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Over the past three decades, a considerable body of evidence has highlighted T cells

as pivotal culprits in the pathogenesis of psoriasis. This includes the association of

psoriasis with certain MHC (HLA) alleles, oligoclonal expansion of T cells in some

cases, therapeutic response to T cell-directed immunomodulation, the onset of psoriasis

following bone marrow transplantation, or induction of psoriasis-like inflammation by T

cells in experimental animals. There is accumulating clinical and experimental evidence

suggesting that both autoimmune and autoinflammatory mechanisms lie at the core of

the disease. Indeed, some studies suggested antigenic functions of structural proteins,

and complexes of self-DNA with cathelicidin (LL37) or melanocytic ADAMTSL5 have

been proposed more recently as actual auto-antigens in some cases of psoriasis.

These findings are accompanied by various immunoregulatory mechanisms, which we

increasingly understand and which connect innate and adaptive immunity. Specific

adaptive autoimmune responses, together with our current view of psoriasis as a

systemic inflammatory disorder, raise the question of whether psoriasis may have

connections to autoimmune or autoinflammatory disorders elsewhere in the body.

While such associations have been suspected for many years, compelling mechanistic

evidence in support of this notion is still scant. This review sets into context the current

knowledge about innate and adaptive immunological processes in psoriasis and other

autoimmune or autoinflammatory diseases.

Keywords: psoriasis, adaptive immunity, innate immunity, autoimmune disease, skin—immunology

SETTING THE STAGE: PSORIASIS AS AN IMMUNE-MEDIATED
DISORDER

If I was to name diseases that in recent years have increased our understanding of both adaptive and
innate immune mechanisms on the one hand and have contributed decisively to the development
of modern biological therapies on the other, then psoriasis would certainly occupy one of the
top ranks. Psoriasis is currently viewed as a systemic chronic inflammatory disease with an
immunogenetic basis that can be triggered extrinsically or intrinsically (1, 2). Research into its
pathophysiology has led to impressive therapeutic improvements (3, 4). The disease is based on
close interactions between components of the adaptive and the innate branches of the immune
system (3, 5–9) (Figure 1). Since it was shown in the late 1970s that psoriasis can be ameliorated by
cyclosporin A (10), it can no longer be seriously denied that T lymphocytes play a central role in
the pathogenesis of this disease. This view is substantiated by numerous subsequent observations
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FIGURE 1 | Complex fine-tuning of innate and adaptive immune mechanisms determines onset, course, and activity of psoriasis. As detailed in the text, intricate

interactions between components of the innate (exemplified here by dendritic cells and macrophages) with components of the adaptive immune system (exemplified

here by T cells) lie at the core of the pathophysiology of psoriasis. Once established, the relative contribution and fine-tuning of various mediators of adaptive and

innate immunity determine the clinical manifestation toward chronic stable vs. highly inflammatory and/or pustular psoriasis.

over the past four decades: psoriasis can be precipitated
by bone marrow transplantation (11) and, similar to other
autoinflammatory diseases, the disease is frequently associated
with certain HLA expression patterns (7, 12–14). Drugs that
specifically inhibit the function of T lymphocytes (such as
CD2 blockade in the early days of biologics) can improve
psoriasis (15). A therapeutic effect can also be achieved by
interleukin (IL)-4, which pushes the cytokine milieu toward a T-
helper (Th) cell 2-dominated immune response (16), probably
through attenuation of Th17 function following diminished IL-
23 production in antigen-presenting cells (17) and through
induction of the transcription factor GATA3 (18, 19). IL-10
can also ameliorate psoriatic symptoms by modulating T cell
functions (20). In addition, psoriasis-like skin inflammation in
animal models can be initiated by certain CD4+ T cells (21–24),
and T cells can induce psoriatic lesions in human skin xenografts
(25, 26). Finally, the more recent discoveries that complexes
of the antimicrobial peptide LL37 (a 37 amino acid C-terminal
cleavage product of the antimicrobial peptide, cathelicidin) with
own DNA or the melanocytic antigen ADAMTSL5 may function
as autoantigens (27, 28), support the central role of T cells in the
pathogenesis of psoriasis (29, 30).

AUTOIMMUNE PROCESSES IN PSORIASIS

The Plot Thickens: Actual Auto-Antigens in
Psoriasis
Pathogenic T cells in psoriatic skin lesions facilitate
hyperproliferation of keratinocytes, influx of neutrophilic
granulocytes, as well as production of other inflammatory
cytokines, chemokines and antimicrobial peptides. They feature

a Th17 signature, i.e., they express IL-17A, IL-22, and IFN-γ
(3, 31, 32) (Figure 2). Dendritic cells maintain activation and
differentiation of lesional Th17 cells primarily through secretion
of IL-23 [reviewed in (8)].

In general, both HLA restriction and peptide specificity
of a given T cell are determined by its T cell receptor
(TCR) repertoire (33). Activation and clonal expansion of
T cells occur upon antigenic stimulation. In the absence
of foreign antigens, clonal T cell expansion is highly
suggestive for autoimmunity in inflammatory diseases
(34). Indeed, oligoclonal T cell expansion has been
identified in psoriatic lesions in early well-designed studies
(35–40) as well as in more recent investigations (41). It
has been interpreted as an indicator for antigen-specific
immune responses.

In psoriasis, oligoclonality of cutaneous T-cell populations is
usually confined to lesional skin. This suggests that psoriasis is
driven by locally presented antigens (35, 42–46). Likewise, the
clonal TCRs arguably mark T cells which mediate the disease
process. Several landmark publications during the past years
lent support to this notion through identification of putative
autoantigens in psoriasis.

Early concepts of autoimmune processes in psoriasis
stemmed from the recognition of sequence homologies between
keratinocyte structural proteins and streptococcal antigens (S.
pyogenes in particular) (47–51). Mechanistic proof, however, is
still lacking.

It was previously known that complexes of LL37 and self-DNA
can activate dermal plasmacytoid dendritic cells (pDC) through
toll-like receptor (TLR) signaling (52–54). These stimulate pDC
then facilitate the psoriatic inflammatory cascade (52, 53, 55),
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FIGURE 2 | Initiation of psoriasis by antigen-dependent and antigen-independent immune mechanisms. Complexes of self-DNA with fragments of the antimicrobial

peptide, cathelicidin, can stimulate plasmacytoid dendritic cells through TLR9. They can also be presented by HLA-C*06:02 molecules and specifically activate T cells

through their TCR. Likewise, the melanocyte-derived ADAMTSL5 can activate pathogenic CD8+ T cells after presentation by HLA-C*06:02.

a mechanism that is alluded to in more detail below. The
activation via innate immune mechanisms was extended later by
the finding that complexes of self-DNA and LL37 can also induce
adaptive antigen-specific immune responses. Indeed, LL37 can
trigger profound TCR and MHC (HLA-C∗06:02)-dependent T-
cell responses (28). It remains to be confirmed, however, that the
LL37-related candidate peptides can be derived from the parent
protein by antigen processing within the antigen presenting cell
and then be presented by HLA-class I-molecules.

A more recent strategy to identify potential targets of
pathogenic T-cells in psoriasis was based on the generation
of T-cell hybridomas expressing the paired Vα3S1/Vβ13S1
TCR of clonal CD8+ psoriatic T cells of an HLA-C∗06:02-
expressing psoriasis patient (27). This elegant approach identified
melanocytes as target cells of the psoriatic immune response (27).
A peptide derived from ADAMTS-like protein 5 (ADAMTSL5)
by proteasomal cleavage and post-cleavage trimming induced
the specific immune response. The auto-antigenic function of
melanocytic ADAMTSL5 was then confirmed by mutation and
knock-down experiments. Moreover, peripheral lymphocytes of
the majority of psoriasis patients but not individuals without
psoriasis responded to ADAMTSL5 with production of IL-17
or IFNγ (27) (Figure 2). In contrast to LL37, which has been
shown to activate both CD8+ cytotoxic T cells and CD4+

T helper cells, ADAMTSL5 appears to activate preferentially
CD8+ T cells. Of note, both antigens are recognized by T cells
when being presented by HLA-C∗06:02, i.e., the most prominent
psoriasis risk gene in the genome [located on PSORS1 (psoriasis
susceptibility locus 1) on chromosome 6p21.3].

While the role of cellular adaptive immunity is becoming
increasingly plausible, only recently autoantibodies, i.e., elements
of humoral adaptive immunity, have been described in
patients with psoriasis and psoriatic arthritis. Interestingly,
these IgG are directed against (carbamylated/citrullinated) LL37
or ADAMTSL5 (56, 57). Since the serum concentrations of
these antibodies were associated with the severity of psoriasis
and since patients with psoriatic arthritis had higher serum
levels, it is conceivable that a causal pathogenetic relationship
and a contribution to systemic inflammation exist (56). It is
also possible that the respective autoantibodies exert protective
functions through scavenging autoantigens. However, their roles
need to be clarified in future studies.

The Other Side: Antigen Presentation by
HLA Molecules in Psoriasis
While most, if not all, autoimmune diseases are linked with
certain HLA alleles (58–60), HLA-C∗06:02 is the predominant
psoriasis risk gene (61–63). HLA class I molecules present short
peptide antigens (8–10 amino acids) to αβ TCRs of CD8+ T
cells. Such antigenic peptides are usually derived within the
antigen presenting cell from (intracellular) parent proteins by
proteasomal cleavage and loaded onto HLA-class I molecules.
The HLA/peptide complex is then transported to the cell
membrane where it can be recognized by CD8+ T cells (64,
65). Thus, HLA-class I-restricted immune responses are usually
directed against target cells which produce the antigenic peptide.

HLA-C∗06:02-presented non-apeptides (9 amino acids long)
possess anchor amino acids at residues 2 (arginine) and 9
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(leucine, valine, and less frequently methionine and isoleucine),
along with a putative anchor at residue 7 (arginine). HLA-
C∗06:02 features very negatively charged pockets and thus binds
to distinct positively charged peptides. Given that between
1,000 and 3,000 different self-peptides have been detected on
HLA-C∗06:02 under experimental conditions, multiple cellular
proteins should be, in principle, presented by this HLA molecule
and recognizable by CD8+ T cells (66, 67).

HLA-C∗06:02, and other psoriasis-related HLA types such
as HLA-C∗07:01, HLA-C∗07:02, and HLA-B∗27 utilize identical
anchor residues and present partially overlapping peptide
residues (66, 67). Moreover, a negatively charged binding
pocket is shared with another risk allele, HLA-C∗12:03 (68,
69), resulting in similar functional domains and peptide-
binding characteristics (67, 70). Thus, several HLA-class I types
implicated in psoriasis appear to share similar peptide-binding
properties. It is, therefore, conceivable that they can substitute for
each other in conferring psoriasis risk. However,HLA-C∗06:02 is
the prototype allele within this spectrum and is associated with
the highest risk for psoriasis.

Supporting Acts: Indispensable Players in
the Ensemble of Psoriasis Immunology
Autoantigen presentation alone does not suffice to induce the
psoriatic cascade in genetically predisposed individuals. Rather,
costimulatory effects of various gene products orchestrate the
activation of the actual autoimmune response. Such risk gene
variants modulate inflammatory signaling pathways (e.g., the
IL-23 pathway), peptide epitope processing and/or Th/c17
differentiation (a selection of important factors is summarized
in Table 1).

These genetic variations create costimulatory signals which
modulate innate and adaptive immune mechanisms and shape
the proinflammatory environment. In sum and in conjunction
with the appropriate HLA molecules and autoantigens, they may
eventually exceed the thresholds for activation and maintenance
of pathogenic autoimmune and autoinflammatory responses in
psoriasis (29, 71). Likewise, regulatory mechanisms involving
programmed death (PD)-1 signals have emerged recently as
modulators of chronic inflammation in psoriasis (72). However,
the complex interactions of various players are by no means fully
understood. Therefore, they are listed here only as a whole.

The autoantigens described so far cannot fully explain the
genesis of psoriasis. To give just one example of the latter notion:
Psoriatic lesions can also occur in vitiligo foci that do not contain
melanocytes (73, 74). Alterations of resident cell types such as
vascular endothelial cells or the cutaneous nervous system are
also involved in the disease process (75–77). Further research is
certainly needed here.

SHADES OF GRAY: CROSSTALK BETWEEN
ADAPTIVE AND INNATE IMMUNITY IN
PSORIASIS

In addition to the antigen-specific facilitation of inflammation
in psoriasis, there are several strong connections to components

of the innate immune system. The crosstalk between the innate
and adaptive branches of the immune system in psoriasis is
complex and can only be highlighted by a few selected examples.
Its fine-tuning arguably determines the actual clinical correlate
within the spectrum of the disease. Indeed, there is accumulating
circumstantial evidence that in patients with stable and mild
disease, mechanisms of adaptive immunity are more likely to
be in the foreground, while innate mechanisms seem to be
more important in patients with active severe disease, systemic
involvement and comorbid conditions (78) (Figure 1). The
impact on systemic comorbid diseases has been interpreted, at
least in part, as a systemic “spillover” of innate inflammatory
processes in severe psoriasis (78). Of course, such factors are
not specific for psoriasis, but appear to account for a general
inflammatory state in patients with severe psoriasis.

Patients with severe psoriasis have increased levels of
inflammatory cytokines, CRP, fibrinogen, α2 macroglobulin
or PAI-1 (plasminogen activator inhibitor-1) in the blood
(79–81), they show transcriptomic, proteomic and metabolomic
abnormalities (82) and there are connections with chronic stress
(83) and biophysical properties of the skin (84).

The serum levels of inflammatory cytokines have been
proposed as parameters for disease severity (85). Such general
inflammatory markers are accompanied by increased numbers
of Th1, Th17, and Th22 cells in patients with severe psoriasis
(86, 87), which provides a direct link with autoimmune
(adaptive) processes. Moreover, there is an increasing number
of modulating factors, such as autoimmune reactivity to
ribonucleoprotein A1 (HNRNPA1) (88), which impact on the
course and severity of psoriasis.

One of the perhaps most vivid recent examples of how
individual mediators influence the spectrum of psoriasis by
shifting innate or adaptive immune processes comes from
research on the interplay between IL-17- and IL-36-driven
inflammation (89). The three IL-36 isoforms (IL-36α, β,
and γ) belong to the IL-1 family and are upregulated in
psoriatic skin (90, 91). They bind to the IL-36 receptor (IL-
36R), thereby inducing transcription of several inflammatory
mediators through NF-κβ activation. IL-36Ra (IL-1F9), an anti-
inflammatory natural IL36R antagonist, is encoded by the
IL36RN gene and is abundantly present in the skin of patients
with psoriasis vulgaris, which may constitute part of the “checks
and balances” that control the psoriatic inflammation (90, 92).
Function-abrogating mutations in the IL36RN gene may result
in unrestrained inflammatory effects of IL-36. Absence of IL-
36Ra then leads to excessive neutrophil accumulation as observed
in some cases of familial generalized pustular psoriasis (92–94).
Palmoplantar pustular psoriasis, however, seems to be related to
CARD14 variants rather than IL36RN mutations (95, 96).

While most cases of pustular psoriasis occur without such
mutations (97), IL-36-related processes appear to contribute
decisively to the actual clinical manifestation of specific psoriatic
phenotypes: It has recently been shown elegantly that the skin
of patients with psoriasis vulgaris differs significantly from
that of patients with pustular psoriasis—in a sense, opposite ends
of the spectrum of psoriasis: while in both forms numerous
genes are expressed abnormally, these differentially expressed
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TABLE 1 | Genetic factors implicated in psoriasis.

Pathogenic function Psoriasis-associated gene locus

IL-23/IL-17A signaling IL23R, interleukin-23 receptor

IL12B, interleukin-12 subunit p40, also part of IL-23

IL12RB, interleukin-12 receptor subunit beta 1, also termed IL-12Rβ1

IL23A, interleukin-23 subunit alpha, p19

IL23R, interleukin-23 receptor, a Janus kinase-2 associated type I cytokine receptor that activates STAT3 upon ligand binding

TYK2, tyrosine-protein kinase 2, a Janus kinase family member, facilitates type I and II cytokine receptor and type I and III interferon

signaling pathways, involved in innate and adaptive immune processes

STAT3, signal transducer and activator of transcription 3, a central transcription factor in inflammatory processes

STAT5A/B, signal transducer and activator of transcription 5A/B

SOCS1, suppressor of cytokine signaling 1, a member of the STAT-induced STAT inhibitor family, negative regulator of cytokine

signaling

ETS1, a member of the E26 transformation-specific transcription factors, a negative regulator of Th17 cells

TRAF3IP2, tumor necrosis factor receptor-associated factor 3-interacting protein-2, central role in response to inflammatory signals

KLF4, Krüppel-like factor 4, influences NF-κB-mediated inflammatory pathways

IF3, eukaryotic translation initiation factor 3

Effector T-cell function and

differentiation

ETS1, E26 transformation-specific transcription factor 1, a negative regulator of Th17 cells

RUNX3, runt-related transcription factor 3, a runt domain-containing transcription factor involved in regulation of many cellular

processes

TNFRSF9, tumor necrosis factor receptor superfamily member 9, CD137, costimulator of T cells

MBD2, methyl-CpG-binding domain protein 2, binds to methylated DNA and regulates transcription from methylated gene promoters

IRF4, interferon regulatory factor 4

Type I interferon and cytokine

signaling

ELMO1, engulfment and cell motility protein 1

TYK2, non-receptor tyrosine-protein kinase, a Janus kinase family member (see above)

SOCS1, suppressor of cytokine signaling 1, a member of the STAT-induced STAT inhibitor family, negative regulator of cytokine

signaling

IFIH1/MDA5, Interferon-induced helicase C domain-containing protein 1/melanoma differentiation-associated protein 5, a CARD

(caspase activation and recruitment domain) protein involved in IL-1 and IL-18 processing and in regulation of inflammation

RNF114, ring finger protein 114, a ubiquitin ligase

IRF4, interferon regulatory factor 4

RIG1/DDX58, retinoic acid inducible gene I encoded by the DDX58 (DExD/H-Box Helicase 58) gene; contains a RNA helicase motif

and a caspase recruitment domain (CARD), involved in regulation of immune responses

IFNLR1/IL28RA, interferon lambda receptor 1, forms complex with IL10RB and interacts with IL-28A, IL-28B, and IL-29, involved in

immune regulation

IFNGR2, interferon gamma receptor 2, non-ligand-binding beta chain of the IFNγ chain

Regulation of NF-κB-associated

inflammatory signaling pathways

TNFAIP3, TNFα induced protein 3, a ubiqitin-editing enzyme that inhibits NF-κB activation and TNF-mediated apoptosis; involved in

the cytokine-mediated inflammatory responses

TNIP1, TNFAIP3 interacting protein 1, a regulator of NF-κB activation

TYK2, non-receptor tyrosine-protein kinase, a Janus kinase family member (see above)

REL, reticuloendotheliosis oncogene, a NF-κB subunit (c-Rel) involved in apoptosis, inflammation and immune responses, SNPs are

also associated with ulcerative colitis and rheumatoid arthritis

NFkBIA, NF-κB inhibitor α, interacts with NF-κB/c-Rel involved in inflammatory responses.

CARD14, caspase recruitment domain family member 14, a scaffold protein involved in cell adhesion, signal transduction and cell

polarity, involved in NF-κB activation.

CARM1, coactivator associated arginine methyltransferase 1, catalyzes methylation of histones and other chromatin-associated

proteins, involved in regulation of gene expression

UBE2L3, ubiquitin conjugating enzyme E2 L3, an E2 ubiquitin-conjugating enzyme, participates in ubiquitination of the p105 NF-κB

precursor

FBXL19, F-box and leucine rich repeat protein 19, an E3 ubiquitin ligase, binds to interleukin 1 receptor-like 1 and regulates its

ubiquitination, associated with pulmonary inflammation and psoriasis

Antigen processing (N-terminal

trimming)

ERAP1, endoplasmic reticulum aminopeptidase 1, involved in trimming of HLA class I-binding precursors enabling them to be

presented on MHC class I molecules

Most genetic associations have direct connections with immune functions implicated in the pathophysiology of psoriasis.
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genes overlap only to a relatively small extent. In psoriasis
vulgaris, genes involved in adaptive (T-cell-associated) immune
processes predominate, whereas in pustular psoriasis processes
of innate immunity (mainly neutrophil-associated) they are
dysregulated. Interestingly, IL-36 seems to play an important
role for the accumulation of neutrophilic granulocytes and a
pustular phenotype of psoriasis (89). The balance between IL-
36 and IL-17 seems to contribute—at least partially—to clinical
symptoms of psoriasis vulgaris vs. psoriasis pustulosa. If this
interpretation of the data is correct, then this would constitute
a mechanism that regulates the fine-tuning between innate and
adaptive immune processes.

THE IL-23/IL-17 PATHWAY CONNECTS
INNATE AND ADAPTIVE IMMUNITY IN
PSORIASIS

The notion of psoriasis featuring elements of both antigen-
specific autoimmunity and non-specific autoinflammation needs
to be considered a bit more closely, in particular downstream
of innate and/or adaptive activation processes. As of today,
interfering with IL-17A or IL-23 are the most efficient treatment
modalities against psoriasis (98). Indeed, the IL-23/IL-17 axis
seems to be particularly well-suited to exemplify the intricate
crosstalk between adaptive and innate immunity in psoriasis.

Healthy human skin contains only a few IL-17-producing
T cells (99), a population of CD4+ T cells distinct from the
“classical” Th1 and Th2 cells. They were eponymously named
for their production of IL-17 (100). In psoriasis (31, 101, 102),
palmoplantar pustulosis (103) and other inflammatory disorders
(104, 105), Th17 lymphocytes are vastly expanded and are
thought to contribute decisively to the pathogenesis of these
conditions (Figure 3). The resulting imbalance between Th17
and regulatory T cells (Treg) favors inflammation (106). The IL-
17 production of T lymphocytes is further stimulated by activated
keratinocytes, thus creating a positive feedback loop (107). Th17
cells are controlled by regulatory T cells through IL-10 (108).
In psoriatic skin, IL-17A is considered the most relevant of the
six known isoforms (102). IL-17A is not only secreted by CD4+
Th17 cells, but also by CD8+ T cells (109) and certain cells of the
innate immune system including neutrophilic granulocytes (110–
112), thus further highlighting the tight connection of innate
and adaptive immunity in psoriasis. The presentation of IL-17
by neutrophil extracellular traps (NETs), which are generated
upon activation of neutrophils in a clearly defined manner (113)
and are prominently present in both pustular and plaque-type
psoriasis (114), may also play a role (115).

In this context it should be mentioned that so-called tissue
resident memory cells (Trm cells) in psoriatic skin remain in the
long term even after resolution of the lesions, which contribute
as mediators of the local adaptive immune response to renewed
exacerbations. Although the role of these cells is not yet fully
understood, there is growing evidence of their pathogenic role
in psoriasis and other chronic inflammatory diseases (116–
118). Trm cells in psoriatic lesions are CD8+ but lack CD49a

FIGURE 3 | Differentiation of pathogenic T cells in psoriasis is embedded in a

complex regulatory network. Naïve T cells can differentiate into several

directions; this is mainly determined by the cytokines and transcription factors

depicted here. In addition, various regulatory feedback mechanisms exist,

some of which are schematically highlighted here with particular reference to

Th17 cell differentiation and function.

(α1 integrin) expression; they predominantly generate IL-17
responses that promote local inflammation (119).

In addition to Th17 cells, T cells which produce both IL-
17 and IFNγ (termed Th17/Th1-T cells) and IL-22-producing
T cells can also be detected in psoriatic skin (31). Naive T cells
express several cytokine receptors including the IL-23 receptor.
DC-derived TGFß1, IL-1ß, IL-6, and IL-23 facilitate priming and
proliferation of Th17 cells (120–122), while IL-12 assumes these
functions for Th1 cells, and IL-6 and TNFα contribute to the
programming of Th22 cells.

The balance of Th17 cells and Th1 cells appears to be
critical for the pathogenesis of psoriasis (123) and other related
conditions (124). There are several exogenous factors such as
ultraviolet light or vitamin D3 (125, 126), or other cytokines like
IL-9 (127) that can modulate Th17-dependent inflammation. Of
note, IL-17A can also be produced independent of IL-23, e.g., by
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γδ T lymphocytes or invariant natural killer (iNKT) cells (128–
130). However, it is not clear yet whether this alternative pathway
impacts on the accrual and course of inflammatory disorders or
potential undesired effects of either IL-23 or IL-17 inhibition.

In any case, the IL-23/IL-17 axis in psoriasis clearly illuminates
the close interaction of the innate immune system (represented
by IL-23-producing myeloid cells) with cells of the adaptive
immune system (in this case Th17- and IL17-expressing CD8+

T-cells). Psoriasis could again serve as a “model disease” to clarify
such relationships.

CONTRIBUTION OF RESIDENT SKIN
CELLS TO IMMUNOLOGICAL PROCESSES
IN PSORIASIS

Multiple genetic and environmental factors influence the
immunopathology of psoriasis (131). The mechanisms leading
to the first occurrence of psoriasis in predisposed individuals
are only partly known. Infections with streptococci, medications
such as lithium, antimalarials, or ß-blockers, or physical or

FIGURE 4 | Paradoxical psoriasis triggered by TNF inhibitors in predisposed

individuals. Several cytokines contribute to the pathogenesis of psoriatic skin

lesions, with TNFα and IL-17A playing prominent roles. However, TNFα also

exerts an inhibitory effect on plasmacytoid dendritic cells. Upon therapeutic

inhibition of TNFα, this inhibitory effect is abrogated and the resulting shift

toward increased production of type I interferons fuels the secretion of IL-17. It

is conceivable that additional mechanisms contribute to the shift of cytokines

ultimately resulting in “paradoxical” psoriatic lesions.

chemical stress may trigger the disease. Minimal trauma can
induce rapid immigration and activation of immune cells
including T-cells and neutrophils (132), the so-called Köbner
phenomenon (133, 134). Feedback loops between adaptive
immune cells (T cells), innate immune cells (neutrophilic
granulocytes, macrophages, dendritic cells), and resident skin
cells (keratinocytes, endothelial cells) result in an amplification
and chronification of the inflammatory response. Aspects of
systemic inflammation in patients with severe psoriasis are
thought to contribute to comorbid diseases (135).

Hyperproliferative keratinocytes in psoriatic plaques produce
large amounts of antimicrobial peptides and proteins (AMP).
These positively charged peptides, which have been termed
alarmins, have strong proinflammatory properties. Most studies
have addressed cathelicidin and its fragment, LL37, which is
highly expressed psoriatic skin (136, 137). The positively charged
LL37 can associate with negatively charged nucleic acids (DNA
and RNA), thus forming immunostimulatory complexes. The
free DNA required for such complexes probably comes from
neutrophils (which form NETs) and damaged resident skin
cells (e.g., traumatized keratinocytes). Plasmacytoid DC (pDC)
and myeloid dendritic cells (DC) take up these complexes.
Subsequently, RNA motifs stimulate toll-like receptors (TLR) 7
and 8, and DNA triggers TLR9 signaling (52, 138). Cytokines
such as TNF, IL-23, and IL-12 are produced by TLR7/8-
stimulated myeloid DC, while pDC make type I-interferons
(IFNα), all of which fuel the psoriatic inflammation (131). A
prominent role in psoriasis and other autoimmune diseases has
been attributed to the so-called 6-sulfo LacNAc (slan) DC (139).

Several other skin-derived alarmins such as S100 proteins
are inflammatory AMPs also implicated in the pathogenesis of
psoriasis. Indeed, IL-17A induces the production of S100A7
(psoriasin) and S100A15 (koebnerisin) by keratinocytes (140,
141). Likewise, myeloid cells and keratinocytes produce the
calgranulins, S100A8 and S100A9 [also termed myeloid-related
protein (Mrp) 8 and Mrp14], both of which induce T-cell
mediated autoimmune reactions and inflammatory changes in
keratinocytes (142, 143). Similar to LL37, human ß-defensin
(HBD) 2 and HBD4 bind DNA, trigger TLR9 and stimulate pDC
(144). Innate immune sensing is also facilitated by IL-26 bound
to self-DNA (145).

Activated DC in turn can program the differentiation of
naive T into pathogenic T cells [reviewed in (8)]. Neutrophilic
granulocytes, too, release AMP, inflammatory cytokines,
proteases, free oxygen radicals, and NETs, all of which have been
implicated in the inflammatory cascade in psoriasis (8, 114).

NOT ALONE: RELATIONS AND
SIMILARITIES OF PSORIASIS WITH
OTHER AUTOIMMUNE AND
AUTOINFLAMMATORY DISORDERS

The highlights outlined so far show that both adaptive and innate
immune processes contribute to psoriasis. Their balance and fine-
tuning seem to determine the development of certain clinical
forms of the disease, but also organ-specific manifestations. On
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the one hand, the outlined long-term systemic inflammatory
processes probably contribute to the pathogenesis of important
metabolic, cardiovascular, and mental concomitant diseases. In
these areas, the evidence of a causal relationship is becoming
increasingly clear and numerous publications prove this. A more
detailed overview can be found elsewhere in this thematic focus.
On the other hand, the contoured adaptive and innate immune
mechanisms are not specific for psoriasis. Rather, many of them
have been found—in varying degrees and weightings—in a whole
range of other autoimmune and autoinflammatory diseases.
In any case, although this interplay of different components
of the immune system is certainly not yet fully understood,
parallels with other chronic inflammatory and autoimmune
diseases emerge that underpin our current view of psoriasis as
a systemic disease.

Indeed, the prevalence of several autoimmune and/or
autoinflammatory diseases including rheumatoid arthritis, celiac
disease, Crohn’s disease, multiple sclerosis, systemic lupus
erythematosus, vitiligo, Sjögren’s syndrome, alopecia areata, or
autoimmune thyroiditis appears to be increased in patients with
psoriasis compared to that in healthy controls (146, 147). Several
other and more uncommon associations have also been reported
(148). Such associations have been attributed to certain genetic
and immunological similarities and “overlaps” (146, 149). Three
such disease complexes associated with psoriasis, i.e., rheumatoid
arthritis, Crohn’s disease and systemic lupus erythematosus, will
be briefly discussed as examples.

Psoriasis susceptibility 1 candidate gene 1 (PSORS1C1), a gene
thought to be involved in IL-17 and IL-1β regulation, is increased
in immune cells from patients with rheumatoid arthritis (150).
Moreover, aberrant expression of runt-related transcription
factor 1 (RUNX1) has been implicated in defective regulation
of sodium-hydrogen antiporter 3 regulator 1 (SLC9A3R1) and
N-acetyltransferase 9 (NAT9) in both psoriasis and rheumatoid
arthritis (151–153). Polymorphisms of the IL-23R gene have
also been implicated in both diseases, which further underscores
the general relevance of the IL-23/IL-17 axis (154). TNFα-
induced protein 3 (TNFAIP3), which negatively regulates NF-κB
signaling, is another gene thought to be involved in rheumatoid
arthritis and psoriasis alike, but also in Crohn’s disease, celiac
disease, and systemic lupus erythematosus (155, 156).

Similar functional imbalances between Th17 and regulatory
T cells (Tregs) as well as similar central cytokines including
TNFα, IL-23, and IL-17A, but also IL-1β, IL-6, IL-17F, and IL-21
contribute to both diseases (131, 157–159). Such striking parallels
result in the response of both disorders to the same therapies.

Similar to rheumatoid arthritis, Crohn’s disease is significantly
more prevalent in patients with psoriasis compared to healthy
controls and vice versa (160–164). Moreover, considerable
genetic overlap exists between both diseases as exemplified by
sevenmutual susceptibility loci (165). Genes involved in the same
way include some relevant for the IL-23/I-17 axis such as IL23R,
IL12B, and TYK2 (166–169).

One of the first immunological parallels found between
psoriasis and Crohn’s disease was the central pathogenic role
of TNFα (170–172). Hence, TNFα inhibitors ameliorate both

disorders (172–175). Paradoxical induction of psoriasis in
patients treated with TNFα inhibitors has been attributed to
shifts within the balance of TNFα and type I interferons
(IFNα) with impact on plasmacytoid dendritic cells (176–
181) (Figure 4). The pathophysiology of such paradoxical
reactions in other immunomodulating settings is less clear (182,
183). The composition of the inflammatory infiltrate (T cells,
macrophages, dendritic cells and neutrophilic granulocytes) as
well as inflammatory mediators (IFNγ, IL-12, IL-6, IL-17) are
conspicuously similar in psoriasis and Crohn’s disease (131, 184).
A dysregulated balance between Th17 cells and CD4+CD25high
Foxp3+ Tregs is thought to lie at the core of both diseases
(101, 157, 185–187). In addition, there may even be IL-17
producing Tregs in lesions of both Crohn’s disease and psoriasis
(188, 189), suggesting differentiation of Tregs toward a pro-
inflammatory phenotype. However, a putative protective role of
IL-17 in Crohn’s disease (190) may explain, at least in part, the
worsening of gut inflammation in some cases upon inhibition of
IL-17A (191).

Increased expression of IL-6 has been demonstrated
in psoriatic plaques and inflamed intestinal mucosa alike
(192, 193). IL-6 signaling induces STAT3 phosphorylation,
which leads to relative resistance of effector T cells toward
Tregs (194, 195).

The association of psoriasis and systemic lupus erythematosus
is uncommon and controversially discussed (196, 197).
However, dysfunctional interaction of RUNX1 with its binding
site due to nucleotide polymorphisms links psoriasis not
only with rheumatoid arthritis but also with systemic lupus
erythematosus (153, 198, 199). RUNX1 binding on chromosome
2 is defective in some patients with SLE, while RUNX1
binding on chromosome 17 seems to be altered in some
psoriasis patients.

TNF receptor-associated factor 3 Interacting Protein 2
(TRAF3IP2) has been described as a genetic susceptibility locus
for psoriasis and appears to facilitate IL-17 signaling in both
psoriasis and systemic lupus erythematosus (200–205). On
the cellular level, psoriasis and systemic lupus erythematosus
share impaired Treg functions (157, 192, 206, 207), thus
suggesting that similar genetic and immune alterations govern
pathological immune reactions in both psoriasis and systemic
lupus erythematosus.

In summary, psoriasis shows elements of both autoimmune
and autoinflammatory mechanisms, whose fine-tuning
determines the actual clinical symptoms within the
broad spectrum of the disease. Given that psoriasis is
a systemic disease that shares conspicuous genetic and
immunological similarities with other autoimmune and
autoinflammatory disorders, it may serve as a model
disorder for research into general mechanisms of such complex
immunological regulations.
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