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Research on active control for the delay of laminar-turbuleing on the flow, [4]. Under low levels of free-stream turbu-
transition in boundary layers has made a significant pregrdence and sufficiently far downstream, the transition pssce

in the last two decades, but the employed strategies hasénitiated by the linear growth of small perturbationdedl
been many and dispersed. Using one framework, we revidwllmien-Schlichting (TS) waves [3]. Eventually, thesepe
model-based techniques, such as linear-quadratic regsiatturbations reach finite amplitudes and breakdown to smaller
and model-free adaptive methods, such as least-mean sqsagdes via nonlinear mechanisms [5]. However, in presence
filters. The former are supported by a elegant and powerfud stronger free-stream disturbances, the exponentialtgro
theoretical basis, whereas the latter may provide a more praf TS waves are bypassed and transition may be directly
tical approach in the presence of complex disturbance entriggered by the algebraic growth of stream-wise elongated
ronments, that are difficult to model. We compare the metktructures, called streaks [4]. One may delay transition by
ods with a particular focus on efficiency, practicabilitydan damping the growth of TS waves and/or streaks, and thus
robustness to uncertainties. Each step is exemplified on fha&stpone their nonlinear breakdown. This strategy enables
one-dimensional linearized Kuramoto-Sivashinsky equmati the use of linear theory for control design.

that shows many similarities with the initial linear stagés Fluid dynamists noticed in the early 90’s, that many of
the transition process of the flow over a flat plate. Also, the emerging concepts in hydrodynamic stability theory al-
source code for the examples are provided. ready existed in linear systems theory [6, 7]. For example,

the analysis of a system forced by harmonic excitations is
referred to as signalling problem by fluid dynamicists, whil
1 Introduction control theorists analyze the problem by constructing aeBod

The key motivation in research on drag reduction is t§i29ram, [8]; similarly, a large transient growth of a fluid
develop new technology that will result in the design of yedystem corresponds to large norm of a transfer function and

hicles with a significantly lower fuel consumption. The fieldnalrix with stable eigenvalues can be called either glgball
is broad, ranging from passive methods, such as coatifigio!e or Hurtwitz, [5,9].

surfaces with materials that are super-hydrophobic or non- However, the systems theoretical approach had taken
smooth [1], to active methods, such as applying wall suctiéiie step further, by “closing the loop”, i.e providing rigas

or using measurement-based closed-loop control [2]. THignditions and tools to modify the linear system at hand. It
work positions itself in the field of active control methodgvas realized by fluid dynamists that the extension of hydro-
for skin-friction drag. In general, the mean skin frictioheo dynamic stability theory to include tools and concepts from
turbulent boundary layer on a flat plate is an order of magrlinear control theory was natural [10,11,12]. A long series
tude larger compared to a laminar boundary layer. One str@f-numerical investigations addressing the various aspct
egy to reduce skin-friction drag is thus to push the laminaglosed-loop control of transitional [13, 14, 15] and tusmul
turbulent transition on a flat plate downstream [3]. Differflows [16,17, 18] followed in the wake of these initial contri
ent transition scenarios may occur in a boundary layer flowgytions.

depending on the intensity of the external disturbances act At the same time, research on active control for transi-



tion delay has been advanced from a more practical approach
using system identification methods [19] and active wave-
cancellation techniques [20]. Most work (but not all) is ex-
perimental, which due to feasibility constraints, has taead
an engineering and occasionadlgt hocmethods. One of the
first examples of this approach is the control of TS waves in
the experiments by [21] using a wave-cancellation control;
the propagating waves are cancelled by generating perturbig. 1. Scheme of a Blasius boundary-layer flow developing over
tions with opposite phase_ This work was followed by nune flat plate. A disturbance modelled by d grows exponentially while
ber of successful experimental investigations [22, 2325}1, convected downstream. The actuator U is used to attenuate the dis-
of transition deiay using more sophisticated system ifientiturbance before it triggers transition to turbulence; the actuation sig-
cation techniques. nal is computed based on the measurements provided by the sensor
Whereas both numerical and experimental approacHésThe output Z located downstream of the actuator, estimates the
have pushed forward flow control research, they have inegiciency of the control action.
large extent evolved disconnected from each other; the sys-
tems control theoretical approach has provided very impor-

tant insights into physical mechanisms and constraints th |ong as the amplitude is below a critical value (usually a
has to be addressed in order to design active control thagds, percent olU.,) [5]. Above the critical value, nonlinear
optimal and robust, but most work has stayed at a proQftects have to be taken into account; they eventually tésul
of-concept level and have not yet been fully implementedy ek down of the disturbance to smaller scales and finally
in practical applications. Although, there are exceptiong (ransition from a laminar to a turbulent flow [5]. However,

[26, 27], the majority of experimgnt.al active control has eshe key point — that enables the use of linear theory for trans
sentially suffered from the opposite; most controllers@®e jon control — is that the disturbance may grow several arder
veloped directly in the experimental setting on a trial-angys magnitude before it breaks down.

error basis, with many tuning parameters, that have to be Using a spatially localized forcing (denoted hyin

chos_liehri for e.ach pamm:lar set—l:_p. del-based and dFlig. 1) downstream of the disturbance, one may modify the
IS review aims at presenting model-based and moaes  yitions in order to reduce the amplitude of the wave-

free te<_:hn|qﬂuets lthtat ;re z:;pprolpnate \fﬁr the control (()jfr acket and thus delay the transition to turbulence. Phijsica
waves In a fiat-plale boundary layer. Ye compare and lifj;q forcing is provided by devices calledtuators An ex-

t_he tW.O approgches using a Iln_ear mod(_al,. that similar to tI&Gr)nple of an actuator is a loudspeaker that generates short
linearized Navier-Stokes equations, exhibits a largesieant

e X . i ” Ises through a small orifice in the plate. The volume of the
amplification behaviour and time delays. This presentaﬂonpu ug meel P vou

idablv infl d by th thors back d and loudspeaker and the shape of the orifice determines the type
unavoidably Influenced by In€ authors background and Pigy , . ation. Another example is plasma actuators, where a
vious work; complementary reviews on flow control can b

. ) : lasma arch is used to induce a forcing on the flow [37].
found in [2, 28, 29], where the linear approach is analyzed, o
and in the reviews by [30, 31], focussed on the identifica- N closed-loop control, a sensor (denotedig Fig. 1)

tion of reduced-order models for the linear control desigi® Used to measure the (?Iisturbance that is meant to be can-
Finally, we refer to [32, 33, 34] for a broader prospective. C€lléd by the actuatofu): based on these measurements
one computes the actuator action in order to effectively re-

duce the amplitude of the perturbation. Examples of sen-

1.1 The control problem sors include pressure measurements using a small micro-

Consider a steady uniform flobk, over a thin flat plate phone membrane mounted flush to the wall, velocity mea-
of lengthL and infinite width. Inside the two-dimensionalSurements using hot-wire anemometry near the wall or shear-
(2D) (Blasius) boundary layer that develops over the platglress measurements using thermal sensors (wall wires). Fi
we place a small localized disturbance (denoteddoin  Nally, we place a second sensor (denotedzby Fig. 1)
Fig. 1) of simple Gaussian shape; the set-up is the samedgyvnstream of the actuator to measure the amplitude of the
in [35] and the simulation is performed using a spectral codrerturbation after the actuator action. The minimizatién o
[36]. Fig. 2 summarizes the spatio-temporal evolution ef t{his output signal may serve as an objective of our control
disturbance. It shows a contour plot of the stream-wise co€sign, but the measurements also provide a means to assess
ponent of the perturbation velocity at a wall normal positiothe performance of the controller.
Y = 8"(0), whered*(X) is the displacement thickness of the ~ Having introduced the inputs and outputs, the control
boundary layer. The temporal growth of this disturbance goblem can be formulated as the following: given the mea-
determined by classical linear stability theory (i.e. @iggue surementy(t), compute the modulation signalt) in order
analysis of the linearized Navier-Stokes equations). Sunch to minimize a cost function based a(t). The system that
analysis reveals that asymptotically a compact wave-gackenen given the measuremeyit), provides the control sig-
emerges —a TS wave-packet — that grows in time at an expa u(t) is referred to as theompensatarThe design of the
nential rate while travelling downstream at group veloocity compensator has to take into account competing aspects such
approximatel\J., /3. This disturbance behaviour is observeds robustness, performance and practical feasibility.

fig0l.eps




equation to model a linear and convection-dominated flow.
Originally, the KS equation was developed to describe the
flame front flutter in laminar flames, [38, 39]. This model
exhibits in its space-periodic form a spatio-temporal titao
behaviour, with some similarities to turbulence [40]. The
fig02.eps standard KS equation reads

AV 0%0 0%

E”&:_nﬁ_“ﬁ’ 1)

wheref is the time,x’c [0,L) the spatial coordinate and

¥ = V(X,f) the velocity. The boundary conditions accompa-
nying (1) are periodic ix."The second term on the left side
in (1) is the nonlinear convection term, while on the righesi
two viscosity terms appear. The two latter terms may be as-
sociated to the production and dissipation of energy a¢diff
ent spatial scales. In particular, the second-order daréva
termis related to the production of the energy via the végiab

The objective of this review is to guide the readef: calledanti-viscosity while the dissipation of the energy is
through the steps of compensator design process. We Vefnnected to thg fourth-order derivative term, multiplsd
exemplify the theory and the associated methods on a offa€hyper-viscosity p[41].
dimensional (1D) model based on the linearized Kuramoto- Equation (1) can be rewritten such that it is parametrized
Sivashinsky (KS) equation (presented in Sec. 2). The mod® a Reynolds-number-like coefficient. Introducing a ref-
reproduces the most important stability properties of thie fl €rence lengtth and a reference velocity, define the non-
plate boundary layer, but it avoids the problem of higrdimensional positiom, velocityv and timet by
dimensionality and thus the high numerical costs. In Sec. 3
full-information control problem is addressed via optimal
control theory; linear quadratic regulator (LQR) and medel X
predictive controller (MPC) strategies are derived and-com
pared. The disturbance estimation problem is addressed in
Sec. 4, where classical Kalman estimation theory and leaé2Plying the transformation to (1), the KS equation in di-
mean-square techniques will be introduced and compar&gnsionless form becomes
The techniques of sections Sec. 3 and Sec. 4, will be com-
bined in order to design the compensator in Sec. 5. This ov oV 1 22v  9%v
section also contains adaptive algorlthm_s thgt e_nhanc_e the ot +V& Y (T 2 + W) )
robustness of the compensator. The review finalizes with a
discussion Sec. 6 about some important features chaiacteri
ing the control problem when applied to three-dimension#herex € [0,L). The parameterg ande are defined as
(3D) fluid flows and conclusions Sec. 7.

Fig. 2. Response to a small, localized initial condition in a Blasius
boundary-layer flow. A Tollmien-Schlichting wave-packet emerges
and grows exponentially while propagating downstream. Contours
of the streamwise component of the velocity are shown as a function
of the streamwise direction (X) and time (t). The location along the
normal-direction Y is chosen in the vicinity of the wall.
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We first introduce our choice of model KS equation, in-
puts (actuators/disturbances) and sensors. This is felowwhere® takes the role of the Reynolds numiiss., and»
by a presentation of concepts pertinent to our work, nameiggulates the balance between energy production and dissi-
the state-space formulation (Sec. 2.4), transfer funstiord  pation.
finite-impulse response (Sec. 2.5), controllability and ob  We assume that the system is sufficiently close to a
servability (Sec. 2.6), closed-loop system (Sec. 2.7) and isteady solutiorV/(x) = V. Then, it is possible to describe
bustness (Sec. 2.8). This chapter contains the mathernatib@ dynamics of perturbations using the linearized KS equa-
ingredients that will be used in the following sections. tion. For the chosen parameters, the steady solution ikestab
but an external perturbation may be amplified by an order-
of-magnitude before it dies out (this requires non-pedodi

2.1 | KLtJ]r.amoto-SNa?hlnsky model . f domi boundary conditions in the streamwise direction as we im-
n this paper, we focus our attention on flows dominat bse below). Introduce the perturbatisfxt)

by convection/advection, where disturbances have negligi
ble upstream influence and are quickly swept downstream
with the flow. We make use of a particular variant of the KS V(x,t) =V +eV(xt), (5)
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Fig. 4. Response to a small, localized initial condition in a 1D
KS flow (6) with & = 0.25 2 = 0.05and V = 0.4. The con-
Fig. 3. The real frequency G and its imaginary part (W are shown 1415 are shown as a function of the streamwise direction (X) and
as a function of the spatial frequency O, in (a) and (b), respectively. e time (t). The initial condition triggers a growing and travelling

The relation among the spatial and temporal frequencies is given by wave-packet, similar to the 2D boundary-layer flow shown in Fig. 2.
the dispersion relation (8). Positive values of W characterize unsta- [script00.m]

ble waves (grey region).

. ) ) o Note that the phase speeds independent od, in contrast
wheree < 1. By inserting this decomposition into (3) andyg, the houndary-layer flow, which is dispersive [5].
neglecting the terms of ordef and higher, the linearized KS

equation is obtained N
2.2 Outflow boundary condition

So far in our analysis we have assumed periodic bound-
(6) ary conditions for the KS equation. As we are interested
in modelling the amplification of a propagating wave-packet

] ) o ) ) near a stable steady solution (as observed in the case of
It is the convective and amplifying properties of this NONpoundary-layer flow), it is appropriate to change the bound-

normal system that makes it a good model of the 2D Blasiggy conditions to an outflow condition on the right side of the
boundary layer flow. Following [42], we analyze the stailit 4omain

properties of (6), by assuming travelling wave-like saus:

ooV 1, 0V oV
ot X =R o2 ot )

3V

. oV
V = d@-@) (7) >3l =

= y _— = 0
x=L 0x

x=L

(10)

)

wherea € R andw = wy +iwy € C. Substituting (7) in (6),
a dispersion relation between the spatial wave-nuratzerd
the temporal frequenay is obtained

while on the left side of the domain, at the inlet, an unper-
turbed boundary condition is considered

ov

\/’x:ozo’ o0

—0. (11)

x=0

oo_VoH—i(zcxz—ia“). (8)
R R

This relation is shown in Fig. 3 far = 0.25, = 0.05 and With an outflow boundary condition, a localized initial per-

V = 0.4. The parameters are chosen to closely model ttigbation in the upstream region of the domain travels in the
Blasius boundary layer &e;. — 1000. The imaginary part downstream direction while growing exponentially in ampli

of the frequencyw is the exponential temporal growth ratdude un_til it leaves the domain. This_is the_ signature of a
of a wave with wave-number. In (8) it can be observed that convectively unstable flow. Note the this choice of boundary
the term ina? (associated to the production parametgris conditions is the main variant with respect of the origin& K
providing a positive contribution ta, while thea® term (re- equation, characterized by periodic boundaries. Fig. #vsho

lated to the dissipation paramete}, has a stabilizing effect. the spatio-temporal response to a localized initial coouit

The competition between these two terms determines stal@i-XS €quation with outflow boundary condition. The set
ity of the considered wave. From Fig. 3, it can be observ&i Parameter, # andV has been chosen to mimic the re-
that for an interval of wave-numbess oy > 0, i.e. the wave SPONSe of the 2D boundary-layer flow, shown in Fig. 2. How-

is unstable. The real past determines the phase speed ofVe" note that in the KS model the wave crests travel paral-
the wave in thex direction lel to each other with the same speed of the wave-packet,

whereas in the boundary layer, they travel faster than the
wave-packet which they form. Indeed the system is not dis-
=V. 9) persive, i.e. the phase speedquals the group speeg as

[|>
Q|



A similar issue may arise for the model of the actua-
tor by(x), where the forcing distribution can even be time
fig05.eps varying. For example the spatial force that a plasma actua-
tor induces in the flow depends on the supplied voltage, e.g.
modulated by the amplitudgt) [37]. As we will discuss in
the following sections, one may design a controller without
Fig. 5. Spatial support of the inputs and outputs along the stream- knowingby (x) andby(x), but for the sake of presentation we
wise direction. All the elements are modelled as a Gaussian functon ~ MaYy assume in this section, that such models exist.

(14), with Oy = Oy = Oy = O, = 4. By using (14) as integration weights, we define two out-
puts of the system as

shown by (9); conversely, as already noticed, the 2D BL is L

dispersive. Y0 = [Comvixyden,  (@16)
L

2.3 Introducing inputs and outputs At) = ,/0 CX)V (x,) dx (17)

Having presented the dynamics of the linear system,
we now proceed with a more systematic analysis of the inshereL is the length of the domain defined earlier and
puts (actuators/disturbances) and sensor outputs dedadnb

§1.1. Consider the linearized KS equation in (6) 6y (X) = g(x; %y, y), Co(X) = g(X; %2, 0).

ﬂ _ —Vﬂ 1 <£P 02_‘/ + 64_‘/> +f/(xt) (12) The outpuly provides a measurement of an observable phys-
ot ox = ox2  oxt n ical quantity — for example shear-stress, a velocity compo-
nent or pressure near the wall — averaged with the Gaussian
where the forcing ternfi (x,t) now appears on the right-handWeight- In realistic condiFions, this measgred quantigjb- _
side. This term is decomposed into two parts, Je(_:t.to some fo.rm of noise, that.may arise from cal!_brat|on
drifting, truncation errors and/or incomplete cable stiis),
etc. This is taken into account by the forcing tem(h). It is
f'(x,t) = ba(x) d(t) + bu(x) u(t). (13)  often modelled as random noise with Gaussian distribution
of zero-mean and varianee and can be regarded as an in-

The temporal signal of the incoming external disturbance aRUt ©f the system. The second outa(ty, located far down-
of the actuator are denoted loft) and u(t), respectively, stream, represents tlobjectiveof the_c_ontroller: assuming
while the corresponding spatial distribution is describgd that the flow has_ been already moc_ilfled due to_ the action of
bg andby. In this work, the time-independent spatial distri-the controller, thiscontrolled output is the quantity that we

bution of the inputs is described by the Gaussian function, &M 0 keep as small as possible.
In Fig. 6, we show the response of our system to a Gaus-

) sian white noise ird(t) with a unit variance, where all tem-
. 1 X—X poral frequencies are excited. Via the dispersion reld@n
9(x. %,0) = ~exp l_ (—) ] : (14 each temporal frequenay is related to a spatial frequency
o =V . The input signal(t) is thus filtered by the sys-
tem, where after a short transient, only the unstable dpatia
The scalar parameterdetermines the width of the Gaussianyayvelengths are present in the state), Fig. 6(a), and the
distribution, whereas determines the centre of the Gaussianyo output signaly(t) andz(t), Fig. 6(c-d). The variance of

The two forcing distributions in (13) are the outputz(t) is higher than the variance gft) by a fac-
tor 10, independently by the realization; this is because th
ba(X) = g(X; R4,04), bu(X) = g(X; Ru, Ou). (15) wave-packets generated byis growing in amplitude while

convected downstream. We note that each realization will
generate a different time evolution of the system but with th

The disturbancel is positioned in the beginning of the do-same statistical properties (black and grey lines in Fil- 6(
main atxg = 35, while the actuatou in the middle of the ),

domain atx; = 400 (see Fig. 5). In the presentation above,

the particular shaply(x) of the disturbance is part of the .

modelling process. However, note that the introduction &4 State-space formulation o
the upstream disturbance using a localized and well defineg e discretize the spatial part of (12) by a finite-
shapebg(x) is a model. In practice, due to the receptivit)fj'ﬁerenc‘? scheme. As further detailed in Sec. A, the sotuti
processes, the distribution and the appearance of the incdfr@PProximated by

ing disturbance is not knowa-priori, and thus difficult to

predict using — for instance — a low-order model. Vi(t) =V (x,1) i=12,..,ny



fig06.eps

Fig. 6. Top frame (a) shows the spatio-temporal response to white
noise d(t), (b). The velocity contours are shown as a function of the
streamwise direction (X) and time (t). The signals y(t) and z(t) are
shown for two different realizations (black and grey lines) in (c) and
(d), respectively. Red dashed lines indicate the standard deviation of
the signals. [script01.m]

defined on the equispaced nodes- iL /ny, wheren, = 400.

discrete state-space system is defined as:

v(k+1) = Av (k) + Bgd(k) + Byu(k), (22)
y(k) = Cyv(k) +n(K), (23)
z(k) = C,v(k), (24)

whereA = exp(AAt),B = AtB andC = C. For more details,
the interested reader can refer to any control book (see e.g.

[81)-

2.5 Transfer functions and Finite-impulse responses

Given a measurement signgt), our aim is to design an
actuator signali(t). The relation between input and output
signals is of primary importance. Since we are interested in
the effect of the control signailt) on the system, we assume
the disturbance signal(t) to be zero. Thus, given an input
signalu(t) and a zero initial condition of the state, the output
Z(t) of (18-20) may formally be written as

t
At) = / Po(t) U(t —T)d, (25)
0
where the kernel is defined by
Py(t) £ C,eMBy, t>0. (26)

Note that the description of the input-output (1/0) behavio
betweeru(t) andz(t) does not require the knowledge of the
full dynamics of the state but only a representation of the
impulse response between the inpwnd the output, here
represented by (26). A Laplace transform results in a teansf
function

The spatial derivatives are approximated by a finite differ-

ence scheme based on five-points stencils. Boundary condi-

tionsin (11-10) are imposed using four ghost nddes-1,0

2(5) = 2u(S)(S) = (Co(s1 — A) 'Bu)d(S)

andi = ny + 1, n, + 2. The resulting finite-dimensional state-

space system (callgdant) is

V(t) = A v(t) +Bg d(t) + By u(t), (18)
y(t) = Cyv(t) +n(t), (19)
z(t) = Cyv(t), (20)

wherev € R™ represents the nodal valugs The output
matricesCy andC; approximate the integrals in (16-17) via
the trapezoidal rule, while the input matrid®g andB,, are

given by the evaluation of (15) at the nodes.

with s € C. Henceforth théhat on the transformed quanti-
ties is omitted since related by a linear transformatiom# t
corresponding quantities in time-domain. One may formu-
late a similar expression for the other input-output relagi
which for our case with three inputs and two outputs, induces
6 transfer functions, i.e.

[Z(S)] _

Pyd(S) Pyu(S) Pyn(

d(s)
P2d(S) Pzu(S) TZ”(?)] [U(S)} : (27)

Some of the control algorithms that we will describe are

preferably formulated in a time-discrete setting. The tim

discrete variable correspondinga¢) is
a(k) = a(kAt), k=12,... (21)

where At is the sampling time.

e

Accordingly, the time-

I/O relations similar to (25) can be found for the time-
discrete system. The resporgk) of the system (withvg =
0) to an inputu(k) is

(28)
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Fig. 7. Time discrete impulse response (©) between the input U to
the output Z due to the presence of strong time-delays in the system,
a lag of t &~ 550is observed. The relevant part of the kernel is
reconstructed via a FIR filter (LJ). [script02.m]

Fig. 8. Controllability (G¢,u) and observability (Go,y) Gramians,
normalized by their trace; the absolute values are reported in log-

where

arithmic scale as a function of the streamwise direction (X). Due to
i’zu(k) 2 ézAkfl Bu, k=12,... (29) .the symmetry,.only the upper/lower triangular part of each Gramian
is shown. [script03.m]

This procedure is usually referred toagansformfor more
details, we refer to [8,43]. In the limit &f— oo, it is possible
to truncate (28), since the propagating wave-packet that is

introducing the corresponding Gramia@s andG¢

generated by an impulse inwill be detected by the outpat a [® AHt ~H t
after a time-delay (this can be observed in Fig. 7, where the Go _/0 gricticet dt, (31)
impulse response is depicted). Thizg,(i) is non-zero only s [ AtsaH ARt
in a short time interval and one may truncate the sum to a Ge _/0 BB dt. (32)

finite number of time steps\,, . Due to the strong time-
delay, the initial part of the sum is also zero and the low

limit of the sum can start fror,y ;. This results in a sum Péy construction, the Gramian$s6,Gc) are positive semi-

definite matrices ilR™*™ and can be computed for each or
all the outputs/inputs. It can be proved that the two Gramian

N are solutions of the Lyapunov equations, [8]

20 5 Fali) k=) (30)

AP Gy,+G,A+CHC =0, (33)

AG.+GcA" +BB" =0. (34)

which is called the Finite Impulse Response (FIR), [44].
Note that the presence of time delays in the system isaliml-_h tial inf i lated to the G . b
iting factor of the control performance. In general, a dis- ¢ >Patal iniformation relate _0 € ramians can be
turbance with a time scale smaller than the time delay th%rgalyzeq. by dlagonah_zmg .them, the corresponding de-
affects the system is difficult to control [8]. In particularCompos'tIons allow to identify and rank the most control-
while the compensator could still be able to damp those dilg_ble/observab!e structures [30]. On the other hand, fer sy
turbances, it may lack robustness, Sec. 2.8. _te_ms chgractenz_ed by a smgll number_ of degrees of fr(_eedom,

it is possible to directly identify the regions where the fligw
observable and/or controllable. Fig. 8 shows the contrdtla
. - ity Gramian related to the actuator(G¢ ) and the observ-
2.6 Controllability and observability ability Gramian related to the sensofG, y) for our system.

The choice of sensors and actuators is particular relevarte region downstream of the actuator is influenced by its
for the control design; indeed, the measurement of the settion, due to the strong convection of the flow. The ob-
sory enables to compute the control signgl), that feeds servability GramiarG, y indicates the region where a prop-
the actuator. Thus, it is important to know: (i) if the systenagating perturbation can be observed by the sepsbdlote
can be affected by the actuatgr(ii) if the system can be de- that the two regions do not overlap, thus wave-packets gener
tected by the sensgr In other words, we aim at identify the ated at the location are not detected by a sengomwhen is
states of the system that azentrollableand/orobservable placed upstream of the actuator. This feature has important
These two properties of the 1/0O system are referred mbas consequences on the closed-loop analysis, as introduced in
servability and controllability, [8, 30] and can be analyzedthe next section.



fig09.eps

Fig. 9. Schematic figure showing the 5 transfer functions defining figlO.eps
the closed-loop system (35). The transfer functions Pyq, Pzd de-
scribe the input/output behaviour between the disturbance d and the
outputs Y and Z, respectively; Pyy and Pz relate the actuator U to
the two outputs Y and Z respectively, while Kyy is the compensator
transfer-function. Because of the convectively unstable nature of the
flow, Pyy is negligible for the chosen sensor/actuator locations; thus
it does not allow any feedback.

2.7 Closed-loop system
The aim of the control design is to identify a second lin-
ear systenxyy, calledcompensatqrthat provides a mapping Fig- 10.  The disturbance generated by the impulse response of the

between the measuremey@) and the control-inpuu(t), system at the actuator location U in (a) is shown as a function of the
ie. streamwise direction (X) and time (t). The wave-packet is detected

only by the output Z (c); due to the convective nature of the flow,

) the sensor placed upstream of the actuator can not detect the prop-

u(t) = / Kuy(T) y(t—T1)dt agating disturbance, and the resulting signal is practically null (b).
0 [script02.m]

The chosen compensator is also calbedput feedback con-

troller [45,46]. This definition underlines the dependency of  In a convection-dominated system, the sensor should be

the control inpuw(t) from the measuremenysgt). By con- placed upstream of the actuator, in order to detect the up-

sidering the relation in frequency domain and insertingtidi  coming wave-packet before it reaches the actuator (see also

the plant (27), thelosed-loopsystem betweed(s) andz(s) Fig. 8); if it is placed downstream, the actuator has no pos-
is obtained in the form, sibility to influence the propagating disturbance once & ha

reached the sensor. Fig. 10 shows the state and signal re-
sponses of the KS system to impulseuinwhere it is clear
Pzu(S) Kuy(S) Pyd(S) d(s). (35) that the actuator’s action is not detected by the sepsir

1— 2yu(S) Kuy(S) practicery,(s) ~ 0. Note that no assumptions about the com-
pensator has been made; the feedback or feedforward setting
is determined by the choice of sensor and actuator placement

2s) = | 72als) +

By choosing an appropriate.y(s), we may modify the sys-
tem dynamics. The graphical representation of the closed-

loop system is shown in Fig. 9. The transfer functig(s)

describes the signal dynamics from the actuatimrthe sen- 2 8 Robustness

sory. By definition, a feedback configuration is obtained  |n practice, model uncertainties are unavoidable and it
when®y(s) 7 0, i.e. when the sensor can measure the §f important to estimate how much the error arising from the
fect of the actuation. On the other handpji,(s) is zero (or - mismatch between the physical system and the model affects
very small), the closed-loop system reduces to a distusanfe stability and performance of the closed-loop system. In
feedforward configuration [45,46]. In this special casenfr general, one wishes to have a controller that does not am-
the dynamical point of view such a system behaves as gfify un-modelled errors over a range of off-design condi-
open-loop system despite the closed-loop design [43]. Dygns: a robustness analysis aims at identify this range. A
to this inherent ambivalence within the framework of the-outysefyl quantity in this context, is the sensitivity transtenc-

put feedback control, sometimes the definitionr@dctive tjon, which is defined as the denominator in the second term
controlis used for indicating all the cases where the contrgl, the right-hand side of (35), i.e.

signal is computed based on measurements of the system;
thus, the definition of closed-loop system more properly ap-
plies to a system where the reactive controller is character $(9) 1

S S (36)
ized by feedback [47]. 1 — Pyy(S) Kuy(S)



Robustness can be quantified as the infinity norns ). the unconstrained MPC and the LQR is shown. Finally, note
Good stability margins are guaranteed when this norm tisat the framework introduced in this section makes use of
bounded, typically|s ||~ < 2.0, see [43]. A second measurea system’s model. Model-free methods based on adaptive
is the phase margin, that represents the maximum amounstfitegies are introduced in Sec. 5.
allowable phase error before the instability of the clokeip
occurs. Indeed, the gain margin and the phase margin
the upper limit of amplification and phase error, respebtjve
that guarantee marginal stability of the closed-loop syiste
Note that the internal stability functions are characte
ized by a proper dynamics. In tHeop-shapingapproach,
the controller is designed by shaping the behaviour of the Z(t C 0
internal transfer function [43]. Unfortunately, this meth Z(t) = [u((t))} - { OZ} v+ {1] u(t), (38)
ology is difficult to be applied in complex system. A sys-
tematic approach for the robust design is represented by the . . . :
optimal, robust., (see [46]), where the sensitivity marginsWhere now the control signal is also included. We define a
can be optimized. A more computationally demanding altefOSt functiorof the system
native is represented by the controllers based on numerical
optimization running on-line, such as the model-predétiv 1 /721" w, 072
control (MPC) (Sec. 3.2) or adaptive controllers (Sec..5.4) L (v(u),u) = 5/0 [u} [ 0 Wu] LJ dt
Thus, feedback controllers may be designed to have
small sensitivity. In that regard robustness is a non-issue o ) )
in a pure feedforward configuration; indeegy(s) ~ 0 and T_h|s cost function is quadratic an_d mgludes the constaﬁt ma
||$]l» ~ 1. However, a feedforward controller is highly af-ic€SWz > 0 andw, > 0. The matrixw is used to normalize
fected by unknown disturbances and model uncertainty, tHi€ cost output, specially when multiptt) are used, while
drastically reduce the overall performance of the devic1® Weightw, determines the amount of penalty on control
Moreover, a feedforward controller is not capable in modgffort [50]. Using (38), (39) is rewritten as
fying the dynamics of an unstable plant; thus, feedback con-
trollers are required for globally unstable flows [31]. 1T, w H
The studies performed by [48] and [49] show that in con-£ (V(U),U) = 5/0 (V7 (CZw,Co) v+ U™ wyu) dt =
vectively unstable flows a feedback configuration allows the 1 /T
possibility of robust-control design but it does not guaean =5 / (VH Wy v+ uH wy U) dt
optimal performances in terms of amplitude reduction. In 0
this review, we adopt a feedforward configuration in order to
achieve optimal performances. As we will show in Sec. 5.4hereW, = C5'w,C,. We recall from Sec. 2.3 that the sen-

robustness may be addressed to some extent using adageC; is placed far downstream in the domain, so we are
control techniques. minimizing the energy in localized region. We seek a con-

trol signalu(t) that minimizes the cost function (v(u),u)
in some time intervat € [0,T] subject to the dynamic con-
3 Model-based control straint
In this section, we assume the full knowledge of the state
v(t) for the computation of the control signa(t). This sig-
nal is fed back into the system in order to minimize the en-
ergy of the outpug(t). For linear systems, it is possible to
identify afeedback gairK (t), relating the control signal to Note that we do not consider the disturbanie) for the
the state, i.e. solution of the optimal control problem. In a variationat ap
proach, one defines a Lagrangian

r .
%?[ Optimal control

The aim of the controller is to compute a control signal
H(t) in order to minimize the norm of the fictitious output

(39)

(40)

V(t) = A v(t) + Byu(t). (41)

u(t) = K (t)v(t). (37)

-
The aim of the section is to compare and link the classi- £ (V(u),u) = %/ (VA Wy v+ u™ wyu) di+
cal LQR problem [50] to the more general MPC approach OT

[51,2]. In the former approach, one assumes an infinite time +/ pH (V—A v —Byu)dt,
horizon ¢ — ), allowing the computation of the feedback 0

gain by solving a Riccati equation (see Sec. 3.1.1). Inthe la

ter approach, the optimization is performed with a final tim&here the ternp(t) acts as a Lagrangian multiplier [52],
T that is receding, i.e. it slides forward in time as the sygalso called the adjoint state). The expression in the éast t
tem evolves. In Sec. 3.2.1, we introduce this technique ft& obtained via integration by parts. Instead of minimizing
the control of a linear system with constraints on the actua- with a constraint (41) one may minimize without any
tor signal, while in Sec. 3.2.3 the close connection betweennstraints.

(42)



The dynamics of the adjoint stafgt) is obtained by
requiringd. /ov = O, which leads to

—p(t) = A p(t) + Wy (1), 43) figll.eps
0=p(T).

The adjoint fieldp(t) is computed by marching backwards

in time this equation, fronh =T tot = 0. The optimality

condition is obtained by the gradient Fig. 11. Control gain K computed using the LQR technique for
W, = Land Wy = 1, (see §3.1.1). [script04.m]

0L _BHptwu. (44)

u The computed control signalt) is optimalas it minimizes

the cost functiorr (v(u),u) previously defined. Assuming a

The resulting equations’ system can be solved iteratively inear relation between the adjoint state and the diree sta
follows: p(t) = X(t)v(t), the feedback gain is given by

1. The _state/(t) is computed_ by marching forward in time K(t) = —w 1B X (1). (46)
(41) int € [0,T]. At the first iteration stepk = 1, an
initial guess is taken for the control signat).

2. The adjoint stat@(t) is evaluated marching (43) back-
ward in time, fromt = T tot = 0. The initial condition
p(T) is taken to be zero.

3. Once the adjoint stafg(t) is available, it is possible to
compute the gradient via (44) and apply it for the up- u CioH
date of the control signal using a gradient-based method; 0=A"X+XA—=XBuw, By X+W,. (47)
one may for example apply directly the negative gradient

he advantage of this procedure is tiKats a constant and

eeds to be computed only once. The spatial distribution of

It can be shown that the mati(t) is the solution of a differ-
ential Riccati equation [50]. Wheh is stable X (t) reaches
a steady state a6 — o, which is a solution of the algebraic
Riccati equation

Aug = —%, such that the update of the control sign

at each iteration is given by the control gaink is shown in Fig. 11 for the KS system
analysed in Sec. 2, where the actuator is located-a#00
U1 = Uk + AU and the objective output at= 700. From Fig. 11 one can

see that the gain is a compact structure between the elements

, By andC;. The control gain is independent on the shape of
The scalar-valued parametgyis the step-length for the o 1arnal disturbanciy.

optimization, properly chosen by applying backtrack- £ o\.dimensional systemsw( < 10%), solvers for

ing or exact line search [53]. An alternative choice ¢, Riccati equations (47) are available in standard soéwa
the steepest descent algorithm is a conjugate grad'%%tckages [56]. For larger systems> 103, as the ones in-
method [54]. vestigated in flow control, direct methods are not computa-
The iteration stops when the difference of the cost functidipnally feasible. Indeed, the solution of (47) is a full ma-
£ estimated at two successive iteration steps is below a cHiX, whose storage requirement is at least of or@én).
tain tolerance or the gradient valde /du — 0. We refer The computational complexity is of orded(n?) regard-
to [52] for more details and to [55] for an application in flowless the structure of the system matAix{57]. Alternative
optimization. techniques include the Chandrasekhar method [58], Krylov
subspace methods [59], decentralized techniques based on
) i Fourier transforms for spatially invariant system [60,53],
311 Llnear-quadratlc_ regqlator (LQR) . and finally iterative algorithms [62, 63, 64, 65]. Yet, a diff
The framework outlined in the previous section is rathef, . approach consists of reducingbefore the control tech-

general f’md it can be applied fpr the computation of _ﬂ]’ﬁques are applied. In practice, we seek a low-order surro-
control signalu(t) also when nonlinear systems or recedin te system, typically @®(ny ;) ~ 10— 10% whose dynam-
finite-time horizons are considered. However, a drawback reproduc’es the main fégtures of the’ original, full-orde

the procedure is the necessity of running an optimizatien oé\/stem. Once the low-order model is identified, the con-

I!ne, next to the main flow S|_mulat|o_n/exper|ment. When ftoller is designed and fed into the full-order system; such
linear tlm_e-mva_mant system s cc_)n5|deredf a classu_: voay b approach enables the application of a controller next to
prgceeq IS to dlreptly use the o.ptlmal condition (44) in wrdqeal experiments, using small (and fast) real-time computa
to identify the optimal control signait) tions. Themodel-reductiorproblem is an important aspect
of control design for flow control; we refer to Sec. 6 for a
u(t) = —w; 1B p(t). (45)  brief overview.



v(Kk) at timek, we get

o min(j,N)~ o
z(k+ j|k) = C,A v(k) + Z CA B uk+j—i)=
i=

min(j,N 5

] )
figl2.eps =P (j) v(K) + Zl Pa(i) u(k+j—i),
B (48)

wherej =1,2,...,M. The state equation can be written in
matrix form by recursive iteration, resulting in the matrix
relation

Fig. 12. MPC strategy: the controller is computed over a finite time-
horizon T¢, based on the a predicted time-horizon Tp. Once the so-
lution is available, the control signal is applied on a shorter time win- Zp(k) = szv(k) + quup(k)- (49)
dows Ta. In the successive step, the time-window slides forward in

time and the optimization is performed again, starting from a new ini- . . . . )
The matrixP,, appearing in (49) is the observability matrix

tial condition at t = Ta. The procedures is iterated while proceeding " |
of the discrete-time system

forward in time.

3.2 Model-predictive control (MPC) gz"gg gzﬁz

MPC controllers make use of an identified model to pre- P, = ZV_ = Z_ , (50)
dict the behaviour of the system over a finite-time horizon o it
(see [66], [67] and [68] for an overview on the technique). P (M) C,AM

In contrast with the optimal controllers presented in the pr
vious section, the iterative procedure is characterized by
receding finite horizon of optimization. This strategy is ilwhile the matrixP,,, related to the convolution operator,
lustrated in Fig. 12; at tim&, a control signal is computed reads
for a short window in timdto, to + Tc| by minimising a cost
function (not necessarily quadraticl; is the final time of

optimization for the control problem. The minimization is [ Pal(l) |
performed on-line, based on the prediction of the future tra Pzu(2)  Pzu(1)

jectories emanating from the current statégadver a win- : : .

dow of time[to,to + Tp), such thafl, > T.. In other words, Pz = Pzu(N) Poy(N—1) - P2(1) -

the control signal is computed over an horiZigrin order to
minimize the predicted deviations from the reference traje L L . :

tory evaluated on a (generally) longer time of predicfign L P2u(M) Pzy(M —1) -+ Pzy(M —N+1) |
Once the calculation is performed, only the first stgps T CB, 7
actually used for controlling the system. After this stdys t C,AB, C,B,
plant is sampled again and the procedure is repeated at time .

t =to+ Ty, starting from the new initial state.

The MPC approach is applicable to nonlinear models
as well as all nonlinear constraints (for example an upper : : :
maximum amplitude for the actuator signals). We present an C,AM-18 G,AM-2B ... C,AM-NB,
example of the latter case in the following section. B B

(51)

ézl&Niléu ézl&Nizéu e CzBu

In literature, the matriXP,, is also referred to as dynamic

3.2.1 MPC for linear systems with constraints matrix, because it takes into account the current and future
Although it is possible to define MPC in continuousinput changes of the system. Note that the entries of the ob-

time formulation (see for instance [66], [51]), we makeservability matrix (50) are directly obtained from the mbde
use of the more convenient discrete-time formulation. Legalization, while the entries of the dynamic matrix (519 ar
M = Tp/At andN = Tc/At, where the parametéxt is the represented by the time-discrete impulse response between
sampling time. Sinc&, > T, we haveM > N. Augmenting the actuatou and the sensaz The input vectorz, (k) and
the expression (28) with a term representing an initiakestaputput vectou, (k) are defined collecting the corresponding



time-signals at each discrete step

z(k+1]k) u(k/k)
2k +2]K) u(k+ 1/Kk)

zp(k) = : , up(k) = : fig13.eps
2(k+ M|K) u(k+N—1/K)

(52)

Thus, the matrix relation (49) provides a linear relation be
tween the state (k) and the outpugy (k) when the system Fig. 13, Control design in presence of constraints: the grey regions
is forced by the control inputip (k). The evaluation of the ingicate the limits imposed to the amplitude of the control signal u(t).
future output vectoep (k) represents theredictionstep of The control u(t) is designed following two different strategies: LQR
the procedure; indeed, assuming that the control signal cqfith a saturation function (—) and constrained MPC (—), see §3.2.2.
tained in the vectouy (k) is known, we aim at computing the The LQR solution (— —) is introduced as reference. The perfor-
future outpuizp (k), related to the trajectory emanating fromMmances of the controllers are shown in terms of rmsvelocity reduc-
the initial conditionv (k). tion in Fig. 14.
By following the same rationale already adopted in the

optimal control problem, a cost functiank) that minimizes . ] .

the outputz(t) while limiting the control expense is defined,and Cup(k) < D is a constraint [69], which we have not
specified yet. Once this minimization problem is solved, the
control signal is applied for one time step, corresponding t

M - . .
£(k) = Z\ZH (ki) Woz(k+i[K) AT = T,, followed by a new iteration at stép+ 1.
i=

N _ (53) 3.2.2 Actuator saturation as constraint
+ Zﬁ u” (k+ifkjwyu(k+ilk) = The need of introducing constraints in the optimization
- H H process usually arises when we consider real actuators char
= 2p(K)" WzZp(K) + Up (k)™ Wy Up (K). acterized by nonlinear behaviour, due for instance to satu-

ration effects. For example, the body force generated by

The parameterg/, andW,, are represented by block diag-Plasma actuators [37, 70] — usually approximated by consid-
onal matrices containing the weights andw,. One may €fing the macroscopic effects on a flow — is often modelled
also have non-quadratic costs functions in MPC; exampl@g @ nonlinear function of the voltage [71, 72].
are given by [51] for the control of a turbulentchannel. Imou ~ Consider now a control signal, whose amplitude is re-
case, we choose a quadratic cost function in order to comp&téred to be bounded in the intervalimax < U < Umax. We
performance with the LQR controller. By combining the codfus minimize
function (53) and the state equation (49), we get
mip {%ug (k) Hup (k) +c(k) up (k) : Umin < up(k) < Jmax} ,I
£(0) =2p(K)" W22p(K) + Up (K Wy p(K) = o 57)
= [Pav(K) + Pzuup (K)]™ W, [Pav(K) + Pup (K] +  whereH andc are given by (56). One may solve this con-
+up(k)H Wy Up (k). strained MPC using nonlinear programming [53]. Since
the function to be minimized is a quadratic function, we
have used a reflective Newton method suggested by [73];
this method is implemented in the MATLAB routine
Note that this manipulation is analogous to the definition efuadprog.m .
Lagrangian already shown for the LQR problem (42). The e proceed by comparing the performance of the MPC
minimization of £ (k) with respect ofi, (k) reads controller with the LQR solution discussed in Sec. 3.1.1. Fo
a direct comparison, we apply aa hocsaturation function
to the LQR control signal, i.e.

(54)

min {%ug(k)Hup(k)+c(k)up(k) : Cup(K) < D} (55)

up(k) _ _
ULQR if Umin < ULQR < Umax
H ULQr=1{ Umin if Umin > ULQR . (58)
where Urnax if Umax< ULQR
_ H
H=2 (quWZPZU + WU) (56) As shown in Fig. 13, the control signal computed by the MPC

c(k) = 2vM (k)P W, P, (blue solid line) closely follows the LQR solution (dashed
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Fig. 14. Control of the KS equation. The rmSvelocity as a function
of the X direction is analyzed; the uncontrolled configuration (—) is
compared to three diffrent control strategies already considered in
Fig. 13 (same legend).

black line), exceptin the intervals where the value is lacge
smaller than the imposed constraint. By simply applying the
saturation function in (58) to the LQR signal, the controlle
becomes suboptimal; the resulting solution deviates figen t7i9- 15 I (@) the LQR solution (§3.1.1) is compared to the MPC
optimal one and settles back on it aftex 300 time units. gains computed for two different times of optimization Tp without con-
Simply cutting off the actuator signal of LQR results in é;traints, see §3.2.3. The optimization times are .compared to t-he im-
significant reduction of performance, which in terms of roof!ISe response 2zy(t) (b). Note that for longer time Tp, covering the
mean-squarans is almost one order of magnitude (showd"an dynamics of the impulse response zu(t), the MPC and LQR
in Fig. 14). The main drawback of the constrained MPC fo!utions are equivalent.

the computational time required by the on-line optimizatio

that can be prohibitive in experimental settings.

Ta = At, at each time step the control signiék) reads

3.2.3 MPC for linear systems without constraints

For a linear system with the quadratic cost function u(k) =Kov(k). (60)
(40) but without constraints, a prediction/actuation tisog
ficiently long allows to approximate the solution of the ) )
LQR. This is not obvious from the mere comparison of thin Fig. _15(a), _the solid o!ashed _Ilne _corres_ponds _to the
continuous-time LQR-objective function, (40) and (42)danLQR gain _obtamed by solving a Riccati equgnon, while the
the discrete-time MPC-objective function, (53) and (54)t F coloured lines correspond to the unconstrained MPC solu-

a detailed discussion, we refer to [74], where the equivﬁention for different final time of predictio,. For a shorter

is demonstrated analytically. In the following, the equivaiMme Of optimizationTp = 750, red solid line) only a portion

lence is exemplified using the KS equation. of the dy_namics oﬁ’zu(i)_(see Fig. 15(b)) is contain_ed in the
When there are not imposed constraints, the optimiz APC gain. For longer t_|m_e§T(, - 1250, _blue solid Ime)_the

tion problem in (55) corresponds to a Quadratic Progra PC converges to the infinite-time horizon LQR solution.

[53]; by taking the derivative of (k) with respect ofuy (K),

we may obtaimp (k) as solution of the following least-square

problem 4 Estimation
In this section, we assume that the only information we
up(k) = —H'cH = can extract from the system is the _q\easurenyelr)t This
. signal is used to provide an estimatioft) of the state such
= — (PAWzPzu+Wy) PRLW PV (K) = that the error given by
o (59)
| v(K), et) = v(t) —V(t), (61)
KN-1

is kept as small as possible. We first derive the classical

Kalman Filter, where in addition tg(t), one requires a state-
where(-)" indicates the Moore-Penrose generalized inverspace model of the physical system. Then we discuss the
matrix, [75]. Note that this is a least square problem (ileast-mean square (LMS) technique, which only relies on the
general,M > N). If we assume an actuation time-horizormeasurement(t).



4.1 Luenberger observer and Kalman filter
The observer is a system in the following form

() =AU(t)+Byut)—L (yt)—y(t), (62) |figl6.eps
yV(v), (63)
) = Cz(t). (64)

I
0

This formulation was proposed for the first time by Luenrig 16. Kaiman estimation gain L computed for Rg = 1 and Ry =
berger in [76], from whom it takes the name. Comparing.1, (see §4.1.1). [script06.m]
this system with (18), it can be noticed that it takes into ac-
count the actuator signa(t) but it ignores the unmeasurable
inputs — the disturbanakt) and the measurement errgt). ~ calculate the variance of the st@g < R™*™ by solving the
In order to compensate this lack of information, a correctidollowing Lyapunov equation, [30]
term based on the estimatig(t ) of the measurementt) is
introduced, filtered by the gain matrix H H H
o Cs . (A+LCy)"Re+Re(A+LCy)+BygRyBg +LR,L™ =0.

The aim is to desigih in order to minimize the mag- (68)
nitude of the error between the real and the estimated staff, {15ce oRe is a measure of how much the mean value of
i.e. expression defined in (61). Taking the difference terffq orromt) differs from zero during its time evolution. One

by term bereen (18) and (62), an evolution equation for trFﬁay thus define the following cost function for the design of
e(t) is obtained, L

T

A =Tr(Re) = Jim % /4 fOet)dt,  (69)

&(t) = (A+LC)et) +Bgd(t) —Ln(t).  (65)

It can be seen that the error is forced by the disturbal(ice

and the measurement ermt), i.e. precisely the unknown where Ti(-) indicates the trace operator.

inputs of the system. With a similar approach as in Sec. 3.1, we define a La-
grangian:

4.1.1 Kalman filter .

In the Kalman filter approach both the disturban¢g AN =Tr { Re+A [(A +LCy)"Re+Re(A+LCy)+
and the measurement errdt) are modelled by white noise, H H
requiring a statistical description of the signals. Theoaut +BaRaBd +L Rl ]}70
correlation of the disturbance signal is given by (70)

4o where the Lagrangian multipliek enforce the constraint
Rg(T) £ / d(t)d"(t—1)dt. (66) given by (68). The solution of the minimization is obtained
- by the imposing the solution to be stationary respect thesthr

parameters , Re andA. The zero-gradient condition far
This function tells us how much a signal is correlated to ifives us the expression for the estimation gain,

self after a shiftr in time. For a white noise signal this func-
tion is non-zero only when a zero shifting-£ 0) in time is

_ _p1
considered and its value is the variance of the signal. Hence L =-Ri"CyRe. (71)
the correlation functions for the considered inputs sigitgl

andn(t) are The zero-gradient condition for the Lagrangian multipker

returns the Lyapunov equation in (68): combining this equa-
%4(1) =Rg3(1) and ®n(1) = Rad(1), 67) tion with (71), a Riccati equation is obtained fRg:

H _ Hp—1 H_
whereRy and R, are the variances of the two signals and A"Re+ReA —ReCy Ry "Cy +BaRBg =0. (72)

o(1) is the continuous Dirac delta function. When a system

is forced by random signals, also the state becomes a randonfrig. 16 the estimation gaih is shown, where it can be
process and it has to be described via its statistical propebserved that the spatial support is localized in the region
ties. Generally the calculation of these statistics rexpua immediately upstream of the sengoiin this region the am-
long time history of the response of the system to the raplitude of the forcing term in the estimator is the largest to
dom inputs. But for the linear system (65), it is possible teuppress estimation error. In Fig. 17 we compare the full
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Fig. 18. Impulse responses (Y — 2) of the estimator as a function of
the discrete-time. Red circles~ (o) correspond to the FIR time-discrete
Kalman-filter-based kernel ‘Ezy(i) and the blue squares (O0) to the
one identified by the LMS algorithm. [script07.m]

figl7.eps

values ofz(k). The associated FIR of this system is

Nt zy Nt zy

(9= 3 (~CAarL) kD)= 3 En(D)yk-)

(73)
where A = eAtLCY)M and £,,(i) denotes the impulse re-
sponse from the measuremenik) to the outputz(k). Note
that, since we are considering a convectively unstable sys-
tem, the sum in (73) is truncated using appropriate limits
Ni zyandNt ,y, [44]. Next, we present a method wherg(i)
is approximated directly from measurements, instead of its
construction using the state-space model.

Fig. 17. Spatio-temporal evolution of the response of the system to
a disturbance d(t) (a), compared to the estimated full-order state,
using a Kalman filter (b); the contours are shown as a function of
the streamwise direction (X) and time (t). The error-norm between
the original state and the estimated state is shown in (c). The ver-
tical blue, dashed line indicates when the estimator is turned on.
[script06.m]
4.2.1 Least-mean-square (LMS) filter
The main idea is to identify an estimated outp() Tor

state (a) to the estimated state (b) when the system is fordB8 System, by minimizing the error
by a noise signadl(t). As a result of strong convection, we
observe that an estimation is possible only after the distur Nt 2y

bance has reached the sensox at 300, since upstream of e(k) = 2(k) — z(k) = ( g E(i) y(k— i)) —z(k), (74)
this point there are no measurements. For control designiiti i=NF 2y

important that/(t) is well estimated in the region where the
actuators are placed; hence, the actuators have to be pla\%

d .
downstream of the sensors [49, 48]. erez(k) is the reference measurement. The unknown of

the problem is the time-discrete kermi}ly(i). Thus, we aim
atadapt the kernet,y(i) such that at each time step the error

4.2 Estimation based on linear filters e(k) is minimized, i.e.

A significant drawback of the Kalman filter, is that it re-
quires a model of the disturbanBg for the solution of the minez(k). (75)
Riccati equation (72). One may circumvent this issue by us- 2y
ing FIR to formulate the estimation problem. In analogue
to the formulations based LQR (model based) and on MPThe minimization can be performed using a steepest descent
(FIR based), we will compare and link the Kalman filter talgorithm [78]; thus, starting from an initial guesskat 0
a system identification technique called the Least-Squafer 2(k), %Zyis updated at each iteration as
Mean filter (LMS). Many other system identification tech-
nigue exists, the most common being the AutoRegressive-
Moving-Average with eXogenous inputs (ARMAX) em-
ployed in the work of [77].

From (62—64), we observe that the estimator-input is tivehereA(i|k) is the direction of the update andk) is the
measurement(k), while the output is given by the estimatedstep-length. Note that each iteration corresponds to ome ti

Ea(ilk+ 1) = Z4y(i[K) + HK)A(i[K), (76)
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Fig. 19. In (a) the evolution of ‘izy(i) is calculated by an adaptive
LMS filter and shown as a function of the discrete-time (iAt). The
estimation starts at t = 400Q as indicated by a blue dashed line
(- -). As the iteration progresses, the error-norm constantly reduces
(c).[script07.m]

Assuming that

Nf,zy

3 AiRy(k—i) £0 (81)

and considering (78), the optimal step length becomes

e(k)

M) = =S Ry

(82)

In Fig. 19(a), the LMS-identified kernéizy(i) is shown
as a function of time = kAt. When the LMS filter is turned
on att = 4000, the filter starts to compute the kernel, which
progressively adapts. While the iteration proceeds, tha er
decreases as shown in Fig. 19(b). In the limitTof> oo,
when a steady solution can be assumed, the kernel computed
by the LMS filter converges to the kernge}y obtained by the
Kalman filter (see Fig. 18).

The main drawback of the LMS approach is that the
method is susceptible to a numerical stability, [78]. A dsua
way for improving the stability is to bound the the step-
length u(k) by introducing an upper limit. In particular, it
can be proven that in order to ensure the convergence of the
algorithm, the following condition has to be satisfied

step. The direction can be obtained from the local gradient,

which is given by,

€M) _ ek yik—i).

M= 550

(77)

0<pk) <p= (83)

2
Ry’

where the upper-boundis defined by the variandg, of the
measurement i.e. the input signal to LMS filter.

This expression was obtained by forming the gradient of the
errore(k) with respect toz,(i) and making use of the esti-
mated outpuz(k) (73). 5 Compensator
The second variable that needs to be computed in (76) is  Using the theory developed in Sec. 3 and Sec. 4, we are

the step-lengthu(k). Consider the error at time-stégrom-
puted with the updated kerneby(ilk+ 1)

Nf.zy .
am-(z;&mw+nwww>—am—

Ni 2y (78)

= (k) +u(k) (_g A(ifk) y(k— i)) :

where (75) and (76) have been used. The step-lgudhis
calculated at each time step in order to fulfil

miné(k)?

79
H(k) (=

by imposing a zero-derivative condition with respequ(k),

Nf.zy
26(k) ( g )\(i|k)y(k—i)> =0.  (80)

now ready to tackle the full control problem (Fig. 20): given
the measurementt), compute the modulation signa(t)

in order to minimize a cost function based pft). In the

first part of this section we will focus on the LQG regulator,
that couples a Kalman filter to a LQR controller. Then we
present a compensator based on adaptive algorithms using
LMS techniques.

5.1 Linear-quadratic Gaussian (LQG) regulator

By solving the control and estimation Riccati equations
and the associated gains &ndK), we build a system that
has as an input the measuremg(th) and as an output the
control signalu(t):

U(t) = (A+ByK +LCy) 0(t) — L y(t)
u(t) = K ¥(t).

(84)
(85)

This linear system is referred to as the LQG compensator.
The estimation and control problem, discussed in the previ-
ous sections, are both optimal and guarantee stabilityras lo
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Fig. 20. Block-diagram of the closed-loop system. The compen-
sator, consisting of a controller coupled to an estimator, computes
the control signal U(t) given the measurement Y(t). The minimiza-
tion of the measurement Z(t) is the target parameter of the controller.
Note that in a feedforward controller, the output Z can be used to add
robustness to the compensator (for instance, in adaptive filters, §5.4).

fig21.eps

as the system is observable and controllable [8]. In pdaicu
the disturbance and the output have to be placed respec-
tively in they-observable and-controllable region (Fig. 8).
Under these conditions, a powerful theorem, known as the
separation principle [8], states that optimality and digbi
transfer to the LQG compensator.

The closed-loop system obtained by connecting the
compensator to the plant becomes

58] e ) 8] ] a0
Ut)| | -LCy A+BK+LCy| V(L) 0 ’
(86)
Fig. 21 shows the response of (86) when a white random
noise is considered as an inputd(t). The horizontal solid
black line in the top frame depicts the locationyo$ensor:
this signal is used to force the compensator at the locagen Gig. 21.  Spatio-temporal response in presence of a white noise in-
picted in the lower frame with a black dashed line. The comut d(t) for the closed-loop system (a) and the compensator (b); the
pensator then provides a signal to the actuator (dashek blagiurbance is shown as a function of the streamwise direction (X) and
line in the upper frame) to cancel the propagating wav@me (t). The measurement y(t), feeding the compensator, is shown
packet. We let the two systems start to interatta##000, as in (c). Att = 4000(— —), the compensator starts its action and after
depicted by the dashed blue line. As soon as the first wavshort lag the actuator is fed with the computed control signal U(t).
packet, that is reconstructed by the compensator, reaBestthe perturbation is cancelled, as shown in the contours reported in
actuation area, the compensator starts to provide a n@n-zgj§ and the output z(t) minimized (t > 5000. [script08.m]
actuation signal back to the plant. Recall that the Skéte
of the LQG compensator is an estimation of the state of the
real p!antv(t). This can be seen by comparing Fig. 21(aj , Proportional controller with a time delay
and Fig. 21(b); downstream of the sengdhe state of the
compensator matches the controlled plant.

One may ask how a simple proportional controller com-
) ) ) pares to the LQG for our configuration. In a proportional
Optimal controllers were applied to a large variety ofompensator, the control signalt) is simply obtained by
flows, including oscillator flows, such as cavity and cylinde myltiplying the measurement signt) by a constan®. Be-
wake flow, where the dynamic is characterized by selfayse of the strong time delays in our system, one needs to
sustained oscillations at well-defined frequencies, s8¢ [2introduce also a time-delaybetween the measuremai(t)

Note thatv(t) and¥(t) have the same size: if complex sysand the control signal(t). The simplest control law for our
tems are considered, a full-order compensator can be cogjstem is

putationally demanding [65]; model reduction and compen-
sator reduction enable to tackle these limitations andgdesi
low-order compensators, see Sec. 6. ut)=Pyt—r1), (87)
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Fig. 22. The rmsvelocity as a function of the streamwise location  Fig. 23. Robustness to uncertainties of the system: the actuator is
X is shown for the uncontrolled case (=), the LQG (—), the LQR  dispaced of 5 length units from its nominal position. The performance
(= —) and the opposition controller P — T (—). [script08.m, of the adaptive filter FXLMS (— — and - —) are compared to the
script09.m] LQR (— —), LQG (—) and P-T (—) compensators; as a reference,
the uncontrolled case is shown (—). The rMS-velocity is shown as a
function of the streamwise direction (X). The adaptive filter performs
reasonably well in presence of un-modelled dynamics; ~the perfor-
mances are enhanced by the use of a on-line identified P,y (— —).
The performances of the LQG (—) and P-T (—) compensators are

where the “best” gairP and the time-delay can be found
via a trial-and-error basis (in our case= 250 andP =
—0.5432). This technique is also similar to opposition co
.tr0| [79], .Where blowing and SUCtIO.n IS applled at the Walsignificantly reduced (compare with Fig. 22).[script10.m]
in opposition to the wall-normal fluid velocity, measured a
small distance from the wall.

In Fig. 22, we compare the velocityns obtained with

LQG compensator (red) ang-t compensator (green). It

can be o_bserved _that although both techniques reduc_e_ H??he original signal. This will in turn cause a mismatch be-
perturbation amplitude downstream of the actuator p(m't'?ween the wave that is meant to be cancelled and the wave

(x= A(ijO), fthe pg:fo(jrms nt(Ee (t):] thethLQG regt{latolr IS I;realrgreated by the actuator, thus resulting in an ineffectiveava
an order of magnitude better than the proportional Coretroll -, - 1ation — in the worst case, it may result in an amplifi-

This can pe mainly attributed to the additional degrees QLion of the original wave.
freedom given by then, x n, LQG feedback gains, as op-
posed to the two-degree freed®m t controller. Indeed, the As shown in Fig. 23, when we displace the actuator
LQG gains are computed assuming an accurate knowledgéwther downstream by 5 spatial units and apply the com-
the state-space model. Also shown (dashed-solid linekis thensator designed for the nominal condition to this modi-
full-information LQR control whose performance is compafied system, the performance of the LQG regulator deterio-
rable the partial-information LQG controller: the diffei rates. Since, the compensator provides a control signal tha
between the two is due to the difference between the esti-meant to be applied in the nominal position of the actuator
mated statél(t) and the real state(t), i.e. the estimation the control signal is not able to cancel the upcoming distur-
errore. bance. Essentially, we are suffering from the lack of robust
ness of the feedforward configuration, since the sensor can-
not measure the consequence of the defective actuatot.signa

5.3 Model uncertainties Ehere are different means to address this issue.

The LQG compensator is based on coupling an LQ
controller and a Luenberger observer. Both of them are based One can combine the feedforward configuration with a
on a model of the system and, as a consequence, their effeedback action, in order to increase robustness. This can
tiveness is highly dependent on the quality of the model ibe accomplished using the second sezsedownstream of
self. Any difference between the model and the real platiie actuator — in combination with the estimation sensor
can cause an abrupt reduction of the performances of th@laced upstream of the actuator. The combination of feed-
compensator [80,49]. Model error can be attributed to, fdrack and feedforward is the underlying idea of the MPC con-
example, nonlinearities due to the violation of the smaitt petroller applied to our configuration [27]. However, there ar
turbation hypothesis, nonlinearities of the actuator or-sesome drawbacks due to the computational costs of the al-
sors/actuators shape and positioning. gorithm; indeed, the entries of the dynamic matrix (51) are

The robustness problem can be illustrated using a simglemputed during the prediction-step using time integmatio
example. Suppose that one wants to cancel a travelling wavbose domain increases with the time-delays of the system.
with a localized actuator; what one should do is to generatéus, the integration and the dimensions of the resulting ma
a wave that is exactly counter-phase with respect to the origices can represent a bottleneck for the on-line optironat
inal one. Suppose that exact location of the actuationmactidn alternative is the use of an adaptive algorithm, which
is difficult to model. Shifting the actuator position slights adapts the compensator response according to the informa-
equivalent to adding an error in the estimation of the phasien given byz(t), as shown in the next section.



5.4 Filtered-X least-mean square (FXLMS)

The objective of FXLMS algorithm is to adapt the re-
sponse of the compensator based on the information given
by the downstream outpat The first step of the design is to
describe the compensator in a suitable way in order to mod fig24.eps
ify its response. The FXLMS algorithm is based on a FIR
description of the compensator. Recall again that the comj
pensator is a linear system (input is the measurem@nt
and output is the control signalt)), which in time-discrete
form can be represented by,

Fig. 24. Robustness to uncertainties of the system: FXLMS control

o Nuy o~ o o o
u(k) = T K— i)~ T K_ i gg) 9ain %y(l) (0) is shifted along the time-discrete coordinate if com-
( ) le %y(J) Y( J) jzl %y(J) y( 1)7 ( ) pared to the static LQG gain (o) to compensate for the un-modelled

shift in actuator position. [script10.m]

whereicuy(j) is a time-discrete kernel. Due to the stability of

the system, we havgyy(j) — 0 ast — o, so that the sum can which can be simplified by introducing the filtered signal
be truncated afteMyy steps. In the case of LQG compensatoy; k),

Kuy has the form

~ 00 Nt zu
Kuy(j) = K exp[(A+LCy+BuK) At (j—1)]L yi (k) = Z}f}zu(i) y(k—j—i)~ g Po(i) y(k—i) (92)
1= 1=Ni, zu
fori=1,2,... The kernelfmy(j) of the LQG controller is
shown with red circles in Fig. 24. In this cably = 533,
which gives| &uy(j)| < 1072 for j > Nyy.
The FXLMS technique modifies on-line the kerne
Kuy(j) in order to minimize the square of measuremgnjt

Note that a FIR approximation Qf’zu(i) has been used.
|—|ence, the expression in (91) becomes,

at each time step, [23], i.e A(jlk) = =2z(k) yr(k— ). (93)
&Ti(rj‘)zz(k)- (89) In order to get the descend direction, the measurery(ent
y

is filtered by the plant transfer functiam,(i).

. ' _ Starting the on-line optimization from the compensator
The procedure is closely connected to the LMS filter d'?('ernelﬂby(j) given by the LQG solution, the algorithm is

cussed in Sec. 4.2.1 for the estimation problem. The kerngli- 4 o our problem. In Fig. 23 we observe that the algo-

Kuy(]) is updated at each time step by a steepest-descgmm is able to recover some of the lost performance of LQG

method: (due to shift in actuator position) and it is comparable ® th
-~ . -~ . full-information control performed by the LQR controller
Kuy(j[k+1) = Kuy(j[K) + HK)A(j[K) (90)  with the nominal gairk. This is possible because of the
adaptation of the kernétuy(j), to the new actuator location.
wherep(k) is calculated from (82) andl( j|k) is the gradient Fig. 24 shows how the convolution kernel has been modi-
of the cost functiore(k) with respect of the control gainsfied by the algorithm; the kernel is shifted in time in order
Kuy(]). In order to obtain the update direction, consider th® restore the correct phase shift between the control kigna
time-discrete convolution far(k), u(t) and the measurement sigyd) in the modified system.
The shift in time between the two peaks (visible in the inset
~ . _ 2~ . figure) is exactly the time that it takes for the wave-packet
2(k) - Pzoli) d(k—1) +_;?Z”(') uk—i)= to cover the additional distance between the sensor and the
- Ny actuator. Recalling from Sec. 2, that the wave-packet save

E)Zd(i) d(k— I) + %i’zuo) %iuy(” y(k— i— J) _ with aspeed/ =0.4, it will takeAxu/V = 5/04: 12.5time
= =

8

QJ\[]8 Il

units to cover the extra space betwesandy.
From (91), it can be noted that the FXLMS is not com-

|
o Nuy . - . )
=5 P(i) dk—1)+ Y Kuy(] P,(i) y(k— j—i). _pletely independent from a model of the system; in fact the
i; =) ) JZO ) iZo ) ¥ ) lconvolution kernelp,(i) is needed to compute the gradient
A(j|k) used by the algorithm. In the previous example, the
From this expression it is possible to obtain the gradient nominal transfer function has been used, given by the model
of the plant

8

2 ~
A(jlk) = —% =—22K) 3 Pali)y(k—j—i), (91) Po(i) = C,M-DB =12 . (94)



cation technique; then the validated reduced-order madel i
used to design a low-order compensator. The dual approach
is called design-then-reduce or compensator reductight(ri
part of Fig. 25). In this case, a high-order compensator is
designed as first step (if possible). The second step is the
reduction of the compensator to a low-order approximation.

Both the approaches lead to a low-order compensator
that can be used to control the full-order plant, but they are
not necessarily equivalent [82]. | the reduce-then-deafgn
proach, we neglect a number of states during the model-order
reduction of the open loop, that might become important for
the dynamics of the closed-loop system. Despite these lim-
itations, the reduce-then-design approach is the most com-
Fig. 25. Two strategies are possible to compute a reduced-order  mon in flow control due to its computational advantages; in-
compensator, reduce-then-design an design-then-reduce. In gen-  deed, the challenge of designing a high-dimensional com-
eral, the two paths do not lead at the same results. pensator to be reduced strongly limits this alternative.

fig25.eps

One may obtained a kerné*zu(i) that is totally indepen- Model reduction. Following the reduce-then-design ap-
dent by the model — thus without any assumption on placgroach, the first step consists of identifying a reducedord
ment/shape of both actuator and sensors — by using the LiM®del, typically reproducing the 1/O behaviour of the sys-
identification algorithm derived in Sec. 4.2.1. In Fig. 23 wtem. We can distinguish two classes of algorithms. The
comparer,(i) obtained from (94) using inaccurate statefirst category is based on a Petrov-Galerkin projection of
space model (since actuator position has shifted) (salig)bl the full-order system. In this case, the 1/O behaviour of
with 2,,(i) obtained by model-free identification using LMSthe system is reconstructed starting from a low-order ap-
technique (dashed blue). We observe that when combinipgpximation of the state-vectox, characterized by a num-
adaptiveness with a more accurate model-free identificatiber of degree of freedom < n; the projection can be
of #,(i), the performance is improved significantly. performed on global modes [83], proper orthogonal modes
Note that this algorithm when applied to flows domi{POD), obtained from the diagonalization of the controlla-
nated by convection, and thus characterized by strong tintélity Gramian (see Sec. 2.6), or balanced modes, for which
delays, results in a feedforward controller where the feethe controllability and observability Gramians are equad a
back information is recovered by the processing of the me@iagonal [84, 85, 30]. This strategy has been widely used in
surements irz. This method is known to aactive noise can- the flow-control community in the past years for the iden-
cellation[23, 81]. We can identify two time scales: a fastification of linear [83, 86, 35, 87, 88] and nonlinear mod-
time-scale related to the estimation process and a slow tin@ds [89,90,91]. In particular, when nonlinear effects ara-c
scale related to the adaptive procedure [47]. For this reaséidered, it is necessary to take into account the effectethat
this method is suitable for static or slowly varying modekdi finite disturbance in the flow has on the base-flow, as shown
crepancies. by [89] for a cylinder wake flow. At low Reynolds num-
bers, a small number of modes are sufficient to reproduce
the behaviour of oscillators such as the cylinder wake, evhil
6 Discussion a larger number of modes is required to reproduce the 1/0

In this section, we discuss a few aspects that have Rghaviour of convective unstable flows. This is mainly due
been addressed so far, but are important to apply the pf@he presence of strong time-delays, [8], that charateri
sented techniques to an actual flowing fluid. Many other ini0is type of systems, Sec. 2.5.
portant subjects such as choice of actuator and sensors, non The second approach stems from the 1/O analysis of the
linearities and receptivity are not covered by this dismrss formal solution carried out in Sec. 2.5; we note that a low-

order representation of the transfer function is enougleto r
Low-order control design. The discretization of the construct the I/O behaviour of the system. The computa-
Navier-Stokes system leads to high-dimensional systeats tfion of this representation can be performed applysyg-
easily exceed 0degrees of freedom. For instance, théem identificatioralgorithms [19]. Once the transfer func-
full-order solution of Riccati equations for optimal cooitr tions are identified, one constructs a reduced-order madel i
and Kalman filter problems cannot be obtained using staganonical form. These techniques were widely used for ex-
dard algorithms [59]. One common strategy is to replad€rimental investigations (see e.g. [25, 24]) and have been
the high-dimensional system with a low-order system able tgcently applied also in numerical studies [92, 77]. Indeed
reproduce the essential input-output dynamics of themaigi for linear systems, it can be shown that projection-based
plant. This approach s referred to as reduce-then-de8&jn [techniques and system identification techniques can peovid
(left part of Fig. 25). First, a reduced-order model is identequivalent reduced-order models [93]. We refer the reader t
fied using an appropriate model reduction or system identite reviews by [29] and [31] for a broader overview.



7 Summary and conclusions

This work provides a comprehensive review on standard
model-based techniques (LQR, Kalman filter, LQG, MPC)
fig26.eps and model-free techniques (LMS, X-filtered LMS) for the
delay of the transition from laminar to turbulence. We have
focussed on the control of perturbation evolving in convec-
tive flows, using the linearized Kuramoto-Sivashinsky equa
tion as a model of the flow over the flat-plate to characterize
Fig. 26. Control configuration for a three dimensional (3D) flow de- gnd compare these techniques_ Indeed, this model provides
veloping over a flat plate. A possible configuration consists of local-  the two important traits of convectively unstable fluid sys-
ized sensors and actuators placed along the spanwise direction. tems, namely, the amplifying behaviour of a stable system

and a very large time delay.
Much research have been performed on flow control us-

Control of three-dimensional disturbances. A sketch of ing the very elegant techniques based on LQR and LQG,
the three-dimensional control setup of the flow over a flaf3o, 94, 48]. Although, these techniques may lead to the
plate is shown Fig. 26. Compared to the 2D boundary-layggst possible performance and they have stability guaran-
flow a single actuatou, sensory and outpuz are now re- tees (under certain restrictions), their implementatiogx-
placed by arrays of elements localized along the span-wisgrimental flow control settings raises a number obstacles:
direction, resulting in a multi-input multi-output (MIMO) (1) The choice of actuator and sensor placement that yields
system. The localization (size and distance between e good performance of convectively unstable systems re-
mgn_ts) of sensors and actuators may significantly ipflueng@ns in a feedforward system. We have highlighted the ro-
efficiency of the compensator [88] and [94]. An imporysiness issues arising from this configuration when using
tant question one must address for MIMO systems is haWandard LQG-based techniques. (2) Disturbances, such as
to connect inputs to outputs. A first approach consists ghe-stream turbulence, and actuators, such as plasma: actu
coupling one actuator with only one sensor (for instancgys can be difficult to model under realistic conditior) (
the one upstream); in this case, the number of single-inpHe requirement of solving two Riccati equations is a major
single-output (SISOgontrol unitsequals the number of sen-compytational hassle, although it has successfully been ad
sor/actuator pairs. This approach is calleecentralized yressed by the community using model-order reduction tech-
control-design; despite its simplicity in practical implen- niques [35] or iterative methods [65].
tations, the stability in closed loop is not guaranteed T8je Model-free techniques based on classical system-

dual approach where only one control-unit is designed aﬂﬂentification methods or adaptive-noise-cancellatiarnte

all the sensors are coupled to all the avall_able actuatorsnli:aueS can cope with the limitations of model-based meth-
calledcentralizedcontrol. In [88], the centralized-controller

ods, [23]. For example, we have presented algorithms that

strategy was found necessary for the design of a stable -Ii-l$|'prove robustness by adapting to varying and un-modelled

wave controller. The main drawback of a fully Central'zedéonditions. However, model-free techniques have their own

control approach is that the number_of conn_ections fora ﬂf%itations; (i) one may often encounter instabilities, ot
pl_a_te of large span qwcl_dy becomes |rr_1pract|cal d_ueto all th‘n contrast to LQR/LQG, cannot always be addressed in a
erlllng. One nr’:ay then I|Introduceseml-ldec_entrallzdedqn- straight-forward manner by using concepts such as control-
troller [95], where small MIMO control-units are eSIgneqability and observability. (i) The number of free paraeret

and connected to each other; in [95], it is shown that & nurf, .y a5 the limits of the sums appearing in FIR filters) that

ber of coptrol—gn!ts can efficiently replace a full centzali need to be modelled are many and chosen in a somewdhat
control with a limited lost of performance. hocmanner

Another important aspect that has be accounted forin a The conclusion is that there does not exist one single

M!l\/_IO_set.tlng, is the ch0|_ce of the OF’leCt'Ve functm._nThe method that is able to deal with all issues, and the final @&oic
m|n|m|_zat|on of a set of signals obtained from localized-ou epends on the particular conditions that must be addressed
puts W'th. compact supportdoes not_necessa_mly COmespoNnGliie 4 model-based technique may provide optimality and
a reduction of the actual perturbation amplitude in a globﬁ sical insight, it may lack the robustness to uncertanti
lsens”e ' Flor 1D ar;]d 2D|fcljow sl?/ste(;nj any measu.rerr;]ent talfﬁﬁ adaptive methods are able to provide. We believe that fu
ocally, close to t € solid watl an ovv_ngream n the comy, e research will head towards hybrid methods, where con-
putational domain, is sufficient for obtaining consistebey trollers are partially designed using numerical simulasio

tween the perturbation and signal minimization [35]; tsis iy partially using adaptive experiment-based techniques
not the case for 3D systems. An optimal way for choos-

ing the outputC; is theoutput projectiorsuggested by [85],

where a projection on a POD basis is performed. The result-

ing signalz(t) corresponds to the amplitude coefficients oficknowledgements

the POD modes, i.e. the temporal behaviour of the most en- The authors acknowledge support the Swedish Research
ergetic coherent structure of the flow. This method can al&€ouncil (VR-2012-4246, VR-2010-3910) and the Linné
provide useful guidelines for the location of output sessor Flow Centre.
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whereVi(t) = V/(x,t) fori = 1,2,...,ny. The outflow bound- scri pt 02. m External description. An alternative de-
ary conditions in (10) on the right boundary of the domaiscription of the system, based on the Input/Output behawibthe

lead to the linear system of equations, system is calculated. In particular, the response of theesyss
calculated via a FIR filter and compared with the LTI system de

scription, i.e. internal description.

ov 1
= =0 = Y &V t)=0 () . N .

OX | i3 scri pt 03. m Controllability and observability Grami-
B 2 ans. The controllability and observability Gramians are com-
b - c. () = uted solving the Lyapunov equations in (33-34).

53 X:L_o = j;zdg,, Vatjt)=0 (97) P g the Lyap g (33-34)

scri pt 04. m Linear-Quadratic Regulator. A LQR con-

The solution of this system allows us to express the bounddf§/'€" i applied to the plant and tested when the systemaseazi

nodes = n, - 1.ny - 2 as a linear combination of the inne'by a white Gaussian nois#{t). The statistics of the velocity are
SV e computed and visualized in order to be compared to the othrer ¢

nodes. Similarly, the left boundary condition in (11) le&als trolled cases

an expression for the nodes- 0, —1: '

scri pt 05. m Model Predictive Control. Constrained
(t)=0 (98) MPC is used in presence of saturation of the actuator. The sys
3 tem is excited by a white Gaussian not¢). The statistics of the
z df v (t)=0 (99) Velocity are computed and visualized in order to be compaeiit
1,j YO+]j
1 the other controlled cases.

v
0x x=0

\/‘X:O =0 = \/0
i=

where a forward FD scheme is used for the first-order deriva® rk: ptIOG. n:j Kal(;nan filter. ﬁ‘ Kalman filter is rc\iesig;ngd

tive approximation. Equation (95) together with the bound?" e plant and used to estimate the system state whereeajt
o . . a white Gaussian noigit).

ary conditions can be rewritten in compact form as

scri pt 07. m Least-Mean Square filter A LMS filter is

V(t) =Av(t) +Bqd(t) +Buu(t) used to identify the FIR-kerndl,,. The resulting kernel is com-
pared with the Kalman filter solution.

whereBg = {bq(xi)}, Bu = {bu(x)} and the matrixA € . ) . .
R™*v is a banded matrix (see also (18)). scri pt 08. m Linear-Quadratic Gaussian compensator

The Crank-Nicolson method is used to march the systef-QC compensator is designed coupling a LQR controller and a
forward in time (18). Given a time stelit, the value of the Kalman filter. The compensator is tested when the systentiteex

statev(t + At) is given by the expression: by & white Gaussian noist).

script09. m P —1 compensator. A simple opposition

v(t+At) = CN; L [CNE V(L) + At (Bgd(t) + Byu(t))] control is designed using explicitly the time-delay. Theteyn is
(100) excited by a white Gaussian noigé). The control gain has been
whereCN, =1 — %A andCNg =1+ %A, Thisis animplicit obtained by a trial and error procedure.
method, i.e. requires the solution of the linear sys@mfl, . ] .
and this operation can be numerically expensive. scri pt 10. m Filtered-X Least-Mean Square algorithm

FXLMS algorithm is implemented. The initial condition isgpr
vided by the impulse response of the corresponding LQG campe

B Numerical code sator; a robustness test is carried by displacing the axctlogiation.

A downloadable package of the MATLAB routines

used to produce the results presented in this paper canfi98owing functions are required by the above scripts:

found athttp://www.mech.kth.se/ ~nicolo/ks/ . The o _
11 scripts listed below cover all the methods that are ptesein [ A X, 1] = KSdnit(nq) Giventhe number of degree of
this work. freedomny, it provides the state matri& obtained by a FD dis-

cretization of the spatial derivatives. Five grid-poinérstil FD
scri pt 00. m Time evolution of a spatially localized ini- Schemes are used: in particular, a one grid point de-cehsefeeme
tial condition. The time response of the plant to a GaussiarlS USed to enhance the stability of the numerical solution.
shaped initial condition is calculated: the generated waaeket
travels downstream while growing and is detected by thewsgp d = fd_coeff(n, dx) Itprovides the FD coefficients used
andz The spatio-temporal time evolution wfx,t) is plotted to- Py KS.init
gether with the output signals.

script0l. m Response to a white Gaussian distur-
banced(t). A white noise signal is considered as ingigt) and
the time-response of the plant is calculated. The staistiche
velocity are computed and visualized for comparison withabn-
trolled cases.



