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Abstract

A class of adaptive designs is formulated in two stages for clinical trials to favour the
better performing treatment for further allocation in an efficient way. The first stage of the
allocation consists in randomizing subjects to each treatment arm with equal probability
and performing a test of equality of treatment effects. The resulting p value and the
available estimate of a treatment difference measure is used to assign the incoming second
stage subjects. Considering binary and normal responses, several exact and asymptotic
properties of the proposed allocation are thoroughly examined and compared with the
existing allocation designs.
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1. Introduction

The primary objective of any clinical trial is to determine the efficacy of the competing treat-
ments on the basis of the responses of the participants of the trial. Before the trial is actually
conducted, the knowledge about the performance of the treatments is absent. In the absence
of any information about treatment superiority, the usual practice is to consider each treat-
ment equally important and assign equal number of subjects to each treatment arm. But such
an allocation strategy is often criticised as the best and the worst treatments receive the same
number of subjects. However, clinical trials involve human beings and therefore the ethical
goal in such trials is to provide the best possible care for the subjects. Thus, adaptively
designed allocation, (in particular, response adaptive allocation) is the natural choice for its
ability to skew the assignment towards the treatment doing better using the available data.
Two stage allocation design is one among the popular data dependent allocations, where the
first stage data plays a crucial role in determining the sampling fraction of the second stage.
The basic goal is naturally to assign a greater fraction of subjects to the treatment doing
better. One of the simplest, perhaps the earliest, instance of two stage allocation in the field
of a clinical trial can be found in Colton (1963), where for the assignment of n recruited
subjects, 2m subjects, m on each treatment arm, are used in the first stage and the treatment
doing better is selected for the assignment of the remaining (n − 2m) subjects. In a further
work, Coad (1992) studied the inferential properties of the procedure, such as exact bias and
variance of the estimated treatment difference. Specifically, assuming that a higher response
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is desirable, Coad considered the treatment producing the higher observed mean response
in the first stage as better performing and suggested to assign the subjects of the second
stage exclusively to this treatment. However, treatment assignments for the second stage
subjects become perfectly predictable and hence lacks randomization (Atkinson and Biswas
(2014), Antognini and Giovagnoli (2015)). Moreover, the best performing treatment after the
first stage is decided through an examination of the sign of the estimated treatment differ-
ence and ignores the further information contained in the magnitude. Consequently, large
as well as small positive values of the differences are given the same importance. Bandy-
opadhyay and Bhattacharya (2006) and Bandyopadhyay and Bhattacharya (2007) identified
these issues and incorporating randomization in a convenient way, developed an ethical allo-
cation after sequential determination of the first stage sampling allocation fraction. In further
works, Bandyopadhyay, Biswas, and Bhattacharya (2009) and Bandyopadhyay, Biswas, and
Bhattacharya (2010) used optimum design theory to develop ethical allocation for survival
outcomes incorporating randomization in the second stage, where a prefixed allocation func-
tion is estimated on the basis of the first stage data and/ or incoming patients’ covariate.
However, in a recent work, Bhattacharya and Shome (2015) developed a two stage allocation
procedure using the sufficient statistics based on the first stage data in a convenient way. To
be specific, they used a decreasing function of the p value of a test of equality of treatment
effects based on the first stage data to set the allocation probability of each subject of the
second stage. The second stage allocation was fully randomized but the randomization prob-
ability remained the same. The present work develops an adaptive allocation procedure in
two stages, where apart from being a function of the p value of a test of equality of treat-
ment effects based on the first stage data, the second stage randomization probabilities are
continuously updated after each response of the second stage assignments. The allocation
procedure together with the related properties are discussed in Section 2 giving emphasis on
the asymptotic properties. Considering binary and continuous treatment outcomes, the per-
formance of the proposed procedure is compared with some relevant competitors in Section 3.
Redesigning a real clinical trial adopting the proposed methodology is also added in Section
3. Finally Section 4 concludes with a discussion of a few relevant issues.

2. The allocation design

2.1. The general allocation function

Consider a clinical trial with two competing treatments (say, treatments A and B) and sequen-
tially arriving subjects. A total of n subjects are to be assigned in two stages to accomplish
certain objectives. The first stage assigns a total of 2m subjects to treatments A and B with
equal probability (i.e. 1

2) to get an initial idea about the treatment performances. We suggest
to assign the i + 1 th subject of the second stage (i ≥ 0) to treatment A with probability
πmi, where πmi depends on the first stage data together with the allocation and response
data of the i assigned subjects of the second stage. For a worthwhile determination of πmi,
we assume that a higher response is desirable and consider a statistic Tm based on the first
stage data for an evaluation of the null hypothesis of equality of treatment effects with pm
as the corresponding p value. Also suppose that ∆̂mi, i ≥ 1 is a strongly consistent sequence
of estimates of a treatment effect measure ∆ (to be specified later), based on the first stage
data and the allocation and response information available so far. Use of currently available
estimate of treatment effect for the allocation of subjects was considered in Bandyopadhyay
and Biswas (2001) with the goal of favouring the better performing treatment. But assigning
more to the better performing treatment makes the allocation unbalanced and hence causes,
in general, a significant loss in power. Therefore, as a trade off between favouring the better
performing treatment and loss of statistical precision, we suggest to use the p value based on
the first stage together with the available estimate of the treatment effect measure. Thus a
sensible choice of πmi should be a function of both pm and ∆̂mi, that is πmi = φ(pm, ∆̂mi) for
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some function φ.
The most important task, is therefore, to suggest meaningful choices of φ following a thor-
ough investigation of the properties. First of all, we note that the lower the value of pm,
the stronger is the evidence against H0 and hence the more is the importance of the second
stage data for further allocation. Thus it seems reasonable to assume πmi as a non-increasing
function of pm for fixed ∆̂mi. Again for any i, ∆̂m,i+1 ≥ ∆̂m,i indicates higher superiority of
treatment A at stage i+ 1 than at stage i and hence an increased probability of assignment
to treatment A at stage i+ 1 than stage i is preferable. This naturally suggests that a desir-
able choice of φ must be non-decreasing in the estimates of the treatment effect measure for
fixed pm. However, treatment effect measure is, in general, unbounded and hence we use a
reasonable monotonic and bounded function of the estimated treatment effect. Since we need
to maintain a reasonable ordering in allocation probability, the most obvious choice of such
a function becomes the distribution function of a random variable. Thus, we need a function
φ(x, y) ∈ [0, 1] defined for x ∈ [0, 1] and y ∈ [0, 1] such that φ is non-increasing in x for fixed
y and non-decreasing in y for fixed x. We provide below three such choices of φ considering
different requirements.
For a meaningful development, assume that µk is the effect measuring parameter for treatment
k, k=A,B and consider testing H0 : µA = µB against the one sided alternative H : µA > µB.
If we denote the p value related to testing H0 against H by pm, then an allocation probability
for incoming second stage patient could be,

φ(1)(pm, ∆̂m,i+1) = 1− pm. (1)

The above choice of φ is decreasing in pm and provides the allocation design of Bhattacharya
and Shome (2015), where the allocation probability is not updated after the first stage and
hence is independent of any ∆̂m,i.
With an aim to provide an allocation depending on both, the p value pm and the sequence of
updated estimates ∆̂m,i, i ≥ 1, we suggest the following allocation probability

φ(2)(pm, ∆̂m,i+1) =
{
G(∆̂m,i)

}w1m

, (2)

where G is a distribution function and w1m is a function of pm controlling the influence of the
first stage outcome on the second stage allocation. It is easy to observe that a constant w1m

outweighs the importance of the first stage and hence a suitable function of pm is appropriate.
The choice (2) depends on ∆̂mi and meets all the necessary requirements provided w1m is an
increasing function of pm. However, the author’s choice for w1m is pm + 1

2 , a linear function
of pm with positive slope.
Finally, considering G as a distribution function and w2m, a convenient function of pm, we
suggest the following second stage allocation probability

φ(3)(pm, ∆̂m,i+1) =
1

2
w2m +

1

2
G(∆̂m,i). (3)

Now for a meaningful determination of w2m, consider testing H0 : µA = µB against the one
sided alternative H ′ : µA < µB. If pm is the p value associated to testing H0 against H,
defined earlier, then 1 − pm can be regarded as the p value based on the same data related
to testing H0 against H ′ : µA < µB. Thus for a chosen significance level 100α%, a value of
pm less than α indicates a strong support for µA > µB, whereas a value of 1 − pm less than
α gives a strong support in favour of µA < µB. Combining, we observe that the data gives
strong support in favour of µA > µB or µA < µB as pm < α or pm > 1 − α; otherwise the
data gives evidence in favour of µA = µB, that is, equality of treatment effects. Therefore, for
the assignment to treatment A, we must put a higher weight for pm < α and a lower weight
for pm > 1 − α. Moreover, for pm lying between α and 1 − α, equal weights to both the
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treatments are reasonable. This naturally suggests to use

w2m = 1 if pm < α

=
1

2
if α ≤ pm ≤ 1− α

= 0 if pm > 1− α.

But such a choice does not always ensure unpredictability of treatment assignments and hence
leads to selection bias (Rosenberger and Lachin (2002)). Thus considering the fact that the
lower values of pm and 1 − pm indicate stronger evidence against the null hypothesis, we
suggest the following

w2m =
1

2
if α ≤ pm ≤ 1− α

= 1− pm otherwise,

and use it extensively for further development.

2.2. Response driven choices of G and ∆

Now we come to the most crucial part of the development, that is, deciding an appropriate
function G together with the form of treatment effect measure ∆. Although any distribution
function is appropriate as G but such a choice induces arbitrariness. Consequently, we closely
examine the meaning of G(∆̂m,i) and observe that G(∆̂m,i) is nothing but the estimated
proportion of skewing to treatment A for the next (i.e. (i+1) th) subject, that is, a mea-
sure of the magnitude by which treatment A is better than treatment B. If Xk denotes the
continuous outcome measure for treatment k, then the natural amount of skewing is simply
P (XA > XB) and hence an estimate can be used as G(∆̂m,i). For example, if the outcome

measure for treatment k has a N(µk, σ
2
k) distribution, we have P (XA > XB) = Φ

(
µA−µB√
σ2
A+σ2

B

)
,

which suggests to take G = Φ, the cumulative distribution function of a standard normal vari-
able and ∆ = µA−µB√

σ2
A+σ2

B

. As another example, we get G(x) = x
1+x , x ≥ 0 and ∆ = µA

µB
when

the response to treatment k is exponential with mean µk. It is interesting to note that if
the treatment effect measure is a difference measure (e.g. normal responses), G is symmetric
about the origin but for a ratio based treatment effect measure (e.g. exponential responses),
the corresponding choice of G has a median at unity.
Motivated by the above discussion, one will be interested in either of P (XA > XB) or
P (XA ≥ XB) to use as the skewing proportion when Xk has a Bernoulli(µk) distribution. For
independent Bernoulli responses XA and XB, it is easy to obtain P (XA > XB) = µA(1−µB)
and P (XA ≥ XB) = 1 − µB(1 − µA). Now a close examination reveals that P (XA > XB)
and P (XA ≥ XB) can be both less than 50% even for µA > µB. Consequently, either
P (XA > XB) or P (XA ≥ XB) do not qualify as a reasonable skewing proportion. However,
as an alternative, if we consider the average 1

2{P (XA > XB) + P (XA ≥ XB)}, then we get
the simplified expression 1

2 + 1
2(µA − µB). Naturally, the simplified expression can be looked

upon as G(∆), where ∆ = µA − µB and G is the distribution function of a uniform ran-
dom variable over [−1, 1]. Then such an expression satisfies the requirements of a skewing
proportion and hence can be used as a skewing proportion for binary responses. It is inter-
esting to note that the resulting expression is nothing but the ridit function (Agresti (2010))
P (XA > XB) + 1

2P (XA = XB) based on binary responses. Thus, depending on the response
distributions we get unique choices of G and the form of treatment effect measure ∆.

2.3. The allocation in practice

With the allocation indicator δi (= 1; if treatment A is assigned and = 0; otherwise) for the
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i th subject, the allocation design can be described by the conditional probability

P (δi+1 = 1|Fi) =
1

2
if i ≤ 2m− 1;

= φ(pm, ∆̂m,i) if i ≥ 2m,

where Fi is the information contained in the response and allocation data up to and including
those of the i th patient, i ≥ 1 with φ, pm and ∆̂m,i are as defined before. If n assignments
are made following the above allocation procedure, then the observed number of subjects to
treatment A is simply NAn =

∑n
i=1 δi = n−NBn, where δi are i.i.d Bernoulli variables with

success probability 1
2 for i ≤ 2m. But exact properties of NAn

n are not easy to express in
tractable forms and therefore we proceed to examine the properties in large samples. For
such an assessment, we assume m = [nθ], 0 < θ < 1

2 , where [x] represents the greatest integer
in x so that as n→∞,

m→∞ but
m

n
→ θ. (4)

The limiting value of the observed allocation proportion to treatment A, NAn
n can be found

in Result A.2 of the Appendix.

3. Exploring the performance measures

Since a reasonable allocation design aims to balance the ethical and statistical needs, it
becomes important to examine both the ethical and inferential aspects. However, use of
P (XA > XB) or P (XA > XB) + 1

2P (XA = XB) as G(∆) in the second stage is intended to
assign more subjects to the better treatment. G(∆) makes the allocation far from the balanced
and hence a loss in statistical power is expected. On the other hand, equal randomization at
the first stage reduces the power loss. Since, the proposed allocation designs are conducted
in two stages comprising equal and adaptive randomization, a balance between ethics and
statistical precision can be anticipated. For an assessment of the proposed designs from both
the viewpoints(i.e. ethics and precision), we use the following measures

• The expected number of allocation to treatment A, E(NAn) (denoted by ENAA) along
with its standard deviation and

• The power of a test of the equality of treatment effects and

• Error rate.

Considering normal and binary treatment responses, the above measures are computed for
the proposed and competing allocation designs. In subsequent parts of this section, we refer
the designs (1), (2) and (3) by D3, D1 and D2, respectively.

3.1. Normal responses

Suppose the response of patients to treatment k has a normal distribution with mean µk and
variance σ2k, k = A,B. Then the hypotheses of equality of treatment effects can be expressed
as H0 : µA = µB. If Tm is a statistic based on the first stage data relevant to the testing
problem with T obsm as its observed value then pm can be expressed as P (Tm ≥ T obsm |H0). For
normal responses with unknown and unequal variances, the natural choice of Tm is the Welch’s
t-statistic (Lehmann and Romano (2005)), defined by

Tm =
√
m
X̄Am − X̄Bm√
s2Am + s2Bm
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where X̄km(s2km) denotes the mean (variance) of the observed responses for the first stage
patients assigned to treatment k. As indicated earlier, we have the choices G = Φ and
∆̂m,i = µ̂Ai−µ̂Bi√

σ̂2
Ai+σ̂

2
Bi

, i ≥ 2m, where µ̂ki(σ̂
2
ki) is the estimated value of µk(σ

2
k) after i responses

are observed. For a meaningful comparative evaluation of the performance, we consider the
following competitors.
• A Two Stage Competitor: As a two stage competitor, we consider the design of Bhat-
tacharya and Shome (2015), where m subjects are assigned to each treatment arm in the
first stage and based on these data, the p value pm of a relevant test of treatment equality is
calculated. Then each incoming subject of the second stage is assigned to treatment A with
probability 1− pm. Thus the procedure corresponds to the choice (1). Suppose NAn denotes
the observed number of subjects assigned to treatment A out of n assignments. Then under
(4), as m→∞, the observed allocation proportion to treatment A (i.e. NAn

n ) approaches the
almost sure limit 1 − θ or θ according as µA − µB > 0 or µA − µB < 0 (see, Result A.2 of
the Appendix and Bhattacharya and Shome (2015), for details). However, under µA = µB,
pm has a uniform distribution over (0, 1) and hence in such a case NAn

n converges in distribu-
tion to a uniform random variable, distributed over the interval (θ, 1− θ). Thus the limiting
proportion of allocation depends on the sign of the treatment difference µA − µB except for
µA = µB.
• Neyman Allocation: We also consider a randomized version of Neyman allocation as-
suming (σA, σB) unknown. The allocation probability to treatment k for the (i+1) th subject
is σ̂ki

σ̂Ai+σ̂Bi
, k = A,B, where σ̂ki is the estimate (preferably, maximum likelihood estimate) of

σk based on the first i allocation and response data (Melfi, Page, and Geraldes (2001)). Use
of sequentially updated maximum likelihood estimators of σk, k = A,B results in a sequen-
tial maximum likelihood (SML) procedure (Hu and Rosenberger (2006)) targeting Neyman
allocation. Now it is well known that under normality of responses, if σk, k = A,B are known
and the trial size is kept fixed (Chapter 2, Rosenberger and Lachin (2002)), such an allocation
maximizes the power of Wald test for testing the equality of treatment effects. Thus Neyman
allocation is optimal in such a situation. We, therefore, use this randomized version as a
standard against which the inferential aspects of the designs can be assessed.
• Bandyopadhyay and Biswas (2001) Allocation: For a fair comparison, we also add the
allocation of Bandyopadhyay and Biswas (2001)(referred to as BB) in the list of competitors.
For such an allocation, the (i + 1) th subject is allocated to treatment A with probability
Φ( µ̂Ai−µ̂Bi

T ), where T (> 0) is a tuning parameter and µ̂ki is the estimate of µk based on the
first i allocation and response data. Naturally, the allocation probabilities are updated on the
basis of the available estimates of the treatment effect.

Now for a valid assessment, we fix n = 120 and consider testing H0 : µA = µB against
H1 : µA > µB. Specifically, we take µA = µB = 1 under the null hypothesis and vary µA at
regular intervals from 1.0 under the alternative. Naturally, treatment A is the better for the
assumed configuration. For each configuration of (µA, µB), we conduct a simulation study
with 25,000 repetitions and compute expected number of allocations to the better treatment
(i.e. treatment A) and power considering different choices of m and different combinations
of (σA, σB). The test statistic for the power computation is Welch’s t statistic with unequal
sample sizes, defined by

T ∗n =
X̄An − X̄Bn√
s2An
NAn

+
s2Bn
NBn

,

where X̄kn and s2kn are calculated on the basis of the responses from the two stages. Again, re-
sponse adaptive randomization, in general, affects the type I error rate and such a rate depends
on the convergence rate of the allocation proportions (Yi and Wang (2015)). Since,Welch’s
test is only approximate and asymptotically standard normal under the null hypothesis, we
also report the attained significance levels (denoted by Error rate), where the nominal signif-
icance level is set at 5%. All these are provided in Table 1.
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Table 1: Performance evaluation for normal responses with n = 120

Design D1 ENAA(SE) & Power ENAA(SE) & Power ENAA(SE) & Power
σA = .25, σA = .25 σA = .5, σA = .25 σA = .25, σA = .5

µA − µB m = 15 m = 25 m = 15 m = 25 m = 15 m = 25
0.0 60.54(14.42) 60.38(11.26) 60.03(14.54) 60.13(11.26) 61.01(14.38) 60.66(11.21)

.050[.069] .050[.061] .050[.055] .050[.050] .050[.084] .050[.073]
0.06 71.52(13.30) 70.12(10.09) 67.11(14.03) 66.47(10.76) 68.02(13.96) 66.87(10.79)

.336 .356 .212 .209 .178 .184
0.12 80.90(10.60) 77.60(7.44) 73.92(12.62) 72.23(9.43) 74.64(12.75) 72.57(9.50)

.793 .810 .525 .524 .420 .435
0.18 87.69(7.75) 82.51(5.12) 79.81(10.75) 76.85(7.67) 80.37(11.10) 77.10(7.80)

.979 .984 .821 .821 .695 .715
0.24 92.30(5.66) 85.51(3.84) 84.60(8.89) 80.44(5.98) 85.08(9.35) 80.64(6.17)

.999 .999 .961 .963 .885 .901

Design D2 ENAA(SE) & Power ENAA(SE) & Power ENAA(SE) & Power
σA = .25, σA = .25 σA = .5, σA = .25 σA = .25, σA = .5

0.0 59.99(12.10) 60.01(9.58) 59.79(12.19) 59.94(9.60) 60.13(12.18) 60.11(9.60)
.050[.059] .050[.055] .050[.052] .050[.052] .050[.064] .050[.062]

0.06 68.06(12.96) 67.50(10.46) 64.80(12.44) 64.52(9.10) 65.26(12.75) 64.69(10.06)
.353 .348 .209 .206 .186 .190

0.12 76.77(13.55) 75.55(10.15) 70.07(13.02) 69.55(10.54) 70.54(13.48 69.75(10.72)
.806 .811 .518 .520 .445 .457

0.18 84.93(11.96) 82.08(7.34) 75.50(13.31) 74.62(10.25) 75.99(13.76) 74.90(10.40)
.981 .984 .811 .813 .728 .743

0.24 91.23(8.82) 85.85(4.54) 80.88(12.79) 79.16(8.84) 81.29(13.27) 79.40(8.99)
.999 .999 .956 .959 .904 .919

Design D3 ENAA(SE) & Power ENAA(SE) & Power ENAA(SE) & Power
σA = .25, σA = .25 σA = .5, σA = .25 σA = .25, σA = .5

µA − µB m = 15 m = 25 m = 15 m = 25 m = 15 m = 25
0.0 59.93(26.32) 60.03(20.50) 59.86(26.31) 59.92(20.46) 59.99(26.29) 60.01(20.45)

.050[.058] .050[.057] .050[.053] .050[.052] .050[.065] .050[.061]
0.06 75.91(24.15) 75.58(17.81) 70.25(25.44) 70.28(19.42) 70.25(25.40) 70.37(19.36)

.291 .320 .200 .221 .145 .163
0.12 88.87(18.60) 86.85(11.58) 79.73(22.82) 79.22(16.30) 79.80(22.85) 79.19(16.30)

.698 .756 .490 .532 .329 .367
0.18 97.31(12.23) 92.35(5.86) 87.73(19.23) 85.99(12.23) 87.68(19.33) 85.98(12.20)

.933 .966 .784 .821 .552 .615
0.24 101.92(6.82) 94.36(2.24) 93.96(15.04) 90.29(8.38) 93.94(15.11) 90.32(8.35)

.990 .998 .943 .961 .750 .818

BB ENAA(SE) & Power ENAA(SE) & Power ENAA(SE) & Power
σA = .25, σA = .25 σA = .5, σA = .25 σA = .25, σA = .5

µA − µB m = 2 m = 2 m = 2 m = 2 m = 2 m = 2
0.0 60.01(6.04) 60.01(6.04) 59.77(7.00) 59.77(7.00) 60.24(7.00) 60.24(7.00)

.050[.054] .050[.054] .050[.053] .050[.053] .050[.057] .050[.057]
0.06 62.75(6.07) 62.75(6.07) 62.53(6.96) 62.53(6.96) 63.04(7.05) 63.04(7.05)

.361 .361 .209 .209 .195 .195
0.12 65.46(6.03) 65.46(6.03) 65.21(6.93) 65.21(6.93) 65.72(7.05) 65.72(7.05)

.828 .828 .512 .512 .475 .475
0.18 68.13(6.01) 68.13(6.01) 67.87(6.85) 67.87(6.85) 68.41(7.09) 68.41(7.09)

.988 .988 .807 .807 .764 .764
0.24 70.84(5.94) 70.84(5.94) 70.59(6.77) 70.59(6.77) 71.13(7.01) 71.13(7.01)

.999 .999 .956 .956 .934 .934

Neyman ENAA(SE) & Power ENAA(SE) & Power ENAA(SE) & Power
σA = .25, σA = .25 σA = .5, σA = .25 σA = .25, σA = .5

µA − µB m = 2 m = 2 m = 2 m = 2 m = 2 m = 2
0.0 59.98(8.89) 59.98(8.89) 80.14(8.33) 80.14(8.33) 39.86(8.32) 39.86(8.32)

.050[.054] .050[.054] .050[.055] .050[.055] .050[.057] .050[.057]
0.06 60.02(8.74) 60.02(8.74) 80.11(8.24) 80.11(8.24) 39.27(8.27) 39.27(8.27)

.365 .365 .214 .214 .217 .217
0.12 59.94(8.79) 59.94(8.79) 80.08(8.28) 80.08(8.28) 39.90(8.29) 39.90(8.29)

.828 .828 .528 .528 .533 .533
0.18 60.03(8.88) 60.03(8.88) 80.11(8.28) 80.11(8.28) 39.90(8.31) 39.90(8.31)

.987 .987 .827 .827 .825 .825
0.24 60.02(8.80) 60.02(8.80) 80.08(8.27) 80.08(8.27) 39.92(8.22) 39.92(8.22)

.998 .998 .964 .964 .966 .966

Boldface figures indicate the powers for the proposed allocation and those within [ ] are the error rates.
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Remarks. Before analyzing the numerical figures of Table 1, we provide a comparative picture
of the second stage allocation probabilities for the two stage designs D1, D2 and D3. For the
comparison, we fix µA = .25, µB = 0, α = .10, consider m = 25 and m = 30 and vary
(σA, σB). For each configuration, second stage allocation probabilities (φ) are simulated for
each allocation design at the sample sizes n = 2m+1, 2m+2, ... and plotted against the sample
size n. All these can be found in figures 1 and 2. We observe that, φ(1) remains fixed at a
higher value, but φ(2) and φ(3) vary steadily at some lower values. This is expected, as φ(1)

does not take into account the second stage information and hence converges to a deterministic
design. On the other hand, φ(2) and φ(3) consider the second stage information in addition
to the first stage information and vary reasonably. However, for all the designs, the second
stage allocation probabilities become stable, of course, with varying rates when sample size
increases.

Now, we look at the performance measures, computed in Table 1. As indicated earlier, the
performance assessment includes both the ethical (i.e. assigning a larger fraction to the better
treatment) and inferential perspectives (i.e. detecting a departure in treatment effectiveness
with high probability). First of all, consider the allocation designs D1, D2 and D3. For these
designs, the ENAA figures increase with increase in µA − µB irrespective of the choice of m
and (σA, σB). However, in any situation, higher number of patients are assigned to the better
treatment (i.e. treatment A, in this case). But ENAA figures corresponding to m = 25 are,
in general, lower than those with m = 15. This is natural because a large m causes most of
the assignments through equal randomization and hence reduces the ethical allocation in the
second stage. On the other hand, a lower m allows more allocation in the second stage, which
in turn ensures more assignment to the treatment doing better.
Next, we consider the response adaptive competitors BB and Neyman allocations. Being
purely response adaptive procedures, BB and Neyman allocation procedures do not depend
on m. But to start the allocation, we require initial estimates and hence, we assign two
subjects to each treatment arm and estimate the parameters and start adaptation from the
fifth patient onwards. The allocation figures corresponding to BB are considerably lower than
those corresponding to D1, D2 and D3. But Neyman allocation assigns more subjects to the
treatment with higher response variability without caring for the treatment effectiveness and

the expected allocation numbers remain stable at a value close to n
(

σA
σA+σB

)
. Moreover,

apart from minor exceptions, Neyman allocation provides the highest statistical power. It is
well known that for known but unequal response variabilities, Neyman allocation minimizes
the trial size for fixed statistical precision (i.e. power), and the power figures of Table 1 are in
well agreement with this even for unknown variabilities. However, BB allocation is seen to be
less sensitive to small departure in treatment effectiveness and hence provides lower number
of allocations together with higher statistical power as compared to D1, D2 and D3. This is
consistent with the fact that unbalanced allocation, in general, causes a loss in power. Thus
the proposed allocations (i.e. D1 and D2) assign a larger number of subjects to the better
treatment with a little loss in statistical power and hence meets the specifications of a sensible
allocation design.
Again from the figures of Table 1, we find that the attained significance level for all the allo-
cation designs is slightly higher than the nominal level of 5%. Apart from minor exceptions,
the difference from the nominal level is higher for smaller m than those associated with the
higher choices of m. Therefore, adaptive allocation, in general, maintains a slightly higher
significance level than the nominal one for moderate sample sizes.

Now, we shall investigate the behaviour of power for each allocation design with the increase
in sample size. We set θ = 1

3 ,
1
4 and compute the powers for testing H0 : µA = µB = 1

against H1 : µA ≥ 1, µB = 1 for each allocation design. However, for brevity, we provide
plots of power considering different combinations of (σA, σB). The relevant plots are found
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Figure 1: Second stage randomization probabilities for m = 25, µA = .25, µB = 0.0

in figures 3 and 4, where the Neyman allocation is indicated by O. It is easy to observe that,
for all the allocation designs, the power figures increase with the sample size. However, rate
of increase is not same for all the allocation designs. Specifically, if we consider Figure 3, we
find that convergence rates of power are more or less same for σA ≥ σB. But for σA < σB, D2
provides the highest and D3 provides the lowest figures. The powers for D3 is also the lowest
for σA = σB. This is natural as D3 provides more skewing towards the better treatment
and suffers a significant loss in power. Figure 4 mimics the same phenomena except that the
power figures are lower than those for θ = 1

4 , which is expected as a lower θ implies more
allocation to the better treatment and hence results in a loss of power.
After considering the comparative picture discussed above, it is natural to set some recom-
mendations for the practitioner. For all the proposed allocation designs and the competitors,
the performance varies considerably with the configuration of (σA, σB). In particular, the
performance measures are encouraging for σA ≥ σB with respect to all the criteria. However,
if we consider all the combinations of (σA, σB), the allocation design D2 is seen to produce
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Figure 2: Second stage randomization probabilities for m = 30, µA = .25, µB = 0.0

promising results consistently. This naturally compels one to suggest the allocation design
D2 for practical purposes.

3.2. Binary responses

Suppose the response variable for treatment k is binary with success probability µk so that the
hypotheses of equality of treatment effects is simply H0 : µA = µB. We consider the estimated
difference measure Tm =

√
m(SAm

m −
SBm
m ) as the relevant statistic, where Skm is the number of

successes by treatment k in the first stage. Now, for continuous responses, P (Tm ≥ T obsm |H0)
and P (Tm > T obsm |H0) are the same and hence either of these are used as the p value. But
for discrete distributions, the difference between the two is consequential and hence as a
compromise, we use the average of these two, called the mid-p value (see, Agresti (2013), for
details), for our purpose. That is, we suggest to use 1

2P (Tm ≥ T obsm |H0) + 1
2P (Tm > T obsm |H0),

the mid p value based on the first stage response and allocation data. Now under the null
hypothesis, SAm and SBm are independently and identically distributed as Binomial(m,µ),



Austrian Journal of Statistics 53

50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Trial Size(n)

Po
w

er

D1

D2

D3

BB

O

(a) σA = .25, σB = .25

50 100 150 200

0.
2

0.
3

0.
4

0.
5

0.
6

Trial Size(n)

Po
w

er

D1

D2

D3

BB

O

(b) σA = .50, σB = .25

50 100 150 200

0.
2

0.
3

0.
4

0.
5

0.
6

Trial Size(n)

Po
w

er

D1

D2

D3

BB

O

(c) σA = .25, σB = .50

Figure 3: Comparing powers for testing H0 : µA = µB = 1 against H1 : µA ≥ 1, µB = 1 with
θ = 1

3 .

where µ is the common but unspecified success probability under the null hypothesis. Writing
z =
√
mT obsm , we find that P (Tm ≥ T obsm |H0) is the same as az = P (SAm − SBm ≥ z|H0) with

z as an integer in {−m,m}. Now a simple manipulation yields

az = P (SAm − SBm ≥ z|H0)

= P (SAm ≥ SBm + z|H0)

=
∑

0≤y,y+z≤m
P (SAm ≥ y + z|H0)P (SBm = y|H0)

=

min(m,m−z)∑
y=max(0,−z)

P (SAm ≥ y + z|H0)P (SBm = y|H0).

Since P (Tm > T obsm |H0) is the same as P (SAm − SBm ≥ z + 1|H0), we get the equivalent ex-
pression 1

2az + 1
2az+1 for the mid p value. Naturally the above quantity depends on unknown
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Figure 4: Comparing powers for testing H0 : µA = µB = 1 against H1 : µA ≥ 1, µB = 1 with
θ = 1

4 .

µ and hence we suggest to replace such a µ by its maximum likelihood estimate, that is, the
pooled success proportion of the first stage. We use the estimated value of 1

2az + 1
2az+1 as

our pm for binary responses.
Now we consider the following competitors for a relative assessment of the proposed allocation
designs.

• Neyman Allocation: As in Section 3.1, we consider a randomized version of Neyman
allocation for binary responses, where the (i+1) th subject is assigned to treatment k with

probability

√
µ̂ki(1−µ̂ki)√

µ̂Ai(1−µ̂Ai)+
√
µ̂Bi(1−µ̂Bi)

, k = A,B, where µ̂ki is the maximum likelihood estimate

of µk based on the first i allocation and response data.
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• Randomised-play-the-winner (RPW) Allocation: RPW is a randomized allocation
procedure for binary responses, developed by Wei and Durham (1978). The allocation uses
an urn containing two types of balls representing two treatments. For the allocation of
an incoming subject, a ball is drawn with replacement and the corresponding treatment
is assigned. If the response is a success, an additional β balls of the same type are added to
the urn; and for a failure, β balls of the opposite type are added. If the urn initially contains
α balls of each type, the procedure is termed RPW(α, β). The rationale behind the allocation
is to increase the chance of assigning the treatment doing better.

For the computation of the performance measures, we consider n = 120 and the allocation
designs D1, D2, RPW and Neyman. Specifically, considering treatment A as the best treat-
ment, we conduct a simulation study with 25000 repetitions for different m and calculate
the relevant measures. As indicated earlier, the unspecified common success probability is
estimated by the pooled success proportion, based on the first stage data. For the calculation
of power, we use a statistic similar to Tm except that m is replaced by n and Skm by Skn. All
these are reported in Table 2.

Table 2: Performance evaluation for binary responses with n = 120

Design D1 ENAA(SE) & Power for µB = .3 ENAA(SE) & Power for µB = .5 ENAA(SE) & Power for µB = .6
µA − µB m = 20 m = 30 m = 20 m = 30 m = 20 m = 30
0.0 63(8.52) 62.16(6.12) 62.12(12.12) 61.92(9.24) 63.36(12.00) 61.60(8.88)

.050[.058] .050[.055] .050[.057] .050[.053] .050[.056] .050[.053]
0.1 71.92(6.36) 69.76(4.44) 71.04(10.8) 68.64(8.04) 71.76(12.00) 68.92(9.12)

.306 .319 .279 .283 .283 .273
0.2 78.4(4.8) 74.04(3.48) 77.88(8.52) 74.16(6.00) 78.28(10.44) 74.88(7.92)

.725 .751 .690 .702 .710 .704
0.3 82.16(3.96) 77.96(3.12) 82.80(6.12) 77.64(4.32) 83.10(7.92) 77.28(5.76)

.952 .965 .948 .958 .962 .965

Design D2 ENAA(SE) & Power for µB = .3 ENAA(SE) & Power for µB = .5 ENAA(SE) & Power for µB = .6
µA − µB m = 20 m = 30 m = 20 m = 30 m = 20 m = 30
0.0 61.68(7.56) 60.04(5.20) 61.40(7.96) 60.84(6.42) 61.42(8.86) 60.81(6.49)

.050[.054] .050[.052] .050[.056] .050[.053] .050[.058] .050[.054]
0.1 65.69(10.36) 65.52(8.06) 66.53(10.46) 65.39(8.17) 66.53(10.36) 65.32(8.08)

.333 .315 .279 .293 .258 .282
0.2 72.97(11.72) 71.02(9.57) 72.90(11.74) 71.08(9.52) 72.94(11.49) 71.10(9.38)

.759 .736 .685 .705 .692 .715
0.3 79.35(11.05) 76.83(7.07) 79.43(11.09) 76.78(7.09) 80.62(10.81) 77.87(6.98)

.966 .960 .948 .956 .969 .976

RPW(1,1) ENAA(SE) & Power for µB = .3 ENAA(SE) & Power for µB = .5 ENAA(SE) & Power for µB = .6
µA − µB m = 2 m = 2 m = 2 m = 2 m = 2 m = 2
0.0 60.00(5.82) 60.00(5.82) 60.00(8.58) 60.00(8.58) 60.00(10.55) 60.00(10.55)

.050[.054] .050[.054] .050[.049] .050.049 .050[.048] .050[.048]
0.1 65.28(6.41) 65.28(6.41) 66.77(9.53) 66.77(9.53) 68.08(11.80) 68.08(11.80)

.308 .308 .287 .287 .289 .289
0.2 70.21(6.88) 70.21(6.88) 73.73(10.35) 73.73(10.35) 76.65(13.02) 76.65(13.02)

.721 .721 .705 .705 .724 .724
0.3 75.83(7.54) 75.83(7.54) 82.22(11.17) 82.22(11.17) 87.18(13.90) 87.18(13.90)

.952 .952 .953 .953 .963 .963

Neyman ENAA(SE) & Power for µB = .3 ENAA(SE) & Power for µB = .5 ENAA(SE) & Power for µB = .6
µA − µB m = 2 m = 2 m = 2 m = 2 m = 2 m = 2
0.0 60.11(9.99) 60.11(9.99) 60.02(6.53) 60.02(6.53) 60.95(7.55) 61.05(7.55)

.050[.065] .050[.065] .050[.052] .050[.052] .050[.048] .050[.048]
0.1 63.23(8.81) 63.23(8.81) 59.67(7.00) 59.67(7.00) 56.81(8.76) 56.81(8.76)

.289 .289 .285 .285 .298 .298
0.2 65.21(6.88) 65.21(6.88) 56.81(10.35) 56.81(10.35) 54.65(13.02) 54.65(13.02)

.700 .700 .710 .710 .742 .742
0.3 63.13(8.82) 63.13(8.82) 49.56(10.39) 49.56(10.39) 43.51(10.93) 43.51(10.93)

.950 .950 .963 .963 .981 .981

Boldface figures indicate the powers for the proposed allocation and those within [ ] are the error rates.

Remarks. From the performance measuring figures of Table 2, it is easily observed that the
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proposed allocations maintain more or less a similar level of power with the Neyman allocation.
Moreover, the number of allocations to the better treatment is always more than 50% and
increases with increasing effectiveness of the better treatment. However, the performance of
the proposed allocation designs (i.e. D1 and D2) remain similar for varying choices of µB.
It is interesting to note that the allocation figures for D1 are mostly higher than those for
the RPW(1,1) allocation but both the procedures maintain a similar level of power. Again,
as observed and explained for continuous responses, the number of allocation decreases with
increase in m, the first stage allocation number. Thus, the proposed allocation designs assign
more subjects to the better treatment keeping similar power level and hence is attractive from
both the ethical and inferential viewpoints.

3.3. Redesigning a real trial

We further investigate the usefulness of the proposed designs considering the results of the
real clinical trial on the treatment of patients with depressive disorder, conducted by Tamura,
Faries, Andersen, and Heiligenstein (1994). The objective was to evaluate the clinical efficacy
of Fluoxetine in the treatment of depressive disorder. First of all, we consider the data on
patients with shortened rapid eye movement latency and consider the negative of the change
in the first 17 items on the Hamilton Depression Scale after a minimum of 3 weeks therapy as
the response. Then the response is continuous and a higher response indicates a favourable
situation. Thus we have the response information on 42 patients, of which 21 were assigned
to Fluoxetine and the rest to Placebo. For a valid assessment of the data, we prepare separate
normal QQ plots for the response data on each treatment. The plots can be found in Figure
3 below.
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Figure 5: Normal QQ plots for the response on each treatment.

It is easy to observe that the QQ plots strongly support the normality of the underlying
distributions. Assuming normality, we also conducted a test of equality of treatment effects
and found a strong support (p value 1%) in favour of the superiority of Fluoexetine. We
use these data as our first stage, where m = 21 assignments are made to each treatment
and calculate mean responses and standard deviations as (11.14, 5.825) for Fluoxetine and
(5.810, 7.607) for Placebo. Treating these summary measures as the true parameters for
the respective normal response distributions, we carry out a simulation study considering
different allocation designs and calculate the expected allocation proportion (EAP) to the
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better treatment (i.e. Fluoxetine) for varying trial size(n). However, for brevity, we provide
only a plot (see Figure 6) of the the EAP to Fluoxetine for different values of n adopting
different allocation schemes.
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Figure 6: Comparing EAP to Fluoxetine in the redesigned trial considering normal responses
for the allocation designs D1(�), D2(©),D3(4), BB(•) and Neyman(N).

40 50 60 70 80 90 100

0.
50

0.
55

0.
60

0.
65

0.
70

Trial Size(n)

EA
P 

to
 F

lu
ox

et
in

e

Figure 7: Comparing EAP to Fluoxetine in the redesigned trial considering binary responses
for the allocation designs D1(�), D2(©), D3(M), RPW (•) and Neyman(N).

The nature of EAP for varying n indicates the usefulness of the proposed data dependent
allocations (i.e. D1 and D2) over the competitors. However, the EAP for D3 is always higher
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than those corresponding to D1 and D2. This is quite natural, as the first stage data provides
a strong evidence of superiority of Fluoxetine and being a purely two stage design, D3 relies
solely on the first stage for the second stage allocation and hence, on average, assigns more
subjects to Fluoxetine. But D1 and D2 take into account both the first stage and available
second stage data for further allocations in the second stage and hence are a little conservative
in favouring Fluoxetine (i.e. the better treatment). For the response adaptive competitors
(i.e. BB and Neyman) we use the available data of 42 assignments to obtain the starting
estimates and start adaptation from the 43 rd patient onwards. BB allocation maintains an
allocation proportion close to D2 but EAP for the Neyman allocation decreases from 50% as
the better treatment has lower variability.
However, the final response of the actual trial was binary and considering shortened REML
group, we get 39 responses (excluding the misclassified observations) of which 19 were from
Fluoxetine and the remaining 20 from the Placebo arm. The number of successes were 11
and 7, from Fluoxetine and Placebo, respectively and hence we estimate the corresponding
success rates as 11

19 and 7
20 . Considering, these as the first stage data with m = 19, we, as

earlier, carry out a simulation study considering different allocation designs to obtain the
EAP figures to Fluoxetine for different values of n. For the calculation of the mid p value,
we use the pooled proportion of success 11+7

20+19 = 18
39 as an estimate of µ. However, we provide

only a plot (see Figure 7) of the EAP figures to Fluoxetine for different values of n. As
in the continuous responses, the plot shows increasing nature of EAP for varying n. As
earlier, we use the summary measures based on 39 assignments to obtain initial estimates
for the response adaptive competitors (i.e. RPW(1,1) and Neyman) and start adaptation
from the 40 th patient onwards. EAP for RPW(1,1) is observed to be higher than those for
D3 but lower than D1 and D2. However, EAP for the Neyman allocation decreases initially
and then becomes stable at the limiting proportion 51%Ṫhese indicate the advantage of data
dependent allocation over the fixed allocation design and hence make the proposed allocations
as practitioner’s one of the choices.

4. Concluding remarks

Adaptive allocation designs for normal and binary responses, proposed in the current work,
show promising results over the existing competitors. Combinations of equiprobability and
adaptive randomization made the proposed designs beneficial from the viewpoints of both
clinician and statistician. However, the only subjectivity remains in the selection of the first
stage sample size m. A smaller choice outweighs the importance of the first stage whereas
a higher choice reduces ethical allocation. Therefore, an optimum choice is required for m.
Since, the proposed allocation is an attempt to assign most of the subjects to the better
performing treatment, one can search for an optimal m, which maximizes the expected num-
ber of allocation to the better treatment for fixed trial size n. It is easy to observe that for
fixed (µA, µB) with µA > µB, the better treatment is A and the maximum value of ENAA
is m + (n − 2m) = n −m. Hence, m = 0 maximizes the ethical benefit but simultaneously
causes a loss in power. Therefore, as a compromise, we suggest to maximize the expected
number of allocations to the better treatment subject to a fixed precision measure. However,
such a choice is not immediate and we intend to work further on this issue.
Again, the allocation can be easily modified for responses like exponential or Weibull. But,
these distributions are often used as life time distributions in situations where, in addition,
some kind of censoring is present. Naturally, the corresponding development requires a rig-
orous treatment. Although the present development is based on two treatments, presence of
multiple treatments is also possible. However, the corresponding development is not straight-
forward and depends on a number of issues. We intend to explore these aspects in a further
work.
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Appendix

Result A.1. (i) If the response to treatment k is Bernoulli with success probability µk, pm is
the p value as defined in Section 3.2 and I(.) is the indicator function, then as m→∞,

pm → I(µA < µB)

almost surely under any ξ = (µA, µB) with µA 6= µB, and

pm → U

in distribution under any ξ with µA = µB, where U has a uniform distribution over the
interval (0, 1).

Proof : (i) Define two independent statistics T0m ∼ F0m and T1m ∼ F1m, where F0m is the
cumulative distribution function (cdf) of Tm under µA = µB and F1m is the cdf of Tm under
any ξ. Then we can equivalently express pm as

pm =
1

2
P (T0m ≥ T1m|T1m) +

1

2
P (T0m > T1m|T1m)

= 1− 1

2
{F0m(T1m) + F0m(T1m − 0)}.

Now, as m→∞, T0m converges in distribution to a N(0, 2µ(1− µ)) random variable, where
µ is the common unspecified value under the null hypothesis. Since the limiting cdf of T0m
(normal, in this case) is continuous, it follows from Pólya theorem (Billingsley (1995)), that
as m→∞,

F0m(T1m)− Φ(
T1m√

2µ(1− µ)
)→ 0 (A.1)

almost surely, where Φ is the cdf of a standard normal variate.
Since the first stage of the allocation randomizes the subjects with equal probability to dif-
ferent treatment arms, the resulting observations are independent and identically distributed
and hence it follows from the strong law of large numbers (Chapter 6, Billingsley (1995)) that
as m→∞

Skm
m
→ µk

almost surely for k = A,B and consequently, for any ξ,

T1m√
m
→ µA − µB

almost surely. Thus, almost surely, T1m →∞ or T1m → −∞ as µA > µB or µA < µB. Then
it follows from (A.1) that as m → ∞, both F0m(T1m) and F0m(T1m − 0) converge almost
surely to 1 or 0 as µA > µB or µA < µB. Hence, it follows that as m→∞, pm → I(µA < µB)
under µA 6= µB.
However, under µA = µB, T0m and T1m are identically distributed and hence T1m√

2µ(1−µ)
is

asymptotically standard normal. Thus F0m(T1m) and F0m(T1m − 0) both converge in distri-
bution to the same uniform random variable. Since, U and 1−U have the same distribution
for U having a uniform distribution over the interval (0, 1), the proof concludes.

Note: For exponential and normal responses, Bhattacharya and Shome (2015) established
the probability convergence of pm. However, following Result A.1, almost sure convergence
of pm is straightforward.

Result A.2. If (2.4) holds, then under any ξ as n→∞

NAn

n
→ θ + (1− 2θ)φ∗(∆)
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almost surely, for some φ∗(∆).

Proof : Define Gj as the total information contained in the j response and allocation data of
the second stage. Now consider the representation,

NAn

n
=

1

n

2m∑
j=1

δj +
1

n

n∑
j=2m+1

{δj − E(δj |F2m)}+
1

n

n∑
j=2m+1

E(δj |F2m), (A.2)

where F2m is the total response and allocation information of the first stage. From the strong
law of large numbers for the i.i.d sequence of random variables and (4), we get

1

n

2m∑
j=1

δj → θ

almost surely, as m→∞.
Now, to establish the convergence for the second term on the right hand side of (A.2), we
define Mk =

∑k
j=2m+1

1
j {δj − E(δj |F2m)} for k > 2m. Then {E(Mk|F2m), k > 2m} is a zero

mean martingale with respect to {Gj , j ≥ 2m+1} and consequently, it is easy to observe from
the martingale convergence theorem (Hall and Heyde (1980)) and the fact that

|δj − E(δj |F2m)| ≤ 1 for any j,

E(Mk|F2m) converges almost surely to zero. Applying Kronecker’s Lemma we finally get

1

n

n∑
j=2m+1

{δj − E(δj |F2m)} → 0,

almost surely as m→∞. Again

E(δj |F2m) = E{φ(pm, ∆̂m,j)|F2m},

where φ is a bounded function. Hence it follows from the dominated convergence theorem,
strong consistency of ∆̂m,j and Result A.1 that as n → ∞, E{φ(pm, ∆̂m,j)|F2m} converges
almost surely to φ(I(µA < µB),∆) or E{φ(U,∆)} as µA 6= µB or µA = µB, respectively.
Hence the last term in the righthand side of (A.2) converges almost surely to (1− 2θ)φ∗(∆),
where

φ∗(∆) = φ(I(µA < µB),∆) for µA 6= µB,

= E{φ(U,∆)} for µA = µB.

Combining all these, we finally get the desired result.
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