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Abstract

This paper focuses on the well-known problem in behavioral
robotics – “what to do next”. The problem addressed here
lies in the selection of one activity to be executed from multi-
ple regulative, homeostatic and developmental processes run-
ning onboard a reconfigurable multi-robot organism. We con-
sider adaptive hardware and software frameworks and argue
the non-triviality of action selection for evolutionary robotics.
The paper overviews several deliberative, evolutionary and
bio-inspired approaches for such an adaptive action selection
mechanism.

Introduction

Evolutionary robotics is a well-established research field,

which combines several such areas as robotics, evolutionary

computation, bio-inspired and developmental systems (Nolfi

and Floreano, 2000). This field is characterized by multiple

challenges related to platform development, onboard fitness

evaluation, running time of evaluation cycles and other is-

sues (Levi and Kernbach, 2010). Synergies between recon-

figurable robotics and evolutionary computation are of spe-

cial interest, because here the high developmental plasticity

of the hardware platform can be exploited to realize the goal

of adaptivity and reliability.

Modern reconfigurable multi-robot systems possess very

high computational power and extended communication for

performing evolutionary operations on-board and on-line.

These hardware capabilities allow us to extend the soft-

ware framework to include the whole regulative, homeo-

static and evolutionary functionality for achieving long-term

autonomous behavior of artificial organisms (Levi and Kern-

bach, 2010). In this work we focus on the issues of run-

ning multiple control processes on board the robot. These

processes are created by evolutionary development, home-

ostasis and self-organizing control, learning, and middle-

and low-level management of software and hardware. Some

of these processes will have a protective role in preventing

the mechatronic platform from harm during the evaluation

phases. We expect that regulative and developmental pro-

cesses will, in some situations, contradict each other and

thus come into conflict. Multiple difficulties with action se-

lection mechanisms are well-known in robotics (Prescott,

2008). When applied to evolutionary robotics these cre-

ate problems related to, for instance, credit assignment

(Whitacre et al., 2006), self-organization and fitness evalua-

tion (Floreano and Urzelai, 2000), and robustness of behav-

ioral and reconfiguration strategies (Andersen et al., 2009).

More generally, action selection is a fundamental prob-

lem in artificial systems targeting long-term autonomous

and adaptive behavior in complex environments, especially

when such a behavior is expected to be evolved (Gomez and

Miikkulainen, 1997). Current thinking and experience sug-

gests that several architectures, e.g. subsumption, reactive,

insect-based or others (Brooks, 1986), need to be consid-

ered as a framework around bio-inspired and evolutionary

paradigms for complex behaviorial systems.

This work is an overview paper, which introduces the

problem of action selection in evolutionary modular robotics

and considers a combination of behavioral, bio-inspired and

evolutionary approaches for its solution. Firstly, the field

of morphogenetic robotics is outlined in Sec. II, then the

high complexity of the regulatory framework is underlined

in Sec. III. Sec. IV reviews a number of approaches to ac-

tion selection, from the literature. Secs. V and VI present

several evolutionary and bio-inspired approaches, based on

a combination of fixed, self-organized and evolvable con-

trollers and hormone-based regulation. Sec. VII concludes

this work.

Morphogenetic Robotics

Artificial developmental systems, in particular developmen-

tal (epigenetic) robotics (Lungarella et al., 2003), is a new

and emerging field across several research areas – neuro-

science; developmental psychology; biological disciplines

such as embryogenetics; evolutionary biology or ecology;

and engineering sciences such as mechatronics, on-chip-

reconfigurable systems or cognitive robotics (Asada et al.,

2009). The whole research area is devoted to ontogenetic

development of an organism, i.e. from one cell to multi-

cellular adult systems (Spencer et al., 2008).
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A closely related field is evolutionary robotics (Nolfi and

Floreano, 2000), which uses the methodology of evolution-

ary computation to evolve regulative structures of organisms

over time. Evolutionary robotics tries to mimic biologi-

cal processes of evolution (Elfwing et al., 2008), but also

faces challenges of embodiment, the reality gap, adaptation

or running on-line and on-board a smart microcontroller de-

vice (Baele et al., 2009).

In several aspects developmental and evolutionary

methodologies differ from each other:

• “... should try to endow the [developmental] system with

an appropriate set of basic mechanisms for the system to

develop, learn and behave in a way that appears intelli-

gent to an external observer. As many others before us,

we advocate the reliance on the principles of emergent

functionality and self-organization...” (Lungarella et al.,

2003);

• “evolutionary robotics is a new technique for the au-

tomatic creation of autonomous robots. Inspired by

the Darwinian principle of selective reproduction of the

fittest, it views robots as autonomous artificial organisms

that develop their own skills in close interaction with the

environment and without human intervention” (Nolfi and

Floreano, 2000).

Despite differences, evolutionary and developmental ap-

proaches share not only common problems, but also some

ways to solve them, it seems that both are merging into one

large area of self-developmental systems (Levi and Kern-

bach, 2010).

Both developmental and evolutionary methodologies im-

pose a set of prerequisites on a system; one of the most im-

portant is that it should possess a high degree of developmen-

tal plasticity. Only then can an organism be developed or

evolved. Developmental plasticity requires a specific flexi-

ble regulative, homeostatic, functional and structural organi-

zation – in this respect evolutionary/developmental systems

differ from other branches of robotics. Since collective sys-

tems, due to their high flexibility and cellular-like organiza-

tion, can provide such a versatile and re-configurable orga-

nization – collective robotics is a suitable subject for appli-

cation of evolving and developmental approaches.

The approach used in our work is based on modularity

and reconfigurability of the robot platform, as shown in

Fig. 1. Individual modules possess different functionality

and can dock to each other. Changing how they are con-

nected, an aggregated multi-robot system (organism) pos-

sesses many degrees of structural and functional freedom.

With a self-assembly capability, robots have control over

their own structure and functionality; in this way different

“self-*” features, such as self-healing, self-monitoring or

self-repairing can emerge. These self-* features are related

in many aspects to adaptability and evolve-ability, to emer-

gence of behavior and to controllability of long-term devel-

opmental processes. The self-issues are investigated in man-

ufacturing processes (Frei et al., 2008), distributed systems

(Berns and Ghosh, 2009), control (Brukman and Dolev,

2008), complex information systems (Babaoglu et al., 2005)

and cognitive sensor networks (Boonma and Suzuki, 2008).

(a) (b)

(c)

Figure 1: (a), (b) Real prototypes of aggregated robots

from the SYMBRION/REPLICATOR projects; (c) Image of

the simulated multi-robot organism.

The platform, shown in Fig. 1 is a complex mechatronic

system. Each module includes the main CPU, intended

for behavioral tasks that require high-computational power.

This CPU is a Blackfin double-core microprocessor with

DSP functionality, which can run with up to 550MHz core

clock and supports a µCLinux kernel. It possesses an effi-

cient power management system and in its current version

the main CPU can utilize 64Mb SDRAM. Peripheral tasks,

e.g. sensor-data processing, control of brushless motors,

power management and others are executed by several ARM

Cortex and low-power MSP microcontrollers. Each module

has an energy source with a capacity of about 35Wh. All

of them are connected through Ethernet and a power shar-

ing bus. In the next section we briefly discuss a framework

of software controllers, developed for this system and intro-

duce the problem of action selection.

Controller Framework, Middleware

Architecture and the Need for Action Selection

In robotics, there are several well-known control ar-

chitectures, for example subsumption/reactive archi-

tectures (Brooks, 1986), insect-based schemes (Chiel
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et al., 1992) or structural, synchronous/asynchronous

schemes (Simmons, 1991). An overview of these and other

architectures can be found in (Siciliano and Khatib, 2008).

Recently, multiple bio-inspired and swarm-optimized

control architectures have appeared e.g., (Kernbach et al.,

2009b). In designing the general control architecture, we

face several key challenges:

• Multiple processes. Artificial organisms execute

many different processes, such as evolutionary develop-

ment, homeostasis and self-organizing control, learning,

middle- and low-level management of software and hard-

ware structures. Several of these processes require simul-

taneous access to hardware or should be executed under

real-time conditions.

• Distributed execution. As mentioned, the hardware pro-

vides several low-power and high-power microcontrollers

and microprocessors in one robot module. Moreover, all

modules communicate via a high-speed bus. Thus, the

multiprocessor distributed system of an artificial organ-

ism provides essential computational resources, however

their synchronization and management are a challenge.

• Multiple fitness. Although fitness evaluation using lo-

cal sensors is mentioned in the literature, here we need to

stress the problem of credit assignment related to the iden-

tification of a responsible controller, see e.g. (Whitacre

et al., 2006)). Since many different controllers are simul-

taneously running on-board, the problem of credit assign-

ment as well as interference between controllers is criti-

cal.

• Hardware protection. Since several controllers use the

trial-and-error principle, the hardware of the robot plat-

form should be protected from possible damage caused

during the controllers’ evolution.

Corresponding to the hardware architecture, the general con-

troller framework is shown in Fig. 2. This structure fol-

lows the design principles, originating from hybrid delibera-

tive/reactive systems, see e.g. (Arkin and Mackenzie, 1994).

It includes rule-based control schemes, e.g. (Li et al., 2006),

as well as multiple adaptive components. The advantage of

the hybrid architecture is that it combines evolvability and

the high adaptive potential of reactive controllers with delib-

erative controllers. The latter provide planning and reason-

ing approaches that are required for the complex activities

of an artificial organism.

Meeting the challenges above raises the issue of choosing

a suitable underlying middleware with an adequate architec-

ture. As mentioned, a dual-core DSP with a µCLinux will be

used as the main CPU. This approach provides much flexi-

bility and facilitates rapid development, for instance in the

use of shared standard libraries (e.g., STL, Boost and oth-

ers). Although the DSP is relatively powerful computation-

s
e
n
s
o
r-

fu
s
io

n
 m

e
c
h
a
n
is

m

a
c
ti
o
n
-s

e
le

c
ti
o
n
 m

e
c
h
a
n
is

m

h
a
rd

w
a
re

 p
ro

te
c
ti
o
n
 c

o
n
tr

o
lle

r

sensor 1 actuator 1

actuator n

Evolved Controller 1

Artificial Genome

regulatory part part 1 part n part m part k

Evolved Controller n

Low-level Controllers

Self-organizing Controllers

Deliberative Controllers

Learning

Homeostatic
Controllers, e.g. AIS

Middleware

OS and
Drivers

OS and
Drivers

OS and
Drivers

Hardware,
Robot 1

Hardware,
Robot n

Hardware,
Robot 2

Environment

Finess evaluation loop

sensor n

...

...

...

...

...

..
.

evolutionary engines

Figure 2: General controller framework. All con-

trollers/processes are distributed in the computational sys-

tem of an artificial organism, OS – operating system. Struc-

ture of controllers utilizes hybrid deliberative/reactive prin-

ciple.

ally (given its power consumption), it nevertheless imposes

some restrictions that need to be addressed.

The most important limitation may be the fact that there is

no hardware memory management unit (MMU). Due to the

way the µCLinux software MMU works, we decided to de-

sign the controller framework as a set of competing applica-

tions; an approach that is quite common for UNIX environ-

ments (Tanenbaum and van Steen, 2008). For communica-

tion within the controller framework a message based mid-

dleware system has been implemented. This provides the

necessary flexibility needed to implement an event-driven

system without having to determine all of the timing con-

straints in advance (Tanenbaum and van Steen, 2008). Sock-

ets serve as the only mechanism for inter-process commu-

nication. Although this may appear to be a disadvantage

it yields some very important benefits. First, there is only

one standard communications interface defined in advance,

with attendant benefits in parallel development across mul-

tiple teams. Second, and with regard the robustness of the

system; if, for example, a certain controller crashes, the im-

pact of that crash is limited to a single process within the

system. All the other applications remain functional and the

system may even restart the crashed process later on. The

same applies to the middleware itself, as it conforms to the

same rules. The approach assures that connections once es-

tablished are not harmed even if, for example, the addressing

module itself is faulty and, therefore cancelled by the oper-

ating system (the only limitation here will be the creation

of new connections as this is impossible without address-

ing modules). For connections to other robot modules via
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Ethernet the same socket mechanism is used, as for stan-

dard Ethernet communications. With this framework we are

able to create several controllers which use, for example,

evolutionary engines with a structure encoded in an artifi-

cial genome. It is assumed that there are also a few task-

specific controllers placed hierarchically above other con-

trollers. These task-specific controllers are in charge of the

macroscopic control of an artificial organism. They may, for

instance, use deliberative architectures with different plan-

ning approaches, e.g. see (Weiss, 1999).

Finally, a hardware protection controller closes the fit-

ness evaluation loop for the evolvable part of the con-

trollers (Kernbach et al., 2009a). This controller has a re-

active character and monitors activities between the action

selection mechanism and actuators as well as exceptional

events from the middleware. It prevents actions that might

immediately lead to damage to the platform (e.g., by me-

chanical collisions).

The action selection mechanism is one of the most com-

plex elements of the general controller framework. This

mechanism reflects a common problem of intelligent sys-

tems, i.e. “what to do next”, (Bratman, 1987). This problem

is especially challenging in evolutionary robotics for sev-

eral reasons. Firstly, the fitness evaluation loop will include

a combination of different controllers, so it may be diffi-

cult to find a unique correlation between a specific evolved

controller and its own fitness value. Secondly, several con-

trollers on different levels will be simultaneously evolved,

so that some co-evolutionary effects may appear. Among

other problems, we should also mention the multiple co-

dependencies between fixed, self-organized and evolving

controllers.

Action Selection Mechanism

Formally, action selection is defined as follows: “given an

agent with a repertoire of available actions ... the task is to

decide what action (or action sequence) to perform in or-

der for that agent to best achieve its goals” (Prescott, 2008).

Within the context of the projects general controller frame-

work shown in Fig. 2, the role of the action selection mech-

anism is to determine which controller(s) are driving the ac-

tuators at any given time. At one level the action selection

mechanism can be thought of as a switch, selecting which

of the controllers is connected to the actuators; however a

simple switch would fail to provide for, firstly, smooth mo-

tor transitions from one controller to another and, secondly,

the fact that in this hybrid deliberative/reactive architecture

some controllers will need to be prioritized for short time

periods (e.g., for obstacle avoidance) whereas others need

periods of control over longer time spans (perhaps subsum-

ing low-level reactive elements) to achieve high level goals.

In practice, therefore, the action selection mechanism will

need to combine some or all of the following elements:

• prioritization of low-level reactive controllers so that they

are given control with very low latency;

• vector summation or smoothing between some controller

outputs in order to achieve jerk free motor transitions on

controller switching, and

• a time multiplexing scheme to ensure that different con-

trollers are granted control with a frequency and for time

periods appropriate to achieving their goals.

Action selection mechanisms have been the subject of re-

search in both artificial and natural systems for some years,

see for instance (Maes, 1990; Hexmoor et al., 1997; Prescott

et al., 2007). However, in a recent review Bryson suggests

that no widely accepted general-purpose architecture for ac-

tion selection yet exists (Bryson, 2007). Relevant to the

present work is a review of compromise strategies for ac-

tion selection (Crabbe, 2007). A compromise strategy is one

in which instead of selecting a single controller, the action

selection mechanism combines several controller outputs in

such a way as to achieve a compromise between their (other-

wise conflicting) goals; (Crabbe, 2007) suggests that a com-

promise strategy is more beneficial for high-level than low-

level goals.

It is important to note that the action selection mechanism

embeds and encodes design rules which will critically in-

fluence the overall behavior of the robot. In order to arbi-

trate between, possibly conflicting, controller goals the ac-

tion selection mechanism will certainly need to access inter-

nal state data for the robot (i.e. from the homeostatic con-

trollers), and may need to access external sensor data. Fur-

thermore, given that those action selection design rules and

their parameters may be difficult to determine at design time,

we are likely to require an evolutionary approach; hence the

connection between the genome structure/evolutionary en-

gine and the action selection mechanism shown in Fig. 2.

We may, for instance, evolve the weights which determine

the relative priority of controllers as in (González et al.,

2006), or co-evolve both controllers and action selection pa-

rameters (González, 2007).

Evolution and Action Selection

The action selection mechanism can be seen as a two-tiered

architecture of the robot controller (Fig. 3(a)). On the lower

tier are activities like elementary actions (e.g. turn right), be-

havior routines (e.g. random walk) or sub-controllers (e.g.

sensor fusion). The upper tier is the action selection mech-

anism, that controls which activities are running at the mo-

ment.

The adaptiveness of the entire robot control can be in-

creased by applying evolutionary approaches to the differ-

ent tiers of the architecture (Fig. 3(b)): (A) Neither the con-

troller nor the action selection module adapts. (B) The ac-

tion selection is static and the activities evolve. (C) The

action selection mechanism evolves and the activities are
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Foraging Exploration ...

Action Selection Mechanism

... OthersExploration Sensor

Fusion

(a) (b)

Figure 3: (a) Two-tier architecture with action selection and

activities. (b) Evolution at the different tiers of the architec-

ture.

static. (D) Both action selection mechanism and activities

evolve.

One concept for approach (B) is a static planning system

where a plan to achieve a goal is formulated as a series of

activities described by fitness functions. At each step of the

plan, the actual controller for the corresponding activity is

evolved by online evolutionary algorithms using the fitness

function. In this way, the overarching plan does not adapt

but the execution of the individual steps evolves. Examples

for activities of such a plan can be “Sense Energy Source”

or “Robot Aggregation”.

An extreme example for approach (C) is a large mono-

lithic evolving neural network as the action selection mech-

anism. The activities are direct sensor and actuator actions,

like reading sensor values and setting motor velocities. An

increase in complexity of the activities allows a reduction

in the action selection mechanism. For example, instead of

direct commands, activities can be small controllers such

as collision avoidance or sensor fusion. With very com-

plex activities that control complete behaviors, like forag-

ing, resting or exploring for example, the action selection

mechanism can degenerate into a simple priority manage-

ment system that checks for which “needs” are the most ur-

gent. While a complex neural network can be difficult to

evolve efficiently, a priority system can be evolved easily by

parameter evolution of the weights or thresholds of different

needs and motivations.

Approach (D) offers the most flexibility and adaptiveness

of the controller architecture. This could possibly be a sim-

ple combination of (B) and (C). It is conceivable that the

action selection adapts to a changing environment by chang-

ing priorities of preferences for subordinated activities. In

case no matching controller is available for an operation, the

action selection can define new fitness functions and evolve

new activities to suit the current needs, or evolve existing

activities for extended tasks.

In the next section a hormone based controller for ap-

proach (D) is presented.

Biologically Inspired Mechanism

Artificial Hormone Control

Within the scope of the SYMBRION/REPLICATOR projects,

we follow a bio-inspired approach of decentralized co-

ordination of action selection which is distributed across

the robot modules: On the one hand, all robot modules,

that form the organism, act as autonomous units which

have a repertoire of behavioral programs available (ac-

tions/controllers). A localized action selection mechanism

is needed, which decides within each single unit which ac-

tion has to be selected. On the other hand, the whole organ-

ism has to decide “as a whole”, which action it will perform

based on its current status, on its past experience, on its cur-

rent goals, and on the current set of sensor information. To

achieve this difficult task, we developed the Artificial Home-

ostatic Hormone System (AHHS) which mimics the spread

of cellular signals (chemicals, hormones) within multicellu-

lar (metazoan) organisms (Schmickl and Crailsheim, 2009;

Stradner et al., 2009). This set of controllers, often called

“hormone controllers” allow cells (robot modules) to spe-

cialize within the robot organisms and to reflect specific

physiological states by a simple physiological model that

mimics excretion, dilution, diffusion, (chemical) interaction,

and degradation of hormones. Within the robotic organism,

gradients of hormones emerge over time, reflecting not only

the modules’ positions in the organism but also important

status information, such as the current energy level. In a hi-

erarchical approach, the globally influenced hormone status

within a robot module can help to select an optimal local

controller. In turn, the execution of local controllers can

significantly alter the hormone system, thus, via diffusion

to neighboring modules, alter the behavior of controllers in

nearby modules. This way, the AHHS controller allows not

only decentralized action selection, but also inter-modular

communication between different sub-controllers, hardware

abstraction, and sensor integration. See Fig. 4 for a graphi-

cal representation of the AHHS design as described above.

The concept of AHHS is related to gene regulatory net-

works (Bongard, 2002). However, here each edge has its

own activation threshold and redundant edges with different

activations between two hormones are allowed.

Action selection is not only about choosing the right ac-

tion but also about how selected actions integrate to low-

level motor commands in a robot (see Öztürk, 2009). The

AHHS allows multiple hormones to affect the actuators of

the robots in parallel by integrating various chemical stimu-

lations (see Fig.5 for a schematic of this process).

In the following we present results of a simplified sce-

nario to demonstrate the principles of action selection in a

hormone controller. We restrict ourselves to a single robot

module and we use the AHHS directly to control the robot

without having sub-controllers as described in the general

concept above. However, the robot’s body is virtually sep-

arated into two compartments (c.f. Fig. 5a) between which
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Figure 4: Schematic representation of decentralized action

selection that is provided in various ‘body parts’ of the or-

ganism by the AHHS robot control.

Figure 5: In the AHHS, actuators are influenced by various

hormone states in parallel, this way allowing signal integra-

tion to produce “mixed” or blended actions.

hormones diffuse. Each compartment is associated with one

half of the robot. The left compartment contains the left

wheel and all proximity sensors of the left half (similar for

the right half).

The task of the hormone controller is to control a robot

module in a 2-D arena, to catch light emitters, and to explore

the arena. Thus, basically two actions are needed to succeed

in this task: exploration/wall avoidance and a gradient ascent

behavior. The arena consists of surrounding and additional

walls in the upper and lower third (see Fig. 6(a)). In addition,

it includes one randomly positioned emitter. Both, the walls

and the emitter, are perceived by the robot, if they are within

range of the sensors (range of light sensors about 50% and

range of proximity sensors about 10% of the arena width).

The intensity of the sensor signal depends on the distance to

the walls and the emitter, respectively. If the robot reaches

the emitter (distance < robot diameter) the emitter is erased

and reappears at a random position.

The fitness function, that is applied in the artificial evolu-

tion, rewards the successful locating of the light emitter, but

also – at smaller scale – the exploration of the arena. Thus,

the robot has to switch between the action of exploration,

if no emitter is detected (i.e., it is too far away to have any

significant impact on the sensors), and the gradient ascent, if

the emitter is detected. The trajectory of the best individual

of the 1000th generation is plotted in Fig. 6(a).

(a) circle is initial pos., crosses show sequence of emitters

-1

 0

 1

 0  500  1000  1500

H1

H2

(b) The three vertical lines indicate the time at which emit-
ters were reached; note local minima of H2 at t = 175 and
t = 647 showing the misses in approaching the emitter.

Figure 6: Robot’s trajectory using AHHS controller and the

dynamics of five hormones responsible for action selection.

The evolved hormone reaction network of the best

evolved controller is complex. We restrict ourselves to a de-

scription of the most prominent features. In the hormone

network we identify two major hormone interactions that

represent the actions: exploration/wall avoidance and gra-

dient ascent. Without any significant input the robot drives

in wide right turns forming spirals. If it approaches a wall

it avoids collisions because of two controller rules. First,

the production of hormone H1 (see Fig 6(b)) is triggered by

the proximity sensor that points 45 degrees to the right (the

closer the wall the higher the hormone production). Sec-

ond, another rule controls the right wheel depending on hor-

mone H1. With increasing value of this hormone the wheel

is accelerated resulting in a turn to the left. Hence, a wall

following behavior emerges during which the robot keeps

the wall to the right. A question concerning action selection

is when to stop the wall following action and continuing the

gradient ascent in order to reach the light emitter. This is

controlled by hormoneH2. Its value is reduced with increas-

ing input of the left light sensor (bright light results in low

H2). A second rule controls the left wheel which is decel-

erated mainly for values of H2 ∈ [−0.2,−0.6]. This slow-

down of the left wheel results in a left turn. Hence, the robot
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interrupts its wall following behavior and turns towards the

light (which is always to the left as the robot follows the wall

counterclockwise). Hence, we have identified the relevant

trigger (hormone H2) for the action selection mechanism in

this hormone network. Obviously, this is a simplified appli-

cation of AHHS and in future applications we will aim for

much more complex tasks of multi-modular robotics.

Adapting Hormone Control

The hormone controllers mentioned in the previous section

are subject to evolutionary adaptation. A data structure

called “genome” contains rule descriptions and other pa-

rameters, which describe some physicochemical properties

of the simulated hormones (production rates, decay rates,

diffusion rates). In addition, these data describe how one

hormone can influence the dynamics of the concentrations

of other hormones. The genome is modified by a process of

artificial evolution, which allows the embedded action selec-

tion to adapt over time to a given body shape or to changes in

the environmental conditions. In our evolutionary approach,

the fitness of the system reflects multiple levels of adapta-

tion: The whole organism level (e.g., efficiency of shapes

and gait patterns) but also on the individual module level

(e.g., energetic efficiency of singular modules within the or-

ganism).

Conclusion

In this paper we have briefly presented hardware and soft-

ware frameworks for a reconfigurable multi-robot system.

The mechatronic platform provides a high hardware plastic-

ity in terms of structural reconfiguration, changeable loco-

motion and actuation, and sharing and distribution of power

and information. Because of the complexity of regulative,

homeostatic and evolutionary mechanisms there are multi-

ple processes that require simultaneous access to actuators.

Based on preliminary experiments these processes are ex-

pected to display contradictory characteristics. For example,

the homeostatic system can require minimization of energy

consumption, whereas the evolutionary system may require

more energy for performing evaluation runs.

The problem of action selection considered in this paper

is highly non-trivial in this context. It is not only related

to the classical problem of action selection, well-known in

robotics, but also has new aspects related to fitness estima-

tion, credit assignment, evolving of multiple controllers and

other issues. The problem of action selection requires a

complex deliberative framework and specific controller ar-

chitectures.

In this paper we have considered a hybrid controller

framework, which has reactive and deliberative components.

The evolutionary part, which consists of genome, evolution-

ary engines and evolvable controllers, represents in fact only

a small part of the whole framework. It seems that evolv-

ing all regulatory structures of real robots from scratch is

not feasible because of technology limitations, very specific

sensor-actor systems and complexity. Furthermore, it is not

fully clear whether this is a general property or is related

only to technological artefacts.

Beside the hybrid framework, this paper has proposed

evolutionary and bio-inspired solutions to the problem of ac-

tion selection. The evolutionary approach combines fixed,

self-organized and evolvable controllers; moreover the ac-

tion selection mechanism can also be integrated into the evo-

lutionary loop. The bio-inspired approach is guided by the

hormone systems and based on the distribution of hormonal

intensity (and between different hormones) in different com-

partments of a robot, and across robots in a multi-robot or-

ganism.
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