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Abstract

Outlier detection in wireless sensor networks is essen-

tial to ensure data quality, secure monitoring and reliable

detection of interesting and critical events. A key chal-

lenge for outlier detection in wireless sensor networks is

to adaptively identify outliers in an online manner with a

high accuracy while maintaining the resource consumption

of the network to a minimum. In this paper, we propose

one-class support vector machine-based outlier detection

techniques that sequentially update the model representing

normal behavior of the sensed data and take advantage of

spatial and temporal correlations that exist between sensor

data to cooperatively identify outliers. Experiments with both

synthetic and real data show that our online outlier detection

techniques achieve high detection accuracy and low false

alarm rate.

1. Introduction

Advances in electronics and wireless communications

market have made the vision of wireless sensor nodes

a reality. Wireless sensor nodes are tiny, low-cost sensor

devices integrated with sensing, processing and short-range

wireless communication capabilities. Wireless sensor net-

works (WSNs) consist of a large number of these sensor

nodes that are networked together. A wide variety of appli-

cations of WSNs ranges from personal spaces to scientific,

industrial, business, and military domains. Examples of these

applications include environmental and habitat monitoring,

object and inventory tracking, health and medical monitor-

ing, battlefield observation, industrial safety and controlling

etc. In a typical application, a WSN deployed in a region

is meant to collect real-time data using its sensors, perform

processing and make actions.

Compared to wired networks, strong resource constraints

such as energy, memory, processing power and communica-

tion bandwidth make WSNs more vulnerable to faults and

malicious activities (e.g., denial of service attacks or black

hole attacks). These activities can cause sensor readings

unreliable and inaccurate. To ensure a reasonable data qual-

ity, secure monitoring and reliable detection of interesting

and critical events, it is essential to identify anomalous

measurements in the point of action, i.e., locally in the

network.

In WSNs, outliers also known as anomalies are those

measurements that do not conform to the normal behavioral

pattern of the sensed data [1]. Consequently, a straightfor-

ward approach for outlier detection in WSNs is to build

a model representing normal behavior of the sensed data

and identify an outlier as a sensor measurement that does

not conform to this model. However, due to the fact that

sensor data is streaming data, i.e., an ordered sequence of

unbounded, real-time data records with a high data rate,

a normal model will evolve over time and the defined

normal model may not be sufficiently representative for

future identification. Thus a key challenge in WSNs is to

adaptively identify outliers in an online manner with a high

accuracy while consuming minimal resource of the network.

In this paper, we propose three one-class support vector

machine (SVM)-based outlier detection techniques that can

update the normal behavioral model of the sensed data in an

online manner. These techniques take advantage of spatial

and temporal correlations that exist in sensor data to coop-

eratively identify outliers. Experiments with both synthetic

and real data collected by the SensorScope System [2] show

that our online outlier detection techniques achieve better

accuracy compared to an earlier online outlier detection

technique [3] designed for WSNs.

The rest of this paper is organized as follows. Related

work on one-class SVM-based outlier detection techniques

is presented in Section 2. Fundamentals of the one-class

centered quarter-sphere SVM are described in Section 3. Our

proposed adaptive and online outlier detection techniques

are explained in Section 4. Experimental results and perfor-

mance evaluation are reported in Section 5. The paper is

concluded in Section 6 with plans for future research.
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2. Related Work

Compared to the other three data mining tasks, i.e., pre-

dictive modelling, cluster analysis and association analysis,

outlier detection is the closest task to the initial motiva-

tion behind data mining [1]. Outlier detection techniques

can be categorized into statistical-based, nearest neighbor-

based, clustering-based, classification-based, and spectral

decomposition-based approaches [1], [10]. SVM-based tech-

niques are one of the popular classification-based approaches

in the data mining and machine learning communities. They

have been widely used to detect outliers due to the following

three main advantages: SVM-based techniques (i) do not

require an explicit statistical model, (ii) provide an optimum

solution for classification by maximizing the margin of the

decision boundary, and (iii) avoid the curse of dimensionality

problem.

One of the challenges faced by SVM-based outlier de-

tection techniques for WSNs is obtaining error-free or

labelled data for training. One-class (unsupervised) SVM-

based techniques can address this challenge. They model the

normal behavior of the unlabelled data while automatically

ignoring the anomalies existed in the training set. Several

one-class SVM-based outlier detection techniques have been

proposed. The main idea of one-class SVM-based outlier

detection techniques is to use a non-linear function to map

the data vectors collected from the original space to a higher

dimensional space, called (feature space). Then a decision

boundary of normal data is found, which encompasses the

majority of the data vectors in the feature space. Those

new unseen data vectors falling outside the boundary are

classified as outliers. Scholkopf et al. [4] have proposed a

hyperplane-based one-class SVM, which identifies outliers

by fitting a hyperplane from the origin. Tax et al. [5] have

proposed a hypersphere one-class SVM, which identifies

outliers by fitting a hypersphere with a minimal radius.

Another challenge faced by SVM-based outlier detection

techniques for WSNs is their use of a quadratic optimization

during the learning process of the boundary of normal

data. This process is extremely costly and not suitable for

limited resources available in WSNs. Laskov et al. [6] have

extended work in [5] by proposing a one-class quarter-sphere

SVM, which is formulated as a linear optimization problem

and thus reduces the effort and computational complexity.

Rajasegarar et al. [7] and Zhang et al. [3] further exploit

potential of the one-class quarter-sphere SVM of [6] for

online outlier detection in WSNs. The main difference of

the two techniques is that unlike a batch technique of [7],

the work of [3] aims at identifying every new measurement

collected at a node as normal or anomalous in real-time.

Davy et al. [8] consider the change of the normal model

over time and online identifying outliers using previous

data vectors in a sliding time window. Due to its expensive

computational effort, this technique is not applicable to

WSNs.

3. Fundamentals of the One-Class Centered

Quarter-Sphere SVM

In this paper, we exploit the one-class centered quarter-

sphere SVM of Laskov et al. [6] to build the normal

model of sensor measurements in a sliding time window.

They have converted the quadratic optimization problem of

the one-class SVM to a linear optimization problem. The

geometry of the one-class centered quarter-sphere SVM-

based approach is shown in Figure 1.
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Figure 1. Geometry of the quarter-sphere formulation

of one-class SVM

The constrained optimization problem of the one-class

centered quarter-sphere SVM is formalized as follows:

min
Rǫℜ,ξǫℜm

R2 + 1

υm

m∑

i=1

ξi (1)

subject to : ‖φ(xi)‖
2 ≤ R2 + ξi, ξi ≥ 0, i = 1, 2, . . . m

where m denotes the number of data vectors in the train-

ing set. The parameter υ ǫ (0, 1) controls the number of

outliers. The squared norm ‖φ(xi)‖
2 is given by the dot

product φ(xi)·φ(xi), which indicates a measure of similarity

between φ(xi) and φ(xi) in the feature space. A kernel

function k(xi, xi) is used to compute the similarity of any of

two vectors in the feature space using the original attribute

set. Hence, the dual formulation of (1) will become:

min
αǫℜm

−

m∑

i=1

αik(xi, xi) (2)

subject to :

m∑

i=1

αi = 1, 0 ≤ αi ≤
1

υm
, i = 1, 2, . . . m

where αi is the Lagrangian multiplier. In order to fix the

center of the quarter-sphere at the origin, the mapped data

vectors in the feature space need to be subtracted from the

mean µ = 1

m

m∑

i=1

φ(xi). The centered kernel matrix Kc can
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be obtained in terms of the kernel matrix K = k(xi, xj) =
(φ(xi) · φ(xj)) using Kc = K − 1mK − K1m + 1mK1m,

where 1m is an m × m matrix with all values equal to 1

m
.

From equation (2), the {αi} value can be easily obtained

using some effective linear optimization techniques [9]. The

data vectors in the training set can be classified depending

on the results of {αi}, as shown in Figure 1. The training

data vectors with 0 ≤ α ≤ 1

υm
, which fall on the quarter-

sphere, are called margin support vectors. Their distances

to the origin indicate the minimal radius R of the quarter-

sphere and can be used to determine any new unseen data

vector as normal or anomalous.

4. Adaptive and Online Outlier Detection Tech-

niques for Wireless Sensor Networks

In this section, we will describe our three online and local

outlier detection techniques, which take different strategies

to sequentially update the normal model formed by the one-

class centered quarter-sphere SVM. The policies concerning

updating the normal model in these techniques include

updating (i) at each time interval, (ii) at a fixed-size time

window, and (iii) depending on the previous decision results.

These proposed techniques enable each sensor node in the

network to exploit temporal correlations among its most

recent sensor measurements to identify its new arriving

measurement as normal or anomalous in real-time. More-

over, using the high degree spatial correlations that exist

between sensor readings of adjacent nodes, each node has

more information to verify local outliers they detected. The

whole detection process does not only depend on a node’s

own decision criterion learned from its temporal readings

but also on the decision criteria learned from its spatially

neighboring nodes.

4.1. Problem Statement

We consider that sensor nodes are time synchronized and

are densely deployed in a homogeneous WSN, where sensor

data tends to be correlated in both time and space. The

network topology is modelled as an undirected graph G

where G = (S, E). S represents the nodes in the network

and E represents an edge which connects two nodes if

they are within radio transmission range of each other. A

subset N(S0) represents a closed neighborhood of a node

S0 ǫ S, which contains the node S0 and its k spatially

neighboring nodes. The k spatially neighboring nodes are

represented by Sj = {Sj : j = 1 . . . k}, i.e., N(S0) =
{Sj ǫ S|(Sj , S0) ǫ E}∪{S0}. An example of N(S0) is the

closed disk centered at S0 with the radio transmission range

of S0, as shown in Figure 2.

At every time interval ∆i, each sensor node in the set

N(S0) measures a data vector. Let xi
0
, xi

1
, xi

2
, . . . , xi

k denote

the data vector measured at S0, S1, S2, . . . , Sk, respectively.

S0

S1

S2

S4

S3

S6

S5

N(S0)

Figure 2. Example of a closed neighborhood N(S0) of

the sensor node S0

Each data vector is composed of multiple attributes xil
j ,

where xi
j = {xil

j : j = 0 . . . k, l = 1 . . . d} and xi
j ǫ ℜd.

At time t, S0 has collected its m measurements from time

t−m to time t−1: {xt−m
0

, . . . , xt−1

0
}. Our aim is to online

identify every new measurement collected by S0 as normal

or anomalous. This local process can be applied to each node

in the network and thus scales well to large WSNs.

4.2. Instant Outlier Detection Technique

The simplest method of updating the normal model over

time is to compute the minimal radius of one-class quarter-

sphere for each training set, i.e., at each time interval.

Initially, each node learns the local radius of the quarter-

sphere using its m sequential sensor measurements, which

may include some anomalous data. The one-class quarter-

sphere SVM can efficiently find a minimal radius R to

enclose the majority of these mapped sensor measurements

in the feature space. Each node then locally broadcasts

the learned radius information to its spatially neighboring

nodes. When receiving the radius from all of its neighbors,

each node computes a median radius Rm of its neighboring

nodes. We use median because in estimating the ”center” of

a sample set, the median is more robust than the mean.

Sensor data of adjacent nodes in a densely deployed WSN

tend to be spatially and temporally correlated [10]. When a

new sensor measurement xt
0

is collected at time t, S0 first

compares the distance of xt
0

from the origin with the radius

R learned with respect to its m previous measurements

{xt−m
0

, . . . , xt−1

0
} in a sliding window. For computation of

distance between xt
0

and the origin in the feature space,

i.e., d(x) please refer to [3]. The data xt
0

will be classified

as normal if d(x) <= R, which means that xt
0

falls on

or inside the quarter-sphere at S0. Otherwise if d(x) > R,

xt
0

is a potential (temporal) outlier. In this case, S0 further

compares d(x) with the median radius Rm of its neighboring

nodes. If d(x) > Rm, xt
0

will finally be classified as outlier

in the subset N(S0). Thus, the decision function can be

formulated as (3), where the sensor measurements with a

negative value are classified as outlier.
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f(x) = sgn(R − d(x)) ∧ sgn(Rm − d(x)) (3)

The two radii R and Rm are important decision criteria

for local outlier identification. Using the radius informa-

tion from adjacent nodes is also to overcome the main

shortcoming of unsupervised techniques, which is suffering

from high false alarm rate if the given data contains many

anomalies [1].

The next step of this technique is to update the normal

model at each time interval. Each update step needs to add a

current measurement and to remove the oldest measurement

from the sliding window. This procedure is repeated with

evolving the training set of fixed size. This instant outlier

detection (IOD) technique is shown in Figure 3 and Table 1.

Time

m {xt-m… xt-1 } Current time (t)

xt-m-1 xt

Figure 3. Principle of the IOD. Circles represent sensor

measurements. The ”sliding” training set is composed

of the last m measurements. The black dot represents

the measurement identified at current time t.

1 procedure LearningSVM()
2 each node collects m sensor measurements for

learning its own radius R and locally broadcasts
the radius to its spatially neighboring nodes;

3 each node then computes Rm;
4 initiate OutlierDetectionProcess(R, Rm);
5 return;

6 procedure OutlierDetectionProcess(R, Rm)

7 when xt arrives
8 compute d(x);
9 if (d(x) > R AND d(x) > Rm)

10 xt indicates an outlier;
11 else

12 xt indicates a normal measurement;
13 endif;

14 initiate UpdatingProcess(xt);
15 set t ← t + 1;
16 return;

17 procedure UpdatingProcess(xt)
18 update the training set: the oldest measurement

xt−m is removed and replaced by xt.
19 recompute R using the updated training set.
20 locally broadcast R to its neighboring nodes;
21 recompute Rm of its neighboring nodes;
22 return;

Table 1. The pseudocode of the IOD.

Once the radius of a node is updated, the node locally

broadcasts the new radius R to its neighboring nodes. The

median radius Rm of neighboring nodes also needs to be

recomputed. The updated R and Rm are used to identify the

next sensor measurement as normal or anomalous.

4.3. Fixed-size Time Window-based Outlier Detec-

tion Technique

A slightly modified version of the IOD is to identify each

sensor measurement upon being collected but update the

normal model at a fixed-size time window. It means that

the training set will be freezed for the next n (n ≪ m)

measurements, while each new measurement upon arrival

will be classified as normal or anomalous. Therefore, there

is no delay in outlier detection itself.

Each update step in this technique requires to add the

previous n sensor measurements and to remove the oldest n

measurements from the sliding window. The corresponding

modification of this fixed-sized time window-based outlier

detection (FTWOD) technique is shown in Figure 4 and

Table 2. In fact, the FTWOD becomes like the IOD when

using n = 1.

Time

m {xt-m… xt-1 } Current time (t+n-1)

xt-m-1 xt+n-1

n

Figure 4. Principle of the FTWOD. The training set is

updated at each n measurements.

. . ....
14 If (t % n == 0)

14’ initiate UpdatingProcess(xt−n+1 . . . xt);
. . ....

Table 2. The modification for the FTWOD.

4.4. Adaptive Outlier Detection Technique

The policies of the above two techniques is updating

the normal model either at each time interval or at n time

intervals, without considering the impact when a normal

or anomalous measurement is incorporated into the sliding

training set. Moreover, they introduce a high communication

load due to the fact that each node is required to locally

broadcast the updated R to its neighboring nodes. Thus, for

the sake of energy efficiency and computational simplicity,

we introduce a third technique, which takes a new strategy to

update the normal model depending on the previous decision

results, i.e., only when a new measurement will have a

significant impact on the previous normal model.

As shown in Figure 1, the margin support vectors and

outliers have non-zero α values so that the dual formulation

of (1) will not be met if they are added into the existed

training set. In order to meet the constraints of (2) and find

a minimal radius, when a current measurement is detected
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as margin support vector or outlier, this technique adds all

the previous n’ measurements including the current measure-

ment into the training set and also removes the same amount

of the oldest measurements from the training set. Due to

the fact that compared to normal data, outliers and margin

support vectors are very rare [1], this technique is more

efficient in terms of energy and computational costs. The

corresponding modification of this adaptive outlier detection

(AOD) technique is shown in Figure 5 and Table 3.

Time

m {xt-m… xt -1} Current time (t+n’-1)

xt-m-1 xt+n’-1

n’

Figure 5. Principle of the AOD. The black dot represents

the measurement identified as a margin support vector

or an outlier.

. . ....
14 If (xt is an outlier or a margin support vector)

14’ initiate UpdatingProcess(xt−n
′
+1 . . . xt);

. . ....

Table 3. The modification for the AOD.

5. Experimental Results and Evaluation

This section specifies the performance evaluation of our

three techniques compared to the online outlier detection

(OOD) technique presented earlier in [3]. In our experi-

ments, we have used synthetic data as well as real data

gathered from a deployment of WSN using the SensorScope

System [2]. For the simulation, we use Matlab and consider a

closed neighborhood as shown in Figure 2, which is centered

at a node with its 6 spatially neighboring nodes.

5.1. Experimental Datasets

The 2-D synthetic data used for each node is composed of

a mixture of three Gaussian distribution with uniform out-

liers; the mean is randomly selected from (0.3, 0.35, 0.45),

and the standard deviation is selected as 0.03. Subsequently,

10% (of the normal data) anomalous data is introduced and

uniformly distributed in the interval [0.5, 1]. The data values

are normalized to fit in the [0, 1]. The OOD in [3] identifies

outliers in an online manner using the same training set

without considering the evolution of the normal model over

time. The testing data used for each node comprises of 200

normal and 20 anomalous data.

The real data are collected from a closed neighborhood

from a WSN deployed in Grand-St-Bernard as shown in

Figure 6. The closed neighborhood contains the node 2 and

its 6 spatially neighboring nodes, namely nodes 3, 4, 8, 12,

20, 14. The network recorded ambient temperature, relative

humidity, soil moisture, solar radiation and watermark mea-

surements at 2 minutes intervals. In our experiments, we

use a 6am-6pm period of data recorded on 20th September

2007 with two attributes: ambient temperature and relative

humidity for each sensor measurement. The data values are

normalized to the range [0, 1]. The amount of anomalous

data is about 10% of normal data. The labels of measure-

ments are obtained depending on the degree of dissimilarity

between one another.

Figure 6. Grand-St-Bernard deployment in [2]

5.2. Experimental Results and Evaluation

We have tested the following three kernel functions: (i)

Linear kernel function: kLinear = (x1.x2), where {x1, x2}
are the data vectors; (ii) Radial basis function (RBF) kernel

function: kRBF = exp(−‖x1 − x2‖
2/σ2), where σ is the

width parameter of the kernel function; and (iii) Polynomial

kernel function: kPolynomial = (x1.x2 +1)r, where r is the

degree of the polynomial.

Kernel matrices generated using the above kernel func-

tions were centered. We have evaluated two important per-

formance metrics, the detection rate, which represents the

percentage of anomalous data that are correctly considered

as outliers, and the false alarm rate, also known as false

positive rate (FPR), which represents the percentage of

normal data that are incorrectly considered as outliers.

We have examined the effect of the regularisation pa-

rameter υ for our three outlier detection techniques and

the technique presented in [3]. υ represents the fraction of

outliers and we have varied it in the range from 0.01 to 0.25

in intervals of 0.03 and the kernel width parameter σ is set

to 0.25. A receiver operating characteristics (ROC) curve is

used to represent the trade-off between the detection rate

and the false alarm rate. The larger the area under the ROC

curve, the better the performance of the technique.

Figure 7 shows the ROC curves obtained for the four

techniques using the RBF kernel function for synthetic data.

Figure 7(b) (c) show the detection rate and the false alarm
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Figure 7. (a) ROC curves with RBF kernel for synthetic data; (b) Detection rate with RBF kernel for real data; (c)

False alarm rate with RBF kernel for real data.

Computational complexity Memory
Training Testing complexity

IOD O(N ∗ L) O(N ∗ m) O(d ∗ m)
FTWOD O((N/n) ∗ L) O(N ∗ m) O(d ∗ (m + n))
AOD O(n′

∗ L) O(N ∗ m) O(d ∗ (m + n′))

Table 4. Complexity analysis of three online outlier

detection techniques.

rate obtained for the four techniques using the RBF kernel

function for real data. Simulation results show that our

three techniques achieve better accuracy compared to the

technique in [3]. It has been previously shown that work

of [3] outperforms a batch outlier detection technique [7] for

WSNs. Having these new protocols outperforming the work

in [3], we conclude that our protocols are more efficient in

detecting outliers in WSNs in an online manner.

Computational and memory complexity of our techniques

are presented in Table 4, where m and N devote the number

of data in the training and testing sets, respectively, d

represents the dimensionality of the measurements and O(L)

represents the computational complexity of solving a linear

optimization problem.

6. Conclusion

In this paper, we have developed three one-class SVM-

based outlier detection techniques that update the normal

model of the sensed data in an online manner. We compared

the performance of these techniques with an earlier tech-

nique using synthetic and real data of the SensorScope Sys-

tem. Experimental results show that our techniques achieves

better detection accuracy and lower false alarm, while

keeping the computational complexity and memory costs

low. Our future research includes testing the communication

overhead of our techniques, examining the effect of the

kernel parameters, and real implementation of the protocols

on the sensor nodes.
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