θ) is composed of 3 parts, namely the
encoder ψenc(·; θenc), location prediction ψloc(·; θloc) and displacement prediction
ψdisp(·; θdisp). First, S are randomly augmented by scaling, in-plane translation,
contrast adjustment and random noise. A feature vector, vi, is then generated
by the encoder part, ψenc(·; θenc), for each Si:

[v1, v2, ..., vn] = [ψenc(S1; θenc), ψenc(S2; θenc), ..., ψenc(Sn; θenc)] (1)

Similar to [24], the feature vectors, {v1,v2, . . . ,vn}, are used to predict the plane
locations, LS , by the location prediction part, ψloc(·; θloc):

[L̂1, L̂2, ..., L̂n] = [ψloc(v1; θloc), ψloc(v2; θloc), ..., ψloc(vn; θloc)] (2)

where ˆ indicates predicted values. Unlike [24], we simultaneously predict Li and
the displacement, Dik, between each pair of slices, Si and Sk, in R3

atlas by the
displacement prediction part, ψdisp(·; θdisp):

[..., D̂ik, ..., D̂nn] = [..., ψdisp(vi,vk; θdisp), ..., ψdisp(vn,vn; θdisp)] (3)

Parameterization of L and D. Following the practice of [24], we parame-
terize the plane location, Li ∈ D3×3, by three anchor points (i.e. their x, y and
z coordinates), namely the top right, top left and bottom right corners, of Si.
The displacement, Dik, from Si to Sk, in R3

atlas is therefore parameterized as
(Li −Lk). There are other parameterization methods, such as Euler angles and
quaternions [12,13], which may be investigated in future work.

Training loss (lt). We use weighted mean least-squared error (MSE) as the
loss function for the multi-task learning:

lt = wL ·MSE
(
L̂,L

)
+ wD ·MSE

(
D̂,D

)
(4)

where wL and wD are the weights of the respective MSE loss.

2.3 Fine-tuning with 2D Ultrasound Images

The trained ConvNet, ψ(·; θ), can then be fine-tuned with a new set of m 2D
ultrasound images, I, acquired from any domain. The retraining relies on cycle
consistency and uses both the training data (i.e. {S,LS}) and the new set of
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images, I, without further manual annotation.

Cycle consistency. Although the plane locations, LImg of the new I are un-
known, we know, by cycle consistency, that the overall displacement, D, of a
sequence of images in R3

atlas must be equal to D from the first image to the last
of that sequence. For example, as illustrated in Fig. 2, the overall displacement
(i) Si → I1 (Di1), and I1 → I2 (D12), and I2 → I3 (D23), and I3 → Sk (D3k)
is equal to (ii) Si → Sk (Dik). While every D in (i) is unknown, Dik in (ii)
is known from the original training data. Therefore, we can construct the cycle
consistency loss (lc) with this equality to retrain ψ(·; θ):

lc = MSE
(
D̂i1 ⊗ D̂12 ⊗ D̂23 ⊗ D̂3k, Dik

)
(5)

where ⊗ depends on the choice of the parameterization of D and, hence, ⊗ is
simply subtraction here (similar to the derivation of D from L described in Sec-
tion 2.2). When predicting two consecutive displacements (e.g. D12 and D23),
the common image involved (i.e. I2) is augmented differently, which coincides
with the recent self-supervised and unsupervised learning studies [2,11,20] that
emphasize the importance of data augmentation. Our proposed unsupervised
cycle consistency mechanism is also conceptually different from that proposed
in other ultrasound imaging studies, such as [4, 14].

Fine-tuning loss (lf). Since the goal of AdLocUI is to predict the correspond-
ing plane location, LImg, of I, relying solely on the cycle consistency loss, lc,
(i.e. supervise only on D) may diverge the prediction or even fall into trivial
solutions [26]. Therefore, we add the original training loss, lt (Eq. 4), to regulate
the retraining and the overall fine-tuning loss, lf is:

lf = wc · lc + lt (6)

where wc is the weight of the cycle consistency loss, lc.

2.4 Inference

The fine-tuned ConvNet, ψ(·; θ), can be used on the set of 2D ultrasound images,
I, or other 2D ultrasound images of the same domain (i.e. acquired from the
same machine) to predict their corresponding locations, LImg, in the predefined
3D anatomical atlas, R3

atlas:

[L̂1, L̂2, ..., L̂m] = [ψ(I1; θ), ψ(I2; θ), ..., ψ(Im; θ)] (7)

3 Experimental Design

AdLocUI and other baseline approaches were first trained with 2D slices, S,
sampled from 50 3D volumes acquired by Philips HD9 (Training in Fig. 2). The
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trained networks was then fine-tuned and evaluated (Fine-tuning and Inference
in Fig. 2) on both volume-sampled 2D images and native 2D freehand images.
The training and testing images were acquired from different clinical sites and
machines, simulating the cross-domain variance observed in reality. We compared
AdLocUI with Yeung et al. [24] and the same fine-tuned by popular unsupervised
deep DA methods, namely MK-MMD [16], DANN [7] and CORAL [23]. Their
implementation details are in the Supplementary Materials.

Volume-sampled testing images. We tested AdLocUI and other baseline ap-
proaches on 2D slices sampled from 17 aligned 3D volumes acquired by GE Vo-
luson E10, which were different from the training volumes (Philips HD9). 3000
slices were sampled from each testing volume. Two evaluation metrics were used,
namely the Euclidean distance (ED) between the coordinates of the predicted
and ground-truth planes in the R3

atlas and the dihedral angle (DA) between them.

Native 2D freehand images. Images from video sequences of 2D freehand
ultrasound brain scans, acquired by GE Voluson E10 and Voluson E8 from two
different clinical centers, were tested and qualitatively analyzed. As the ground-
truth locations were not available, it was not possible to achieve the same de-
tailed quantitative analysis as the volume-sampled images. We, thus, proposed
another quantitative test. As the acquisition of the video sequences was smooth
and continuous, the locations of consecutive images should not change abruptly,
but show a gradual transition. We quantify such a rate of change (∆c) as:

∆c =
ED(P̂i, P̂i+1)

1−NCC(Ii, Ii+1)
(8)

where P̂i are the coordinates of the predicted plane of Ii and NCC is the nor-
malized cross-correlation. We used normalized (i.e. by the mean of ∆c) standard
deviation (NSTD) to quantify the consistency of ∆c throughout the whole video
sequence, which should be low ideally. More details of the datasets are in the
Supplementary Materials.

4 Results and Discussion

4.1 Volume-Sampled Images

We compared AdLocUI, via ablation studies, to different baseline approaches in
two different settings, both corresponding to realistic scenarios.

Firstly, as presented in Table 1a, we considered the scenario where the same
set of images was used for fine-tuning and then testing. This is relevant when
offline analysis is performed, where we have sufficient time for fine-tuning with
the test images before final analysis. From Table 1a, the original Yeung et al. [24]
(i.e. without fine-tuning) achieved ED=71.1 and DA=0.264, which was slightly
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Table 1. Evaluation results (mean±standard deviation) on volume-sampled 2D
images on two settings, 1a and 1b, evaluated by Euclidean distance (ED) and
dihedral angle (DA). The voxel size is 0.6mm. ↓ indicates lower values being
more accurate. * indicates manual annotation being used.

ED ↓
(voxel)

DA ↓
(rad)

Yeung et at. [24]
without fine-tuning 71.1±29.9 0.264±0.177
with MK-MMD [16] 71.4±27.0 0.266±0.153
with CORAL [23] 79.3±29.9 0.276±0.159
with DANN [7] 72.8±30.5 0.265±0.160
*supervised fine-tuning 11.3±1.57 0.172±0.055

AdLocUI (ours)
without fine-tuning 63.0±29.0 0.251±0.166
proposed fine-tuning 23.7±9.01 0.198±0.092

(a) Fine-tune and test on the same set of images

ED ↓
(voxel)

DA ↓
(rad)

70.6±25.3 0.265±0.137
72.6±26.0 0.267±0.140
80.8±28.1 0.278±0.149
72.4±27.9 0.266±0.143
28.6±14.2 0.202±0.084

62.7±25.0 0.253±0.138
33.0±15.1 0.211±0.097

(b) different set of images

worse than AdLocUI without fine-tuning (ED=63.0 and DA=0.251). The multi-
task learning (i.e. additional task of predicting Dij) contributed to such im-
provement. Our proposed fine-tuning step, which does not require any addi-
tional manual annotation, contributed to a significant (p<0.05, student’s t-test)
improvement (ED=23.7 and DA=0.198). We also analyzed an unlikely situation
where we assumed to have the ground-truth locations of the testing images for
fine-tuning (i.e. retraining) Yeung et al. [24] in a supervised manner. This can be
viewed as the oracle of the accuracy of the prediction (ED=11.3 and DA=0.172).

Secondly, as presented in Table 1b, we considered the scenario where differ-
ent sets of images (from the same domain) were used for fine-tuning and testing.
This corresponds to online prediction, for example scanning guidance, where a
set of example images were acquired in advance for fine-tuning . From Table 1b,
without fine-tuning, Yeung et al. [24] (ED=70.6 and DA=0.265) and AdLocUI

(ED=62.7 and DA=0.253) performed similarly as the first scenario. Compared
to the first scenario, a pronounced drop in performance was seen for supervised
fine-tuning of Yeung et al. [24] (ED=28.6 and DA=0.202) when the fine-tuning
and testing images were no longer the same. This had less severe impact to
AdLocUI with the proposed fine-tuning (ED=33.0 and DA=0.211), which was
still significantly (p<0.05) better than the baselines. Despite its slightly better
performance, supervised fine-tuning requires manually annotated image loca-
tions to retrain the network for every new machine or protocol, which is not
applicable in practice. On the contrary, AdLocUI just needs the raw 2D images
for fine-tuning, which is much more achievable in neuroimaging studies.

Fine-tuned with existing DA methods. We also compared AdLocUI with
Yeung et al. [24] fine-tuned by popular unsupervised DA methods (i.e. MK-
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MMD [16], DANN [7] and CORAL [23]). Despite some trials of hyperparameters
tuning, as shown in Table 1, their results were still comparable or worse than no
fine-tuning. This may be due to the fact that most DA approaches were designed
for classification tasks, which may not be directly applicable to our regression
task [3]. This further verifies the value of our work.

4.2 Native Freehand Images

In our experiments on native 2D freehand ultrasound images, we used the pre-
dicted image locations to sample the corresponding slices from the 3D atlas, to
which the 3D training volumes were co-aligned. The sampled slices should match
with the corresponding input images for accurate predictions. As shown in Fig. 1,
predictions from AdLocUI clearly demonstrated a much better match, in terms
of similarity and anatomical structures present, with the corresponding input
images at different orientations, when compared to Yeung et al. [24]. By our
proposed quantitative test (i.e. NSTD of ∆c) as described in Section 3, AdLocUI
achieved a result of 0.553, which was lower than both Yeung et al. [24] (0.706)
and AdLocUI without fine-tuning (0.726), suggesting that the predicted localiza-
tion of AdLocUI was more consistent throughout the ultrasound video sequence,
which was indicative of the smooth frame-to-frame transitions expected in free-
hand scanning. Both the qualitative and quantitative results showed AdLocUI’s
superior performance when being applied on native 2D freehand ultrasound im-
ages in practice. More qualitative examples are in the Supplementary Materials.

5 Conclusion

In summary, we propose AdLocUI, a framework for localizing 2D ultrasound
brain images in the 3D anatomy. By using an intuitive cycle consistency loss,
AdLocUI can be fine-tuned in an unsupervised manner to adapt to images
acquired from different machines and protocols. The experiments on three dif-
ferent datasets of ultrasound images demonstrate AdLocUI’s generalizability and
superior performance to other baseline approaches. As future studies, we would
like to extend AdLocUI to other anatomies and develop it as an accessible and
general sensorless freehand ultrasound guidance tool for training novice sonog-
raphers to facilitate more contextualized structural analysis and diagnosis.
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6 Supplementary Materials

Table 2. Implementation details of different approaches
Approaches Yeung et al. [24] AdLocUI

Encoder
ψenc(·; θenc)

VGG16 Backbone

Location prediction
ψloc(·; θloc)

Refer to the original paper [24]

(FC - ReLU)×3

FC size from
512 to 256 to 9

Displacement prediction
ψdisp(·; θdisp)

-

(FC - ReLU)×3

FC size from
512 to 256 to 9

-
- wL = 1
- wD = 0.5

Training
hyperparameters

- Batch size of 80
- Learning rate (lr) of 0.0001
- lr halved when errors plateaued
- Early stop when errors further plateaued
- ADAM optimization

Fine-tuning
hyperparameters

- Weight for MK-MMD [16] loss = 10
- Weight for CORAL [23] loss = 1
- Weight for DANN [7] loss = 1
- Weight for supervised loss = 1

- wc = 1

Other details
- Python 3.7, pytorch 1.9
- Nvidia GTX 1080ti, 12 GB memory
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