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Adaptive and Perceptual Learning Technologies
in Medical Education and Training
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ABSTRACT Recent advances in the learning sciences offer remarkable potential to improve medical education and
maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning
sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning
technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recog-
nition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that
optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author
describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner’s accuracy and
speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have
been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and
perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts
indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to
improve learning in a variety of medical domains.

INTRODUCTION
Recent advances in the learning sciences offer remarkable

potential to improve medical education. These advances are

relevant to almost all domains of medicine, and they have

direct application to maximizing the benefits of simulation

and cutting-edge technologies. In this article, I describe two

innovations in training technology that apply to simulation

and other aspects of medical learning: perceptual learning

(PL) and adaptive learning technologies. PL techniques teach

pattern recognition, structural intuition, and fluency. Adap-

tive learning technologies can optimize learning for each

individual, embed objective assessment throughout learning,

and implement mastery criteria.

Understanding the role and value of these emerging tech-

nologies requires some discussion of traditional conceptions

of learning and how these are changing, as well as elabora-

tion of basic elements and benefits of each technology. We

consider conceptions of learning, perceptual learning tech-

nology, and adaptive learning technology in the first three

sections. Then, we describe recently developed medical

learning applications of perceptual and adaptive learning tech-

nology, in the areas of clinical diagnosis, radiology, dermatol-

ogy, and histopathology. In the final section, we consider

synergies between these learning technologies and simula-

tion tools and techniques in medicine.

REVISITING LEARNING
In most instructional settings, learning is organized around

two types of knowledge. This is not surprising, as these two

types are often considered exhaustive, even in many cogni-

tive psychology texts. Declarative knowledge includes facts

and concepts that can be verbalized. Procedural knowledge
includes sequences of steps that can be enacted. A conven-

tional view of learning, shared by nonspecialists and

researchers alike, is that learning consists of accumulating

these facts, concepts, and procedures.1 The standard view

has been called a “container” model of the mind: Learning

consists of facts, concepts, and procedures that we place into

the container (the mind), and for later performance, we

retrieve these items.1

Persistent problems in learning and instruction suggest

that this learning worldview is defective. Students who have

been faithfully taught and have diligently absorbed declara-

tive and procedural inputs fail to recognize key structures

and patterns in real-world tasks. Students may know pro-

cedures but fail to understand their conditions of application

or which ones apply to new problems or situations. And,

learners may understand but process slowly, with high cog-

nitive load, making them impaired in demanding, complex,

or time-limited tasks.

These characteristic problems can be observed in learning

domains from mathematics to surgical training. They suggest

that much is missing from the typical view of learning.

What is it? Some answers are clearly available if one looks,

not at the literatures on education or learning, but the liter-

ature on expertise. Studies of expertise—what people are

like when they are really good at things—recurrently impli-

cate a number of abilities that emerge from changes in the
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way information is extracted: PL. Kellman2 suggested that

PL effects fall into two broad categories, discovery and

fluency effects. Table I summarizes a number of these in

each category. Discovery effects refer to learners finding

the information that is most relevant to a task. One impor-

tant discovery effect is increased attentional selectivity.

With practice on a given task, learners come to pick up

the relevant information for relevant classifications while

ignoring irrelevant variation.3 Practice also leads learners

to discover invariant or characteristic relations that are not

initially evident (cf., Chase and Simon4) and to form and

process higher level units (Goldstone5; for reviews, see

Bereiter and Scardamalia,1 Gibson,3 and Goldstone6).

Fluency effects refer to changes in the efficiency of infor-

mation extraction. PL leads to fluent and sometimes auto-

matic processing,7 with automaticity in PL defined as the

ability to pick up information with little or no sensitivity to

task load. As a consequence, perceptual expertise may lead to

more parallel processing and faster pickup of information.

It is fair to say that studies of expertise have done more to

describe these characteristics of experts than to reveal how

these changes come about, except for the observation that

expertise grows over long experience.8 More foundational

work suggesting how these changes arise was done by Eleanor

Gibson3 and her students several decades ago. Gibson defined

PL as “changes in the pick up of information as a result of

practice or experience” and argued that such changes tended

to be domain-specific improvements, resulting from classifi-

cation experience, involving the discovery of characteristic

or invariant properties distinguishing objects or situations

from one another.3

Recently, PL has become a major focus of research in

cognitive science and neuroscience (for reviews, see Kellman,2

Fahle and Poggio,9 and Kellman and Garrigan10). For present

purposes, 3 clear ideas are most relevant. First, PL is a per-

vasive process of learning that serves to optimize information

extraction to improve task performance. Second, with appro-

priate procedures, all kinds of feature and pattern extraction

can be improved by using PL. Third, these improvements are

often dramatic, sometimes improving task performance by

orders of magnitude.

One example of a complex task in which dramatic PL

effects have been studied is chess. On a good day, the best

human chess grandmaster can beat a chess-playing computer

that examines upward of 200 million possible moves per

second and incorporates methods for evaluating positions

and strategies culled from grandmaster consultants. By com-

parison, human players do relatively little raw search in

chess, examining perhaps as many as 4 possible moves and

following these to a depth of several successive possible

moves. Despite this huge discrepancy in search ability,

humans can play chess at astonishingly high levels. Remark-

ably, the incredible abilities of skilled chess players, relative

to novice players, turn out not to depend primarily on sophis-

ticated reasoning or a greater storehouse of factual knowl-

edge. They depend on perception of structure: learned pattern

classification abilities of remarkable flexibility, complexity,

and sophistication.4,11 Much of the relevant perception of

structure is not verbally accessible. With appropriate learning

experiences in a specific domain, PL allows humans to reach

almost magical levels of expertise, but the relevant learning

experiences are not those of traditional classrooms or tuto-

rials. These observations about the origins of advanced

expertise apply to many high-level domains of human com-

petence; in medicine, they are crucial for understanding the

skills of the expert radiologist, pathologist, and surgeon.

Likewise, PL appears to form the core of the notion of

“situation awareness,” which can be described as “being

aware of what is happening around you to understand how

information, events, and your own actions will affect your

goals and objectives.”12 Situation awareness is crucially

important to many domains of military training and perfor-

mance, as well as aviation and air traffic control, and many

other complex tasks. The PL effects given in Table I summa-

rize much of what is involved: selectively and automatically

picking up task-relevant information, detecting important

relationships, and being able to extract information with

low-enough cognitive load to allow handling of complex and

overlapping task demands.

In these and other domains, there is a common miscon-

ception about PL effects in expertise, related both to the oft-

repeated maxim that becoming an expert requires 10,000 hours

of practice and the typical view of learning as storing some-

thing in the mind. The misconception is that what happens in

the transition from novice to expert has to do with commit-

ting to memory a great number of examples. A related idea is

the suggestion that stored instances somehow become “men-

tal models.” In chess, for example, it may be asserted that the

experts succeed because they have memorized many games.

These ideas do not provide a workable account of the exper-

tise furnished by PL. Although experiencing many instances

can be an important input to PL, storage of instances does not

TABLE I. Some Characteristics of Expert and Novice
Information Extraction

Novice Expert

Discovery Effectsa

Selectivity Attention to Relevant

and Irrelevant

Information

Selective Pickup

of Relevant

Information/Filtering

Units Simple Features “Chunks”/Higher-Order

Relations

Fluency Effectsb

Search Type Serial Processing More Parallel Processing

Cognitive Load High Low

Speed Slow Fast

aDiscovery effects involve learning and selectively extracting features or

relations that are relevant to a task or classification. bFluency effects involve

coming to extract relevant information faster and with lower attentional or

cognitive load. (See text.)
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produce much of the relevant expertise, nor is it a component

of leading computational models of PL (see Kellman and

Garrigan,10 for a recent review).

The reason involves what is needed to effectively use any

facts, procedures, or models stored in memory (especially if

there is a lot stored). Effective performance relies crucially

on pattern recognition. When faced with a new situation, the

question is: Which of the items, procedures, or models stored

in the brain is relevant to this situation? This is a problem that

requires classifying the new input. PL is the learning process

that ultimately, through changes in the attunement, scope,

and fluency of information extraction,3,10 distinguishes the

expert from the novice who does not see what is relevant or

who is blind to the distinguishing features that place the input

into one category rather than another.

In domains that matter, this can hardly ever be done by

use of memorized instances. The skilled radiologist, for exam-

ple, must detect the pathology in a new image or set of images,

where the tumor may be manifest in a different location, size,

orientation, and contrast, and situated amidst novel and vari-

able background anatomy and image noise, as compared with

any images seen previously. The power of exposure, classifi-

cation, and feedback involving a wide variety of cases is that

information selection and pattern discovery mechanisms are

honed, allowing the pickup of relevant structures, and equally

important, that the information extraction mechanisms discard

or ignore irrelevancies that do not drive important classifica-

tions. The expert emerges from PL experience with an attuned

information extraction system, not a storehouse of memorized

instances. The access to relevant stored information can work

effectively in complex domains only after the input is rapidly

and accurately classified.

It is paradoxical (or instructive) that one encounters the

instance memorization account in reference to chess, as this

is a domain in which the futility of memorizing can be shown

by quantitative proof, based on the fact that the sheer number

of possibilities dwarfs any capacity to remember and replay

specific games. It has been calculated that after 40 moves of a

game of chess, there are about 10120 different possible games.

This exceeds by a considerable amount the number of atoms

in the universe (about 1080)! Even chess-playing machines,

whose memory capacity far exceeds humans, both in volume

and accuracy, are not able to play chess primarily by looking

up familiar games.

PERCEPTUAL LEARNING TECHNOLOGY
Most recent PL research has focused on low–level sensory

discriminations.9 This focus derives from an interest on

understanding plasticity in the brain, and from the fact that

sensory coding is best understood in the early cortical levels

of the brain. Considerable research, however, indicates that

PL is equally applicable to high-level, complex tasks.3,4,13–15

Many of these research efforts in both high- and low-level PL

have led to an improved understanding of the conditions that

produce PL.

These developments are significant, because conventional

instructional techniques do little to advance expert pattern

recognition and fluency. In many domains, there has been a

tacit assumption that we cannot teach this kind of knowing.

In accord with this assumption, radiologists, surgeons, and

pathologists, as well as chemists, pilots, and air traffic con-

trollers, are told that expert intuitions will arise, not from

“book learning,” but from “seasoning,” “experience,” or the

passage of time.

From the standpoint of cognitive science, the passage of

time is not a strong candidate for a learning mechanism.

Instead it turns out that this kind of learning can be systemat-

ically addressed and accelerated using appropriate computer-

based instantiations of principles of PL.13,15 We call these

perceptual learning modules (PLMs).

A complete description of PL techniques is beyond the

scope of this article, but a few basics will serve to char-

acterize the approach. PLMs use interactive learning trials;

learning advances through many short trials in which the

learner performs some classification task and receives feed-

back. Classification episodes are the engine that drives PL

processes to discover and process fluently key features and

relationships relevant to the task. Equally crucial are spe-

cific kinds of variation in the display sets. Instances never

or seldom repeat. Positive instances must vary in charac-

teristics irrelevant to the classification, to allow learning

of invariances. Negative instances must share with posi-

tive instances the values and dimensions of irrelevant

properties. Research suggests a number of other important

considerations about trial formats, spacing, and sequenc-

ing.16 The key to understanding PLMs, relative to tradi-

tional instructional modes, is that in PLMs one is seldom

asked to solve an explicit problem or give a declarative

answer; rather the tasks in PLMs call upon the learner to

classify, locate, distinguish, or map structure across mul-

tiple representations.

Work with PLMs shows that relatively brief interventions

can produce large learning gains in many domains. Some

examples include aviation training,13 mathematics,14 and sci-

ence learning.17 In some especially novel applications, PLMs

are being used to improve intuitions about patterns that may

lead to drug discovery in the pharmaceutical industry.

A number of studies indicate the role of perceptual struc-

ture in science, technology, engineering, and mathematics

(STEM) learning domains,18 as well as the potential of PL

interventions to accelerate expert information extraction and

fluency in mathematics.10,14,16,17,19,20 PL interventions seem

to be able to overcome pervasive obstacles in mathematics

learning. In a recent series of PLMs targeting interrelated

concepts in linear and area measurement, units, fractions,

multiplication, and division, middle school students using

PLMs in targeted interventions consistently showed strong

and long-lasting learning gains on assessments including pri-

marily transfer items, with effect sizes in the range from 0.84

to 2.69.14,16 PLM techniques systematically address aspects
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of expertise for which direct instructional methods have not

been previously available.

Both in terms of the breadth of applications and the possi-

bility of radically improving learning in high-stakes domains,

no area is more promising for PL technology than medical

learning. Within radiology alone, there are a huge number of

perceptual classifications relating to classification of pathol-

ogy and normal variation, spanning not only a variety of

disease conditions but also several different imaging modali-

ties. Some of these involve a small number of fixed views;

others involve 3D models capable of generating many views

and requiring perceptual exploration to process fully, whereas

in still others, such as ultrasound, the crucial information

is often available only in animated sequences. It is well

known that the speed and accuracy of the expert radiologist

in exploring, seeing, and classifying develop over long and

unsystematic experience (and may be highly variable across

individuals). Likewise, pathologists must distinguish and

classify different tissue conditions and pathogens, and der-

matologists must classify skin conditions. Nor is PL confined

to visual displays; heart sounds and breathing abnormalities

are auditory examples, and we could enumerate haptic and

tactile examples as well.

Equally important are the perceptual–procedural combina-

tions required in surgical and interventional procedures.

Although we are accustomed to thinking about the deft hands

of the surgeon, the crucial role of perceptual expertise in

guiding procedures, recognizing tissues and organs, and pro-

viding feedback from action illustrates Benjamin Franklin’s

astute observation: “The eye of the master will do more work

than both of his hands.”

We have begun to engineer PL technology into a number

of domains of medical learning, and the potential appears

limitless. Before describing these initial efforts, it will be

useful to introduce the companion innovation that allows us

to get the most from these efforts in PL interventions and also

improves the efficiency of other types of learning: adaptive

learning technology.

ADAPTIVE LEARNING TECHNOLOGY
In most instructional settings, student learning is limited by

the failure of instruction to adapt to the individual. Students

have different starting points and differ in aspects of lessons

they learn well or poorly. Testing often arrives at the end, not

in the midst, of learning, and it often involves global scoring

rather than rich descriptions of what has and has not been

learned. Moreover, testing usually targets accuracy alone, or

perhaps speed for an entire test. Seldom are combined accu-

racy and fluency measures used to assess detailed aspects of

learning; nor are assessments fed back continuously to opti-

mize each individual’s learning. Lacking such links between

continuous assessment and the flow of learning events, it is

also rare for the learner to be guided to mastery criteria

involving accuracy and fluency for all components of learn-

ing tasks. These limitations can potentially be overcome, and

learning dramatically improved, by the use of adaptive learn-

ing technology.

Adaptive Response-Time-Based Sequencing
(ARTS) System

Since the classic work of Atkinson in the 1960s,21 a

variety of adaptive learning schemes have been proposed,

with the goal of using the learner’s performance along

with laws of learning and memory to make learning more

efficient. These systems have usually been tested with the

learning of discrete items, such as foreign language vocabu-

lary words, and have been shown to outperform random

presentation of items. Most systems adapt the presentation

of items based on the learner’s accuracy on previous trials,

and some guide learning by algorithms that derive estimates

of probabilities of items becoming well-learned, based on

models of learning.22,23

The success of previous adaptive learning systems suggests

the overall promise of adaptive approaches. Existing systems,

however, have important limitations. One is that model-based

systems require a prior experiment, using similar learners and

random presentation of learning materials, to estimate param-

eters for implementing the adaptive scheme. Another is that

reliance on accuracy omits important information that may be

provided by response times (RTs).

We have developed a new adaptive learning system that

uses both accuracy and speed to determine the spacing and

sequencing in learning, as well as in implementing mastery

criteria. We call it ARTS – Adaptive Response-Time-Based

Sequencing.24 We describe some basics of the system and

then describe its utility.

Consider a set of n items (facts, patterns, concepts, pro-

cedures) to be learned. How can we optimize learning of the

set for the individual learner? We assume an interactive

learning system, in which learning consists primarily of

learning trials. On each trial, some item, problem, or situation

is presented, and the user must process and make a response.

We optimize learning by applying principles of learning to a

number of items simultaneously in a priority score system, in

which all items (or categories in category sequencing) are

assigned scores indicating the relative importance of that

item appearing on the next learning trial. Priority scores for

each item are updated after every trial, as a function of

learner accuracy and RTs, trials elapsed, and in view of

mastery criteria. Learning strength is assessed continuously

and in some implementations, cumulatively, from perfor-

mance data. In most applications, the sequencing algorithm

chooses the highest priority item on each learning trial.

Adjustable parameters allow flexible and concurrent imple-

mentation of principles of learning and memory, such as

stretching the retention interval automatically for each item

as learning strength grows.

Our system relies on a database that stores all categories in

PL and all instances in factual learning contexts (e.g., multipli-

cation facts, vocabulary, chemical symbols, etc.). Performance
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data for every trial and every category or instance are

acquired and used by a sequencing algorithm. For simplic-

ity, we describe the system in terms of item sequencing,

although it applies also to category learning, in which each

presentation involves a novel instance. Another simplifica-

tion is that even in basic factual learning, multiple formats

may be used across trials to test a single item (to produce

generalizable learning and enhance interest), but we omit

further details.

We describe aspects of the system here omitting mathe-

matical and technical detail. (See Mettler et al24 for more

information.) Our framework has great flexibility and may

use a variety of equations relating elapsed time or trials,

accuracy, and RT to the priority for presentation. When any

particular function of these variables is used, there are param-

eters that may be adjusted to suit particular learning contexts

or even individual learners. Priority scores for items are

dynamically updated after each trial. In many applications,

initial priority scores are given to all items, and an item’s

score does not change until after it is first selected for presen-

tation. This establishes a baseline priority for feeding in new

items that may be balanced against changing priorities for

items already introduced. Preset orderings in learning can be

accomplished by the assignment of initial priority scores that

are higher for some items or categories than for others.

The full set of learning principles and objectives that may

be embedded in ARTS is too extensive to describe here, but

some important ones include:

Rapid Item or Category Reappearance After Errors

Errors result in assignment of a high-priority weighting. With

ordinary settings, the error weighting will exceed all initial

priority score assignments, as well as the highest priority that

may result from a slow, correct answer. However, reappear-

ance of missed items is still subject to enforced delay.

Interleaving/Enforced Delay

To prevent recurrence of an item while its answer remains in

working memory, the system is normally configured to pre-

clude the presentation of the same item on consecutive trials.

Joint Optimization for the Entire Learning Set

A priority score system allows joint satisfaction of a number

of learning principles applied to an entire set of items, as all

factors feed into a priority score for each item or category.

Scores are dynamically updated after each trial, and items or

categories compete for selection on each learning trial.

Retirement and Mastery Criteria

Adaptive learning focuses the learner’s effort where it is

needed most. Commonly, learning effort and time are lim-

ited; therefore, it often makes sense to prioritize. We use the

term retirement to describe removal of a learning item or

category from the learning set, based on attainment of mas-

tery criteria. Pyc and Rawson25 used the term “dropout” for

this idea and found evidence that greater learning efficiency

can be achieved with this feature, especially in highly

demanding learning situations. RTs provide important clues

to the type of processing the learner is using. When a learner

answers a problem by calculating or reasoning, they will tend

to be slower than when retrieving the answer from memory.

A key effect of PL, for example, is becoming able to extract

relevant structure with low attentional load, which is an

important contributor to expertise in many domains. These

are independent reasons for using RT in mastery criteria.

Dynamic Spacing Based on RTs

In our system, the priority for re-presentation of an item is a

function of RT and accuracy. Even with an accurate answer,

a long RT suggests relatively weak learning strength. The

system can use various functions of RT but typically pro-

duces increasing priority for longer RTs. Use of RTs in

adaptive learning offers a simple, direct framework for

implementing important principles to produce efficiencies in

learning. We hypothesize an internal variable of learning

strength that may be influenced by the arrangement of learn-

ing events and inferred to some degree from performance.

Learning strength is reflected in accuracy and speed in gen-

erating a factual answer or in making a classification in PL.

Evidence supports response speed as an indicator of learning

strength.25,26 Considerable research suggests that the value of

a test trial (with successful retrieval) varies with an item’s

learning strength.27,28 Thus, the best time to re-present an

item is at the longest interval for which a correct retrieval

can still be accomplished.29

Controversy persists about whether and when expanding

the retention interval is superior to schedules with equal

spacing.27,30,31 Although these issues are subjects of continu-

ing research, considerable evidence supports the idea that

difficulty of successful retrieval is an important factor.27,28,32

Pyc and Rawson28 labeled this idea the “retrieval effort

hypothesis”: more difficult, but successful, retrievals are

more beneficial to learning. In recent work, they studied the

relation of number of successful retrievals to later memory

performance, while manipulating the difficulty of those

retrievals in terms of number of intervening trials. Greater

numbers of intervening trials predicted better retention.

These investigators also provided evidence that, as had been

suggested in other work, larger gaps produced longer aver-

age response latencies,28 a finding consistent both with the

idea that a larger gap affects an item’s learning strength and

that learning strength is reflected in RTs. Other recent

research provides evidence for a substantial advantage of

expanding the retrieval interval when material is highly

susceptible to forgetting or when intervening material is

processed between testing events,29 conditions that apply to

many formal learning situations, including most medical

learning applications. The flexibility of parameter adjust-

ment in the ARTS system makes it possible to accommodate
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varied conditions of learning and even new findings regard-

ing optimal spacing relations.

Multipurpose, Multilevel Assessment

ARTS offers not only new opportunities to improve learning

but also wide-ranging possibilities for assessment. At the core

of adaptive learning is performance tracking and adjustment

based on embedded assessment. In our system, every concept

and item in the database is tracked in terms of the learner’s

accuracy and RTs on past trials. Both the raw data and derived

measures are continuously available to gauge a learner’s pro-

gress. Aggregating across learners can show a class’s strengths

and weaknesses for different categories of learning.

Recent research shows that ARTS outperforms random

presentation33 and also outperforms a classic adaptive learn-

ing system22 in tasks involving learning of factual items.24

Other research indicates that ARTS improves learning in

perceptual and category learning relative to other schemes.33

MEDICAL APPLICATIONS OF PERCEPTUAL
AND ADAPTIVE LEARNING TECHNOLOGIES
We have begun applying perceptual and adaptive learning

technologies to medical learning, and the results are remark-

ably promising. We describe four of these efforts briefly.

ARTS Technology for Optimal Sick
Call Performance

In a recent project funded by U.S. Army RDECOM, (a col-

laboration of UCLA, Insight Learning Technology, and

Pelagique, Inc.), we used ARTS in prototype learning sys-

tems for learning of factual material and medical diagnosis.

The focus was on initial clinical “sick call” diagnosis by

corpsmen and medics, and the goal was to improve factual

learning through adaptive factual learning modules and inte-

gration of probabilistic information in diagnosis in cognitive

task modules.

In an efficacy study using premedical students carried out

in the UCLA Human Perception Laboratory, the ARTS-

based factual learning modules produced highly effective

learning of medical material (such as signs and symptoms of

meningitis, supraglottitis, etc.) and outperformed a control

group using conventional study methods.34 Moreover, the

cognitive task modules, which aimed at training information

integration and higher level pattern recognition in diagnosis,

added substantial benefits beyond mastery of the basic fac-

tual information.

PL in Radiology

Radiological diagnosis includes many domains in which sub-

tle perceptual discriminations must be made, and radiological

training could likely be radically improved by appropriate

deployment of perceptual and adaptive learning technology.

In a pilot project, we have begun to apply these methods to

X-ray diagnosis of wrist injuries. Figure 1 shows a sample

screenshot. A variety of trial types, including distinguishing

normal from injured wrists and classification of single or

multiple injuries in particular images, are used in the module

to maximize PL. Studies are ongoing, but initial results sug-

gest that this format for learning can produce strong advances

in perceptual expertise from relatively short investments of

learning time.

Perceptual/Adaptive Learning Modules (PALMs)
in Dermatology and Histopathology

In collaboration with the David Geffen UCLA School

of Medicine, we have recently developed and tested two

computer-based PALMs in the pre-clerkship curriculum

for first- and second-year medical students, one for rec-

ognizing pathologic processes in skin histology images

(Histopathology PALM) and the other for identifying skin-

lesion morphologies (Dermatology PALM). The goal was to

assess their ability to develop pattern recognition and dis-

crimination skills leading to accuracy and fluency in diag-

nosing new instances of disease-related patterns. We used

pre- and post-test design, with each test consisting of the

FIGURE 1. Examples of Some Trial Types in the Wrist X-ray PLM.
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presentation of a visual display along with possible answers

for categorizing it. No feedback was given in the assess-

ments. The PALM, given to UCLA medical students in

between pre- and post-test, consisted of short interactive

learning trials requiring the learner to classify images. The

PL components in these modules included deploying a large

display set, such that instances of categories did not repeat;

moreover, as much as possible, irrelevant variables were

balanced across categories (For instance, different derma-

tological conditions involved approximately the same range

of body parts in the displays.) The initial PALMs in these

domains were simple; they included only a single type of

trial (display presentation with verbal category labels). More

varied and complex trial types are known to facilitate PL,

but these will be explored in subsequent work.

The adaptive learning components included use of cate-

gory sequencing algorithms, which optimized spacing based

on individual performance, as well as implementation of

mastery criteria for each category, based on both sustained

accuracy and fluency criteria.

The Dermatology PALM, designed to enhance the skin-

lesion morphology curriculum presented in Year 2, consisted

of 12 categories of lesion morphologies and was completed

by 161 of the 162 second-year students. The Histopathology

PALM was designed to complement the skin histopathology

curriculum of Year 1 students by enhancing their ability to

discriminate the different patterns of presentation observed

for cell and tissue injury/repair, inflammation, neoplasia, and

normal skin histology images, each at high-power and low-

power magnifications. This module was completed by all

161 first-year students. The Histopathology PALM was also

required of Year 2 students both to measure retention of

the subject from Year 1 and to serve as review and enhanced

learning of the material. The Dermatology PALM was

offered to Year 1 students, as a control, on a voluntary basis

and was completed by 78 students. These modules were com-

pleted quickly, with learning criteria typically reached in

15–35 minutes.

As shown in Table II, substantial improvements between

pre- and post-test scores were observed, with large (mean

effect sizes >0.7) and highly significant (p < 0.0001)

increases in accuracy and speed in categorizing previously

unseen images. Comparing performances for Years 1 and 2

on each of the modules, it can be seen that pre-test scores

were much higher for dermatology lesion morphology in

Year 2 than in Year 1, which is expected because the stu-

dents in Year 2 had recently received lectures and an online

learning experience. In contrast, this material was touched

on only briefly for Year 1 students. Post-test scores, how-

ever, were highly similar. Histopathology pre- and post-test

scores were similar for Year 1 and 2 students (Table II),

showing strong learning gains for both groups. Finally, stu-

dents reported that the PALMs increased their confidence

and were useful, and they indicated that they would like

more of these in other units.

APPLICATIONS OF PERCEPTUAL AND
ADAPTIVE LEARNING TECHNOLOGIES
IN MEDICAL SIMULATION
Although efforts are in their infancy, the promise of percep-

tual and adaptive learning technologies for improving medi-

cal learning is already obvious. Not much work, however,

has yet addressed procedural learning and simulation. These

areas are ripe for development, as these new technologies are

well suited to getting the most from simulation training.

Simply having cutting-edge simulations does not solve the

problem of how to improve learning. Perceptual–procedural

learning technologies and adaptive methods using objective

criteria of learning have much to offer in this regard. In this

section we note some issues, benefits, and considerations in

applying these new technologies to simulation.

Perception–Action Loops in Procedural Learning

We often think of skilled practitioners, such as pilots or

surgeons, as having “good hands,” but the key to their skills

TABLE II. Results of Dermatology and Histopathology PALMs with First and Second Year Medical Students

Pre-Testa Post-Testa p t(df ) Effect Size N

Year 1 Histopath

Accuracy 54% (13%) 66% (12%) <0.0001 9.6 0.98 161

RT 15.82 (11.20) 6.16 (2.33) <0.0001 11.6 1.19 161

Year 1 Derm (optional)

Accuracy 66% (11.5%) 84% (8.1%) <0.0001 12.5 1.55 79

RT 8.36 (6.11) 3.90 (1.03) <0.0001 7.0 1.00 79

Year 2 Histopath

Accuracy 51% (13.5%) 64% (14.4%) <0.0001 7.9 0.90 162

RT 8.87 (4.6) 5.30 (2.7) <0.0001 11.1 0.95 161b

Year 2 Derm

Accuracy 82% (8.9%) 88% (8.9%) <0.0001 7.62 0.76 161

RT 9.01 (4.77) 3.72 (094) <0.0001 14.5 1.54 161

Source: Krasne, Hillman, Rimoin, Burke, Kim, Drake, Craft and Kellman (unpublished data). aMean percent correct is shown in each assessment, with the

standard deviation (SD) shown in parentheses. bOne outlier (pre-test value 182 seconds) was excluded from the analysis.
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is often the expert pickup of the information that guides the

procedure (cf., Kellman and Kaiser13). A surgeon, for exam-

ple, must recognize anatomy in novel cases, distinguish var-

ious tissues and structures, and sense the position, progress,

and force of instruments. Surgery involves a host of delicate

perceptual–procedural learning tasks. In such procedural

tasks, much of the learning consists of improvements in

the pickup of information. PL technology can be readily

adapted to perception–action loops, in which perceptual

discriminations and perceptually guided actions are objec-

tively assessed and accelerated through adaptive spacing and

sequencing methods.

Realism in Perceptual–Procedural Learning

High-quality simulations offer ideal synergies with perceptual–

procedural learning technology. Because PL requires becom-

ing attuned to subtle patterns of information, richer simulation

improves the likelihood that training will be relevant to actual

practice. Simulation also allows the variation in displays and

scenarios that is crucial for allowing perceptual–procedural

learning processes to distinguish crucial invariances from

irrelevant variation and discover the best information for

guiding action.

Objective Scoring, Assessment, and Certification

A truly revolutionary opportunity afforded by realistic simu-

lation for procedure training, combined with adaptive methods,

is the opportunity to objectively assess performance and use

performance data to optimize the learning and implement

mastery criteria. With suitable tracking technology, a learner’s

movements in a virtual space may be tracked and scored for

accuracy and speed in a variety of tasks. Use of the ARTS

system offers particular advantages, in that fluency, as well

as accuracy, is used both in optimizing the learning process

and also as a goal of learning. It has been said that surgeons

fall into three categories: fast and good, fast and bad, and

slow and bad; there are no slow, good surgeons. Although

speed is known to be crucial for effective execution of med-

ical procedures, it has not typically been used systematically

in training or assessment. Obtaining and using the objective

data required to unlock the benefits of perceptual and adap-

tive learning techniques may require considerable invest-

ment, but doing so will produce accelerated training, reliable

certification, practice and refreshment of seldom-used skills

in refresher training, and reduction of errors in subsequent

medical practice.

CONCLUSION
For effective learning, cutting-edge simulation must be

combined with cutting-edge learning techniques. Both in

simulation and in many other areas of medical learning, two

broad-based innovations offer remarkable potential to acceler-

ate learning and enhance performance. Perceptual–procedural

learning technology offers ways of bringing intuitive pattern

recognition, interpretation of new cases, fluent processing,

and procedural execution into the realm of systematic and

objective instruction. Adaptive learning technology, such as

the ARTS system, improves learning by attuning the level,

spacing, and sequencing of learning events to each individual

learner, allowing more efficient learning, better retention, and

certification of mastery. These technologies apply to many

medical domains, and it will be exciting to turn their potential

into reality and see the benefits both in improved training and

medical practice.
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