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Abstract—Compared to traditional distributed computing like Grid system, it is non-trivial to optimize cloud task’s execution
performance due to its more constraints like user payment budget and divisible resource demand. In this paper, we analyze in-depth
our proposed optimal algorithm minimizing task execution length with divisible resources and payment budget: (1) We derive the upper
bound of cloud task length, by taking into account both workload prediction errors and hostload prediction errors. With such state-of-
the-art bounds, the worst-case task execution performance is predictable, which can improve the Quality of Service in turn. (2) We
design a dynamic version for the algorithm to adapt to the load dynamics over task execution progress, further improving the resource
utilization. (3) We rigorously build a cloud prototype over a real cluster environment with 56 virtual machines, and evaluate our algorithm
with different levels of resource contention. Cloud users in our cloud system are able to compose various tasks based on off-the-shelf
web services. Experiments show that task execution lengths under our algorithm are always close to their theoretical optimal values,
even in a competitive situation with limited available resources. We also observe a high level of fair treatment on the resource allocation
among all tasks.
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1 INTRODUCTION

Cloud computing has emerged as a compelling
paradigm for the deployment of ease-of-use virtual envi-
ronment on the Internet. One of typical features in Cloud
computing is its pool of instantly accessible virtualized
resources that can be dynamically customized, while
optimizing the resource utilization.

Traditional task scheduling adopted in distributed sys-
tems like Grids assumes discrete resource usage model
[1], [2], [3]. The processing ability assigned to a task
cannot be customized by users elastically. Such an indi-
visible resource consumption model with discrete com-
putation units results in a non-trivial problem like binary
Integer programming problem, where CPU rates may
not be fully utilized.

With virtual machine (VM) resource isolation tech-
nology [4], [5], [6], [7], [8], [9], the computational re-
sources could be partitioned and reassembled on de-
mand, creating an avenue to improve resource utiliza-
tion. In our previous work [10], we proposed an optimal
algorithm (namely local optimal allocation algorithm
(LOAA)) minimizing a task’s execution length, subject
to a set of constraints like user’s payment budget and
host availability states.

In comparison to the previous work, we further make
four new contributions in this paper.

• First of all, we extend the problem formulation by
taking into account possible execution cost like the
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extra time in loading VM images. Not only can
we prove that LOAA algorithm is still an optimal
solution to minimize task length, but we can prove
that user payment is also minimized based on task’s
final wall-clock length.

• We further analyze the upper bound of task ex-
ecution length when task’s workload and host’s
availability were predicted with errors, which is
more in the line with reality. For instance, the multi-
variate polynomial regression method [14] and Bayes
method [15] have been effective in precise workload
prediction and hostload prediction respectively, yet
they are still suffering inevitable margin of pre-
diction errors like 10%. On the other hand, the
flexible resource partitioning of the Cloud systems
may definitely result in load dynamics on resource
states, and worse still, the collected states are error-
prone due to the network propagation delay. The
inevitable load prediction errors may significantly
affect task’s execution in reality. In this paper, we
derive the bound of task length for the LOAA algo-
rithm, based on erroneous prediction of task’s work-
load and resource availability, as compared to the
theoretically optimal task length with hypothetically
accurate information. This is fairly valuable/useful
in that users are able to know the worst performance
in advance and the resource allocation can be tuned
in turn to adapt to user demand based on the bound
of task execution length estimated.

• We further extend our algorithm to a dynamic ver-
sion to adapt to the load dynamics over time. Due
to the dependency between the subtasks (or web
services) of a task, the resource availability states
for a particular subtask may not be forecasted upon
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the task’s initial submission. Accordingly, we extend
our algorithm to be a dynamic (or adaptive) version,
which can tune the resource allocation at run-time
based on task’s execution progress and updated
resource availability states.

• To demonstrate the practical use of the proposed so-
lution, we built a Cloud prototype, which can opti-
mize the execution performance of user-customized
complex web services. By leveraging Xen’s credit
scheduler [16] and Linux network traffic controller
(TC) [17], we evaluate our algorithm based on divis-
ible CPU rates, network and disk bandwidth. Based
on a well-known matrix library called ParallelColt
[18], we emulate hundreds of Cloud tasks involv-
ing different types of execution properties (such as
CPU-bound, memory-bound and I/O-bound). Ex-
periments confirm our solution is able to effectively
restrict task’s execution length, and the experimental
results exhibit close to the theoretical upper bound
derived with load prediction errors. We also im-
plement another heuristic (called LPRPS) which in-
tuitively maximizes the load-price-ratio proportion-
ally. Our optimal solution significantly outperforms
this heuristic by 4 times with respect to the average
execution stretch.

The remainder of the paper is organized as follows.
In Section 2, we formulate the cloud resource allocation
issue as a convex optimization problem aiming to mini-
mize task length with divisible resource fractions and a
set of constraints [12]. In Section 3, we outline the task
processing procedure and describe the LOAA algorithm.
We prove that LOAA algorithm can also minimize user
payments meanwhile based on tasks’ final real wall-
clock lengths. In Section 4, we derive the upper bound
of task execution length considering prediction errors on
task workloads and resource availability, as against to
the result under the hypothetically precise prediction.
In Section 5, we extend our algorithm to adapt to the
volatile states of the system with multiple web services
deployed. We present the experimental results generated
over a real-cluster environment in Section 6. We discuss
the related works in Section 7 and conclude with a vision
of the future work in Section 8.

2 PROBLEM FORMULATION

Our system follows a popular data center model (or
server/client model) to process cloud user requests.
The cloud server is responsible for collecting dynamic
availability states of managed nodes and customizing
virtual machines based on users’ various demands. A
task execution can be split into three steps: (1) Select
a qualified physical node. (2) The task is running in an
individual VM instance, whose resources are customized
on demand by virtual machine monitor (VMM), a.k.a.,
hypervisor. (3) Send computational results to users.

Different task executions are likely of different ex-
ecution patterns in that they need multiple types of

resources (or execution dimensions). For example, one
task execution may be split into multiple steps, each
demanding a different CPU rate or I/O bandwidth.

Suppose there are n physical nodes (denoted pi, where
1≤i≤n). For any particular task requiring R execution
dimensions (e.g., R phases each with different types
of resources), we denote the complete set of execution
dimensions by Π and denote pi’s capacity vector on
multiple dimensions by c(pi)=(c1(pi), c2(pi), · · ·, cR(pi))T .
We use dk to denote the kth execution dimension (i.e.,
some specific type of resource).

A task assigned to node pi is denoted by tij , where
1≤j≤mi, and mi refers to the number of tasks assigned
to pi. The workload vector of the task tij to process in mul-
tiple dimensions is denoted by l(tij)=(l1(tij),l2(tij),· · ·,
lR(tij))T . Hence, tij needs a resource vector to com-
plete its workloads, and we denote such a vec-
tor as r(tij)=(r1(tij),r2(tij),· · ·,rR(tij))T , where rk(tij)
(k=1,2,· · ·,R) refers to the resource fraction split from
tij ’s assigned node pi. Node pi’s resource availability
vector on multiple dimensions (denoted a(pi)) is cal-
culated by c(pi)−

∑
tij running on pi

r(tij). The resource to
be allocated to a task t′ must conform to Inequality
(4), where ≼ means componentwise inequality between
two vectors. We give an example to further illustrate
task workload vector (l(tij)), allocated resource vector
(r(tij)) and resource availability vector (a(pi)). Suppose
a task’s execution is determined by three types of re-
sources including CPU rate, diskI/O rate, and network
bandwidth rate. It then has three types of workloads to
process - an amount of computation to be performed
by CPU, an amount of data to read from disk, and
an amount of data to transmit through network. That
is, The task’s workload is a three-dimensional vector,
and each element of the vector must be no greater than
the corresponding available resource rate of the selected
execution node.

In our model, tij ’s execution length (or execution time)
is defined as l(tij)T ·r(tij)−1+△ (Equation (2)), where
r(tij)−1=(r−1

1 (tij),r−1
2 (tij),· · ·,r−1

R (tij))T and △ implies a
constant extra cost (such as VM-loading time). Such
a definition of execution time specifies a broad set of
applications, each of which needs a series of phases to
process (or mixed non-overlapped executions on various
types of resources). For example, computing the ma-
trix formula (Am×n·An×m)kx=vm×1 could be split into
5 phases - loading matrix from disk, computing the
product Cm×m=Am×n·An×m, computing matrix-power
Ck

m×m, solving Cm×mx=vm×1, and storing x onto disk.

The R types of resources (or R execution dimen-
sions) are associated with a price vector denoted as
b(pi)=(b1(pi), b2(pi), · · · , bR(pi))T . Let bk(pi) (1≤k≤R)
denote the per-time-unit price the consumers need to
pay for the resource consumption of pi at kth execution
dimension. Then, tij ’s total payment ρ(tij ,∆t) can be
calculated via Equation (1), where ∆t refers to tij ’s
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execution period on pi.

ρ(tij ,∆t) = ∆t · b(pi)T · r(tij) (1)

We argue that it is non-trivial to precisely predict task
execution length and quantify the resource consumption
at each dimension, thus it is inviable for users to forecast
their total payment in advance. Hence, we adopt the
pay-by-reserve policy, in which the users could get the
reserved resources for the task execution. The users feel
happy as long as the per-time-unit rate is always within
an acceptable budget (denoted B(tij)), i.e., Formula (3).
Such a payment policy is widely adopted by Cloud
systems like OpenPEX [19], and also recommended by
Amazon EC2 for cost modeling research [20].

In the following text, we might omit the symbols tij
and pi if thus would not cause ambiguity (especially
when a task is already determined). For instance, lk(tij),
r(tij), bk(pi), a(pi) and B(tij) may be substituted by lk,
r, bk, a, and B respectively.

Finally, the resource allocation problem is modeled
as a convex optimization problem: for a submitted task
t′ with its workload vector l(t′), how to minimize its
execution length (i.e., Equation (2)) subject to constraints
(3) and (4), where pe is selected from among all managed
hosts and r(t′, pe) means executing t′ on pe).

f(r(t′, pe))=lT (t′) · r−1(t′) +△=
∑R

i=1

li
ri

+△ (2)

b(pe)T · r(t′) ≤ B(t′), where pe is execution node (3)

r(t′) ≼ a(pe) (4)

We summarize the key notations in Table 1.

TABLE 1: Key Notations

Notation Description
n number of nodes
pi (or pe) a physical node, where i = 1,2,· · ·,n
dk the kth execution dimension (i.e., some type of resource)
c(pi) capacity vector of node pi

b(pi) price vector of pi on multiple dimensions
tij jth task scheduled on pi

l(tij) workload vector of tij
r(tij) the resource fraction vector allocated to tij
r−1(tij) =(r−1

1 (tij),r−1
2 (tij),· · ·,r−1

R (tij))T

△ a constant extra cost in task execution, e.g, VM-loading time
B(tij) budget of tij ’s user (evaluated by per-time-unit)
ρ(tij ,∆t) payment of the user on executing tij
r(tij , pe) the resource vector split from pe for task tij
a(pi) availability vector of pi (=(a1(pd), a2(pd), · · · , aR(pd))

T

3 OPTIMAL DIVISIBLE-RESOURCE ALLOCA-
TION (ODRA)
We outline the pseudo-code of the skeleton algorithm in
Algorithm 1, which describes how to select nodes for
the specific task t′. The input list contains two parts,
resource information and task information. The former
includes the candidate node set S={p1,p2,· · ·,pn}, price
vector set P={b1,b2,· · ·,bn} and availability vector set

Algorithm 1 SKELETON OF ODRA ALGORITHM

Input: S, P , A, B(t′), l(t′);
Output: execution node pe, r∗(t′)
1: pe=p1;
2: for (each node pi in S) do
3: r∗(t′,pi) = LOAA(B(t′),l(t′),ai,pi); /*Calculate the optimal re-

source allocation for task t′ running on node pi.*/
4: Estimate f(pi) based on r∗(t′, pi) /*Presume t′’s time*/
5: if (f(pi)<f(pe)) then
6: pe=pi;
7: r∗(t′)=r∗(t′, pi);
8: end if
9: end for

A={a1,a2,· · ·,an}; the latter includes t′’s budget B(t′) and
its predicted workload vector l(t′).

According to Algorithm 1, Line 3 aims to perform a
Local Optimal divisible-resource Allocation Algorithm
(LOAA) on each physical node with low time complexity
(to be described in Algorithm 2). This is the most critical
step in that the rest part (Line 4∼7) just selects the node
which can achieve the shortest execution length.

In the following text, Theorem 1 presents the optimal
resource fraction without the constraint (4), and Algo-
rithm 2’s output is the optimal resource fraction vector
with taking into account the constraint (4). We prove its
optimality using Theorem 2 and Theorem 3.

Theorem 1: In order to minimize f(r(tij)) subject to
the constraint (3), tij ’s optimal received resource vector
r(∗)(tij) is shown as Equation (5), where k=1, 2, · · ·, R.
(Note that r(∗)(tij) is not subject to Inequality (4), unlike
the notation r∗(tij) that relies on Inequality (4).)

r
(∗)
k (tij) =

√
lk(tij)

/
bk(pi)

R∑
k=1

√
lk(tij)bk(pi)

·B(tij) (5)

Proof: We will first prove that the target function f(r)
formulated in Formula (2) is convex, and then find the
optimal r(∗) via convex optimization.

Since ∂2f(r)
∂rk

=2 lk
r3k
>0, f (r) is convex with a minimum

extreme point. Then, the target Lagrangian function can
be defined as Equation (6) and λ is the Lagrangian
multiplier.

F (r) =
R∑

k=1

lk
rk

+△+ λ(
R∑

k=1

bk · rk −B) (6)

Let ∂F (r)
∂rk

=0, then we could get Equation (7), where k
= 1, 2, · · ·, R.

lk/r
2
k = λbk (7)

From Equation (7), we could derive Equation (8).

r1 : r2 : · · · : rR =

√
l1
b1

:

√
l2
b2

: · · · :
√

lR
bR

(8)

In order to minimize total execution time f(r), the op-
timal resource vector r(∗) should make b(pi)T ·r(tij) equal
to B(tij). By combining this equation with Equation (8),
we can get Equation (5).
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Remark: By combining the constraint (4), r(∗) based
on Equation (5) is right the optimal solution as long
as r(∗)≼a(pi). However, if r(∗) does not fully satisfy the
constraint (4) (i.e., ∃ k: r(∗)k >ak(pi)), r(∗) should not be a
viable solution. Hence, we propose an efficient algorithm
(Algorithm 2) to find the optimal solution subject to the
constraint (4) with the provable time complexity O(R2).

Definition 1: Given a specific budget C for task tij ’s
execution in a subset Γ(⊆Π, i.e., subset of the execu-
tion dimension set), CO-STEP(Γ, C) is defined as the
procedure in computing the convex-optimal solution
of minimizing f(rΓ(tij)) subject to the constraint (9)
(similar to the proof of Theorem 1), where rΓ(tij) and
bT
Γ (pi) denote the resource fractions gained by tij and

the price vector assigned by pi w.r.t. Γ respectively.

bT
Γ (pi) · rΓ(tij) ≤ C, where C is a constant. (9)

Algorithm 2 (namely LOAA) is devised for minimizing
f(r(tij)) subject to the constraints (3) and (4).

Algorithm 2 LOCAL OPTIMAL ALLOCATION ALGORITHM

function name: LOAA(Π, B(tij), l(tij), b(pi), a(pi));
Input: Π: the execution dimension set (universe)

B(tij): tij ’s budget
l(tij): tij ’s predicted workload vector
b(pi): execution node pi’s price vector
a(pi): execution node pi’s availability vector

Output: r∗(tij): tij ’s optimal resource allocation vector on pi
1: Γ = Π, C = B(tij), r∗ = ∅ (empty set);
2: repeat
3: r(∗)Γ = CO-STEP(Γ,C); /*Compute optimal r(∗) based on Γ with

unbounded capacity assumption*/
4: Ω={dk|dk∈Γ & r

(∗)
k >ak};/*select elements violating constraint

(4)*/
5: Γ = Γ\Ω; /*Γ takes away Ω*/
6: C = C −

∑
dk∈Ω (bk · ak); /*Update C*/

7: r∗ = r∗∪{r∗k = ak | dk∈Ω & ak is dk’s upper bound};
8: until (Ω = ∅);
9: r∗ = r∗ ∪ r(∗)Γ ;

In this algorithm, line 3 executes CO-STEP(Γ,C) in
order to find the optimal r(∗)Γ , without considering the
constraint (4). If r(∗)Γ happens to completely satisfy the
constraint (4) (i.e., Ω=∅), then it is the final result.
Otherwise, the resource fractions (rk) that violate the
constraint (4) will be set to the upper bounds (i.e., ak)
and the corresponding dimensions (i.e., Ω) will be taken
away from Γ, then, C = C −

∑
dk∈Ω (bk · ak) for the

remaining dimensions. The process will go on until all
the remaining computed optimal resource fractions sat-
isfy the constraint (4). Since the time complexity of CO-
STEP(Γ,C) is O(|Γ|), the number of computation steps of
Algorithm 2 in the worst case is

∑R−1
i=0 (R− i), thus the

time complexity=O(R2).
Theorem 2: Given a submitted task tij with a workload

vector l(tij) and a budget B(tij) and a qualified node pi
with its resource price vector b(pi), Algorithm 2’s output
r∗ is optimal for minimizing tij ’s execution length (i.e.,
f (r(tij))), subject to the constraint (3) and constraint (4).

We can prove Algorithm 2’s output must satisfy the
sufficient and necessary conditions of optimal solution.
We omit the detailed proof, which can be found in [10].

In this paper, we further prove that the Algorithm 2
can also minimize the user payment based on the real
task wall-clock length (shown in Theorem 3).

Theorem 3: Denote the real wall-clock length of task tij
as Tf (tij). Given tij ’s deadline is set to Tf (tij), Algorithm
2’s output r∗ is the optimal solution that minimizes this
user’s payment, subject to tij ’s workload vector l(tij) and
node pi’s price vector b(pi).

Proof: We denote task tij ’s allocated resource vector
as r∗, then it must satisfy Equation (10) and Equation
(11), where B is task’s budget used in Algorithm 2.

f(r∗(tij)) =
∑R

i=1

li
r∗i

= Tf (tij) (10)

∑R

i=1
bir

∗
i = Bf ≤ B (11)

If Theorem 3 does not hold, there must exist a resource
allocation r′( ̸= r∗) for running tij on pi, simultaneously

satisfying
R∑
i=1

li
r′i

= Tf (tij) and Inequality (12).

∑R

i=1
bir

′
i < Bf (12)

Inequality (12) implies that there must exist a suffi-
ciently tiny ∆r>0, such that the new resource allocation
{r′1+∆r, r′2, r′3, · · ·, r′R} also satisfies Inequality (12),
yet its execution length (i.e., l1

r′1+∆r +
∑R

i=2
li
r′i

) will be
smaller than f(r∗(tij)), which contradicts to the fact that
f(r∗(tij)) is already minimized proved by Theorem 2.

4 OPTIMALITY ANALYSIS WITH LOAD PRE-
DICTION ERRORS

4.1 Problem Description

Although Algorithm 2 is proved optimal, such optimal-
ity is subject to both task workload (l) and host load
(a) can be precisely given or predicted. In reality, task’s
workload may not be precisely predicted by ordinary
users. Users’ preferences or requirements on resources
tend to be qualitative as users’ knowledge on resource
specification is limited. On the other hand, the host
availability states aggregated may also be inaccurate
because of the fast changing hostload states. The commu-
nication delay and unfledged resource state estimation
technologies are other sources of potential errors.

In this section, we analyze Algorithm 2 under the
erroneous workload predictions and host availability
prediction (i.e., host load prediction). We derive the
upper bound of task execution length for Algorithm 2
with such two prediction errors.

Definition 2: Suppose a task tij ’s workload vector is
predicted as l′(tij) while the real workload vector is
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l(tij). In our analysis, l′(tij) is assumed to satisfy In-
equality (13), where α and β are the lower bound and
upper bound of the workload prediction ratio.

α ≤ l′k(tij)
lk(tij)

≤ β, k = 1, 2, · · ·R (13)

We give an example to illustrate the above defini-
tion. Suppose the task tij ’s real workload vector al-
ways ranges in [125, 1000] single-core-length, and the
workload vector l′(tij) used by Algorithm 2 is based on
the history of the task’s execution. Each element l′k(tij)
(k = 1, 2, · · ·R) will be set to 250 if the corresponding
true workload fluctuates in [125, 500] and set to 750 if the
true workload ranges in (500, 1000]. Then, we could get
Inequality (14) below, where α= 250

500=0.5 and β= 250
125=2.

0.5 ≤ l′k(tij)
lk(tij)

≤ 2, k = 1, 2, · · ·R (14)

It is obvious that with the inaccurate prediction of
task’s workload, the output of Algorithm 2 will defi-
nitely be skewed from the result with accurate informa-
tion. Hence, one question is how far the output produced
by Algorithm 2 based on l′(tij) would be away to the
ideal result based on l(tij).

On the other hand, the inaccurate information about
host availability states (i.e., vector a(pi)) may also impact
the optimality of the algorithm’s output. Accordingly,
the other question is “what is the worst case on task
execution length under the resource allocation with host
availability prediction errors”. For simplicity, we take
into account the situation with a′ ≼ a as shown in In-
equality (15), where the collected host availability vector
a′ is denoted as (a′1, a

′
2, · · · , a′R)T , as compared to the

true host availability vector a = (a1, a2, · · · , aR)T . In fact,
if a′ ≻ a, Algorithm 2’s output will definitely be no
worse than that with a (note that our focus is on how
much the inaccurate availability state would degrade the
Algorithm 2’s output).

γ · a ≼ a′ ≼ a, γ is a constant (15)

All in all, our objective is to derive an upper bound
of task execution length for Algorithm 2 based on erro-
neous information (i.e., Inequality (13) & Inequality (15)).

4.2 Upper Bound of Task Execution Length

In this section, we analyze the upper bound of task
execution length with possibly erroneous information
(about both workload and hostload) described above.
We first discuss the situation with erroneous workload
prediction yet with correct host availability information,
in Theorem 4 and Theorem 5. Then, we further take
into account the situation with both workload prediction
errors and host availability prediction errors.

4.2.1 Analysis with Workload Prediction Errors and Pre-
cise Host Availability Information
For the simplicity of description, we denote r∗E (=(r∗E1,
r∗E2, · · ·, r∗ER)T ) and f∗

E (=
∑R

k=1
lk
r∗Ek

+△) as the output
of Algorithm 2 with the workload prediction errors and
the corresponding execution length respectively, and E
indicates “Estimation with error”. Similarly, we denote
r∗I (=(r∗I1, r∗I2, · · ·, r∗IR)T ) and f∗

I (=
∑R

k=1
lk
r∗Ik

+ △) as
the output with accurate workload vector and the corre-
sponding execution length, respectively, and I indicates
“Ideal case”. Hence, our objective is to determine the
upper bound of f∗

E

f∗
I

, a.k.a., approximation ratio.

Denote r(∗)E the optimal resource allocation with un-
bounded resource capacities. The output of Algorithm 2
could be split into two situations:

• case 1: r∗E(tij) = r(∗)E (tij).
• case 2: r∗E(tij) ̸= r(∗)E (tij).
The first situation indicates that in terms of the skewed

workload prediction, all of the resource fractions calcu-
lated by the initial CO-STEP in Algorithm 2 happen to
be no greater than the corresponding resource capacities.
That is, the output of the first-round CO-STEP complies
with the Inequality (16).

r(∗)E (tij) ≼ a(pi) (16)

In contrast, the second situation means that the initial
CO-STEP cannot fulfill the above condition, and the
optimal allocation cannot be found until a few more
adjustment steps (line 4 ∼ line 7 of Algorithm 2).

We first derive the upper bound of task tij ’s execution
length for the first case (i.e., Theorem 4), and then discuss
the upper bound (i.e., Theorem 5) for the second one.

Theorem 4: Given a task tij with a budget B(tij), a
node pi whose resource price vector is b(pi), and a
inaccurately estimated workload vector l′(tij) subject to
Inequality (13), then the tight upper bound of tij ’s exe-
cution length under the resource allocation r(∗)E conforms
to Inequality (17).

f
(∗)
E

f∗
I

≤
√

β

α
(17)

Main idea of proof : It is obvious that r(∗)I must be no
worse than r∗I (i.e., f (∗)

I ≤f∗
I must always hold), because

r∗I is with more constraints. Thus, we could get the final
conclusion as long as we can prove Inequality (18).

f
(∗)
E

f
(∗)
I

≤
√

β

α
(18)

Proof: Detailed proof can be found in the corre-
sponding conference paper [13].

Theorem 5: Given a task tij with a budget B, a re-
source node whose available resource vector and price
vector are a and b respectively, and an erroneous work-
load vector l′ subject to Inequality (13), then, the tight
upper bound of tij ’s execution length with resource allo-
cation r∗E conforms to Inequality (19), where Ω refers to
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the set of dimensions constructed at Line 4 of Algorithm
2 performed with the inaccurate workload vector (l′) and
r∗Ii is the optimal allocated resource fraction outputted
when using the real workload vector (i.e., l).

f∗
E

f∗
I

≤ θ

√
β

α
, where θ =

B −
∑

di∈Ω r∗Iibi

B −
∑

di∈Ω aibi
(19)

Proof: Detailed proof can be found in the corre-
sponding conference paper [13].

Remark:
• Note that θ ≥ 1 because r∗Ii ≤ ai for any di ∈ Ω.
• If Ω = ∅ or ∀di ∈ Ω, r∗Ii = ai, then θ = 1, conforming

to the Inequality (18).
• If ∀di∈Ω⇒r

(∗)
Ei≥ai, then, we can further derive In-

equality (20) from Inequality (19) and lemma 1.

f∗
E

f∗
I

≤ λ

√
β

α
, where λ =

B −
√

α
β

∑
di∈Ω aibi

B −
∑

di∈Ω aibi
(20)

Lemma 1: If ∀di∈Ω⇒r
(∗)
Ei≥ai, Inequality (21) must

hold.
r∗Ii ≥

√
α

β
ai (21)

Proof: For any dk ∈ Ω, we take into account two
situations by discussing whether r

(∗)
Ik ≥ ak.

If r(∗)Ik ≥ ak, then r∗Ik = ak, because r
(∗)
Ik is calculated

by the first-round CO-STEP of Algorithm 2. On the
other hand, α≤β. Thus, r∗Ik=ak ≥

√
α
β ak.

If r
(∗)
Ik <ak, Algorithm 2 will further recompute r∗Ik

using the succeeding looping-round CO-STEPs, then

r∗Ik≥

√
lk

/
bk∑

di/∈Ω′

√
libi

(B−
∑

di∈Ω′

√
aibi), where Ω′ refers

to the set of resource dimensions such that r(∗)Ii ≥ ai
(i.e., r∗Ii is set to ai after the first-round CO-STEP
of Algorithm 2 with accurate information). Accord-
ingly, we can get Formula (22) for any dk /∈Ω′. Note
that the second equation in Formula (22) holding is
due to the fact that r

(∗)
Ii is a stationary point such

that ∂f(r)
∂rk

= 0, ∀k.

r
(∗)
Ik =

√
lk

/
bk∑R

i=1

√
libi

B

=

√
lk

/
bk∑

di/∈Ω′

√
libi

(B −
∑

di∈Ω′

√
r
(∗)
Ii bi)

≤

√
lk

/
bk∑

di/∈Ω′

√
libi

(B −
∑

di∈Ω′

√
aibi) ≤ r∗Ik

(22)

On the other hand, ∀ dk (also including the ones in
Ω), we can get Equation (23) and Equation (24) from
Equation (5).

r
(∗)
Ek =

√
l′k
/
bk∑R

i=1

√
l′kbk

B (23)

r
(∗)
Ik =

√
lk/bk∑R

i=1

√
lkbk

B (24)

Then, we can further derive Inequality (25) by com-
bining Inequality (13).

r
(∗)
Ek ≤

√
β

α
r
(∗)
Ik (25)

Since ∀dk∈Ω⇒r
(∗)
Ek≥ak (the assumption of this

lemma), we can get that ak ≤
√

β
αr

(∗)
Ik , ∀dk ∈ Ω.

Hence, if ∀dk∈Ω⇒r
(∗)
Ek≥ak, r∗Ik≥r

(∗)
Ik ≥

√
α
β ak.

• If |Ω|=1, suppose its unique element is d1 without
loss of generality, it is obvious that r

(∗)
I1 ≥a1. Then,

we could derive Formula (26) from Inequality (20).

f∗
E

f∗
I

≤ λ

√
β

α
, where λ =

B −
√

α
β a1b1

B − a1b1
(26)

• In more generic situations, where |Ω| ≥ 2 and
Inequality (21) does not hold, we cannot get the
similar conclusion as Inequality (20). This is due to
the fact that some resource shares (r∗Ii) in Ω being set
equal to their available capacities may be conducted
at the second or later CO-STEPs of Algorithm 2. That
is, we cannot make sure that r(∗)Ii ≥ ai for any di∈Ω,
such that Inequality (21) cannot hold. However, we
can still get Inequality (27) because of the fact that
r∗Ii ≥ 0.

f∗
E

f∗
I

≤ λ

√
β

α
, where λ =

B

B −
∑

di∈Ω aibi
(27)

4.2.2 Analysis with Task Workload Prediction Errors and
Host Availability Prediction Errors

Now, let us focus on the erroneous predictions on both
task workload (Inequality (13)) and host availability
information (Inequality (15)).

Theorem 6: Given a submitted task with a erroneous
workload prediction vector l′ (subject to Inequality (13)),
a payment budget B, and a resource node pi whose
resource price vector and host availability vector are
b and a′ (subject to Inequality (15)) respectively, then
with Algorithm 2’s output (denoted by r′∗E ), the task
execution length f ′∗

E follows a tight upper bound based
on Inequality (28), where γ is defined in Inequality (15).

f ′∗
E

f∗
I

≤ θ

γ
·
√

β

α
(28)

Proof: We denote H as the execution dimension set
constructed by Algorithm 2’s Line 4 at the “first-round”,
with the inaccurate state information a′. That is, H could
be defined as follows:

H = {dk|r′(∗)Ek ≥ a′k}, where r
′(∗)
Ek = B ·

√
lk/bk∑R

i=1

√
libi

(29)
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Without loss of generality, we let the sequence num-
bers of such resource dimensions be 1, 2, · · ·, |H|. Then,
f ′∗
E can be calculated by the Equation (30).

f ′∗
E =

∑|H|

i=1

li
r′∗Ei

+
∑R

i=|H|+1

li
r′∗Ei

+△ (30)

We can also write the accurate-information-based al-
gorithm’s output (denoted f∗

E) to be Equation (31):

f∗
E =

∑|H|

i=1

li
r∗Ei

+
∑R

i=|H|+1

li
r∗Ei

+△ (31)

As follows, we will prove Inequality (32).

f ′∗
E

f∗
E

≤ 1

γ
(32)

In other words, as long as we could prove Inequality
(33) and Inequality (34) respectively, then Inequality (32)
must hold (Note γ ≤ 1 thus ∆ ≤ 1

γ∆).∑|H|

i=1

li
r′∗Ei

≤ 1

γ
·
∑|H|

i=1

li
r∗Ei

(33)

∑R

i=|H|+1

li
r′∗Ei

≤ 1

γ
·
∑R

i=|H|+1

li
r∗Ei

(34)

It is obvious that ∀di ∈ H (i.e., i=1,2,· · ·,|H|), r′∗Ei = a′i
and r∗Ei ≤ ai. With the Inequality (15), we could derive
the following inequalities, where i=1,2,· · ·,|H| and γ ≤ 1:

r′∗Ei = a′i ≥ γ · ai ≥ γ · r∗Ei (35)

Hence, the Inequality (33) should hold.
As follows, we will prove Inequality (34). Equivalently,

we will prove ∀i ≥ |H|+ 1, r′∗Ei ≥ γ · r∗Ei instead.
Recall that H indicates the dimensions accumulated

by Algorithm 2’s Line 4 at its first-round, thus, ∀ di∈H,
r
′(∗)
Ei ≥ a′i. In addition, since a′i ≤ ai holds, we could get
r∗Ei ≥ a′i = r′∗Ei (∀i≤ H). Then, we could get Inequality
(36).

B −
∑|H|

i=1
r′∗Ei · bi ≥ B −

∑|H|

i=1
r∗Ei · bi (36)

If we perform the convex optimization step (i.e., CO-
STEP) on {r′∗E(|H|+1), r

′∗
E(|H|+2), · · ·, r

′∗
ER} and {r∗E(|H|+1),

r∗E(|H|+2), · · ·, r
∗
ER} respectively and denote the output

resources are r
′[∗]
Ei and r

[∗]
Ei, we could get Equation (37)

and Equation (38), where k=H+1, H+2, · · ·, R.

r
′[∗]
Ek (H) = (B −

∑
di∈H

r′∗Eibi)

√
lkbk∑

di∈Π\H
√

libi
(37)

r
[∗]
Ek(H) = (B −

∑
di∈H

r∗Eibi)

√
lkbk∑

di∈Π\H
√

libi
(38)

Then, Inequality (39) must hold.

r
′[∗]
Ei ≥ r

[∗]
Ei, where i = |H|+ 1, · · · ,R (39)

∀di ∈ Π\H (i.e., i ≥ H+ 1):
If ai < r

[∗]
Ei, we could get r

′[∗]
Ei ≥ r

[∗]
Ei > ai ≥ a′i, then

r′∗Ei = a′i and r∗Ei = ai. Hence, r′∗Ei ≥ γ · r∗Ei.
If ai ≥ r

[∗]
Ei, then there are two situations as follows:

• If r′[∗]Ei ≤ a′i, r
′∗
Ei = r

′[∗]
Ei ≥ r

[∗]
Ei = r∗Ei.

• If r′[∗]Ei > a′i, r
′∗
Ei = a′i ≥ γ · ai ≥ γ · r∗Ei.

Hence, for any di ∈ Π\H, r′∗Ei ≥ γ · r∗Ei, which can be
used to derive Inequality (34).

In terms of the Formula (30), (31), (33), (34), we could
derive Inequality (32). By combining Theorem 5 and this
inequality, we could prove Theorem 6 finally.

In order to prove the tight bound property, we show
two cases under which the Inequality (28)’s bounds can
be reached.

• If a′ = γ · a and
∑R

i=1 aibi ≪B, it is easy to see that
f ′∗
E = 1

γ f
∗
I no matter what values α and β are set to.

• If all the ai (i=1,2,· · ·,R) are extremely big, the
resource state’s accuracy could be ignored, which
means that the resource allocation r∗E = r(∗)E and

r∗I = r(∗)I . In this situation, as long as ∀i, l′i
li

=
l′j
lj

,
then, r∗E = r∗I , which implies the bound is reached.

5 DYNAMIC OPTIMAL DIVISIBLE-RESOURCE
ALLOCATION (DODRA)
Many of existing systems (such as Google App En-
gine [21]) leverage PaaS/SaaS architecture, which allows
users to customize composite web services (e.g., a task
with a set of subtasks connected in series). However,
the validity of services depends on the availability of
their hosting-nodes, whose states are likely changed
over time. Hence, the host availability vector used in
the resource allocation for the remaining subtasks is
best to be dynamically updated over time. on the other
hand, since the subtasks (implemented by off-the-shelf
web services) in a task are can be deemed as different
execution dimensions, the task execution length is still
consistent with a linear target function like Equation
(2), where ri (i=1,2,· · ·,R) denotes the corresponding
service’s processing rate.

Based on the above discussion, we devise a dynamic
algorithm, to allocate resources for the tasks each of
which is made up of multiple subtasks (or compos-
ite web services) connected in series. All of service
bodies (or libraries) are deployed on each host ma-
chine and classified based on their functions. We de-
note the submitted task as τ , which is composed by
K functions. They constitute a partially-ordered set
z(τ)=(F1, F2, · · · , FK)T . Fi’s service price is denoted as
bi (which means the user needs to pay bi per-processor
for executing Fi) and its corresponding service node set
Si is denoted {si1, si2, · · ·, si|Si|}. We set Fi’s availability
ai = max∀j∈[1,|Si|]{a(sij)}, i.e., the maximum capacity of
the node hosting Fi. Moreover, Fi in z(τ) is always
maintained in a non-decreasing order of their hosting-
nodes’ availabilities.

In this algorithm, we first compute the optimal re-
source allocation r∗=(r∗exe1, r∗com1, r

∗
exe2, r

∗
exe3, · · · , r∗exeK)T

via Algorithm 2 (line 4∼10), by considering the commu-
nication cost in transmitting the output of F1 to F2 on the
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Algorithm 3 DYNAMIC ODRA
Input: bτ=(b1,b2,· · ·,bK ,bcom)T , B(τ), z(τ), Si (i=1,2,· · ·,K);
Output: r∗(τ) (a service vector)
1: Γ=z(τ), C=B(τ), r∗=Φ (empty set), s′=NULL;
2: for (each Fi in the partially-ordered Γ, i=1,2,· · ·,K) do
3: Retrieve Γ’s availability vector aΓ={ai,a(i+1),· · ·,aK ,acom};
4: Perform CO-STEP(Γ

∪
{Fcomi},C), and its output is denoted as:

r(∗)=(r(∗)exei, r
(∗)
comi, r

(∗)
exe(i+1)

, r
(∗)
exe(i+2)

· · · , r(∗)exeK)T ;

5: if (r(∗)comi > acom) then
6: r∗comi = acom; /*based on Algorithm 2 (LOAA)*/
7: end if
8: if (r(∗)exei > ai) then
9: r∗exei = ai; /*based on Algorithm 2 (LOAA)*/

10: end if
11: Select node sij from Si, such that a(si(j−1)) < r∗exei ≤ a(sij);
12: if (s′ ̸=sij ) then
13: Perform CO-STEP(Γ,C), where ai=a(s′);
14: if (f (r(τ ,sij ))<f (r(τ ,s′))) then
15: s′ = sij ; /*update s′ if sij is better than the old s′*/
16: end if
17: end if
18: Execute Fi on the node s′;
19: Γ = Γ\Fi;
20: C = C − r∗i · bi;
21: Sleep until Fi is completed;
22: end for

network. As for the communication cost, at each resource
allocation round, we just focus on the one between the
first two functions (line 4), because the rest ones will
be considered at runtime as soon as its preceding task
is completed. After computing r∗, F1’s execution will
be started on a computation node whose CPU rate is
closest greater than r∗exe1. Such a design is to save the
remaining budget for the task’s later usage and save the
available resource for other tasks. As F1 is completed, the
program will take away F1 from Γ and update Γ’s real-
time availability vector as well as the remaining budget.
Based on updated information, r∗ will be recomputed
(line 4∼11). If the node selected (i.e., sij) is not the
one computing the last function, we need to decide if
it is worth changing the execution node based on the
transmission overhead (line 12∼17), as the output of
previous operation is stored in the last execution node.
Then, F2 will be started and the whole process will
continue until all functions are completed.

Algorithm 3 is a dynamic version compared to Algo-
rithm 2, as the resource allocation for each subtask (or
each particular execution phase) is performed only when
its preceding subtask is finished. This can adapt to the
load dynamics to a certain extent. In fact, we further
design an adaptive mechanism to tune/reallocate the re-
source vectors for the running subtasks, by leveraging
the idle resource fraction released from time to time,
further improving resource utilization.

6 PERFORMANCE EVALUATION

6.1 Experimental Setting

We evaluate our Optimal Divisible-Resource Allocation
(ODRA) algorithm in a real cluster environment, called

Gideon-II [11], which is the most powerful super com-
puter at Hong Kong. We are assigned 8 physical nodes
connected with 10Gbps high-speed intra-network. Each
node has 8 2.45MHz-cores and 16GB of memory size. We
deployed XEN 4.0 [22] on each node. Since there must
be one core reserved for XEN hypervisor, we created
56(=8×7) VM instances (centos 5.2) on the 8 physical
nodes. Three types of resource attributes (CPU rate,
network bandwidth, and I/O disk bandwidth) will be
split on demand according to our ODRA algorithm.
Specifically, we make use of XEN’s credit scheduler [16]
to dynamically allocate various CPU rates (or capabili-
ties) to the VM-instances. The network bandwidth and
the disk reading/writing rate allocated to each user are
both reshaped by linux network traffic controller (TC)
[17] on demand at run-time.

In our experiment, each user task is constructed by
multiple subtasks, each corresponding to various web
services with heterogeneous workloads to process. The
subtasks could also be data transmission via network or
data read/write through disk. So, each subtask could be
treated an execution dimension with a particular work-
load to process (e.g., number of float points and data to
transmit) and a resource fraction (or processing ability)
to allocate (e.g., CPU rate and network bandwidth).

By leveraging ParallelColt [18] (a library of matrix-
computation), we implement 10 matrix computation
programs in the form of web services (listed in
Table 2), which can be further combined to con-
struct more complex matrix problems. The number
of subtasks per task is randomly set in [5, 15], and
each subtask is a matrix computation selected from
the 10 matrix computations. For example, the task
AM×N ·AN×M )kXM×M=BM×M are made up of three ser-
vices: (1) matrix-multiplication: CM×M=AM×N ·AN×M ;
(2) matrix-power: DM×M=Ck

M×M ; (3) Least squares so-
lution: DM×MXM×M=BM×M . The matrices in our ex-
periments are randomly generated with the scales from
100×100 to 2500×2500, and their data sizes range from
192KB ({100×100}) to 115MB ({2500×2500}).

In our experiment, different tasks have different exe-
cution patterns. First, ten different matrix computations
have various workloads, as shown in Table 2, where
M refers to matrix size and m(∈ [10, 20]) is the ex-
ponent in the matrix-power computation. Second, each
task execution involves three types of resources (CPU
rate, network bandwidth and I/O disk bandwidth). For
a particular task, the first subtask is reading one or
more matrix data from disk drive. The second subtask
could be some matrix computation like matrix product,
decomposition, or others. As a matrix computation is
finished, its output (a new matrix) will be transmitted
to another VM instance through the network. The data
transmission is also a kind subtask whose workload
and capacity is data size to transmit and the network
bandwidth controlled on demand. The last subtask of
one task is storing the final matrix result into the disk
drive. The CPU rate assigned to VMs is controlled by
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TABLE 2: Workloads of 10 Matrix Operations (execution length per core, unit of measurement: seconds)

Matrix Scale M-M-Multi. QR-Decom. Matrix-Power M-V-Multi. Frob.-Norm Rank Solve Solve-Tran. V-V-Multi. Two-Norm
500 0.7 2.6 m=10 2.1 0.001 0.010 1.6 0.175 0.94 0.014 1.7
1000 11 12.7 m=20 55 0.003 0.011 8.9 1.25 7.25 0.021 9.55
1500 38 35.7 m=20 193.3 0.005 0.03 29.9 4.43 24.6 0.047 29.4
2000 99.3 78.8 m=10 396 0.006 0.043 67.8 10.2 57.2 0.097 68.2
2500 201 99.5 m=20 1015 0.017 0.111 132.6 18.7 109 0.141 136.6

XEN’s credit scheduler [16]. Network bandwidth and
disk I/O rate are both controlled within [10,300] Mb/s
over NFS through Linux network traffic controller (TC).
The CPU capacity of each multi-threaded program (e.g.,
matrix product, matrix power) is set to 8-cores (i.e., the
maximum processing ability of one physical node), while
that of any single-threaded program (such as matrix
decomposition) is set to 1-core in that more resources
cannot get further speedup on it.

We predict the workload of each matrix computation
based on history for simplicity, where α and β are set
to 0.7 and 2 respectively based on our characterization
about prediction errors. In practice, one could use more
accurate methods like multi-variate polynomial regres-
sion [14], whose margin of prediction errors is 7-10%.

Each task is associated with a budget, which is a key
factor impacting task’s resource allocation. The prices of
the 10 matrix operations are set to 1,2,· · ·,10 with the
decrease of their workloads. We evaluate our algorithm
with different budgets assigned, which are simulated
based on Formula (40), where b(Fi) and θ (=0.5∼3) refer
to the price of the function Fi and a coefficient to tune
users’ various economic strengths respectively.

τ ′s budget = θ
∑K

i=1
b(Fi) (40)

Upon receiving a task made up of multiple consecu-
tive matrix computations, our designed algorithm is trig-
gered to compute the optimal resource vector for it and
perform resource isolation (e.g., notifying corresponding
VMM to customize the CPU rates by credit scheduler).

We adopt three baseline results for comparison. The
first one is the execution length (i.e., f (∗)

I ) based on the
ideal convex-optimal resource vector calculated by The-
orem 1, with the assumption that the resource capacities
are unbounded. We call it ideal optimal time (IOT). The
second one is the execution length (i.e., f∗

I ) based on
the practical optimal resource vector under the limited
capacities in reality. We call it practical optimal time (POT).
The last one is one heuristic algorithm called Load-Price-
Ratio based Proportional-Share (LPRPS). This heuristic is
designed based on such an intuition: In one task, the
subtasks with more workloads should be allocated with
more resources, in order to minimize the total execution
length. On the other hand, the subtasks with higher
prices will cost higher than the ones with lower prices,
thus the subtasks with lower prices are better to be
allocated with more resources to make the payment more
worthy. Hence, LPRPS tries to split the budgets among
subtasks proportional to the Load-Price-Ratio (LPR).
Based on Equation (3) and r1:r2:· · ·:rR= l1

b1
: l2b2 :· · ·: lRbR , we

could get LPRPS’s resource vector as Formula (41),

where κ= B∑R
i=1 li

.

(r1, r2, · · · rR)T = (κ
l1
b1
, κ

l2
b2
, · · · , κ lR

bR
)T (41)

6.2 Experimental Results
There are two key metrics in our evaluation. The first
one is called execution stretch (ES), aiming to evaluate
task’s execution performance. A task’s ES is defined
as its real execution length (with possibly erroneous
workloads predicted) divided by its theoretically optimal
execution length calculated based on its real workloads
recorded after its execution. Smaller ES implies higher
execution efficiency and ES being equal to 1 implies
that the task’s practical execution length reaches its
theoretically optimal result. The other one is called
performance-payment ratio (PPR), which is used to eval-
uate the effectiveness of user’s payment. A task τ ’s PPR
is defined in Formula (42), where τ ’s payment level is
equal to τ ′s final payment

τ ′s budget . The smaller PPR, the higher
performance with lower payment meanwhile, indicating
higher satisfactory level.

PPR(τ) = ES(τ)× (τ ′s payment level) (42)

We first evaluate the impact of different budgets
assigned to a single task to its execution performance
and user’s final payment. The task is computing
||(A2

2000×2000×((A2000×2000×A2000×1000)×v1000))×v1000||2,
where A and v means a matrix and a vector respectively.
It is made up of 6 different matrix operations, including
M-M-Multi., M-V-Multi., V-V-Multi., and so on. In
Fig. 1 (a), we observe that the task’s ES compared
to its IOT increases linearly with the increase of the
budgets assigned. This can be explained by Formula
(3) or Equation (5). That is, higher budgets assigned
will result in larger theoretically optimal resource
amounts allocated, leading to a shorter IOT. However,
the task has to be run atop the resources with limited
capacities in practice, so we also compare task’s real
execution length to its theoretically optical value by
taking capacity into account (i.e., POT). Fig. 1 (a) shows
ES is always very close to 1 in this situation, which
confirms that our solution is indeed able to optimize
task’s performance, based on user requirement and the
load dynamics. In addition, the similar observation goes
to the PPR metric, as shown in Fig. 1 (b), confirming
the payment should also be satisfied by users.

We also compare the results in the situation with
sufficient resources and the one with short supply re-
spectively. Fig. 2 (a) shows the mean/lowest/highest
values of the ES compared to IOT and POT respectively.



10

 0

 1

 2

 3

 4

 5

 6

 7

 0.5  1  1.5  2  2.5  3
E

x
e
c
u
ti
o
n
 S

tr
e
tc

h
Budget Coefficient (θ)

Compared to IOT
Compared to POT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5  1  1.5  2  2.5  3

P
e
rf

o
rm

a
n

c
e
-P

a
y
m

e
n
t 
R

a
ti
o
 (

P
P

R
)

Budget Coefficient (θ)

(a) (b)

Compared to IOT
Compared to POT

Fig. 1: Execution Performance under Different Payments. (a) Execution Stretch. (b) Performance-Payment Ratio
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Fig. 2: Execution Performance with Different Number of Tasks. (a) Execution Stretch. (b) Performance-Payment Ratio

When the number of tasks is small (e.g. ≤10), the mean
ES in both situations is always below 1.1, while the
highest value of ES (worst situation) is up to 4. This
is reasonable based on the following explanation. Note
that the computation workloads among some subtasks
(i.e., basic matrix operations) are largely different (e.g.,
between M-M-Multi. and V-V-Multi.), thus the resource
amounts derived based on convex-optimization could be
quite different. This will make the ideal optimal resource
fractions of heavily-loaded subtasks be much bigger than
the resource capacities (8-cores for the multi-threaded
programs or 1-core for the single-threaded programs),
such that subtasks cannot run in its ideal optimal states.

With further increasing number of tasks (from 10 to
40), the ES compared to IOT would increase notably,
yet the ES compared to the POT still keeps pretty close
to 1 (as observed in Fig. 2 (a)). In absolute terms, in
comparison to POT, the mean value of ES can be limited
down to about 1.1. This is attributed to the fact that more
and more tasks cannot be assigned with the ideal optimal
resource vectors (i.e., r(∗)), while it can be assigned
with the practical optimal resource vectors (i.e., r∗) with
regard to the limitation of the resource capacities. In
fact, in such a situation with relatively short resource
supply, task’s practical optimal performance would also
be degraded correspondingly, and ES≈POT means that
the tasks under our resource allocation run as efficiently
as the practical optimal state with the capacity limitation.
The similar observation goes with the PPR metric, as
shown in Fig. 2 (b). When comparing to IOT, the PPR
enhances with increasing number of tasks to process,
yet it increases more slowly than that of ES shown in

Fig. 2 (a), because users’ payments are correspondingly
reduced with the smaller resource amounts allocated.

We also evaluate the performance of the Algorithm
3 with the adaptive mechanism, which aims to fur-
ther refine subtasks’ resource allocation to adapt to the
resource state changes at runtime. With the adaptive
support, as some resources previously occupied by some
tasks are released due to their completion, the optimal
resource vectors of the other running tasks on the same
node will be performed again. In Fig. 3 (a), we observe
that the adaptive version of Algorithm 3 significantly
outperforms the one without the adaptive support, via
the mean ES. The mean ES with and without the adap-
tive mechanism is about 0.7 and 1.1 respectively. This
confirms that task’s execution would be impacted by
the serious resource competition, while our adaptive
mechanism could effectively solve the problem by adap-
tively reallocating the released resources at runtime. In
addition, Fig. 3 (b) shows the PPR under the adaptive
version of our algorithm. When there are 15+ tasks
submitted (competitive situation), the mean value of PPR
is much lower than that of the non-adaptive version by
about 35% in general.

We also analyze the fairness of task’s resource alloca-
tion based on Jain’s fairness index [25] (Equation (43),
where xi is either ES or PPR.

F (x) = (
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

(43)

The fairness of ES (PPR) with respect to POT is much
higher than the one with respect to IOT, as shown in
Fig. 4 (a). This is because the basic matrix operations
in our experiment are with largely different workloads
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(Table 2), which could easily make the resource fractions
assigned at different dimensions are quite uneven. That
is, the resource amounts expected at some dimensions
may be extremely huge, finally succeeding the corre-
sponding resource capacities to different degrees. Then,
the degradation of the practical execution compared to
IOT could be very arbitrary. However, we could still
observe quite stable and highly fair treatment on task’s
resource allocation w.r.t. POT, i.e., when comparing to
the execution length to the practical optimal state con-
sidering the capacity limitation.

Finally, we compare the execution performance of
our algorithm to that of the Load-Price-Ratio based
Proportional-Share (LPRPS) heuristic, as shown in Fig.
5 (Both are tested under the dynamic/adaptive resource
allocation). We could clearly observe that LPRPS per-
forms with much higher mean value of ES and PPR
than that of our solution. Our ODRA algorithm can also
effectively adapt to the competitive situation, i.e., the
mean value and maximum value of the ES and PPR
under ODRA stay quite stable even through there were
over-many tasks submitted. In absolute terms, the mean
values of ES and PPR under ODRA are about 1

4 and 1
2

of those under the LPRPS heuristic, which means ODRA

outperforms the LPRPS heuristic significantly.

7 RELATED WORK

Cloud resource allocation problem has been extensively
studied for years, however, most of the existing work
is strongly subject to the assumption with precise work-
load/hostload prediction. Usiao et al. [26] proposed a
distributed load rebalancing method for distributed file
systems in Clouds. Unlike the file system where data
size is relatively easy to predict precisely, we have to
deal with erroneous prediction issue in our computa-
tional cloud platform with multiple execution dimen-
sions. Stillwell et al. [27] and Kuribayashi [28] both
used greedy heuristics in resource allocation, and the
processing ability and user requests in their simulations
are assumed to be fixed and follow specific probability
distributions (e.g., Gaussian distribution and exponential
distribution). PACORA [29] is a performance-aware con-
vex optimization model for resource allocation problem,
assuming workload information could be known in ad-
vance. Goudarzi et al. [30] proposed a multi-dimensional
SLA-based resource allocation for multi-tier applications,
with the assumption that the average of user request
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and resource power are pre-known exactly. Jalaparti et
al. [31] aims to optimize the resource allocation utilities
between any two clients or client and provider. Their
solutions have a strong assumption that the resource
capacities are always large enough, while in our model,
limited resource capacity is a key constraint, leading to
a huge challenge especially in the bound analysis with
prediction errors. Meng et al. [32] explicitly endeavored
to maximize resource utilization by analyzing VM-pairs’
compatibility in terms of the forecasted workload and es-
timated VM sizes. Their solution is able to approximately
identify the compatibility of any pair of two VMs, but
cannot resolve the situation with more than two VMs on
the same machine. Wei et al. [33] formulated the Cloud
resource allocation to be a binary Integer programming
problem and solved it using an evolutionary method. A
strong assumption in their work is the precise prediction
of task’s workloads on multiple execution dimensions.

In order to provide guaranteed service-level agree-
ment (SLA), it is crucial to analyze the possible situation
with inaccurately predicted information. Few works,
however, fundamentally analyzed this issue for their
approaches in the context of Cloud platforms. Mao’s
auto-scaling method [34] and Di’s approach [35] took
into account load prediction issue in Cloud systems,
whereas they both handled a different objective that aims
to minimize user payment with guaranteed task dead-
lines. Thus, the problem formulation is fairly distinct,
so is the following solution. Wood et al. [36] adopted
black-box and gray-box strategies for virtual machine
migration, in order to alleviate hot spots based on sta-
tistical analysis. However, statistical analysis cannot be
used to derive the bound of task execution performance
at the worst case. In [37], AuYoung et al. evaluated the
impact of inaccurate prediction for various utility-based
scheduling approaches. They make use of simulation to
analyze the working efficiency of First-Come-First-Serve
(FCFS) scheduler and backfilling scheduler [38] with
possible skewed estimate of application utility function
and resource ability state. Although simulation work
could confirm the fault tolerance ability to a certain
extent, it cannot prove its effectiveness fundamentally.

There are also some exiting related works exploring
how to make use of heuristics to adapt to the erroneous
prediction problem. Kundu et al. [39] presented machine
learning techniques to model the performance of a VM-
hosted application as a function of resources allocated
to VM. Their approach works well when being given a
relatively precise load prediction (with 90th percentile of
prediction errors being within [4.36%,29.17%]). However,
it cannot keep guaranteed performance with relatively
large load prediction errors. CloudScale [40] is a cloud
system that automates fine-grained elastic resource scal-
ing for multi-tenant cloud infrastructures. It employs
online demand prediction and handles prediction errors
to achieve adaptive resource allocation. In contract to
this work, we theoretically derived the upper bound
of the task execution length with different margins of

prediction errors. Moreover, we improved the algorithm
by making it adapt to dynamic changes of resource avail-
ability states, significantly enhancing the robustness.

Beyond the scope of Cloud computing, there are some
existing works that discussed robust convex optimization
problem, which is similar to our resource allocation issue
with erroneous predictions. Robust convex optimization
problem was first discussed in [41]. Some typical convex-
optimization problems like linear programming and
quadratic programming were studied in [41], under the
assumption that some data are crude knowledge with
uncertainty. Janak et al. [43] analyzed the robust opti-
mization for Mixed-Integer Linear Programming (MILP)
problem under uncertainty. Chaisiri et al. [44], [45] for-
mulated the robust Cloud resource provisioning as a
Stochastic Programming (SP) problem with uncertainty.
In comparison to the above work, the resource allocation
formulated in this paper is particular and largely differ-
ent, due to the non-linear target function with multiple
execution dimensions. To this end we designed LOAA
algorithm to solve it with provably optimal output. Since
LOAA is a specific algorithm, it needs particular analysis
about its output with uncertain information.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel algorithm (namely
ODRA) which aims to minimize task execution length
under a budget with possible prediction errors. We
carefully derived the upper bound of task execution
length for a practical situation with erroneous predic-
tion of task workloads and resource availabilities. The
derived bound of task execution length is very concise.
To the best of our knowledge, this is the first paper to
optimize the divisible-resource allocation with in-depth
analysis on upper bound of task execution length under
prediction errors. We also design a dynamic approach
that adapts to the load dynamics over task execution
progress. We evaluate the performance using a real
cluster environment with composite web services. These
services are of different execution patterns on multiple
types of resources. Experiments show that task execution
lengths with our ODRA solution are always close to
their theoretically optimal results with resource capacity
limitation. The mean values of Execution Stretch (ES)
and Performance Payment Ratio (PPR) under ODRA are
about 1

4 and 1
2 of those under LPRPS heuristic respec-

tively, which means ODRA outperforms LPRPS heuristic
significantly. In the future, we plan to improve system-
wide performance by taking into account short supply
situation. We will also implement more composite web
services in addition to matrix computation, under the
ODRA algorithm.
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