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Research on active control for the delay of laminar-turbulent
transition in boundary layers has made a significant progress
in the last two decades, but the employed strategies have
been many and dispersed. Using one framework, we review
model-based techniques, such as linear-quadratic regulators,
and model-free adaptive methods, such as least-mean square
filters. The former are supported by a elegant and powerful
theoretical basis, whereas the latter may provide a more prac-
tical approach in the presence of complex disturbance envi-
ronments, that are difficult to model. We compare the meth-
ods with a particular focus on efficiency, practicability and
robustness to uncertainties. Each step is exemplified on the
one-dimensional linearized Kuramoto-Sivashinsky equation,
that shows many similarities with the initial linear stagesof
the transition process of the flow over a flat plate. Also, the
source code for the examples are provided.

1 Introduction
The key motivation in research on drag reduction is to

develop new technology that will result in the design of ve-
hicles with a significantly lower fuel consumption. The field
is broad, ranging from passive methods, such as coating
surfaces with materials that are super-hydrophobic or non-
smooth [1], to active methods, such as applying wall suction
or using measurement-based closed-loop control [2]. This
work positions itself in the field of active control methods
for skin-friction drag. In general, the mean skin friction of a
turbulent boundary layer on a flat plate is an order of magni-
tude larger compared to a laminar boundary layer. One strat-
egy to reduce skin-friction drag is thus to push the laminar-
turbulent transition on a flat plate downstream [3]. Differ-
ent transition scenarios may occur in a boundary layer flows,
depending on the intensity of the external disturbances act-

ing on the flow, [4]. Under low levels of free-stream turbu-
lence and sufficiently far downstream, the transition process
is initiated by the linear growth of small perturbations called
Tollmien-Schlichting (TS) waves [3]. Eventually, these per-
turbations reach finite amplitudes and breakdown to smaller
scales via nonlinear mechanisms [5]. However, in presence
of stronger free-stream disturbances, the exponential growth
of TS waves are bypassed and transition may be directly
triggered by the algebraic growth of stream-wise elongated
structures, called streaks [4]. One may delay transition by
damping the growth of TS waves and/or streaks, and thus
postpone their nonlinear breakdown. This strategy enables
the use of linear theory for control design.

Fluid dynamists noticed in the early 90’s, that many of
the emerging concepts in hydrodynamic stability theory al-
ready existed in linear systems theory [6, 7]. For example,
the analysis of a system forced by harmonic excitations is
referred to as signalling problem by fluid dynamicists, while
control theorists analyze the problem by constructing a Bode
diagram, [8]; similarly, a large transient growth of a fluid
system corresponds to large norm of a transfer function and
matrix with stable eigenvalues can be called either globally
stable or Hurtwitz, [5,9].

However, the systems theoretical approach had taken
one step further, by “closing the loop”, i.e providing rigorous
conditions and tools to modify the linear system at hand. It
was realized by fluid dynamists that the extension of hydro-
dynamic stability theory to include tools and concepts from
linear control theory was natural [10, 11, 12]. A long series
of numerical investigations addressing the various aspects of
closed-loop control of transitional [13, 14, 15] and turbulent
flows [16,17,18] followed in the wake of these initial contri-
butions.

At the same time, research on active control for transi-



tion delay has been advanced from a more practical approach
using system identification methods [19] and active wave-
cancellation techniques [20]. Most work (but not all) is ex-
perimental, which due to feasibility constraints, has favoured
an engineering and occasionallyad hocmethods. One of the
first examples of this approach is the control of TS waves in
the experiments by [21] using a wave-cancellation control;
the propagating waves are cancelled by generating perturba-
tions with opposite phase. This work was followed by num-
ber of successful experimental investigations [22, 23, 24,25]
of transition delay using more sophisticated system identifi-
cation techniques.

Whereas both numerical and experimental approaches
have pushed forward flow control research, they have in a
large extent evolved disconnected from each other; the sys-
tems control theoretical approach has provided very impor-
tant insights into physical mechanisms and constraints that
has to be addressed in order to design active control that is
optimal and robust, but most work has stayed at a proof-
of-concept level and have not yet been fully implemented
in practical applications. Although, there are exceptions
[26, 27], the majority of experimental active control has es-
sentially suffered from the opposite; most controllers arede-
veloped directly in the experimental setting on a trial-and-
error basis, with many tuning parameters, that have to be
chosen for each particular set-up.

This review aims at presenting model-based and model-
free techniques that are appropriate for the control of TS
waves in a flat-plate boundary layer. We compare and link
the two approaches using a linear model, that similar to the
linearized Navier-Stokes equations, exhibits a large transient
amplification behaviour and time delays. This presentationis
unavoidably influenced by the authors background and pre-
vious work; complementary reviews on flow control can be
found in [2, 28, 29], where the linear approach is analyzed,
and in the reviews by [30, 31], focussed on the identifica-
tion of reduced-order models for the linear control design.
Finally, we refer to [32,33,34] for a broader prospective.

1.1 The control problem
Consider a steady uniform flowU∞ over a thin flat plate

of lengthL and infinite width. Inside the two-dimensional
(2D) (Blasius) boundary layer that develops over the plate,
we place a small localized disturbance (denoted byd in
Fig. 1) of simple Gaussian shape; the set-up is the same as
in [35] and the simulation is performed using a spectral code
[36]. Fig. 2 summarizes the spatio-temporal evolution of the
disturbance. It shows a contour plot of the stream-wise com-
ponent of the perturbation velocity at a wall normal position
Y = δ∗(0), whereδ∗(X) is the displacement thickness of the
boundary layer. The temporal growth of this disturbance is
determined by classical linear stability theory (i.e. eigenvalue
analysis of the linearized Navier-Stokes equations). Suchan
analysis reveals that asymptotically a compact wave-packet
emerges – a TS wave-packet – that grows in time at an expo-
nential rate while travelling downstream at group velocityof
approximatelyU∞/3. This disturbance behaviour is observed

fig01.eps

Fig. 1. Scheme of a Blasius boundary-layer flow developing over

a flat plate. A disturbance modelled by d grows exponentially while

convected downstream. The actuator u is used to attenuate the dis-

turbance before it triggers transition to turbulence; the actuation sig-

nal is computed based on the measurements provided by the sensor

y. The output z, located downstream of the actuator, estimates the

efficiency of the control action.

as long as the amplitude is below a critical value (usually a
few percent ofU∞) [5]. Above the critical value, nonlinear
effects have to be taken into account; they eventually result in
a break down of the disturbance to smaller scales and finally
to transition from a laminar to a turbulent flow [5]. However,
the key point – that enables the use of linear theory for transi-
tion control – is that the disturbance may grow several orders
of magnitude before it breaks down.

Using a spatially localized forcing (denoted byu in
Fig. 1) downstream of the disturbance, one may modify the
conditions in order to reduce the amplitude of the wave-
packet and thus delay the transition to turbulence. Physically
this forcing is provided by devices calledactuators. An ex-
ample of an actuator is a loudspeaker that generates short
pulses through a small orifice in the plate. The volume of the
loudspeaker and the shape of the orifice determines the type
of actuation. Another example is plasma actuators, where a
plasma arch is used to induce a forcing on the flow [37].

In closed-loop control, a sensor (denoted byy in Fig. 1)
is used to measure the disturbance that is meant to be can-
celled by the actuator(u): based on these measurements
one computes the actuator action in order to effectively re-
duce the amplitude of the perturbation. Examples of sen-
sors include pressure measurements using a small micro-
phone membrane mounted flush to the wall, velocity mea-
surements using hot-wire anemometry near the wall or shear-
stress measurements using thermal sensors (wall wires). Fi-
nally, we place a second sensor (denoted byz in Fig. 1)
downstream of the actuator to measure the amplitude of the
perturbation after the actuator action. The minimization of
this output signal may serve as an objective of our control
design, but the measurements also provide a means to assess
the performance of the controller.

Having introduced the inputs and outputs, the control
problem can be formulated as the following: given the mea-
surementy(t), compute the modulation signalu(t) in order
to minimize a cost function based onz(t). The system that
when given the measurementy(t), provides the control sig-
nal u(t) is referred to as thecompensator. The design of the
compensator has to take into account competing aspects such
as robustness, performance and practical feasibility.
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Fig. 2. Response to a small, localized initial condition in a Blasius

boundary-layer flow. A Tollmien-Schlichting wave-packet emerges

and grows exponentially while propagating downstream. Contours

of the streamwise component of the velocity are shown as a function

of the streamwise direction (x) and time (t). The location along the

normal-direction y is chosen in the vicinity of the wall.

The objective of this review is to guide the reader
through the steps of compensator design process. We will
exemplify the theory and the associated methods on a one-
dimensional (1D) model based on the linearized Kuramoto-
Sivashinsky (KS) equation (presented in Sec. 2). The model
reproduces the most important stability properties of the flat-
plate boundary layer, but it avoids the problem of high-
dimensionality and thus the high numerical costs. In Sec. 3
full-information control problem is addressed via optimal
control theory; linear quadratic regulator (LQR) and model-
predictive controller (MPC) strategies are derived and com-
pared. The disturbance estimation problem is addressed in
Sec. 4, where classical Kalman estimation theory and least-
mean-square techniques will be introduced and compared.
The techniques of sections Sec. 3 and Sec. 4, will be com-
bined in order to design the compensator in Sec. 5. This
section also contains adaptive algorithms that enhance the
robustness of the compensator. The review finalizes with a
discussion Sec. 6 about some important features characteriz-
ing the control problem when applied to three-dimensional
(3D) fluid flows and conclusions Sec. 7.

2 Framework
We first introduce our choice of model KS equation, in-

puts (actuators/disturbances) and sensors. This is followed
by a presentation of concepts pertinent to our work, namely
the state-space formulation (Sec. 2.4), transfer functions and
finite-impulse response (Sec. 2.5), controllability and ob-
servability (Sec. 2.6), closed-loop system (Sec. 2.7) and ro-
bustness (Sec. 2.8). This chapter contains the mathematical
ingredients that will be used in the following sections.

2.1 Kuramoto-Sivashinsky model
In this paper, we focus our attention on flows dominated

by convection/advection, where disturbances have negligi-
ble upstream influence and are quickly swept downstream
with the flow. We make use of a particular variant of the KS

equation to model a linear and convection-dominated flow.
Originally, the KS equation was developed to describe the
flame front flutter in laminar flames, [38, 39]. This model
exhibits in its space-periodic form a spatio-temporal chaotic
behaviour, with some similarities to turbulence [40]. The
standard KS equation reads

∂ṽ
∂t̃

+ ṽ
∂ṽ
∂x̃

=−η
∂2ṽ
∂x̃2 −µ

∂4ṽ
∂x̃4 , (1)

where t̃ is the time, ˜x ∈ [0, L̃) the spatial coordinate and
ṽ = ṽ(x̃, t̃) the velocity. The boundary conditions accompa-
nying (1) are periodic in ˜x. The second term on the left side
in (1) is the nonlinear convection term, while on the right side
two viscosity terms appear. The two latter terms may be as-
sociated to the production and dissipation of energy at differ-
ent spatial scales. In particular, the second-order derivative
term is related to the production of the energy via the variable
η, calledanti-viscosity, while the dissipation of the energy is
connected to the fourth-order derivative term, multipliedby
thehyper-viscosity µ, [41].

Equation (1) can be rewritten such that it is parametrized
by a Reynolds-number-like coefficient. Introducing a ref-
erence length̃l and a reference velocitỹV, define the non-
dimensional positionx, velocityv and timet by

x=
x̃

l̃
, v=

ṽ

Ṽ
, t =

Ṽ

l̃
t̃. (2)

Applying the transformation to (1), the KS equation in di-
mensionless form becomes

∂v
∂t

+ v
∂v
∂x

=−
1
R

(

P
∂2v
∂x2 +

∂4v
∂x4

)

, (3)

wherex∈ [0,L). The parametersR andP are defined as

R =
Ṽ l̃3

µ
, P =

η
µ

l̃2, (4)

whereR takes the role of the Reynolds numberReδ∗ , andP
regulates the balance between energy production and dissi-
pation.

We assume that the system is sufficiently close to a
steady solutionV(x) = V. Then, it is possible to describe
the dynamics of perturbations using the linearized KS equa-
tion. For the chosen parameters, the steady solution is stable,
but an external perturbation may be amplified by an order-
of-magnitude before it dies out (this requires non-periodic
boundary conditions in the streamwise direction as we im-
pose below). Introduce the perturbationv′(x, t)

v(x, t) =V + εv′(x, t), (5)
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Fig. 3. The real frequency ωr and its imaginary part ωi are shown

as a function of the spatial frequency α, in (a) and (b), respectively.

The relation among the spatial and temporal frequencies is given by

the dispersion relation (8). Positive values of ωi characterize unsta-

ble waves (grey region).

whereε ≪ 1. By inserting this decomposition into (3) and
neglecting the terms of orderε2 and higher, the linearized KS
equation is obtained

∂v′

∂t
=−V

∂v′

∂x
−

1
R

(

P
∂2v′

∂x2 +
∂4v′

∂x4

)

. (6)

It is the convective and amplifying properties of this non-
normal system that makes it a good model of the 2D Blasius
boundary layer flow. Following [42], we analyze the stability
properties of (6), by assuming travelling wave-like solutions:

v′ = v̂ ei(αx−ωt), (7)

whereα ∈ R andω = ωr + iωi ∈ C. Substituting (7) in (6),
a dispersion relation between the spatial wave-numberα and
the temporal frequencyω is obtained

ω =V α+ i

(

P

R
α2−

1
R

α4
)

. (8)

This relation is shown in Fig. 3 forR = 0.25,P = 0.05 and
V = 0.4. The parameters are chosen to closely model the
Blasius boundary layer atReδ∗ = 1000. The imaginary part
of the frequencyωi is the exponential temporal growth rate
of a wave with wave-numberα. In (8) it can be observed that
the term inα2 (associated to the production parameterP ), is
providing a positive contribution toωi , while theα4 term (re-
lated to the dissipation parameterR ), has a stabilizing effect.
The competition between these two terms determines stabil-
ity of the considered wave. From Fig. 3, it can be observed
that for an interval of wave-numbersα, ωi > 0, i.e. the wave
is unstable. The real partωr determines the phase speed of
the wave in thex direction,

c,
ωr

α
=V. (9)

fig04.eps

Fig. 4. Response to a small, localized initial condition in a 1D

KS flow (6) with R = 0.25, P = 0.05 and V = 0.4. The con-

tours are shown as a function of the streamwise direction (x) and

the time (t). The initial condition triggers a growing and travelling

wave-packet, similar to the 2D boundary-layer flow shown in Fig. 2.

[script00.m] .

Note that the phase speedc is independent ofα, in contrast
to the boundary-layer flow, which is dispersive [5].

2.2 Outflow boundary condition
So far in our analysis we have assumed periodic bound-

ary conditions for the KS equation. As we are interested
in modelling the amplification of a propagating wave-packet
near a stable steady solution (as observed in the case of
boundary-layer flow), it is appropriate to change the bound-
ary conditions to an outflow condition on the right side of the
domain

∂3v′

∂x3

∣

∣

∣

∣

x=L
= 0,

∂v′

∂x

∣

∣

∣

∣

x=L
= 0, (10)

while on the left side of the domain, at the inlet, an unper-
turbed boundary condition is considered

v′
∣

∣

x=0 = 0,
∂v′

∂x

∣

∣

∣

∣

x=0
= 0. (11)

With an outflow boundary condition, a localized initial per-
turbation in the upstream region of the domain travels in the
downstream direction while growing exponentially in ampli-
tude until it leaves the domain. This is the signature of a
convectively unstable flow. Note the this choice of boundary
conditions is the main variant with respect of the original KS
equation, characterized by periodic boundaries. Fig. 4 shows
the spatio-temporal response to a localized initial condition
of KS equation with outflow boundary condition. The set
of parametersR , P andV has been chosen to mimic the re-
sponse of the 2D boundary-layer flow, shown in Fig. 2. How-
ever, note that in the KS model the wave crests travel paral-
lel to each other with the same speed of the wave-packet,
whereas in the boundary layer, they travel faster than the
wave-packet which they form. Indeed the system is not dis-
persive, i.e. the phase speedc equals the group speedcg as
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Fig. 5. Spatial support of the inputs and outputs along the stream-

wise direction. All the elements are modelled as a Gaussian function

(14), with σd = σu = σy = σz = 4.

shown by (9); conversely, as already noticed, the 2D BL is
dispersive.

2.3 Introducing inputs and outputs
Having presented the dynamics of the linear system,

we now proceed with a more systematic analysis of the in-
puts (actuators/disturbances) and sensor outputs described in
§1.1. Consider the linearized KS equation in (6)

∂v′

∂t
=−V

∂v′

∂x
−

1
R

(

P
∂2v′

∂x2 +
∂4v′

∂x4

)

+ f ′(x, t), (12)

where the forcing termf ′(x, t) now appears on the right-hand
side. This term is decomposed into two parts,

f ′(x, t) = bd(x)d(t)+bu(x)u(t). (13)

The temporal signal of the incoming external disturbance and
of the actuator are denoted byd(t) and u(t), respectively,
while the corresponding spatial distribution is describedby
bd andbu. In this work, the time-independent spatial distri-
bution of the inputs is described by the Gaussian function,

g(x; x̂,σ) =
1
σ

exp

[

−

(

x− x̂
σ

)2
]

. (14)

The scalar parameterσ determines the width of the Gaussian
distribution, whereas ˆx determines the centre of the Gaussian.
The two forcing distributions in (13) are

bd(x) = g(x; x̂d,σd), bu(x) = g(x; x̂u,σu). (15)

The disturbanced is positioned in the beginning of the do-
main atx̂d = 35, while the actuatoru in the middle of the
domain at ˆxu = 400 (see Fig. 5). In the presentation above,
the particular shapebd(x) of the disturbanced is part of the
modelling process. However, note that the introduction of
the upstream disturbance using a localized and well defined
shapebd(x) is a model. In practice, due to the receptivity
processes, the distribution and the appearance of the incom-
ing disturbance is not knowna-priori, and thus difficult to
predict using – for instance – a low-order model.

A similar issue may arise for the model of the actua-
tor bu(x), where the forcing distribution can even be time
varying. For example the spatial force that a plasma actua-
tor induces in the flow depends on the supplied voltage, e.g.
modulated by the amplitudeu(t) [37]. As we will discuss in
the following sections, one may design a controller without
knowingbd(x) andbu(x), but for the sake of presentation we
may assume in this section, that such models exist.

By using (14) as integration weights, we define two out-
puts of the system as

y(t) =
∫ L

0
cy(x)v′(x, t) dx+n(t), (16)

z(t) =
∫ L

0
cz(x)v′(x, t) dx, (17)

whereL is the length of the domain defined earlier and

cy(x) = g(x; x̂y,σy), cz(x) = g(x; x̂z,σz).

The outputy provides a measurement of an observable phys-
ical quantity – for example shear-stress, a velocity compo-
nent or pressure near the wall – averaged with the Gaussian
weight. In realistic conditions, this measured quantity issub-
ject to some form of noise, that may arise from calibration
drifting, truncation errors and/or incomplete cable shielding,
etc. This is taken into account by the forcing termn(t). It is
often modelled as random noise with Gaussian distribution
of zero-mean and varianceα, and can be regarded as an in-
put of the system. The second outputz(t), located far down-
stream, represents theobjectiveof the controller: assuming
that the flow has been already modified due to the action of
the controller, thiscontrolledoutput is the quantity that we
aim to keep as small as possible.

In Fig. 6, we show the response of our system to a Gaus-
sian white noise ind(t) with a unit variance, where all tem-
poral frequencies are excited. Via the dispersion relation(8),
each temporal frequencyωr is related to a spatial frequency
α = V ωr . The input signald(t) is thus filtered by the sys-
tem, where after a short transient, only the unstable spatial
wavelengths are present in the statev(t), Fig. 6(a), and the
two output signalsy(t) andz(t), Fig. 6(c-d). The variance of
the outputz(t) is higher than the variance ofy(t) by a fac-
tor 10, independently by the realization; this is because the
wave-packets generated byd is growing in amplitude while
convected downstream. We note that each realization will
generate a different time evolution of the system but with the
same statistical properties (black and grey lines in Fig. 6(b-
d)).

2.4 State-space formulation
We discretize the spatial part of (12) by a finite-

difference scheme. As further detailed in Sec. A, the solution
is approximated by

v′i(t) = v′(xi , t) i = 1,2, ...,nv
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Fig. 6. Top frame (a) shows the spatio-temporal response to white

noise d(t), (b). The velocity contours are shown as a function of the

streamwise direction (x) and time (t). The signals y(t) and z(t) are

shown for two different realizations (black and grey lines) in (c) and

(d), respectively. Red dashed lines indicate the standard deviation of

the signals. [script01.m]

defined on the equispaced nodesxi = iL/nv, wherenv = 400.
The spatial derivatives are approximated by a finite differ-
ence scheme based on five-points stencils. Boundary condi-
tions in (11–10) are imposed using four ghost nodesi =−1,0
andi = nv+1,nv+2. The resulting finite-dimensional state-
space system (calledplant) is

v̇(t) = A v(t)+Bd d(t)+Bu u(t), (18)

y(t) = Cyv(t)+n(t), (19)

z(t) = Czv(t), (20)

wherev ∈ Rnv represents the nodal valuesv′i . The output
matricesCy andCz approximate the integrals in (16–17) via
the trapezoidal rule, while the input matricesBd andBu are
given by the evaluation of (15) at the nodes.

Some of the control algorithms that we will describe are
preferably formulated in a time-discrete setting. The time-
discrete variable corresponding toa(t) is

a(k) = a(k∆t), k= 1,2, ... (21)

where ∆t is the sampling time. Accordingly, the time-

discrete state-space system is defined as:

v(k+1) = Ãv(k)+ B̃d d(k)+ B̃uu(k), (22)

y(k) = C̃yv(k)+n(k), (23)

z(k) = C̃zv(k), (24)

whereÃ = exp(A ∆t) , B̃=∆t B andC̃=C. For more details,
the interested reader can refer to any control book (see e.g.
[8]).

2.5 Transfer functions and Finite-impulse responses
Given a measurement signaly(t), our aim is to design an

actuator signalu(t). The relation between input and output
signals is of primary importance. Since we are interested in
the effect of the control signalu(t) on the system, we assume
the disturbance signald(t) to be zero. Thus, given an input
signalu(t) and a zero initial condition of the state, the output
z(t) of (18–20) may formally be written as

z(t) =
∫ t

0
Pzu(t) u(t − τ)dτ, (25)

where the kernel is defined by

Pzu(t), CzeAt Bu, t ≥ 0. (26)

Note that the description of the input-output (I/O) behaviour
betweenu(t) andz(t) does not require the knowledge of the
full dynamics of the state but only a representation of the
impulse response between the inputu and the outputz, here
represented by (26). A Laplace transform results in a transfer
function

ẑ(s) = P̂zu(s)û(s) = (Cz(sI−A)−1Bu)û(s)

with s∈ C. Henceforth thehat on the transformed quanti-
ties is omitted since related by a linear transformation to the
corresponding quantities in time-domain. One may formu-
late a similar expression for the other input-output relations,
which for our case with three inputs and two outputs, induces
6 transfer functions, i.e.

[

z(s)
y(s)

]

=

[

Pzd(s) Pzu(s) Pzn(s)
Pyd(s) Pyu(s) Pyn(s)

]





d(s)
u(s)
n(s)



 . (27)

I/O relations similar to (25) can be found for the time-
discrete system. The responsez(k) of the system (withv0 =
0) to an inputu(k) is

z(k) =
k

∑
i=1

P̃zu(i) u(k− i), (28)
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Fig. 7. Time discrete impulse response (◦) between the input u to

the output z; due to the presence of strong time-delays in the system,

a lag of t ≈ 550 is observed. The relevant part of the kernel is

reconstructed via a FIR filter (�). [script02.m]

where

P̃zu(k), C̃zÃk−1 B̃u, k= 1,2, ... (29)

This procedure is usually referred to asz-transform; for more
details, we refer to [8,43]. In the limit ofk→ ∞, it is possible
to truncate (28), since the propagating wave-packet that is
generated by an impulse inu will be detected by the outputz
after a time-delay (this can be observed in Fig. 7, where the
impulse response is depicted). Thus,P̃zu(i) is non-zero only
in a short time interval and one may truncate the sum to a
finite number of time steps,Nzu, f . Due to the strong time-
delay, the initial part of the sum is also zero and the lower
limit of the sum can start fromNzu, i . This results in a sum

z(k) ≈
Nzu, f

∑
i=Nzu, i

P̃zu(i) u(k− i), (30)

which is called the Finite Impulse Response (FIR), [44].
Note that the presence of time delays in the system is a lim-
iting factor of the control performance. In general, a dis-
turbance with a time scale smaller than the time delay that
affects the system is difficult to control [8]. In particular,
while the compensator could still be able to damp those dis-
turbances, it may lack robustness, Sec. 2.8.

2.6 Controllability and observability

The choice of sensors and actuators is particular relevant
for the control design; indeed, the measurement of the sen-
sor y enables to compute the control signalu(t), that feeds
the actuator. Thus, it is important to know: (i) if the system
can be affected by the actuatoru; (ii) if the system can be de-
tected by the sensory. In other words, we aim at identify the
states of the system that arecontrollableand/orobservable.
These two properties of the I/O system are referred to asob-
servability andcontrollability, [8, 30] and can be analyzed

fig08.eps

Fig. 8. Controllability (Gc,u) and observability (Go,y) Gramians,

normalized by their trace; the absolute values are reported in log-

arithmic scale as a function of the streamwise direction (x). Due to

the symmetry, only the upper/lower triangular part of each Gramian

is shown. [script03.m]

introducing the corresponding GramiansGo andGc

Go ,
∫ ∞

0
eAHt CHCeAt dt, (31)

Gc ,

∫ ∞

0
eAt BBH eAH t dt. (32)

By construction, the Gramians (Go,Gc) are positive semi-
definite matrices inRnv×nv and can be computed for each or
all the outputs/inputs. It can be proved that the two Gramians
are solutions of the Lyapunov equations, [8]

AH Go+GoA +CH C = 0, (33)

AGc+GcAH +BBH = 0. (34)

The spatial information related to the Gramians can be
analyzed by diagonalizing them; the corresponding de-
compositions allow to identify and rank the most control-
lable/observable structures [30]. On the other hand, for sys-
tems characterized by a small number of degrees of freedom,
it is possible to directly identify the regions where the flowis
observable and/or controllable. Fig. 8 shows the controllabil-
ity Gramian related to the actuatoru (Gc,u) and the observ-
ability Gramian related to the sensory (Go,y) for our system.
The region downstream of the actuator is influenced by its
action, due to the strong convection of the flow. The ob-
servability GramianGo,y indicates the region where a prop-
agating perturbation can be observed by the sensory. Note
that the two regions do not overlap, thus wave-packets gener-
ated at the locationu are not detected by a sensory, when is
placed upstream of the actuator. This feature has important
consequences on the closed-loop analysis, as introduced in
the next section.
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Fig. 9. Schematic figure showing the 5 transfer functions defining

the closed-loop system (35). The transfer functions Pyd, Pzd de-

scribe the input/output behaviour between the disturbance d and the

outputs y and z, respectively; Pyu and Pzu relate the actuator u to

the two outputs y and z, respectively, while K uy is the compensator

transfer-function. Because of the convectively unstable nature of the

flow, Pyu is negligible for the chosen sensor/actuator locations; thus

it does not allow any feedback.

2.7 Closed-loop system
The aim of the control design is to identify a second lin-

ear systemK uy, calledcompensator, that provides a mapping
between the measurementsy(t) and the control-inputu(t),
i.e.

u(t) =
∫ ∞

0
K uy(τ)y(t − τ)dτ

The chosen compensator is also calledoutput feedback con-
troller [45,46]. This definition underlines the dependency of
the control inputu(t) from the measurementsy(t). By con-
sidering the relation in frequency domain and inserting it into
the plant (27), theclosed-loopsystem betweend(s) andz(s)
is obtained in the form,

z(s) =

[

Pzd(s) +
Pzu(s)K uy(s)Pyd(s)

1−Pyu(s)K uy(s)

]

d(s). (35)

By choosing an appropriateK uy(s), we may modify the sys-
tem dynamics. The graphical representation of the closed-
loop system is shown in Fig. 9. The transfer functionPyu(s)
describes the signal dynamics from the actuatoru to the sen-
sor y. By definition, a feedback configuration is obtained
whenPyu(s) 6= 0, i.e. when the sensor can measure the ef-
fect of the actuation. On the other hand, ifPyu(s) is zero (or
very small), the closed-loop system reduces to a disturbance
feedforward configuration [45,46]. In this special case, from
the dynamical point of view such a system behaves as an
open-loop system despite the closed-loop design [43]. Due
to this inherent ambivalence within the framework of the out-
put feedback control, sometimes the definition ofreactive
control is used for indicating all the cases where the control
signal is computed based on measurements of the system;
thus, the definition of closed-loop system more properly ap-
plies to a system where the reactive controller is character-
ized by feedback [47].

fig10.eps

Fig. 10. The disturbance generated by the impulse response of the

system at the actuator location u in (a) is shown as a function of the

streamwise direction (x) and time (t). The wave-packet is detected

only by the output z (c); due to the convective nature of the flow,

the sensor placed upstream of the actuator can not detect the prop-

agating disturbance, and the resulting signal is practically null (b).

[script02.m]

In a convection-dominated system, the sensor should be
placed upstream of the actuator, in order to detect the up-
coming wave-packet before it reaches the actuator (see also
Fig. 8); if it is placed downstream, the actuator has no pos-
sibility to influence the propagating disturbance once it has
reached the sensor. Fig. 10 shows the state and signal re-
sponses of the KS system to impulse inu, where it is clear
that the actuator’s action is not detected by the sensory, in
practicePyu(s)≈ 0. Note that no assumptions about the com-
pensator has been made; the feedback or feedforward setting
is determined by the choice of sensor and actuator placement.

2.8 Robustness
In practice, model uncertainties are unavoidable and it

is important to estimate how much the error arising from the
mismatch between the physical system and the model affects
the stability and performance of the closed-loop system. In
general, one wishes to have a controller that does not am-
plify un-modelled errors over a range of off-design condi-
tions: a robustness analysis aims at identify this range. A
useful quantity in this context, is the sensitivity transfer func-
tion, which is defined as the denominator in the second term
on the right-hand side of (35), i.e.

S (s) =
1

1−Pyu(s)K uy(s)
. (36)



Robustness can be quantified as the infinity norm ofS (s).
Good stability margins are guaranteed when this norm is
bounded, typically‖S ‖∞ < 2.0, see [43]. A second measure
is the phase margin, that represents the maximum amount of
allowable phase error before the instability of the closed-loop
occurs. Indeed, the gain margin and the phase margin are
the upper limit of amplification and phase error, respectively,
that guarantee marginal stability of the closed-loop system.

Note that the internal stability functions are character-
ized by a proper dynamics. In theloop-shapingapproach,
the controller is designed by shaping the behaviour of the
internal transfer function [43]. Unfortunately, this method-
ology is difficult to be applied in complex system. A sys-
tematic approach for the robust design is represented by the
optimal, robustH∞ (see [46]), where the sensitivity margins
can be optimized. A more computationally demanding alter-
native is represented by the controllers based on numerical
optimization running on-line, such as the model-predictive
control (MPC) (Sec. 3.2) or adaptive controllers (Sec. 5.4).

Thus, feedback controllers may be designed to have
small sensitivity. In that regard robustness is a non-issue
in a pure feedforward configuration; indeed,Pyu(s) ≈ 0 and
‖S ‖∞ ≈ 1. However, a feedforward controller is highly af-
fected by unknown disturbances and model uncertainty, that
drastically reduce the overall performance of the device.
Moreover, a feedforward controller is not capable in modi-
fying the dynamics of an unstable plant; thus, feedback con-
trollers are required for globally unstable flows [31].

The studies performed by [48] and [49] show that in con-
vectively unstable flows a feedback configuration allows the
possibility of robust-control design but it does not guarantee
optimal performances in terms of amplitude reduction. In
this review, we adopt a feedforward configuration in order to
achieve optimal performances. As we will show in Sec. 5.4,
robustness may be addressed to some extent using adaptive
control techniques.

3 Model-based control
In this section, we assume the full knowledge of the state

v(t) for the computation of the control signalu(t). This sig-
nal is fed back into the system in order to minimize the en-
ergy of the outputz(t). For linear systems, it is possible to
identify a feedback gainK(t), relating the control signal to
the state, i.e.

u(t) = K(t)v(t). (37)

The aim of the section is to compare and link the classi-
cal LQR problem [50] to the more general MPC approach
[51,2]. In the former approach, one assumes an infinite time
horizon (t → ∞), allowing the computation of the feedback
gain by solving a Riccati equation (see Sec. 3.1.1). In the lat-
ter approach, the optimization is performed with a final time
T that is receding, i.e. it slides forward in time as the sys-
tem evolves. In Sec. 3.2.1, we introduce this technique for
the control of a linear system with constraints on the actua-
tor signal, while in Sec. 3.2.3 the close connection between

the unconstrained MPC and the LQR is shown. Finally, note
that the framework introduced in this section makes use of
a system’s model. Model-free methods based on adaptive
strategies are introduced in Sec. 5.

3.1 Optimal control
The aim of the controller is to compute a control signal

u(t) in order to minimize the norm of the fictitious output

z′(t) =
[

z(t)
u(t)

]

=

[

Cz

0

]

v(t)+
[

0
1

]

u(t), (38)

where now the control signal is also included. We define a
cost functionof the system

L (v(u),u) =
1
2

∫ T

0

[

z
u

]H [
wz 0
0 wu

][

z
u

]

dt. (39)

This cost function is quadratic and includes the constant ma-
triceswz≥ 0 andwu > 0. The matrixwz is used to normalize
the cost output, specially when multiplez(t) are used, while
the weightwu determines the amount of penalty on control
effort [50]. Using (38), (39) is rewritten as

L (v(u),u) =
1
2

∫ T

0

(

vH (CH
z wzCz

)

v+uH wuu
)

dt =

=
1
2

∫ T

0

(

vH Wv v+uH wuu
)

dt

(40)

whereWv = CH
z wzCz. We recall from Sec. 2.3 that the sen-

sor Cz is placed far downstream in the domain, so we are
minimizing the energy in localized region. We seek a con-
trol signalu(t) that minimizes the cost functionL (v(u),u)
in some time intervalt ∈ [0,T] subject to the dynamic con-
straint

v̇(t) = A v(t)+Buu(t). (41)

Note that we do not consider the disturbanced(t) for the
solution of the optimal control problem. In a variational ap-
proach, one defines a Lagrangian

L̃ (v(u),u) =
1
2

∫ T

0

(

vH Wv v+uH wuu
)

dt+

+

∫ T

0
pH (v̇−A v −Buu)dt,

(42)

where the termp(t) acts as a Lagrangian multiplier [52],
(also called the adjoint state). The expression in the last term
is obtained via integration by parts. Instead of minimizing
L with a constraint (41) one may minimizẽL without any
constraints.



The dynamics of the adjoint statep(t) is obtained by
requiring∂L̃ /∂v = 0, which leads to

−ṗ(t) = AH p(t)+Wv v(t),

0= p(T).
(43)

The adjoint fieldp(t) is computed by marching backwards
in time this equation, fromt = T to t = 0. The optimality
condition is obtained by the gradient

∂L̃
∂u

= BH
u p+wuu. (44)

The resulting equations’ system can be solved iteratively as
follows:

1. The statev(t) is computed by marching forward in time
(41) in t ∈ [0,T]. At the first iteration step,k = 1, an
initial guess is taken for the control signalu(t).

2. The adjoint statep(t) is evaluated marching (43) back-
ward in time, fromt = T to t = 0. The initial condition
p(T) is taken to be zero.

3. Once the adjoint statep(t) is available, it is possible to
compute the gradient via (44) and apply it for the up-
date of the control signal using a gradient-based method;
one may for example apply directly the negative gradient

∆uk = −
∂L̃k

∂u
, such that the update of the control signal

at each iteration is given by

uk+1 = uk+µk∆uk.

The scalar-valued parameterµk is the step-length for the
optimization, properly chosen by applying backtrack-
ing or exact line search [53]. An alternative choice to
the steepest descent algorithm is a conjugate gradient
method [54].

The iteration stops when the difference of the cost function
L estimated at two successive iteration steps is below a cer-
tain tolerance or the gradient value∂L̃ /∂u → 0. We refer
to [52] for more details and to [55] for an application in flow
optimization.

3.1.1 Linear-quadratic regulator (LQR)
The framework outlined in the previous section is rather

general and it can be applied for the computation of the
control signalu(t) also when nonlinear systems or receding
finite-time horizons are considered. However, a drawback of
the procedure is the necessity of running an optimization on-
line, next to the main flow simulation/experiment. When a
linear time-invariant system is considered, a classic way to
proceed is to directly use the optimal condition (44) in order
to identify the optimal control signalu(t)

u(t) =−w−1
u BH

u p(t). (45)

fig11.eps

Fig. 11. Control gain K computed using the LQR technique for

wz = 1 and wu = 1, (see §3.1.1). [script04.m]

The computed control signalu(t) is optimalas it minimizes
the cost functionL (v(u),u) previously defined. Assuming a
linear relation between the adjoint state and the direct state,
p(t) = X(t)v(t), the feedback gain is given by

K(t) =−w−1
u BH

u X(t). (46)

It can be shown that the matrixX(t) is the solution of a differ-
ential Riccati equation [50]. WhenA is stable,X(t) reaches
a steady state asT → ∞, which is a solution of the algebraic
Riccati equation

0= AHX +XA −XBuw
−1
u BH

u X +Wv. (47)

The advantage of this procedure is thatK is a constant and
needs to be computed only once. The spatial distribution of
the control gainK is shown in Fig. 11 for the KS system
analysed in Sec. 2, where the actuator is located atx = 400
and the objective output atx = 700. From Fig. 11 one can
see that the gain is a compact structure between the elements
Bu andCz. The control gain is independent on the shape of
external disturbanceBd.

For low-dimensional systems (nv < 103), solvers for
the Riccati equations (47) are available in standard software
packages [56]. For larger systemsnv > 103, as the ones in-
vestigated in flow control, direct methods are not computa-
tionally feasible. Indeed, the solution of (47) is a full ma-
trix, whose storage requirement is at least of orderO(n2

v).
The computational complexity is of orderO(n3

v) regard-
less the structure of the system matrixA [57]. Alternative
techniques include the Chandrasekhar method [58], Krylov
subspace methods [59], decentralized techniques based on
Fourier transforms for spatially invariant system [60, 61,13]
and finally iterative algorithms [62, 63, 64, 65]. Yet, a differ-
ent approach consists of reducingnv before the control tech-
niques are applied. In practice, we seek a low-order surro-
gate system, typically ofO(nv, r)≈ 10−102, whose dynam-
ics reproduces the main features of the original, full-order
system. Once the low-order model is identified, the con-
troller is designed and fed into the full-order system; such
an approach enables the application of a controller next to
real experiments, using small (and fast) real-time computa-
tions. Themodel-reductionproblem is an important aspect
of control design for flow control; we refer to Sec. 6 for a
brief overview.
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Fig. 12. MPC strategy: the controller is computed over a finite time-

horizon Tc, based on the a predicted time-horizon Tp. Once the so-

lution is available, the control signal is applied on a shorter time win-

dows Ta. In the successive step, the time-window slides forward in

time and the optimization is performed again, starting from a new ini-

tial condition at t = Ta. The procedures is iterated while proceeding

forward in time.

3.2 Model-predictive control (MPC)
MPC controllers make use of an identified model to pre-

dict the behaviour of the system over a finite-time horizon
(see [66], [67] and [68] for an overview on the technique).
In contrast with the optimal controllers presented in the pre-
vious section, the iterative procedure is characterized bya
receding finite horizon of optimization. This strategy is il-
lustrated in Fig. 12; at timet0, a control signal is computed
for a short window in time[t0, t0+Tc] by minimising a cost
function (not necessarily quadratic);Tc is the final time of
optimization for the control problem. The minimization is
performed on-line, based on the prediction of the future tra-
jectories emanating from the current state att0 over a win-
dow of time[t0, t0 +Tp], such thatTp ≥ Tc. In other words,
the control signal is computed over an horizonTc in order to
minimize the predicted deviations from the reference trajec-
tory evaluated on a (generally) longer time of predictionTp.
Once the calculation is performed, only the first stepTa is
actually used for controlling the system. After this step, the
plant is sampled again and the procedure is repeated at time
t = t0+Ta, starting from the new initial state.

The MPC approach is applicable to nonlinear models
as well as all nonlinear constraints (for example an upper
maximum amplitude for the actuator signals). We present an
example of the latter case in the following section.

3.2.1 MPC for linear systems with constraints
Although it is possible to define MPC in continuous-

time formulation (see for instance [66], [51]), we make
use of the more convenient discrete-time formulation. Let
M = Tp/∆t and N = Tc/∆t, where the parameter∆t is the
sampling time. SinceTp ≥ Tc, we haveM ≥ N. Augmenting
the expression (28) with a term representing an initial state

v(k) at timek, we get

z(k+ j|k) = C̃zÃ j v(k)+
min( j ,N)

∑
i=1

C̃zÃ i−1B̃u u(k+ j − i) =

= P̃zv( j) v(k)+
min( j ,N)

∑
i=1

P̃zu(i) u(k+ j − i),

(48)

where j = 1,2, . . . ,M. The state equation can be written in
matrix form by recursive iteration, resulting in the matrix-
relation

zp(k) = Pzvv(k)+Pzuup(k). (49)

The matrixPzv appearing in (49) is the observability matrix
of the discrete-time system

Pzv =











P̃zv(1)
P̃zv(2)

...
P̃zv(M)











=











C̃zÃ
C̃zÃ2

...
C̃zÃM











, (50)

while the matrixPzu, related to the convolution operator,
reads

Pzu =





















P̃zu(1)
P̃zu(2) P̃zu(1)

...
...

. . .
P̃zu(N) P̃zu(N−1) · · · P̃zu(1)

...
...

...
P̃zu(M) P̃zu(M−1) · · · P̃zu(M−N+1)





















=





















C̃zB̃u

C̃zÃB̃u C̃zB̃u
...

...
. . .

C̃zÃN−1B̃u C̃zÃN−2B̃u · · · C̃zB̃u
...

...
...

C̃zÃM−1B̃u C̃zÃM−2B̃u · · · C̃zÃM−NB̃u





















.

(51)

In literature, the matrixPzu is also referred to as dynamic
matrix, because it takes into account the current and future
input changes of the system. Note that the entries of the ob-
servability matrix (50) are directly obtained from the model
realization, while the entries of the dynamic matrix (51) are
represented by the time-discrete impulse response between
the actuatoru and the sensorz. The input vectorzp(k) and
output vectorup(k) are defined collecting the corresponding



time-signals at each discrete step

zp(k) =











z(k+1|k)
z(k+2|k)

...
z(k+M|k)











, up(k) =











u(k|k)
u(k+1|k)

...
u(k+N−1|k)











.

(52)

Thus, the matrix relation (49) provides a linear relation be-
tween the statev(k) and the outputzp(k) when the system
is forced by the control inputup(k). The evaluation of the
future output vectorzp(k) represents thepredictionstep of
the procedure; indeed, assuming that the control signal con-
tained in the vectorup(k) is known, we aim at computing the
future outputzp(k), related to the trajectory emanating from
the initial conditionv(k).

By following the same rationale already adopted in the
optimal control problem, a cost functionL (k) that minimizes
the outputz(t) while limiting the control expense is defined,

L (k) =
M

∑
i=1

zH(k+ i|k)wzz(k+ i|k)

+
N−1

∑
i=0

uH(k+ i|k)wu u(k+ i|k) =

= zp(k)
H Wzzp(k)+up(k)

H Wu up(k).

(53)

The parametersWz andWu are represented by block diag-
onal matrices containing the weightswz andwu. One may
also have non-quadratic costs functions in MPC; examples
are given by [51] for the control of a turbulent channel. In our
case, we choose a quadratic cost function in order to compare
performance with the LQR controller. By combining the cost
function (53) and the state equation (49), we get

L (k) = zp(k)
H Wz zp(k)+up(k)

H Wu up(k) =

= [Pzvv(k)+Pzuup(k)]
H Wz [Pzvv(k)+Pzuup(k)]+

+up(k)
H Wu up(k).

(54)

Note that this manipulation is analogous to the definition of
Lagrangian already shown for the LQR problem (42). The
minimization ofL (k) with respect ofup(k) reads

min
up(k)

{

1
2

uH
p (k)Hup(k)+ c(k)up(k) : Cup(k)6 D

}

(55)

where

H = 2
(

PH
zuWzPzu+Wu

)

c(k) = 2vH(k)PH
zvWzPzu

(56)

fig13.eps

Fig. 13. Control design in presence of constraints: the grey regions

indicate the limits imposed to the amplitude of the control signal u(t).
The control u(t) is designed following two different strategies: LQR

with a saturation function (−) and constrained MPC (−), see §3.2.2.

The LQR solution (− −) is introduced as reference. The perfor-

mances of the controllers are shown in terms of rms-velocity reduc-

tion in Fig. 14.

and Cup(k) 6 D is a constraint [69], which we have not
specified yet. Once this minimization problem is solved, the
control signal is applied for one time step, corresponding to
∆T = Ta, followed by a new iteration at stepk+1.

3.2.2 Actuator saturation as constraint
The need of introducing constraints in the optimization

process usually arises when we consider real actuators char-
acterized by nonlinear behaviour, due for instance to satu-
ration effects. For example, the body force generated by
plasma actuators [37,70] – usually approximated by consid-
ering the macroscopic effects on a flow – is often modelled
as a nonlinear function of the voltage [71,72].

Consider now a control signal, whose amplitude is re-
quired to be bounded in the interval−umax6 u6 umax. We
thus minimize

min
up(k)

{

1
2

uH
p (k)Hup(k)+ c(k)up(k) : ūmin 6 up(k)6 ūmax

}

,

(57)
whereH andc are given by (56). One may solve this con-
strained MPC using nonlinear programming [53]. Since
the function to be minimized is a quadratic function, we
have used a reflective Newton method suggested by [73];
this method is implemented in the MATLABR© routine
quadprog.m .

We proceed by comparing the performance of the MPC
controller with the LQR solution discussed in Sec. 3.1.1. For
a direct comparison, we apply anad hocsaturation function
to the LQR control signal, i.e.

uLQR=







uLQR if ūmin < uLQR < ūmax

ūmin if ūmin > uLQR

ūmax if ūmax6 uLQR

. (58)

As shown in Fig. 13, the control signal computed by the MPC
(blue solid line) closely follows the LQR solution (dashed
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Fig. 14. Control of the KS equation. The rmsvelocity as a function

of the x direction is analyzed; the uncontrolled configuration (−) is

compared to three diffrent control strategies already considered in

Fig. 13 (same legend).

black line), except in the intervals where the value is larger or
smaller than the imposed constraint. By simply applying the
saturation function in (58) to the LQR signal, the controller
becomes suboptimal; the resulting solution deviates from the
optimal one and settles back on it aftert ≈ 300 time units.
Simply cutting off the actuator signal of LQR results in a
significant reduction of performance, which in terms of root-
mean-square (rms) is almost one order of magnitude (shown
in Fig. 14). The main drawback of the constrained MPC is
the computational time required by the on-line optimization,
that can be prohibitive in experimental settings.

3.2.3 MPC for linear systems without constraints
For a linear system with the quadratic cost function

(40) but without constraints, a prediction/actuation timesuf-
ficiently long allows to approximate the solution of the
LQR. This is not obvious from the mere comparison of the
continuous-time LQR-objective function, (40) and (42), and
the discrete-time MPC-objective function, (53) and (54). For
a detailed discussion, we refer to [74], where the equivalence
is demonstrated analytically. In the following, the equiva-
lence is exemplified using the KS equation.

When there are not imposed constraints, the optimiza-
tion problem in (55) corresponds to a Quadratic Program
[53]; by taking the derivative ofL (k) with respect ofup(k),
we may obtainup(k) as solution of the following least-square
problem

up(k) =−H†cH =

=−
(

PH
zuWzPzu+Wu

)†
PH

zuWzPzvv(k) =

=











K0

K1
...

KN−1











v(k),

(59)

where(·)† indicates the Moore-Penrose generalized inverse
matrix, [75]. Note that this is a least square problem (in
general,M ≥ N). If we assume an actuation time-horizon

fig15.eps

Fig. 15. In (a) the LQR solution (§3.1.1) is compared to the MPC

gains computed for two different times of optimization Tp without con-

straints, see §3.2.3. The optimization times are compared to the im-

pulse response Pzu(t) (b). Note that for longer time Tp, covering the

main dynamics of the impulse response Pzu(t), the MPC and LQR

solutions are equivalent.

Ta = ∆t, at each time step the control signalu(k) reads

u(k) = K0v(k). (60)

In Fig. 15(a), the solid dashed line corresponds to the
LQR gain obtained by solving a Riccati equation, while the
coloured lines correspond to the unconstrained MPC solu-
tion for different final time of predictionTp. For a shorter
time of optimization (Tp = 750, red solid line) only a portion
of the dynamics of̃Pzu(i) (see Fig. 15(b)) is contained in the
MPC gain. For longer times (Tp = 1250, blue solid line) the
MPC converges to the infinite-time horizon LQR solution.

4 Estimation
In this section, we assume that the only information we

can extract from the system is the measurementy(t). This
signal is used to provide an estimationv̂(t) of the state such
that the error given by

e(t) = v(t)− v̂(t), (61)

is kept as small as possible. We first derive the classical
Kalman Filter, where in addition toy(t), one requires a state-
space model of the physical system. Then we discuss the
least-mean square (LMS) technique, which only relies on the
measurementy(t).



4.1 Luenberger observer and Kalman filter
The observer is a system in the following form

˙̂v(t) = A v̂(t)+Bu u(t)−L (y(t)− ŷ(t)) , (62)

ŷ(t) = Cy v̂(t), (63)

ẑ(t) = Cz v̂(t). (64)

This formulation was proposed for the first time by Luen-
berger in [76], from whom it takes the name. Comparing
this system with (18), it can be noticed that it takes into ac-
count the actuator signalu(t) but it ignores the unmeasurable
inputs – the disturbanced(t) and the measurement errorn(t).
In order to compensate this lack of information, a correction
term based on the estimation ˆy(t) of the measurementy(t) is
introduced, filtered by the gain matrixL .

The aim is to designL in order to minimize the mag-
nitude of the error between the real and the estimated state,
i.e. expression defined in (61). Taking the difference term
by term between (18) and (62), an evolution equation for the
e(t) is obtained,

ė(t) = (A +LC) e(t)+Bd d(t)−L n(t). (65)

It can be seen that the error is forced by the disturbanced(t)
and the measurement errorn(t), i.e. precisely the unknown
inputs of the system.

4.1.1 Kalman filter
In the Kalman filter approach both the disturbanced(t)

and the measurement errorn(t) are modelled by white noise,
requiring a statistical description of the signals. The auto-
correlation of the disturbance signal is given by

Rd(τ),
∫ +∞

−∞
d(t)dH(t − τ) dt. (66)

This function tells us how much a signal is correlated to it-
self after a shiftτ in time. For a white noise signal this func-
tion is non-zero only when a zero shifting (τ = 0) in time is
considered and its value is the variance of the signal. Hence,
the correlation functions for the considered inputs signald(t)
andn(t) are

Rd(τ) = Rd δ(τ) and Rn(τ) = Rn δ(τ), (67)

whereRd and Rn are the variances of the two signals and
δ(τ) is the continuous Dirac delta function. When a system
is forced by random signals, also the state becomes a random
process and it has to be described via its statistical proper-
ties. Generally the calculation of these statistics requires a
long time history of the response of the system to the ran-
dom inputs. But for the linear system (65), it is possible to
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Fig. 16. Kalman estimation gain L computed for Rd = 1 and Rn =
0.1, (see §4.1.1). [script06.m]

calculate the variance of the stateRe∈R
nv×nv by solving the

following Lyapunov equation, [30]

(A +LC y)
H Re+Re(A +LC y)+Bd Rd BH

d +L RnLH = 0.
(68)

The trace ofRe is a measure of how much the mean value of
the errore(t) differs from zero during its time evolution. One
may thus define the following cost function for the design of
L

N = Tr(Re) = lim
T→∞

1
2T

∫ T

−T
eH(t)e(t) dt, (69)

where Tr(·) indicates the trace operator.
With a similar approach as in Sec. 3.1, we define a La-

grangian:

Ñ = Tr
{

Re+λλλ
[

(A +LC y)
H Re+Re(A +LC y)+

+Bd Rd BH
d +L RnLH]}

(70)

where the Lagrangian multiplierλλλ enforce the constraint
given by (68). The solution of the minimization is obtained
by the imposing the solution to be stationary respect the three
parametersL , Re andλλλ. The zero-gradient condition forL
gives us the expression for the estimation gain,

L =−R−1
n Cy Re. (71)

The zero-gradient condition for the Lagrangian multiplierλλλ
returns the Lyapunov equation in (68): combining this equa-
tion with (71), a Riccati equation is obtained forRe:

AHRe+ReA −ReCH
y R−1

n Cy +BdRdBH
d = 0. (72)

In Fig. 16 the estimation gainL is shown, where it can be
observed that the spatial support is localized in the region
immediately upstream of the sensory. In this region the am-
plitude of the forcing term in the estimator is the largest to
suppress estimation error. In Fig. 17 we compare the full



fig17.eps

Fig. 17. Spatio-temporal evolution of the response of the system to

a disturbance d(t) (a), compared to the estimated full-order state,

using a Kalman filter (b); the contours are shown as a function of

the streamwise direction (x) and time (t). The error-norm between

the original state and the estimated state is shown in (c). The ver-

tical blue, dashed line indicates when the estimator is turned on.

[script06.m]

state (a) to the estimated state (b) when the system is forced
by a noise signald(t). As a result of strong convection, we
observe that an estimation is possible only after the distur-
bance has reached the sensor atx = 300, since upstream of
this point there are no measurements. For control design it is
important thatv(t) is well estimated in the region where the
actuators are placed; hence, the actuators have to be placed
downstream of the sensors [49,48].

4.2 Estimation based on linear filters
A significant drawback of the Kalman filter, is that it re-

quires a model of the disturbanceBd for the solution of the
Riccati equation (72). One may circumvent this issue by us-
ing FIR to formulate the estimation problem. In analogue
to the formulations based LQR (model based) and on MPC
(FIR based), we will compare and link the Kalman filter to
a system identification technique called the Least-Square-
Mean filter (LMS). Many other system identification tech-
nique exists, the most common being the AutoRegressive-
Moving-Average with eXogenous inputs (ARMAX) em-
ployed in the work of [77].

From (62–64), we observe that the estimator-input is the
measurementy(k), while the output is given by the estimated

fig18.eps

Fig. 18. Impulse responses (y→ z) of the estimator as a function of

the discrete-time. Red circles (◦) correspond to the FIR time-discrete

Kalman-filter-based kernel Ẽ zy(i) and the blue squares (�) to the

one identified by the LMS algorithm. [script07.m]

values ofz(k). The associated FIR of this system is

ẑ(k)=
Nf ,zy

∑
i=Ni,zy

(

−Cz
ˆ̃A i−1 ∆t L

)

y(k− i)=
Nf ,zy

∑
i=Ni,zy

Ẽ zy(i) y(k− i)

(73)
where ˆ̃A = e(A+LCy)∆t and Ẽ zy(i) denotes the impulse re-
sponse from the measurementy(k) to the outputz(k). Note
that, since we are considering a convectively unstable sys-
tem, the sum in (73) is truncated using appropriate limits
Ni,zy andNf ,zy, [44]. Next, we present a method whereẼ zy(i)
is approximated directly from measurements, instead of its
construction using the state-space model.

4.2.1 Least-mean-square (LMS) filter
The main idea is to identify an estimated output ˆz(k) for

the system, by minimizing the error

e(k) = ẑ(k)− z(k) =

(

Nf ,zy

∑
i=Ni,zy

Ẽ zy(i) y(k− i)

)

− z(k), (74)

wherez(k) is the reference measurement. The unknown of
the problem is the time-discrete kernelẼ zy(i). Thus, we aim
at adapt the kernel̃E zy(i) such that at each time step the error
e(k) is minimized, i.e.

min
Ẽzy

e2(k). (75)

The minimization can be performed using a steepest descent
algorithm [78]; thus, starting from an initial guess atk = 0
for ẑ(k), Ẽ zy is updated at each iteration as

Ẽ zy(i|k+1) = Ẽ zy(i|k)+µ(k)λ(i|k), (76)

whereλ(i|k) is the direction of the update andµ(k) is the
step-length. Note that each iteration corresponds to one time
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Fig. 19. In (a) the evolution of Ẽ zy(i) is calculated by an adaptive

LMS filter and shown as a function of the discrete-time (i∆t). The

estimation starts at t = 4000, as indicated by a blue dashed line

(- -). As the iteration progresses, the error-norm constantly reduces

(c).[script07.m]

step. The direction can be obtained from the local gradient,
which is given by,

λ(i|k) =−
∂e2(k)

∂Ẽ zy(i)
=−2e(k) y(k− i). (77)

This expression was obtained by forming the gradient of the
errore(k) with respect toẼ zy(i) and making use of the esti-
mated output ˆz(k) (73).

The second variable that needs to be computed in (76) is
the step-lengthµ(k). Consider the error at time-stepk com-
puted with the updated kernelẼ zy(i|k+1)

ẽ(k) =

(

Nf ,zy

∑
i=Ni,zy

Ẽ zy(i|k+1) y(k− i)

)

− z(k) =

= e(k)+µ(k)

(

Nf ,zy

∑
i=Ni,zy

λ(i|k) y(k− i)

)

,

(78)

where (75) and (76) have been used. The step-lengthµ(k) is
calculated at each time step in order to fulfil

min
µ(k)

ẽ(k)2 (79)

by imposing a zero-derivative condition with respect toµ(k),

∂ẽ(k)2

∂µ(k)
= 2ẽ(k)

(

Nf ,zy

∑
i=Ni,zy

λ(i|k)y(k− i)

)

= 0. (80)

Assuming that

Nf ,zy

∑
i=Ni,zy

λ(i|k)y(k− i) 6= 0 (81)

and considering (78), the optimal step length becomes

µ(k) =−
e(k)

∑i λ(i|k)y(k− i)
. (82)

In Fig. 19(a), the LMS-identified kernel̃E zy(i) is shown
as a function of timet = k∆t. When the LMS filter is turned
on att = 4000, the filter starts to compute the kernel, which
progressively adapts. While the iteration proceeds, the error
decreases as shown in Fig. 19(b). In the limit ofT → ∞,
when a steady solution can be assumed, the kernel computed
by the LMS filter converges to the kernelẼ zy obtained by the
Kalman filter (see Fig. 18).

The main drawback of the LMS approach is that the
method is susceptible to a numerical stability, [78]. A usual
way for improving the stability is to bound the the step-
lengthµ(k) by introducing an upper limit. In particular, it
can be proven that in order to ensure the convergence of the
algorithm, the following condition has to be satisfied

0< µ(k)< µ̄=
2
Ry

, (83)

where the upper-bound ¯µ is defined by the varianceRy of the
measurementy, i.e. the input signal to LMS filter.

5 Compensator
Using the theory developed in Sec. 3 and Sec. 4, we are

now ready to tackle the full control problem (Fig. 20): given
the measurementy(t), compute the modulation signalu(t)
in order to minimize a cost function based onz(t). In the
first part of this section we will focus on the LQG regulator,
that couples a Kalman filter to a LQR controller. Then we
present a compensator based on adaptive algorithms using
LMS techniques.

5.1 Linear-quadratic Gaussian (LQG) regulator
By solving the control and estimation Riccati equations

and the associated gains (L andK ), we build a system that
has as an input the measurementy(t) and as an output the
control signalu(t):

˙̂v(t) = (A +BuK +LC y) v̂(t)−L y(t) (84)

u(t) = K v̂(t). (85)

This linear system is referred to as the LQG compensator.
The estimation and control problem, discussed in the previ-
ous sections, are both optimal and guarantee stability as long
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Fig. 20. Block-diagram of the closed-loop system. The compen-

sator, consisting of a controller coupled to an estimator, computes

the control signal u(t) given the measurement y(t). The minimiza-

tion of the measurement z(t) is the target parameter of the controller.

Note that in a feedforward controller, the output zcan be used to add

robustness to the compensator (for instance, in adaptive filters, §5.4).

as the system is observable and controllable [8]. In particular,
the disturbanced and the outputz have to be placed respec-
tively in they-observable andu-controllable region (Fig. 8).
Under these conditions, a powerful theorem, known as the
separation principle [8], states that optimality and stability
transfer to the LQG compensator.

The closed-loop system obtained by connecting the
compensator to the plant becomes

[

v̇(t)
˙̂v(t)

]

=

[

A BuK
−LC y A +BuK +LC y

][

v(t)
v̂(t)

]

+

[

Bd

0

]

d(t).

(86)
Fig. 21 shows the response of (86) when a white random

noise is considered as an input ind(t). The horizontal solid
black line in the top frame depicts the location ofy sensor:
this signal is used to force the compensator at the location de-
picted in the lower frame with a black dashed line. The com-
pensator then provides a signal to the actuator (dashed black
line in the upper frame) to cancel the propagating wave-
packet. We let the two systems start to interact att = 4000, as
depicted by the dashed blue line. As soon as the first wave-
packet, that is reconstructed by the compensator, reaches the
actuation area, the compensator starts to provide a non-zero
actuation signal back to the plant. Recall that the statev̂(t)
of the LQG compensator is an estimation of the state of the
real plantv(t). This can be seen by comparing Fig. 21(a)
and Fig. 21(b); downstream of the sensory the state of the
compensator matches the controlled plant.

Optimal controllers were applied to a large variety of
flows, including oscillator flows, such as cavity and cylinder-
wake flow, where the dynamic is characterized by self-
sustained oscillations at well-defined frequencies, see [28].
Note thatv(t) andv̂(t) have the same size: if complex sys-
tems are considered, a full-order compensator can be com-
putationally demanding [65]; model reduction and compen-
sator reduction enable to tackle these limitations and design
low-order compensators, see Sec. 6.

fig21.eps

Fig. 21. Spatio-temporal response in presence of a white noise in-

put d(t) for the closed-loop system (a) and the compensator (b); the

disturbance is shown as a function of the streamwise direction (x) and

time (t). The measurement y(t), feeding the compensator, is shown

in (c). At t = 4000(−−), the compensator starts its action and after

a short lag the actuator is fed with the computed control signal u(t).
The perturbation is cancelled, as shown in the contours reported in

(a) and the output z(t) minimized (t > 5000). [script08.m]

5.2 Proportional controller with a time delay
One may ask how a simple proportional controller com-

pares to the LQG for our configuration. In a proportional
compensator, the control signalu(t) is simply obtained by
multiplying the measurement signaly(t) by a constantP. Be-
cause of the strong time delays in our system, one needs to
introduce also a time-delayτ between the measurementy(t)
and the control signalu(t). The simplest control law for our
system is

u(t) = P y(t − τ), (87)
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Fig. 22. The rmsvelocity as a function of the streamwise location

x is shown for the uncontrolled case (−), the LQG (−), the LQR

(−−) and the opposition controller P− τ (−). [script08.m,

script09.m]

where the “best” gainP and the time-delayτ can be found
via a trial-and-error basis (in our case,τ = 250 andP =
−0.5432). This technique is also similar to opposition con-
trol [79], where blowing and suction is applied at the wall
in opposition to the wall-normal fluid velocity, measured a
small distance from the wall.

In Fig. 22, we compare the velocityrms obtained with
LQG compensator (red) andP-τ compensator (green). It
can be observed that although both techniques reduce the
perturbation amplitude downstream of the actuator position
(x = 400), the performance of the LQG regulator is nearly
an order of magnitude better than the proportional controller.
This can be mainly attributed to the additional degrees of
freedom given by thenv × nv LQG feedback gains, as op-
posed to the two-degree freedomP−τ controller. Indeed, the
LQG gains are computed assuming an accurate knowledge of
the state-space model. Also shown (dashed-solid line) is the
full-information LQR control whose performance is compa-
rable the partial-information LQG controller: the difference
between the two is due to the difference between the esti-
mated statêv(t) and the real statev(t), i.e. the estimation
errore.

5.3 Model uncertainties
The LQG compensator is based on coupling an LQR

controller and a Luenberger observer. Both of them are based
on a model of the system and, as a consequence, their effec-
tiveness is highly dependent on the quality of the model it-
self. Any difference between the model and the real plant
can cause an abrupt reduction of the performances of the
compensator [80, 49]. Model error can be attributed to, for
example, nonlinearities due to the violation of the small per-
turbation hypothesis, nonlinearities of the actuator or sen-
sors/actuators shape and positioning.

The robustness problem can be illustrated using a simple
example. Suppose that one wants to cancel a travelling wave
with a localized actuator; what one should do is to generate
a wave that is exactly counter-phase with respect to the orig-
inal one. Suppose that exact location of the actuation action
is difficult to model. Shifting the actuator position slightly is
equivalent to adding an error in the estimation of the phase

fig23.eps

Fig. 23. Robustness to uncertainties of the system: the actuator is

dispaced of 5 length units from its nominal position. The performance

of the adaptive filter FXLMS (− − and ·−) are compared to the

LQR (− −), LQG (−) and P-τ (−) compensators; as a reference,

the uncontrolled case is shown (−). The rms-velocity is shown as a

function of the streamwise direction (x). The adaptive filter performs

reasonably well in presence of un-modelled dynamics; the perfor-

mances are enhanced by the use of a on-line identified P̃zu (− −).

The performances of the LQG (−) and P-τ (−) compensators are

significantly reduced (compare with Fig. 22).[script10.m]

of the original signal. This will in turn cause a mismatch be-
tween the wave that is meant to be cancelled and the wave
created by the actuator, thus resulting in an ineffective wave
cancellation – in the worst case, it may result in an amplifi-
cation of the original wave.

As shown in Fig. 23, when we displace the actuator
further downstream by 5 spatial units and apply the com-
pensator designed for the nominal condition to this modi-
fied system, the performance of the LQG regulator deterio-
rates. Since, the compensator provides a control signal that
is meant to be applied in the nominal position of the actuator
the control signal is not able to cancel the upcoming distur-
bance. Essentially, we are suffering from the lack of robust-
ness of the feedforward configuration, since the sensor can-
not measure the consequence of the defective actuator signal.
There are different means to address this issue.

One can combine the feedforward configuration with a
feedback action, in order to increase robustness. This can
be accomplished using the second sensorz – downstream of
the actuator – in combination with the estimation sensory
– placed upstream of the actuator. The combination of feed-
back and feedforward is the underlying idea of the MPC con-
troller applied to our configuration [27]. However, there are
some drawbacks due to the computational costs of the al-
gorithm; indeed, the entries of the dynamic matrix (51) are
computed during the prediction-step using time integration,
whose domain increases with the time-delays of the system.
Thus, the integration and the dimensions of the resulting ma-
trices can represent a bottleneck for the on-line optimization.
An alternative is the use of an adaptive algorithm, which
adapts the compensator response according to the informa-
tion given byz(t), as shown in the next section.



5.4 Filtered-X least-mean square (FXLMS)
The objective of FXLMS algorithm is to adapt the re-

sponse of the compensator based on the information given
by the downstream outputz. The first step of the design is to
describe the compensator in a suitable way in order to mod-
ify its response. The FXLMS algorithm is based on a FIR
description of the compensator. Recall again that the com-
pensator is a linear system (input is the measurementy(t)
and output is the control signalu(t)), which in time-discrete
form can be represented by,

u(k) =
∞

∑
j=1
K̃ uy( j) y(k− j)≈

Nuy

∑
j=1
K̃ uy( j) y(k− j), (88)

whereK̃ uy( j) is a time-discrete kernel. Due to the stability of
the system, we havẽK uy( j)→ 0 ast →∞, so that the sum can
be truncated afterNuy steps. In the case of LQG compensator
K̃ uy has the form

K̃ uy( j), K exp[(A +LC y+BuK) ∆t ( j −1)] L

for i = 1,2, . . . The kernelK̃ uy( j) of the LQG controller is
shown with red circles in Fig. 24. In this caseNuy = 533,
which gives

∣

∣K̃ uy( j)
∣

∣ < 10−2 for j > Nuy.
The FXLMS technique modifies on-line the kernel

K̃ uy( j) in order to minimize the square of measurementz(t)
at each time step, [23], i.e

min
K̃uy( j)

z2(k). (89)

The procedure is closely connected to the LMS filter dis-
cussed in Sec. 4.2.1 for the estimation problem. The kernel
K̃ uy( j) is updated at each time step by a steepest-descend
method:

K̃ uy( j|k+1) = K̃ uy( j|k)+µ(k)λ( j|k) (90)

whereµ(k) is calculated from (82) andλ( j|k) is the gradient
of the cost functionz(k) with respect of the control gains
K̃ uy( j). In order to obtain the update direction, consider the
time-discrete convolution forz(k),

z(k) =
∞

∑
i=0

P̃zd(i) d(k− i)+
∞

∑
i=0

P̃zu(i) u(k− i) =

=
∞

∑
i=0
P̃zd(i) d(k− i)+

∞

∑
i=0
P̃zu(i)

Nuy

∑
j=0
K̃ uy( j) y(k− i − j) =

=
∞

∑
i=0
P̃zd(i) d(k− i)+

Nuy

∑
j=0
K̃ uy( j)

∞

∑
i=0
P̃zu(i) y(k− j − i).

From this expression it is possible to obtain the gradient

λ( j|k) =−
∂z(k)2

∂K̃ uy( j)
=−2z(k)

∞

∑
i=0

P̃zu(i)y(k− j − i), (91)

fig24.eps

Fig. 24. Robustness to uncertainties of the system: FXLMS control

gain K̃ uy(i) (�) is shifted along the time-discrete coordinate if com-

pared to the static LQG gain (◦) to compensate for the un-modelled

shift in actuator position. [script10.m]

which can be simplified by introducing the filtered signal
yf (k),

yf (k) =
∞

∑
i=0

P̃zu(i) y(k− j − i)≈
Nf ,zu

∑
i=Ni,zu

P̃zu(i) y(k− i) (92)

Note that a FIR approximation of̃Pzu(i) has been used.
Hence, the expression in (91) becomes,

λ( j|k) =−2z(k) yf (k− j). (93)

In order to get the descend direction, the measurementy(t)
is filtered by the plant transfer functioñPzu(i).

Starting the on-line optimization from the compensator
kernel K̃ uy( j) given by the LQG solution, the algorithm is
tested on our problem. In Fig. 23 we observe that the algo-
rithm is able to recover some of the lost performance of LQG
(due to shift in actuator position) and it is comparable to the
full-information control performed by the LQR controller
with the nominal gainK . This is possible because of the
adaptation of the kernel̃K uy( j), to the new actuator location.
Fig. 24 shows how the convolution kernel has been modi-
fied by the algorithm; the kernel is shifted in time in order
to restore the correct phase shift between the control signal
u(t) and the measurement signaly(t) in the modified system.
The shift in time between the two peaks (visible in the inset
figure) is exactly the time that it takes for the wave-packet
to cover the additional distance between the sensor and the
actuator. Recalling from Sec. 2, that the wave-packet travels
with a speedV = 0.4, it will take∆xu/V = 5/0.4= 12.5 time
units to cover the extra space betweenu andy.

From (91), it can be noted that the FXLMS is not com-
pletely independent from a model of the system; in fact the
convolution kernel̃Pzu(i) is needed to compute the gradient
λ( j|k) used by the algorithm. In the previous example, the
nominal transfer function has been used, given by the model
of the plant

P̃zu(i) = CzeA ∆t(i−1)Bu, i = 1,2, ... (94)
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Fig. 25. Two strategies are possible to compute a reduced-order

compensator, reduce-then-design an design-then-reduce. In gen-

eral, the two paths do not lead at the same results.

One may obtained a kernel̃Pzu(i) that is totally indepen-
dent by the model – thus without any assumption on place-
ment/shape of both actuator and sensors – by using the LMS
identification algorithm derived in Sec. 4.2.1. In Fig. 23, we
compareP̃zu(i) obtained from (94) using inaccurate state-
space model (since actuator position has shifted) (solid blue)
with P̃zu(i) obtained by model-free identification using LMS
technique (dashed blue). We observe that when combining
adaptiveness with a more accurate model-free identification
of P̃zu(i), the performance is improved significantly.

Note that this algorithm when applied to flows domi-
nated by convection, and thus characterized by strong time-
delays, results in a feedforward controller where the feed-
back information is recovered by the processing of the mea-
surements inz. This method is known to asactive noise can-
cellation [23, 81]. We can identify two time scales: a fast
time-scale related to the estimation process and a slow time-
scale related to the adaptive procedure [47]. For this reason,
this method is suitable for static or slowly varying model dis-
crepancies.

6 Discussion
In this section, we discuss a few aspects that have not

been addressed so far, but are important to apply the pre-
sented techniques to an actual flowing fluid. Many other im-
portant subjects such as choice of actuator and sensors, non-
linearities and receptivity are not covered by this discussion.

Low-order control design. The discretization of the
Navier-Stokes system leads to high-dimensional systems that
easily exceed 105 degrees of freedom. For instance, the
full-order solution of Riccati equations for optimal control
and Kalman filter problems cannot be obtained using stan-
dard algorithms [59]. One common strategy is to replace
the high-dimensional system with a low-order system able to
reproduce the essential input-output dynamics of the original
plant. This approach is referred to as reduce-then-design [82]
(left part of Fig. 25). First, a reduced-order model is identi-
fied using an appropriate model reduction or system identifi-

cation technique; then the validated reduced-order model is
used to design a low-order compensator. The dual approach
is called design-then-reduce or compensator reduction (right
part of Fig. 25). In this case, a high-order compensator is
designed as first step (if possible). The second step is the
reduction of the compensator to a low-order approximation.

Both the approaches lead to a low-order compensator
that can be used to control the full-order plant, but they are
not necessarily equivalent [82]. I the reduce-then-designap-
proach, we neglect a number of states during the model-order
reduction of the open loop, that might become important for
the dynamics of the closed-loop system. Despite these lim-
itations, the reduce-then-design approach is the most com-
mon in flow control due to its computational advantages; in-
deed, the challenge of designing a high-dimensional com-
pensator to be reduced strongly limits this alternative.

Model reduction. Following the reduce-then-design ap-
proach, the first step consists of identifying a reduced-order
model, typically reproducing the I/O behaviour of the sys-
tem. We can distinguish two classes of algorithms. The
first category is based on a Petrov-Galerkin projection of
the full-order system. In this case, the I/O behaviour of
the system is reconstructed starting from a low-order ap-
proximation of the state-vectorvr , characterized by a num-
ber of degree of freedomr ≪ n; the projection can be
performed on global modes [83], proper orthogonal modes
(POD), obtained from the diagonalization of the controlla-
bility Gramian (see Sec. 2.6), or balanced modes, for which
the controllability and observability Gramians are equal and
diagonal [84, 85, 30]. This strategy has been widely used in
the flow-control community in the past years for the iden-
tification of linear [83, 86, 35, 87, 88] and nonlinear mod-
els [89,90,91]. In particular, when nonlinear effects are con-
sidered, it is necessary to take into account the effect thata
finite disturbance in the flow has on the base-flow, as shown
by [89] for a cylinder wake flow. At low Reynolds num-
bers, a small number of modes are sufficient to reproduce
the behaviour of oscillators such as the cylinder wake, while
a larger number of modes is required to reproduce the I/O
behaviour of convective unstable flows. This is mainly due
to the presence of strong time-delays, [8], that characterize
this type of systems, Sec. 2.5.

The second approach stems from the I/O analysis of the
formal solution carried out in Sec. 2.5; we note that a low-
order representation of the transfer function is enough to re-
construct the I/O behaviour of the system. The computa-
tion of this representation can be performed applyingsys-
tem identificationalgorithms [19]. Once the transfer func-
tions are identified, one constructs a reduced-order model in
canonical form. These techniques were widely used for ex-
perimental investigations (see e.g. [25, 24]) and have been
recently applied also in numerical studies [92, 77]. Indeed,
for linear systems, it can be shown that projection-based
techniques and system identification techniques can provide
equivalent reduced-order models [93]. We refer the reader to
the reviews by [29] and [31] for a broader overview.
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Fig. 26. Control configuration for a three dimensional (3D) flow de-

veloping over a flat plate. A possible configuration consists of local-

ized sensors and actuators placed along the spanwise direction.

Control of three-dimensional disturbances. A sketch of
the three-dimensional control setup of the flow over a flat-
plate is shown Fig. 26. Compared to the 2D boundary-layer
flow a single actuatoru, sensory and outputz are now re-
placed by arrays of elements localized along the span-wise
direction, resulting in a multi-input multi-output (MIMO)
system. The localization (size and distance between ele-
ments) of sensors and actuators may significantly influence
efficiency of the compensator [88] and [94]. An impor-
tant question one must address for MIMO systems is how
to connect inputs to outputs. A first approach consists of
coupling one actuator with only one sensor (for instance,
the one upstream); in this case, the number of single-input
single-output (SISO)control unitsequals the number of sen-
sor/actuator pairs. This approach is calleddecentralized
control-design; despite its simplicity in practical implemen-
tations, the stability in closed loop is not guaranteed [8].The
dual approach where only one control-unit is designed and
all the sensors are coupled to all the available actuators is
calledcentralizedcontrol. In [88], the centralized-controller
strategy was found necessary for the design of a stable TS-
wave controller. The main drawback of a fully centralized-
control approach is that the number of connections for a flat
plate of large span quickly becomes impractical due to all the
wiring. One may then introduce asemi-decentralizedcon-
troller [95], where small MIMO control-units are designed
and connected to each other; in [95], it is shown that a num-
ber of control-units can efficiently replace a full centralized
control with a limited lost of performance.

Another important aspect that has be accounted for in a
MIMO setting, is the choice of the objective functionz. The
minimization of a set of signals obtained from localized out-
puts with compact support does not necessarily correspond to
a reduction of the actual perturbation amplitude in a global
sense. For 1D and 2D flow systems any measurement taken
locally, close to the solid wall and downstream in the com-
putational domain, is sufficient for obtaining consistencybe-
tween the perturbation and signal minimization [35]; this is
not the case for 3D systems. An optimal way for choos-
ing the outputCz is theoutput projectionsuggested by [85],
where a projection on a POD basis is performed. The result-
ing signalz(t) corresponds to the amplitude coefficients of
the POD modes, i.e. the temporal behaviour of the most en-
ergetic coherent structure of the flow. This method can also
provide useful guidelines for the location of output sensors.

7 Summary and conclusions
This work provides a comprehensive review on standard

model-based techniques (LQR, Kalman filter, LQG, MPC)
and model-free techniques (LMS, X-filtered LMS) for the
delay of the transition from laminar to turbulence. We have
focussed on the control of perturbation evolving in convec-
tive flows, using the linearized Kuramoto-Sivashinsky equa-
tion as a model of the flow over the flat-plate to characterize
and compare these techniques. Indeed, this model provides
the two important traits of convectively unstable fluid sys-
tems, namely, the amplifying behaviour of a stable system
and a very large time delay.

Much research have been performed on flow control us-
ing the very elegant techniques based on LQR and LQG,
[30, 94, 48]. Although, these techniques may lead to the
best possible performance and they have stability guaran-
tees (under certain restrictions), their implementation in ex-
perimental flow control settings raises a number obstacles:
(1) The choice of actuator and sensor placement that yields
a good performance of convectively unstable systems re-
sults in a feedforward system. We have highlighted the ro-
bustness issues arising from this configuration when using
standard LQG-based techniques. (2) Disturbances, such as
free-stream turbulence, and actuators, such as plasma actua-
tors, can be difficult to model under realistic conditions. (3)
The requirement of solving two Riccati equations is a major
computational hassle, although it has successfully been ad-
dressed by the community using model-order reduction tech-
niques [35] or iterative methods [65].

Model-free techniques based on classical system-
identification methods or adaptive-noise-cancellation tech-
niques can cope with the limitations of model-based meth-
ods, [23]. For example, we have presented algorithms that
improve robustness by adapting to varying and un-modelled
conditions. However, model-free techniques have their own
limitations; (i) one may often encounter instabilities, which
in contrast to LQR/LQG, cannot always be addressed in a
straight-forward manner by using concepts such as control-
lability and observability. (ii) The number of free parameters
(such as the limits of the sums appearing in FIR filters) that
need to be modelled are many and chosen in a somewhatad-
hocmanner.

The conclusion is that there does not exist one single
method that is able to deal with all issues, and the final choice
depends on the particular conditions that must be addressed.
While a model-based technique may provide optimality and
physical insight, it may lack the robustness to uncertainties
that adaptive methods are able to provide. We believe that fu-
ture research will head towards hybrid methods, where con-
trollers are partially designed using numerical simulations
and partially using adaptive experiment-based techniques.
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Flow Centre.



References
[1] Bushnell, D. M., and Moore, K. J., 1991. “Drag Reduc-

tion in Nature”.Annu. Rev. Fluid Mech.,23, pp. 65–79.
[2] Kim, J., and Bewley, T. R., 2007. “A Linear Systems

Approach to Flow Control”.Annu. Rev. Fluid Mech.,
39, pp. 39–383.

[3] Schlichting, H., and Gersten, K., 2000.Boundary-
Layer Theory. Springer, Heidelberg, NY.

[4] Saric, W. S., Reed, H. L., and Kerschen, E. J., 2002.
“Boundary-Layer Receptivity to Freestream Distur-
bances”.Annu. Rev. Fluid Mech.,34(1), pp. 291–319.

[5] Schmid, P. J., and Henningson, D. S., 2001.Stability
and Transition in Shear Flows. No. 142 in Applied
Mathematical Sciences. Springer, New York.

[6] Jovanovic, M. R., and Bamieh, B., 2005. “Component-
wise Energy Amplification in Channel Flows”.J. Fluid
Mech.,534, pp. 145–183.

[7] Schmid, P. J., 2007. “Nonmodal Stability Theory”.
Annu. Rev. Fluid Mech.,39, pp. 129–62.

[8] Glad, T., and Ljung, L., 2000.Control Theory. Taylor
& Francis, London.

[9] Huerre, P., and Monkewitz, P. A., 1990. “Local and
Global Instabilities in Spatially Developing Flows”.
Annu. Rev. Fluid Mech.,22, pp. 473–537.

[10] Joshi, S. S., Speyer, J. L., and Kim, J., 1997. “A Sys-
tems Theory Approach to the Feedback Stabilization
of Infinitesimal and Finite-amplitude Disturbances in
Plane Poiseuille Flow”.J. Fluid Mech.,332, pp. 157–
184.

[11] Bewley, T. R., and Liu, S., 1998. “Optimal and Robust
Control and Estimation of Linear Paths to Transition”.
J. Fluid Mech.,365, pp. 305–349.

[12] Cortelezzi, L., Speyer, J. L., Lee, K. H., and Kim,
J., 1998. “Robust Reduced-Order Control of Turbu-
lent Channel Flows via Distributed Sensors and Actua-
tors”. IEEE 37th Conference on Decision and Control,
pp. 1906–1911.
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A Numerical method
Finite-difference (FD) schemes are used to approxi-

mate the spatial derivatives in (12). In particular, a cen-
tered scheme based on stencils of five-nodes are used for the
second-order and fourth-order derivatives while a one-node-
backward scheme is used for the first-order derivative. The
latter is required due to the convective nature of the system:
a de-centered scheme reduces the spurious, numerical oscil-
lation of the approximated solution [96].

The grid is equispacedxi = i L
nv

, with i = 1,2, ...,nv.
Once the FD scheme is introduced, the time evolution at each
of the internal node is solution of the ODE equation

dv′(t)
dt

=−V
1

∑
j=−3

db
1, j v′i+ j(t)−

P

R

2

∑
l=−2

dc
2,l v′i+l (t) +

−
1
R

2

∑
l=−2

dc
4,l v′i+l (t)+bd(xi) d(t)+bu(xi) u(t),

(95)



wherev′i(t) = v′(xi , t) for i = 1,2, ...,nv. The outflow bound-
ary conditions in (10) on the right boundary of the domain
lead to the linear system of equations,

∂v′

∂x

∣

∣

∣

∣

x=L
= 0 ⇒

1

∑
j=−3

db
1, j v′nv+ j(t) = 0 (96)

∂3v′

∂x3

∣

∣

∣

∣

x=L
= 0 ⇒

2

∑
j=−2

dc
3, j v′nv+ j(t) = 0 (97)

The solution of this system allows us to express the boundary
nodesi = nv +1,nv +2 as a linear combination of the inner
nodes. Similarly, the left boundary condition in (11) leadsto
an expression for the nodesi = 0,−1:

v′
∣

∣

x=0 = 0 ⇒ v′0(t) = 0 (98)

∂v′

∂x

∣

∣

∣

∣

x=0
= 0 ⇒

3

∑
j=−1

d f
1, j v′0+ j(t) = 0 (99)

where a forward FD scheme is used for the first-order deriva-
tive approximation. Equation (95) together with the bound-
ary conditions can be rewritten in compact form as

v̇(t) = Av(t)+Bd d(t)+Buu(t)

whereBd = {bd(xi)}, Bu = {bu(xi)} and the matrixA ∈
Rnv×nv is a banded matrix (see also (18)).

The Crank-Nicolson method is used to march the system
forward in time (18). Given a time step∆t, the value of the
statev(t+∆t) is given by the expression:

v(t +∆t) = CN−1
I [CNE v(t)+∆t (Bd d(t)+Buu(t))]

(100)
whereCNI = I− ∆t

2 A andCNE = I+ ∆t
2 A. This is an implicit

method, i.e. requires the solution of the linear systemCN−1
I ,

and this operation can be numerically expensive.

B Numerical code
A downloadable package of the MATLABc© routines

used to produce the results presented in this paper can be
found athttp://www.mech.kth.se/ ˜ nicolo/ks/ . The
11 scripts listed below cover all the methods that are presented in
this work.

script00.m: Time evolution of a spatially localized ini-
tial condition. The time response of the plant to a Gaussian-
shaped initial condition is calculated: the generated wave-packet
travels downstream while growing and is detected by the outputsy
andz. The spatio-temporal time evolution ofv(x, t) is plotted to-
gether with the output signals.

script01.m: Response to a white Gaussian distur-
banced(t). A white noise signal is considered as inputd(t) and
the time-response of the plant is calculated. The statistics of the
velocity are computed and visualized for comparison with the con-
trolled cases.

script02.m: External description. An alternative de-
scription of the system, based on the Input/Output behaviour of the
system is calculated. In particular, the response of the system is
calculated via a FIR filter and compared with the LTI system de-
scription, i.e. internal description.

script03.m: Controllability and observability Grami-
ans. The controllability and observability Gramians are com-
puted solving the Lyapunov equations in (33–34).

script04.m: Linear-Quadratic Regulator. A LQR con-
troller is applied to the plant and tested when the system is excited
by a white Gaussian noised(t). The statistics of the velocity are
computed and visualized in order to be compared to the other con-
trolled cases.

script05.m: Model Predictive Control. Constrained
MPC is used in presence of saturation of the actuator. The sys-
tem is excited by a white Gaussian noised(t). The statistics of the
velocity are computed and visualized in order to be comparedwith
the other controlled cases.

script06.m: Kalman filter. A Kalman filter is designed
for the plant and used to estimate the system state when excited by
a white Gaussian noised(t).

script07.m: Least-Mean Square filter A LMS filter is
used to identify the FIR-kernelEzy. The resulting kernel is com-
pared with the Kalman filter solution.

script08.m: Linear-Quadratic Gaussian compensator
A LQG compensator is designed coupling a LQR controller and a
Kalman filter. The compensator is tested when the system is excited
by a white Gaussian noised(t).

script09.m: P− τ compensator. A simple opposition
control is designed using explicitly the time-delay. The system is
excited by a white Gaussian noised(t). The control gain has been
obtained by a trial and error procedure.

script10.m: Filtered-X Least-Mean Square algorithm
FXLMS algorithm is implemented. The initial condition is pro-
vided by the impulse response of the corresponding LQG compen-
sator; a robustness test is carried by displacing the actuator location.

Following functions are required by the above scripts:

[A,x,I] = KS init(nq) Given the number of degree of
freedomnv, it provides the state matrixA obtained by a FD dis-
cretization of the spatial derivatives. Five grid-point stencil FD
schemes are used: in particular, a one grid point de-centered scheme
is used to enhance the stability of the numerical solution.

d = fd coeff(n,dx) It provides the FD coefficients used
by KS init .


