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Abstract: This paper surveys some existing direct adaptive feedback control schemes for lin-
ear time-invariant systems with actuator failures characterized by the failure pattern that some 
inputs are stuck at some unknown fixed or varying values at unknown time instants, and ap-
plications of those schemes to aircraft flight control system models. Controller structures, 
plant-model matching conditions, and adaptive laws to update controller parameters are inves-
tigated for the following cases for continuous-time systems: state tracking using state feed-
back, output tracking using state feedback, and output tracking using output feedback. In ad-
dition, a discrete-time output tracking design using output feedback is presented. Robustness 
of this design with respect to unmodeled dynamics and disturbances is addressed using a 
modified robust adaptive law. 
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1. INTRODUCTION 

Actuator failures can be uncertain, that is, it is not 
known when, in what manner, and how many 
actuators fail. For example, some unknown inputs 
may be stuck at some unknown values at unknown 
time instants. A number of aircraft accidents were 
caused by actuator failures, such as the horizontal 
stabilizer or the rudder being stuck in an unknown 
position, leading to catastrophic failures. Actuator 
failure compensation is an important and challenging 
problem for control systems research with both 
theoretical and practical significance.  
 
1.1. Literature overview 

In recent years, the actuator failure compensation 
problem has been studied via several different 
approaches. There have been a number of results in 
the literature on control of systems with failures. 
Typical design methods include: multiple-model, 
switching, and tuning designs, adaptive designs, fault 

detection and diagnosis designs, and robust control 
designs.  

 
1.1.1 Multiple-model, switching, and tuning 

For control of systems with component failures, one 
class of designs is based on multiple-model, switching, 
and tuning and has been applied to reconfigurable 
flight control [5, 9, 17, 57]. The basic idea of 
multiple-model, switching, and tuning designs is the 
assumption that the controlled system (plant) belongs 
to a set of plant models. For each model, a controller 
is designed to achieve the control objective. During 
system operation, these models run in parallel with the 
plant, and if one actuator fails, the switching 
mechanism will find the best matched model and 
switch to the appropriate controller. The multiple-
model, switching, and tuning design has several forms 
[35]: one based on all-fixed plant models, one based 
on all-adaptive plant models, one based on fixed 
models and one adaptive model, and one based on 
fixed models with one free-tuning and one 
reinitialized adaptive model.  
 
1.1.2 Adaptive designs 

Another type of control designs are indirect or 
direct adaptive control based schemes [1, 4-6, 8, 34]. 
In [1], an indirect adaptive LQ controller is used to 
accommodate failures in the pitch control channel or 
the horizontal stabilizer, leading to performance 
improvement. In [4], several indirect and direct 
adaptive control algorithms are presented for control 
of aircraft with a failure characterized by a locked left 
horizontal tail surface. An adaptive controller is used 
to accommodate the system dynamics change caused 
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by such a failure. In [5, 6], indirect adaptive control 
schemes are used for compensation of loss of 
effectiveness of control surfaces. In [8], an adaptive 
algorithm is used for control of a dynamic system with 
known dynamics but unknown actuator failures. The 
control law for the known dynamics is based on a 
model matching design, while the compensation for 
actuator failure is based on an adaptive tuning of 
actuation parameter matrices. A model-following 
adaptive design for failure compensation was 
presented in [34], which achieves output tracking for 
some multi-output systems.  

Designs based on indirect adaptive control first 
estimate the system and failure parameters and then 
implement control law reconfiguration employing the 
functioning actuators. Direct adaptive control based 
designs do not explicitly involve system and failure 
parameter estimation, and instead they adaptively 
update control reconfiguration parameters online.  

In this paper, we present a general framework for 
direct adaptive control of systems with both uncertain 
parameters and uncertain actuator failures, and 
demonstrate more adaptive schemes for different 
control designs and performance requirements.  

Adaptive reconfigurable flight control designs using 
neural networks have been developed for aircraft 
systems with failures [10, 22, 27, 28, 39, 51]. Unlike 
the neural networks based adaptive designs, our 
adaptive failure compensation control designs are 
model-based, that is, the nominal system structural 
information is incorporated into adaptive failure 
compensation designs, to analytically ensure system 
stability and tracking properties. For applications, 
these two adaptive approaches can be further 
combined to achieve desired system performance.  

 
1.1.3 Fault detection and diagnosis 

The fault detection and diagnosis approach [11, 16, 
19, 24, 26, 32, 38, 48-50] has also been used for 
control of systems with component failures. Related 
results also include those in [3, 53, 55, 56], using fault 
tolerant control designs, in [14, 23], using 
identification of multiplicative faults based on 
parameter estimation techniques, in [7], using function 
approximations for control and adaptive law design, in 
[2, 20, 25, 31, 33, 37, 50], using residual generation 
techniques for fault detection and diagnosis, and in 
[36, 52], using other design and analysis techniques.  

 
1.1.4 Robust control designs 

Robust control designs, which can deal with 
parameter variations and model uncertainties, have 
also been used to accommodate certain presumed 
component failures by treating them as uncertainties. 
As a result, system stability can be guaranteed and an 
acceptable closed-loop performance can be 
maintained in the presence of actuator failures. 

Typical robust control techniques used in the design 
of reliable control systems are H∞ controller [47], 
linear quadratic regulator (LQR) [29, 46, 54], linear 
matrix inequality [18, 30], and eigenstructure 
assignment [58]. The robust control based fault 
tolerant designs use fixed parameter controllers which 
are for the worst case of failures and do not adapt to 
changes of system failure pattern and failure values.  

 
1.2. Motivation for this research 

Although there have been many advances in control 
of systems with unknown actuator failures, there are 
still many open and challenging problems. An 
effective adaptive actuator failure compensation 
approach is needed to handle both system parameter 
and actuator failure uncertainties.  

Adaptive control designs are able to handle 
uncertainties in both system dynamics and actuator 
failures that can occur during system operation, using 
reduced amount of system knowledge needed for 
feedback control. Such failures are often uncertain in 
time, value and pattern, that is, when, how much and 
which actuators fail. Compared with multiple-model, 
switching, and tuning designs and fault diagnosis 
designs, adaptive failure compensation control designs 
have simpler controller structures. Only one adaptive 
controller is used to accommodate the system 
dynamics change caused by actuator failures. 
Adaptive actuator failure compensation designs 
adaptively adjust controller parameters using system 
response errors to achieve the desired performance. 
Adaptive actuator failure compensation schemes do 
not rely on the knowledge of actuator failures, while 
they also do not rely on the knowledge of the 
controlled system, as compared with robust control 
designs.  

An important feature of adaptive failure 
compensation is that such a design is able to adapt to 
changes in system failure pattern and failure values, so 
that in addition to stability, asymptotic tracking of a 
reference signal is ensured, despite the system and 
failure uncertainties.  

The key design task is to find the appropriate 
controller structure and adaptive laws such that under 
certain plant-model matching conditions, the adaptive 
controller can automatically adjust the remaining 
functional actuators to achieve a desired control 
objective despite the unknown failures of other 
actuators in the controlled system.  

In this paper, we summarize some recent work on 
direct adaptive tracking control of linear time-
invariant systems in the presence of unknown actuator 
failures characterized by the failure pattern that some 
inputs are stuck at some unknown fixed or varying 
values at unknown time instants. The paper is 
organized as follows. In Section 2, we formulate the 
adaptive failure compensation problems. In Sections 3, 
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we present a state tracking design for the case when 
the plant parameters are known, as an introduction to 
adaptive actuator failure compensation. In Section 4, 
we present several state tracking designs for plants 
with unknown parameters, to formulate and solve 
some key issues in adaptive actuator failure 
compensation. We then give several state feedback 
designs for output tracking in Section 5 and output 
feedback designs for output tracking in Section 6. In 
Section 7, we present a discrete-time output feedback 
design for output tracking, and address its robustness 
with respect to unmodeled dynamics and output 
disturbances.  

 
2. PROBLEM STATEMENT 

Consider a linear time-invariant plant  

 ( ) ( ) ( ) ( ) ( )x t Ax t Bu t y t Cx t= + , = ,    (1) 

where ×n nA R∈ , ×n mB R∈  denoted as 

1[ ]mB b b= , ,…  with n
ib R∈ , 1i m= , ,… , 1 nC R ×∈  

are unknown constant parameter matrices, 

1( ) [ ]T m
mu t u u R= , , ∈…  is the input vector whose 

components may fail during system operation, and 
( ) qy t R∈  is the plant output vector. 
One type of actuator failure considered in this paper 

is modeled as  

 { }( ) 1 2jj ju t t t j mu= , ≥ , ∈ , , ,… ,      (2) 

where the constant value ju  and the failure time 

instant jt  are unknown.  
In the presence of actuator failures, ( )u t  can be 

expressed as  

 ( ) ( ) σ( ( ))u t v t u v t= + − ,       (3) 

where ( )v t  is an applied control input to be designed, 
and  

1 2 1 2[ ,... ] σ diag{σ σ … σ }T
m mu u u u= , , , = , , ,   (4) 

1 if the th actuator fails i e
σ

0 otherwise
ii

i
i u u, . ., =

=  .
  (5) 

More general types of actuator failures are  

 ( ) ( ) ( )jj jjju t t t t tu d δ= + + , ≥ ,    (6) 

where the parameterizable time-varying failure 
components are  

 

 
1

( ) ( )
dn

jlj jl
l

t f td d
=

=∑        (7) 

for some unknown scalar constants jld  and known 

scalar signals ( )jlf t , 1 ...j m= , , , 1, ... dl n= , , 
1dn ≥ , and ( )j tδ  is an unknown and 

unparametrizable but bounded term. The actuator 
failure model (6) can be used to closely approximate a 
large class of practical failures, by a proper selection 
of these “basis” functions ( )jlf t , while parametrized 
by jld .  

The control problem considered in this paper is 
adaptive actuator failure compensation for any up to 
m q−  (1 )q m≤ ≤  actuator failures, with both plant 
parameters and failure parameters unknown. The basic 
assumption for the up to m q−  actuator failure 
compensation problems is  

(A1) the system (1) is so constructed that for any up 
to m q−  actuator failures, the remaining actuators 
can still achieve the desired control objective, when 
implemented with known parameters.  

The key task of adaptive control is to adjust the 
remaining controls to achieve the desired system 
performance when there are up to m q−  actuator 
failures whose parameters are unknown.  

For state tracking, the reference state vector ( )mx t  
is generated from the reference model  

 ( ) ( ) ( )m M m Mt A x t B r tx = + ,    (8) 

where ×n n
MA R∈ , ×n l

MB R∈  are known constant 

matrices such that all the eigenvalues of MA  are in 
the left-half complex plane, all columns of MB  are 
independent and ( ) lr t R∈  is bounded and piecewise 
continuous.  

For output tracking, the reference output ( )my t  is 
generated from the reference model  

 ( ) ( )[ ]( )m my t W s r t= ,        (9) 

where ( )mW s  is a stable rational matrix, and ( )r t  is 
bounded and piecewise continuous.  

The control objectives for the adaptive tracking 
problems can be stated as follows:  
• design a state feedback control ( )v t  to ensure 

state tracking: lim ( ( ) ( )) 0t mx t x t→∞ − = ;  
• design a state feedback control ( )v t  to ensure 

output tracking: lim ( ( ) ( )) 0t my t y t→∞ − = ; or  
• design an output feedback control ( )v t  to 

ensure output tracking: lim ( ( ) ( )) 0t my t y t→∞ − = ;  
 

in addition to closed-loop system signal boundedness.  
The discrete-time and robustness problem 

formulation will be given in Section 7.  
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3. STATE TRACKING DESIGN WITH 
KNOWN PLANT PARAMETERS 

An adaptive control scheme for state tracking with 
known plant parameters is given in [8] for the actuator 
failure model (2).  

 
3.1. Nominal design 

In [8], the plant (1) is further decomposed in the 
form:  

     1 1A xx = ,               (10) 

2 2 2A x B ux = + ,         (11) 

where 1
n px R −∈ , 2

px R∈ , ×
2

p mB R∈ , 
( )

1
n p nA R −∈ , and ×

2
p nA R∈ .  

The plant is subject to the following assumptions:  
(A2a) m p> .  
(A2b) 2det[ ] 0B ≠ , for any ×p p  submatrix 2B  

of 2B .  
Corresponding to the plant (10)–(11), the reference 

model (8) is also decomposed as  

 1 1m mA xx = ,               (12) 

2m m m mA x B rx = + ,         (13) 

where 1 2[ ]T T
m m mx x x= , , 1

n p
mx R −∈ , 2

p
mx R∈ , 

×p n
mA R∈  is asymptotically stable, ×p p

mB R∈ , and 
pr R∈  denotes the bounded piecewise continuous 

reference inputs. Furthermore, the matrix 

0 1[ ]T T T
mA A A= ,  is asymptotically stable.  

As shown in this section, under Assumptions (A2a) 
and (A2b), an adaptive control scheme can be 
designed to achieve closed-loop stability and 
asymptotic tracking of ( )mx t  by ( )x t , in the 
presence of any up to m p−  actuator failures.  

In the case with no actuator failures, a (non-unique) 
nominal controller can be designed to achieve 
asymptotic tracking of ( )mx t  by ( )x t . Among those 
controllers, the one of interest is that which minimizes 

the control effort 1
2

T
uJ u W u= , where 

1 2diag[ ... ] 0u mW w w w= , , , > . It can be verified that 
such a control law is given by  

0
1 1 1

2 2 2 2( ) ( ) ,T T
u u m m

v v

W B B W B A x A x B r

∗

− − −

=

= − + +
 (14) 

 
which is based on a control-mixing algorithm [21].  

To handle actuator failures, the following modified 
nominal controller is suggested in [8]:  

1 1 1
2 2 2( ) [Θ η ξ ]T T

u uv v W B B W B∗ − − − ∗ ∗= = + ,    (15) 

where ×Θ p pR∗ ∈  and ξ pR∗ ∈  and  

 2η m mA x A x B r= − + + .         (16) 

The nominal plant-model matching parameters are 
chosen as  

 1 1Θ ξ σD D B u∗ − ∗ −= , = − ,        (17) 

where  

o oD D W= ,                 (18) 

1
2 2( σ) T

o uD B I W B−= − ,          (19) 

1 1
2 2( )T

o uW B W B− −= .           (20) 

Under Assumption (A2b), the inverse of D  in 
(18) exists for any up to m p−  actuator failures, that 
is, for any up to m p−  elements of σ  in (4) equal 
to 1 .  

In the presence of actuator failures, in view of (3), 
(15)–(20), we have  

2 2

2

( ) ( ( ) σ( ( )))
,m m

B u t B v t u v t
A x A x B r

∗ ∗= + −
= − + +

        (21) 

which leads to desired closed-loop stability and 
asymptotic tracking of mx  by x .  

 
3.2. Adaptive design 

When failure parameters are unknown, the adaptive 
version of the control law (15) is  

1 1 1
2 2 2( ) [Θη ξ]T T

u uv W B B W B− − −= + ,        (22) 

where ×Θ p pR∈  and ξ pR∈  are the estimates of 

Θ∗  and ξ∗ , respectively, updated from  

1
θ 0γ ηTTW eP−Θ = − ,          (23) 

1
ξ 0γ W Peξ −= − ,              (24) 

where ( ) ( ) ( )me t x t x t= −  is the state tracking error, 

θγ 0> , ξγ 0>  are the adaptive gains, and 0P PB= , 

0 ( )[0 ]Tp n p p pB I× − ×= , , P  is the solution of the 
Lyapunov matrix equation  

0 0
TA P PA Q+ = − ,            (25) 

where 0 1[ ]T T T
mA A A= , , and ×T n nQ Q R= ∈  is 

positive definite.  
The controller (22) with the adaptive law (23)–(24), 

ensures that all closed-loop system signals are 
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bounded and lim ( ) 0t e t→∞ = , for any up to m p−  
actuator failures described by (2) [8].  

 
4. STATE TRACKING DESIGNS WITH UN-

KNOWN PLANT PARAMETERS 

The adaptive actuator failure compensation 
schemes of state feedback for state tracking, based on 
the assumption that some plant parameters are 
unknown, are presented in [43] for the case of up to 

1m −  actuator failures and in [12] for a more general 
case of up to m q−  ( 1)q ≥  actuator failures.  

 
4.1. Matching conditions 

When both the plant and failure parameters are 
known, the controller structure used in [12] is  

1 2 3( ) ( ) ( ) ( )T Tv t v t K x t K r t k∗ ∗ ∗ ∗= = + + ,        (26) 

where ×
1 11 1[ ... , ] n m

mK k k R∗ ∗ ∗= , ∈  and 
×

2 21 2[ ... ] l m
mK k k R∗ ∗ ∗= , , ∈  are to be defined for plant-

model matching, and 3 31 3[ ... ]T m
mk k k R∗ ∗ ∗= , , ∈  is to 

be chosen for compensation of the actuation error 
σ( )u v u v− = −  (here we first consider the failure 

model (2)).  
The plant-model matching conditions for up to 

m q−  actuator failures are that for every ×n q
aB R∈  

consisting of q  columns of B , there exist 
×

1
n q

aK R∗ ∈ , ×
2

l q
aK R∗ ∈ , and 3

q
ak R∗ ∈  such that  

1
T

a a MB K A A∗ = − ,         (27) 

2
T

a a MB K B∗ = ,             (28) 

3 fa a fB k B u∗ = − ,         (29) 

where ×( )n m q
fB R −∈  consists of the other m q−  

columns of B  and m q
f Ru −∈  is the failure value 

vector, whose entries are the failure values of the 
m q−  failed actuators.  

Necessary and sufficient conditions for the 
existence of such 1 2a aK K∗ ∗, , and 3ak∗  are that for 

every ×n q
aB R∈  consisting of q  columns of B ,  

rank( ) rank([ ])a a MB B A A= , − ,        (30) 

 rank( ) rank([ ])a a MB B B= , ,             (31) 

rank( ) rank( )aB B= .                  (32) 

The parameters 1K∗ , 2K∗ , and 3k∗  are piecewise 
constant, i.e., they change their values at the time 
instants when actuator failures occur.  

For the special case of 1q = , that is, for the 
actuator failure compensation problem considered in 
[43] where there are up to 1m −  actuator failures, 
conditions (31)–(32) become  

rank( ) rank([ ])i i Mb b B= , ,          (33) 

rank( ) rank( )ib B= ,            (34) 

for any 1 2 ...i m= , , , . Conditions (33) and (34) imply 
that all the columns of MB  and B  are parallel to 
each other. This is the conclusion made in [43], and 
means that for the reference model (8), 1l =  is the 

nontrivial choice, and 2 2
T mK k R∗ ∗= ∈ .  

 
4.2. Adaptive designs 

When the plant and failure parameters are unknown, 
the adaptive controller structure used in [12] is  

1 2 3( ) ( ) ( ) ( ) ( ) ( )T Tv t K t x t K t r t k t= + + ,      (35) 

where 1K , 2K , and 3k  are the estimates of 1K∗ , 

2K∗ , and 3k∗ , respectively.  
To derive the adaptive laws updating the parameter 

estimates, the following assumption is needed:  
(A3) The matrix B  is known.  
With this assumption, the adaptive laws that update 

the controller parameters are  

11 ( ) Γ ( ) ( )T
j jj t x t e t Pbk = − ,        (36) 

22 ( ) Γ ( ) ( )T
j jj t r t e t Pbk = − ,        (37) 

33 ( ) γ ( )T
j jj t e t Pbk = −          (38) 

for 1 ...j m= , , , where ( ) ( ) ( )me t x t x t= −  is the 
tracking error, and ×n nP R∈ , 0TP P= >  such that  

 T
M MPA A P Q+ = −           (39) 

for some constant ×n nQ R∈  such that 0TQ Q= > , 
×

1Γ
n n

j R∈  and 
×

2Γ
l l

j R∈  are constant such that 

1 1Γ Γ 0T
j j= > , 2 2Γ Γ 0T

j j= > , 3γ 0j >  is constant, 
1 ...j m= , , .  

The adaptive controller (35), with the adaptive law 
(36)–(38), applied to the system (1) with actuator 
failures (2), guarantees that all closed-loop signals are 
bounded and the tracking error ( )e t  goes to zero as 
t  goes to infinity.  

The performance of the adaptive scheme has been 
verified by simulation results of the lateral motion 
control of a Boeing 747 aircraft model [12] and the 
longitudinal motion control of a Boeing 737 aircraft 
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model [13].  
For the case of up to 1m −  actuator failures, [43] 

gives another adaptive control scheme without the 
need of Assumption (A3). The plant-model matching 
controller structure used in this scheme with both 
known plant and actuator failure parameters is  

1 2 3( ) ( ) ( ) ( ) ( ) ( )Tv t K t x t k t r t k t∗ ∗ ∗ ∗= + + ,     (40) 

where ×
1 ( ) n mK t R∗ ∈ , 2 ( ) mk t R∗ ∈ , and 3 ( ) mk t R∗ ∈ . 

It is shown in [43] that when the plant-model 
matching conditions for up to 1m −  actuator failures 
stated in the above subsection are satisfied, there exist 
such 1 2K k∗ ∗, , and 3k∗  for plant-model matching. In 
this case, the nontrivial choice is 1l = , 

n
M MB b R= ∈ , and 2j s j Mb k b∗ = ,  for some constant 

2s jk R∗ ∈ ,  1 ...j m= , , .   
When both plant and failure parameters are 

unknown, the adaptive version of (40) is  

1 2 3( ) ( ) ( ) ( ) ( ) ( )Tv t K t x t k t r t k t= + + ,       (41) 

where 1( )K t , 2 ( )k t , and 3( )k t  are adaptive 

estimates of the unknown parameters 1K∗ , 2k∗  and 

3k∗ .  
For 1 ...j m= , , , the adaptive laws that update the 

controller parameters are  

2 11 ( ) sign[ ]Γ ( ) ( )T
s j j Mj t k x t e t Pbk ∗= − ,     (42) 

2 22 ( ) sign[ ]γ ( ) ( )T
s j j Mj t k r t e t Pbk ∗= − ,     (43) 

23 ( ) sign[ ]γ ( )T
s j j Mj t k e t Pbk ∗= − ,        (44) 

where ( ) ( ) ( )me t x t x t= −  is the state tracking error, 

the signs of 2s jk∗ , 1 ...j m= , , , are assumed to be 
known, ×n nP R∈ , 0TP P= >  such that  

 T
M MPA A P Q+ = −            (45) 

for any constant ×n nQ R∈  such that 0TQ Q= > , 
×

1Γ
n n

j R∈  is constant such that 1 1Γ Γ 0T
j j= > , 

2γ 0j >  and γ 0j >  are constant, 1 ...j m= , , .  
The adaptive controller (41), with the adaptive law 

(42)–(44), applied to the system (1) with actuator 
failures (2), guarantees that all closed-loop signals are 
bounded and the tracking error ( )e t  goes to zero as 
t  goes to infinity.  

Remark 1: The adaptive control schemes presented 
in this section do not use the knowledge of A  in the 
controller and the adaptive laws. However, some 

knowledge of A  is desirable for obtaining a suitable 
design of MA  such that the matching condition (30) 
can be satisfied.  
Furthermore, if A  is known, the matching parameter 

1K∗  in (26) and (40) can be exactly known for the no-
failure case, this may reduce the level of system un-
certainty, thus facilitate the adaptive control design. 
How to use the information of A  is a topic of future 
research.  

Remark 2: For the general actuator failure model 
(6), adaptive failure compensation designs are given 
in [43] for the case of up to 1m −  failures, and may 
also be developed for the case of up to m q−  fail-
ures, with 1 1q m≤ ≤ − .   

 
5. STATE FEEDBACK DESIGNS FOR OUT-

PUT TRACKING 

For the plant (1) with ( )y t R∈ , adaptive actuator 
failure compensation schemes for output tracking are 
developed in [40] for the actuator failure model (2) 
and in [45] for the failure model (6).  

 
5.1. Matching conditions 

When both plant and failure parameters are known, 
a nominal controller structure is  

1 2 3( ) ( ) ( ) ( )Tv t v t K x t k r t k∗ ∗ ∗ ∗= = + + ,      (46) 

where ×
1 11 1[ ... ] n m

mK k k R∗ ∗ ∗= , , ∈ , 2 21 2[ ... ]T m
mk k k R∗ ∗ ∗= , , ∈ , 

and 3 31 3[ ... ]T m
mk k k R∗ ∗ ∗= , , ∈ .  

For plant-model matching in the presence of up to 
1m −  actuator failures modeled in (6), i.e., ju  may 

be time-varying, it is required that for any failure pat-
tern that there are p  actuator failures, that is, 

( ) jju t u= , 1 … pj j j= , , , 1 1p m≤ ≤ − , there exist 

some 1K∗ , 2k∗ , and 3k∗  that satisfy the matching 
conditions  

1 1

1
1 2

… …
( ) ( )

p p
i i i i m

i j j i j j
C sI A b k b k W s∗ − ∗

≠ , , ≠ , ,
− − =∑ ∑ (47) 

1

1 1

1
1

…

3
… …

( )

( ) 0 ,

p

p p

i i
i j j

ji i j
i j j j j j

C sI A b k

b k b u

∗ −

≠ , ,

∗

≠ , , = , ,

− −

⋅ + =

∑

∑ ∑
        (48) 

in addition to internal system stability, where, for a 
scalar output ( )y t R∈ , 1( ) ( )m mW s P s−=  for a stable 

polynomial of degree n∗ .  
A necessary and sufficient condition for the match-

ing equations (47) and (48) is that there exist some 
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1
n

ik R∗ ∈  and αij R∈ , 1 ...i j m, = , , , such that  

1
1( ) α ( )T

i i j ij mC sI A b k b W s∗ −− − = .         (49) 

Assume ( )iC A b, ,  is controllable, 1 2 ...i m= , , , , the 
necessary and sufficient condition to meet (49) is that 

1( ) iC sI A b−− , 1 2, ...i m= , , , all have relative degrees 
equal to that of ( )mW s  [44, 45]. The internal stability 

condition is that all zeros of 1( ) iC sI A b−− , 
1 2, ...i m= , , , are stable.  

For the situation that all the m  actuators have 
similar physical characteristics (for example, they are 
segments of a multiple-segment rudder or elevator for 
an aircraft, or they are heating devices for an oven), a 
meaningful design of actuation is to use a propor-
tional-actuation scheme, that is,  

 1 2 2( ) α ( ) α ( )m mv t v t v t= = =             (50) 

for some chosen constant α 0i > , 2 3 ...i m= , , , , or, 
simply, the equal-actuation scheme  

1 2( ) ( ) ( )mv t v t v t= = = .                (51) 

The nominal controller based on this actuation scheme 
is  

1 11 21 31( ) ( ) ( ) ( )T
mv t v t k x t k r t k∗ ∗ ∗ ∗ ∗= = = + + ,  (52) 

where 11
nk R∗ ∈ , 21k R∗ ∈ , and 31k R∗ ∈ , based on the 

following assumptions:  
(A4a) 

1 …( )
p jj j jA b≠ , ,,∑ , {0 ... 1}p m∈ , , − , are 

controllable;  
(A4b) 

1 …( )
p jj j jC A b≠ , ,, ,∑ , {0 ... 1}p m∈ , , − , 

have the same relative degree n∗ ;  
(A4c) 

1 …( )
p jj j jC A b≠ , ,, ,∑ , {0 1}p m∈ , , − , are 

minimum phase; and  

(A4d) 
1

1
… p

n
jj j jCA b

∗−
≠ , ,∑ , {0 ... 1}p m∈ , , − , 

have the same sign:  

1

1
21 …sign[ ] sign[ ]

p

n
jj j jk CA b

∗∗ −
≠ , ,= .∑     (53) 

 
5.2. Adaptive designs 

While the general actuator failure (6) can be simi-
larly handled, for the actuator failure model (2), the 
adaptive version [44] of the controller (46) is  

1 2 3( ) ( ) ( ) ( ) ( ) ( )Tv t K t x t k t r t k t= + + ,       (54) 

where 1( )K t , 2 ( )k t , and 3( )k t  are the estimates of 

1K∗ , 2k∗ , and 3k∗ . Introduce the auxiliary signals  

ω( ) [ ( ) ( ) 1]T Tt x t r t= , , ,             (55) 

ζ( ) ( )[ω]( )mt W s t= ,              (56) 

ξ ( ) θ ( )ζ( ) [θ ω]( )T T
i i m it t t W t= − ,        (57) 

where  

1 2 3θ [ ] 1 2 ...T T
i i i ik k k i m= , , , = , , ,         (58) 

and define  

 ε( ) ( ) ρ ( )ξ( )Tt e t t t= + ,           (59) 

where ( ) ( ) ( )me t y t y t= −  is the output tracking error, 

1ξ( ) [ξ ( ) ... ξ ( )]Tmt t t= , , , ρ αj ij
∗ = , 1 … pj j j≠ , , , 

ρ 0j
∗ = , 1 … pj j j= , , , 1ρ [ρ … ρ ]Tm

∗ ∗ ∗= , , , and ρ  is 

the estimate of ρ∗ .  
The adaptive laws are  

sign[ρ ]Γ ζ( )ε( )
( )

1 ζ ( )ζ( ) ξ ( )ξ( )
i i

i T T
t t

t
t t t t

θ
∗

= −
+ +

,      (60) 

ρΓ ξ( )ε( )
( )

1 ζ ( )ζ( ) ξ ( )ξ( )T T

t t
t

t t t t
ρ = −

+ +
,      (61) 

where Γ Γ 0 1 ...T
i i i m= > , = , , , ρ ρΓ Γ 0T= > .  

The adaptive law (60)–(61) is stable in the sense 
that θ ( )j t , 1 ...j m= , , , ρ( )t  are bounded, and 
ε( ) 2

( )
t

N t L L∞∈ ∩ , 2( )j t L Lθ ∞∈ ∩ , 1 ...j m= , , , 

2( )t L Lρ ∞∈ ∩ , for ( ) 1 ζ ( )ζ( ) ξ ( )ξ( )T TN t t t t t= + + .  
For the failure model (2), the adaptive version of 

the controller (52) is  

0 1 2

11 21 31

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,
m

T

v t v t v t v t

k t x t k t r t k t

= = = =

= + +
     (62) 

where 11( )k t , 21( )k t , and 1( )k t  are the estimates of 

the unknown parameters 11k∗ , 21k∗ , and 31k∗ .  
Introducing the auxiliary signals  

ζ( ) [ω]( )mt W t= ,                    (63) 

ξ( ) θ ( )ζ( ) ( )[θ ω]( )T T
mt t t W s t= − ,        (64) 

ε( ) ( ) ρ( )ξ( )t e t t t= + ,                 (65) 

where 11 21 1θ [ ]T Tk k k= , , , ( ) ( ) ( )me t y t y t= −  is the 
output tracking error, ρ( )t  is the estimate of 

21

1ρ
k∗

∗ = , ω( )t  is defined in (55), the adaptive laws 
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are  

21
2

sign[ ]Γζ( )ε( )
( ) Γ Γ 0

1 ζ ζ ξ
T

T
k t t

tθ
∗

= − , = >
+ +

    (66) 

2
γξ( )ε( )( ) γ 0

1 ζ ζ ξT
t ttρ = − , > .

+ +
             (67) 

The adaptive controller (62), with the adaptive law 
(66)–(67), applied to the system (1) with actuator fail-
ures (2), guarantees that all closed-loop signals are 
bounded and the tracking error ( ) ( ) ( )me t y t y t= −  
goes to zero as t  goes to infinity.  

Simulation results with both the lateral motion con-
trol of a Boeing 747 aircraft [40] and the longitudinal 
motion control of a Boeing 737 aircraft [13] have 
demonstrated that the proposed control scheme en-
sures closed-loop stability and asymptotic output 
tracking.  

The controller structure (62) can be further modi-
fied to handle the general failures (6) [45].  

 
6. OUTPUT FEEDBACK DESIGN FOR OUT-

PUT TRACKING 

An adaptive output feedback actuator failure com-
pensation scheme for output tracking is presented in 
[42] for up to 1m −  actuator failures modeled in (2).  

 
6.1. Matching conditions 

Consider the case when all m  actuators have simi-
lar physical characteristics such that the equal-
actuation scheme can be used:  

 1 0( ) ( ) ( )mv t v t v t= = .         (68) 

When both plant and failure parameters are known, 
the control input signal 0 ( )v t  is designed from the 
nominal controller structure [42]  

0 0

1 1 2 2 20 3 4

( ) ( )

θ ω ( ) θ ω ( ) θ ( ) θ ( ) θ ,T T

v t v t

t t y t r t

∗

∗ ∗ ∗ ∗ ∗

=

= + + + +
(69) 

where 1
1θ

nR∗ −∈ , 1
2θ

nR∗ −∈ , 20θ R∗ ∈ , and 3θ R∗ ∈  
are parameters for plant-model output matching, 

4θ R∗ ∈  is a constant for compensation of the actua-
tion error σ( )u v u v− = − , and  

1 0 2
( ) ( )ω ( ) [ ]( ) ω ( ) [ ]( )

Λ( ) Λ( )
a s a st v t t y t

s s
= , =   (70) 

with 2( ) [1 ]n Ta s s s −= , , ,  and Λ( )s  being a monic 
stable polynomial of degree 1n − . The controller (69) 
uses only the designed system input 0 ( )v t  and output 

( )y t  plus the given reference input ( )r t , and not the 

internal system state variables ( )x t .  
The following assumptions (A5a) and (A5b) (that is, 

the assumptions (A4b) and (A4c)) are necessary and 
sufficient conditions for the existence of the matching 
parameters 1 2 20 3θ θ θ θ∗ ∗ ∗ ∗, , , , and 4θ

∗  in the presence of 
up to 1m −  actuator failures such that ( )y t  tracks 

( )my t  asymptotically.  
  (A5a) 

1 …( )
p jj j jC A b≠ , ,, ,∑ , {0 ... 1}p m∈ , , − , 

have the same relative degree n∗ ; and  
(A5b) 

1 …( )
p jj j jC A b≠ , ,, ,∑ , {0 ... 1}p m∈ , , − , are 

minimum phase.  
 

6.2. Adaptive designs 
The adaptive version of the plant-model matching 

controller (69) is  

0 1 2

1 1 2 2 20 3 4

( ) ( ) ( ) ( )

θ ω ( ) θ ω ( ) θ ( ) θ ( ) θ ,
m

T T

v t v t v t v t

t t y t r t

= = = =

= + + + +
(71) 

where 1θ ( )t , 2θ ( )t , 20θ ( )t , 3θ ( )t , and 4θ ( )t  are 

the estimates of the unknown parameters 1θ
∗ , 2θ

∗ , 

20θ∗ , 3θ
∗ , and 4θ

∗ , respectively.  
By defining  

1 2 20 3 4θ( ) [θ ( ) θ ( ) θ ( ) θ ( ) θ ( )]T T Tt t t t t t= , , , , ,      (72) 

1 2ω( ) [ω ( ) ω ( ) ( ) ( ) 1]T T Tt t t y t r t= , , , , ,           (73) 

the adaptive laws for updating the parameter estimates 
are chosen as  

3
2

sign[θ ]Γζ( )ε( )
( ) Γ Γ 0

1 ζ ζ ξ
T

T
t t

tθ
∗

= − , = >
+ +

,    (74) 

2
γξ( )ε( )( ) γ 0

1 ζ ζ ξT
t ttρ = − , >

+ +
             (75) 

with  

 ζ( ) [ω]( )mt W t= ,                     (76) 

 ξ( ) θ ( )ζ( ) ( )[θ ω]( )T T
mt t t W s t= − ,         (77) 

ε( ) ( ) ρ( )ξ( )t e t t t= + ,                  (78) 

where ( ) ( ) ( )me t y t y t= −  is the output tracking error 

and ρ( )t  is the estimate of 
3

1
θ

ρ ∗
∗ = .  

For the implement of adaptive laws (74)–(75), the 
following assumption is needed:  

(A5c) 
1

1
… p

n
jj j jCA b

∗−
≠ , ,∑ , {0 ... 1}p m∈ , , − , 

have the same sign:  
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1

3
3

1
…

1 sign[θ ] sign[ ]
θ

sign[ ]
p

p p

n
jj j j

k k

CA b
∗

∗
∗

−
≠ , ,

= , =

= .∑
      (79) 

The adaptive controller (71), with the adaptive law 
(74)–(75), applied to the system (1) with actuator fail-
ures (2), guarantees that all closed-loop signals are 
bounded and the tracking error ( ) ( ) ( )me t y t y t= −  
goes to zero as t  goes to infinity.  

The control scheme developed has been applied to a 
Boeing 747 lateral dynamics model and a Boeing 737 
longitudinal dynamics model with different actuator 
failure patterns. All simulation results [13, 42] verified 
that the control scheme guarantees closed-loop stabil-
ity as well as asymptotic output tracking in the pres-
ence of unknown actuator failures.  

The controller structure (71) can be further modi-
fied to handle the general failures (6) [41].  

 
7. DISCRETE-TIME ROBUST DESIGNS 

In this section we demonstrate that adaptive actua-
tor failure compensation can be designed in a discrete-
time setting and can be made robust with respect to 
bounded output disturbances and additive and multi-
plicative stable unmodeled dynamics [15].  

The controlled plant under consideration is de-
scribed in the input-output form  

 ( ) ( )[ ]( ) ( )y k G z u k d k= + ,          (80) 

where ( )y k R∈  is the measured plant output, 

( ) mu k R∈  is the plant input vector whose compo-
nents may fail during system operation, ( )d k R∈  is 
a bounded external output disturbance, and ( )G z  is a 
1 m× transfer matrix. The symbol z  is used to de-
note, as the case may be, the z -transform variable or 
the time-advance operator [ ]( ) ( 1)z x k x k= + . We 
denote the plant transfer matrix by  

0( ) ( )( µ∆ ( )) µ∆ ( ) µ 0m aG z G z I z z= + + , ≥ ,  (81) 

where 0 01 0( ) [ ( ) ... ( )]jG z G z G z= , , ,
( )

0 ( )( ) jZ z
j pj P zG z k= , 

1 2 ...j m= , , , , 1∆ ( ) diag{∆ ( ) ...m mz z= , ,  ∆ ( )}mm z , 
and 1∆ ( ) [∆ ( ) ... ∆ ( )]a a amz z z= , , . In (81), 0 ( )G z  is 
the nominal plant description, and µ∆ ( )m z  and 
µ∆ ( )a z  are multiplicative and additive unmodeled 
dynamics, respectively. As in Section 2, the type of 
actuator failures under consideration are modeled as  

( ) {1 2 ... }jj ju k k k j mu= , ≥ , ∈ , , , ,        (82) 

where the constant value ju  and the failure time 

instant jk  are unknown. In this section, we consider 
the case that any up to 1m −  actuators may fail dur-
ing system operation. The more general cases when 
there are up to m q−  failures or the failures can be 
time-varying (as similar to that in (6)) can also be ad-
dressed using modified controller structures.  

The basic assumption for adaptive actuator failure 
compensation is the same as (A1), that is,  

(A6) the system (80) is so designed that for any up 
to 1m −  actuator failures, the remaining actuators 
can still achieve a desired control objective.  

The key task of adaptive control is to adjust the re-
maining controls to achieve the desired system per-
formance when there are up to 1m −  actuator fail-
ures whose parameters are unknown. As in (3), in the 
presence of actuator failures, ( )u k  can be expressed 
as  

 ( ) ( ) σ( ( ))u k v k u v k= + − ,         (83) 

where 1( ) [ ... ]Tmv k v v= , ,  is an applied control input 
vector to be designed, and u  and σ  are defined in 
(4) and (5). The control objective is to design a feed-
back control ( )v k  for the plant (80) unknown with 
actuator failures (82) unknown, and under Assumption 
(A6), such that, despite the presence of the control 
error σ( )u v u v− = − , all closed-loop signals are 
bounded and the plant output ( )y k  asymptotically 
tracks a given reference output ( )my k  when µ 0=  
and ( ) 0d k = , or tracks ( )my k  as close as possible 
when µ 0≠  and ( ) 0d k ≠ .  
The reference signal ( )my k  may be generated from 
a reference model system  

1( ) ( )[ ]( ) ( )
( )m m m

m
y k W z r k W z

P z
= , = ,    (84) 

where ( )mP z  is a stable monic polynomial of degree 

n∗ , and ( )r k  is a bounded signal. 
 

7.1. Plant-model output matching 
When there is no unmodeled dynamics µ∆ ( )m z , 

µ∆ ( )a z  and no disturbance ( )d k , we use the con-
troller structure  

 

1 0 0

1 1 2 2 20 3 4

( ) ( ) ( ) ( )

θ ω ( ) θ ω ( ) θ ( ) θ ( ) θ ,
m

T T

v k v k v k v k

k k y k r k

∗

∗ ∗ ∗ ∗ ∗

= = =

= + + + +
(85) 

where 1
1θ

nR∗ −∈ , 1
2θ

nR∗ −∈ , 20θ R∗ ∈ , and 3θ R∗ ∈  
are to be defined for plant-model output matching, 
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4θ R∗ ∈  is to be chosen for compensation for the ac-
tuation error σ( )u v u v− = − , and  

1 0 2
( ) ( )ω ( ) [ ]( ) ω ( ) [ ]( )

Λ( ) Λ( )
a z a zk v k k y k

z z
= , =    (86) 

with 2( ) [1 ... ]n Ta z z z −= , , ,  and Λ( )z  being a 
monic stable polynomial of degree 1n − , 

1Λ( ) nz z −= .  
For the existence of the plant-model matching con-

troller, we assume that for all failure patterns,  

(A6a) 
1

( )
( )…

pj j

p

k Z z
P zj j j≠ ,∑ , {0 ... 1}p m∈ , , − , have 

the same relative degree n∗ ; and  

(A6b) 
1

( )
( )…

pj j

p

k Z z
P zj j j≠ ,∑ , {0 ... 1}p m∈ , , − , are 

minimum phase.  
 

7.2. Adaptive control design 
For the plant (80) with unknown parameters, and 

with unknown actuator failures (82) when µ 0=  and 
( ) 0d k = , we use the adaptive version of the control-

ler (85) as  

1 0

1 1 2 2 20 3 4

( ) ( ) ( )

θ ω ( ) θ ω ( ) θ ( ) θ ( ) θ ,
m

T T

v k v k v k

k k y k r k

= =

= + + + +
(87) 

where 1
1θ ( ) nk R −∈ , 1

2θ ( ) nk R −∈ , 20θ ( )k R∈ , 

3θ ( )k R∈ , and 4θ ( )k R∈  are the estimates of the 

unknown parameters 1θ
∗ , 2θ

∗ , 20θ∗ , 3θ
∗ , and 4θ

∗ , 
respectively.  

Defining  

1 2 20 3 4θ [θ θ θ θ θ ]T T T∗ ∗ ∗ ∗ ∗ ∗= , , , , ,             (88) 

1 2 20 3 4θ( ) [θ ( ) θ ( ) θ ( ) θ ( ) θ ( )]T T Tk k k k k k= , , , , , (89) 

1 2ω( ) [ω ( ) ω ( ) ( ) ( ) 1]T T Tk k k y k r k= , , , , ,      (90) 

 ( ) θ( ) θk kθ ∗= − ,                    (91) 

and introducing the auxiliary signals  

ζ( ) ( )[ω]( )mk W z k= ,                 (92) 

ξ( ) θ ( )ζ( ) ( )[θ ω]( )T T
mk k k W z k= − ,       (93) 

 ε( ) ( ) ρ( )ξ( )k e k k k= + ,               (94) 

where ρ( )k is the estimate of 
13

1
…θ

ρ
p pj pj j j k k∗

∗
≠ , ,= =∑ , 

we choose the adaptive laws as  

2

sign[ ]Γζ( )ε( )
θ( 1) θ( )

( )
pk k k

k k
m k

+ − = − ,     (95) 

2
γξ( )ε( )ρ( 1) ρ( )

( )
k kk k

m k
+ − = − ,           (96) 

where 2 2( ) 1 ζ ( )ζ( ) ξ ( )Tm k k k k= + + , and the adapta-

tion gains (2 1) (2 1)Γ n nR + × +∈  and γ R∈  are constant 

and satisfy θ
0
γ

2 10 Γ Γ
p

T
nk

I +< = < , θ0 γ 2< < , 

0 γ 2< < .  
To implement (95), we need the following assumption  

(A6c) sign [ ]pk , the sign of pk , is known, and 
0

p pk k| |≤  for some known constant 0 0pk > .  
The adaptive controller (87), with the adaptive law 

(95)–(96), applied to the system (80) with actuator 
failures (82), guarantees that all closed-loop signals 
are bounded and the tracking error ( ) ( ) ( )me k y k y k= −  
goes to zero as k  goes to infinity. 

In [15], this adaptive actuator failure compensation 
scheme has been applied to a discrete-time Boeing 
747 lateral dynamics model with actuator failures. It is 
verified by the simulation results that both closed-loop 
system stability and asymptotic output tracking are 
achieved by the adaptive control scheme.  

 
7.3. Robust adaptive compensation 

The adaptive control scheme of Section 7.2 was de-
signed for µ 0=  and ( ) 0d k =  and may not ensure 
stability in the presence of unmodeled dynamics 
µ∆ ( )m z  and µ∆ ( )a z  for µ 0≠  and output distur-
bance ( ) 0d k ≠ . In this subsection, we first introduce 
a robust nonadaptive control for 0 ( )G z  known, and 
then derive the robust adaptive laws for 0 ( )G z  un-
known.  

 
7.3.1 Robustness of plant-model matching 

For a robust nonadaptive control for 0 ( )G z  known, 
we make the following assumptions on the unmodeled 
dynamics µ∆ ( ) µ∆ ( )m az z,  and output disturbance 

( )d k :  

(A6d) ∆ ( )aj z  and 
∆ ( )

( ) 1 ...mj

m

z
P z j m, = , , , are proper 

rational functions;  
(A6e) the impulse functions 0 ( )ah k , 0 ( )mh k  of 

∆ ( )a z , ( )∆ ( )m mW z z  satisfy  

0 0
0 0

( ) ( )a m
k k

h k c h k c
∞ ∞

= =
| | < < ∞, | | < < ∞∑ ∑     (97) 

for some constant 0c >  independent of µ ; and  

(A6f) ( )d k L∞∈ .  
Under the Assumptions (A6d), (A6e), and (A6f), 
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there exists a 0µ 0>  such that for any 0µ [0 µ )∈ , ,  

the controller (85) with 1 1 2 2 20 20 3 3θ θ θ θ θ θ θ θ∗ ∗ ∗ ∗= , = , = , = , 

and 4 4θ θ∗= , ensures that all signals in the closed-
loop system are bounded and the tracking error 

( ) ( ) ( )me k y k y k= −  converges exponentially to the 
residual set  

 0 1 2{ µ }S e e b r b d= :| | ≤ +          (98) 

for some constant 1 0b > , 2 0b > , where r  and d  
are the upper bounds of ( ) ( )r k and d k| | | | .  

 
7.3.2 Robust adaptive laws 

For robust adaptive control, we change the 
Assumptions (A6d) and (A6e) as  

(A6g) ∆ ( )aj z  and 
∆ ( )

( ) 1 ...mj

m

z
P z j m, = , , , are strictly 

proper rational functions;  
(A6h) ( )∆ ( )( 1)m mW qz qz z +  and ∆ ( )( 1)a qz z +  

are stable with a finite gain independent of µ  for 
some constant (0 1)q∈ , , that is, the impulse 
functions ( )mh k  and ( )ah k of ( )∆ ( )( 1)m mW qz qz z +  
and ∆ ( )( 1)a qz z +  satisfy  

0 0
( ) ( )m a

k k
h k c h k c

∞ ∞

= =
| | < < ∞, | | < < ∞∑ ∑     (99) 

or some constant 0c >  independent of µ . 
We still use the adaptive controller structure (87). 

To design the adaptive laws updating the controller 
parameters, we generate a new normalizing signal 

( )m k  from  

0 1( 1) (1 δ ) ( ) δ ( ( ) ( ) 1)m k m k u k y k+ = − + | | + | | + ,(100) 

where (0) 0m > , 1δ 0> , 01 δ 1q < − < , with 
(0 1)q∈ ,  defined in Assumption (A6h).  

Introducing the auxiliary signals ζ( )k , ξ( )k , and 
ε( )k  as in (92), (93), and (94), respectively, we 
choose the robust adaptive laws as  

θ
12

θ( 1)
sign[ ]γ ζ( )ε( )

θ( ) σ ( )θ( ) ,
( )

p

k
k k k

k k k
m k

+

= − −
   (101) 

22
γξ( )ε( )ρ( 1) ρ( ) σ ( )ρ( )

( )
k kk k k k

m k
+ = − − ,      (102) 

where the adaptation gains satisfy 0
1

θ0 γ
pk

< < , 

0 γ 1< < , for 0
p pk k≥| | .  

To handle the unmodeled dynamics 

µ∆ ( ) µ∆ ( )m az z,  and the disturbance ( )d k , we have 
introduced the switching signals 1σ ( )k  and 2σ ( )k :  

12
1

0 12

0 if θ( ) 2
σ ( )

σ if θ( ) 2

k M
k

k M







<
=

≥
,       (103) 

2
2

0 2

0 if ρ( ) 2
σ ( )

σ if ρ( ) 2
k M

k
k M





| |<
=

| |≥
,       (104) 

where 1
0 20 σ (1 γ )m< < − , 0

θγ max{γ γ} 1m pk= , < , 

and 1 2
θM ∗> , 2 ρM ∗>| | . To implement 1σ ( )k  

and 2σ ( )k , we need the knowledge of parameter 
bounds 1M  and 2M .  

The adaptive controller (87), with the adaptive laws 
(101) and (102), applied to the system (80) with 
actuator failures (82), guarantees closed-loop signal 
boundedness, for all µ [0 µ )∗∈ ,  and some µ 0∗ > .  

 
8. CONCLUDING REMARKS 

A survey of some direct adaptive feedback control 
schemes based on the model reference approach was 
presented for linear time-invariant systems with 
unknown actuator failures. The controller structures, 
plant-model matching conditions, and adaptive laws 
were presented. The adaptive control schemes ensure 
closed-loop signal boundedness and asymptotic 
tracking of the state vector or a scalar output.  

For some applications, however, the controlled 
plant has multiple outputs, and these outputs are 
required to track a vector of reference outputs. In [41], 
we developed two adaptive control schemes using the 
model reference approach to compensate for unknown 
actuator failures in systems with q  outputs. The 
controlled plant has q  groups of actuators, each 
actuator group has more than one actuators to provide 
the needed redundancy, and actuators in a group have 
the same or similar physical characteristic. An equal 
(or proportional) actuation scheme can be used to 
design the control signals for actuators in each group. 
These adaptive actuator failure compensation schemes 
guarantee asymptotic multi-output tracking.  

The output tracking designs presented are based on 
model reference adaptive control, which requires that 
the controlled plant is minimum phase for each 
actuator failure. There are many applications in which 
the controlled plants are nonminimum phase. An 
actuator failure compensation design based on 
adaptive pole placement control has been developed in 
[41]. In this scheme, the plant parameters and actuator 
failure parameters are first estimated online and the 
estimated parameters are then used to calculate the 
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controller parameters. The developed control scheme 
is applicable to both minimum phase and 
nonminimum phase linear time-invariant plants, and it 
needs neither the a priori knowledge of the relative 
degree of the controlled plant, nor the condition that 
the controlled plant and its undamaged parts are of the 
same relative degree. However, the control singularity 
problem for this pole placement based design is still 
open.  

Adaptive actuator failure compensation for 
nonlinear systems is an important area of research and 
some of the recent preliminary results have been 
presented in [41]. 
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