
 Open access Journal Article DOI:10.1109/TNSM.2020.3037486

Adaptive and Reinforcement Learning Approaches for Online Network Monitoring
and Analysis — Source link

Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, Pedro Casas

Institutions: Austrian Institute of Technology, CentraleSupélec, Czech Technical University in Prague

Published on: 01 Jun 2021 - IEEE Transactions on Network and Service Management (Institute of Electrical and
Electronics Engineers (IEEE))

Topics: Data stream mining, Active learning (machine learning), Adaptive learning, Reinforcement learning and
Network monitoring

Related papers:

 ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring

 Continuous and Adaptive Learning over Big Streaming Data for Network Security

 RAL: reinforcement active learning for network traffic monitoring and analysis

 Applying Adaptive Technology in Machine Learning

 Value-based Bayesian Meta-reinforcement Learning and Traffic Signal Control

Share this paper:

View more about this paper here: https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-
1zigs2raxt

https://typeset.io/
https://www.doi.org/10.1109/TNSM.2020.3037486
https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt
https://typeset.io/authors/sarah-wassermann-26dn0ejkvc
https://typeset.io/authors/thibaut-cuvelier-4heiq98tjc
https://typeset.io/authors/pavol-mulinka-2gdf3pic60
https://typeset.io/authors/pedro-casas-2ymkzo1kms
https://typeset.io/institutions/austrian-institute-of-technology-3cu44suy
https://typeset.io/institutions/centralesupelec-2q2k2vqf
https://typeset.io/institutions/czech-technical-university-in-prague-n0tp2jqh
https://typeset.io/journals/ieee-transactions-on-network-and-service-management-1l6zv2ml
https://typeset.io/topics/data-stream-mining-1fzzxw4y
https://typeset.io/topics/active-learning-machine-learning-2to7erlu
https://typeset.io/topics/adaptive-learning-2qi12h1q
https://typeset.io/topics/reinforcement-learning-19scn3xh
https://typeset.io/topics/network-monitoring-2do5nyir
https://typeset.io/papers/adam-ral-adaptive-memory-learning-and-reinforcement-active-mtom0l3p68
https://typeset.io/papers/continuous-and-adaptive-learning-over-big-streaming-data-for-a10ghdhz93
https://typeset.io/papers/ral-reinforcement-active-learning-for-network-traffic-wxgkyjbyb8
https://typeset.io/papers/applying-adaptive-technology-in-machine-learning-41uqjh2gy8
https://typeset.io/papers/value-based-bayesian-meta-reinforcement-learning-and-traffic-3gv4z1ewel
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt
https://twitter.com/intent/tweet?text=Adaptive%20and%20Reinforcement%20Learning%20Approaches%20for%20Online%20Network%20Monitoring%20and%20Analysis&url=https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt
https://typeset.io/papers/adaptive-and-reinforcement-learning-approaches-for-online-1zigs2raxt

HAL Id: hal-03110834
https://hal.archives-ouvertes.fr/hal-03110834

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive and Reinforcement Learning Approaches for
Online Network Monitoring and Analysis

Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, Pedro Casas

To cite this version:
Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, Pedro Casas. Adaptive and Reinforcement
Learning Approaches for Online Network Monitoring and Analysis. IEEE Transactions on Network
and Service Management, IEEE, In press, ฀10.1109/TNSM.2020.3037486฀. ฀hal-03110834฀

https://hal.archives-ouvertes.fr/hal-03110834
https://hal.archives-ouvertes.fr

1

Adaptive and Reinforcement Learning Approaches

for Online Network Monitoring and Analysis
Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, Pedro Casas

Abstract—Network-monitoring data commonly arrives in the
form of fast and changing data streams. Continuous and dynamic
learning is an effective learning strategy when dealing with such
data, where concept drifts constantly occur. We propose different
stream-based, adaptive learning approaches to analyze network-
traffic streams on the fly. We address two major challenges
associated to stream-based machine learning and online network
monitoring: (i) how to dynamically learn from and adapt to
non-stationary data changing over time, and (ii) how to deal
with the limited availability of labeled data to continuously
tune a supervised-learning model. We introduce ADAM & RAL,
two stream-based machine-learning techniques to tackle these
challenges. ADAM relies on adaptive memory strategies to
dynamically tune stream-based learning models to changes in the
input data distribution. RAL combines reinforcement learning
with stream-based active-learning to reduce the amount of labeled
data needed for continual learning, dynamically deciding on the
most informative samples to learn from. We apply ADAM & RAL
to the real-time detection of network attacks in Internet network
traffic, and show that it is possible to continuously achieve high
detection accuracy even under the occurrence of concept drifts,
limiting the amount of labeled data needed for learning.

Index Terms—Stream-based Machine Learning; Active Learn-
ing; Reinforcement Learning; ADWIN; Network Attacks; MAW-
ILab.

I. INTRODUCTION

NETWORK-traffic monitoring and analysis is paramount

to understand the functioning of complex large-scale

networks, especially to get a broader and clearer visibility

of unexpected events. One of the major challenges faced by

online network-monitoring applications is the processing and

analysis of large amounts of heterogeneous and fast incoming

network-monitoring data. These data usually come in the

form of high-speed streams, which need to be rapidly and

continuously processed. In this context, detecting and adapting

to strong variations in the underlying statistical properties of

the modeled data makes data-stream analysis a challenging

task.

The application of machine-learning models to network-

security and anomaly-detection problems has largely increased

in the last decade. However, the general approach in the

literature still considers the analysis as an offline learning

problem, where models are trained once and then applied to

the incoming measurements. This approach is very restrictive

when dealing with highly dynamic environments, where con-

cept drifts – i.e., changes in the underlying properties of the

prediction target – occur often and previous knowledge rapidly

S. Wassermann and P. Casas are with the AIT Austrian Institute of Technol-
ogy, Austria, T. Cuvelier is with CentraleSupélec, France, P. Mulinka is with
CTU Czech Technical University in Prague. Contact: sarah@wassermann.lu,
pedro.casas@ait.ac.at

becomes obsolete. Nevertheless, Li et al. demonstrate the

advantages and feasibility of online machine-learning applied

in industrial control systems to detect cyber-attacks in real-

time [1]. An additional challenge of learning in in-the-wild

networking scenarios is the lack or limited availability of

ground truth or labeled data for training purposes. Labeling

new incoming data is often an expensive and cumbersome

process – especially when done manually and in an online

fashion. Furthermore, not all data samples are equally valu-

able.

In this paper, we investigate stream-based approaches ap-

plied to machine-learning-based network security, using differ-

ent algorithms for the analysis of continuously evolving data.

Stream-based machine-learning analysis consists of processing

one data instance at a time, inspecting it only once, and as

such, using a limited amount of memory; stream approaches

work in a limited amount of time, and have the advantage to

perform predictions at any point in time during the stream.

We introduce novel stream-based, continuous learning

strategies to deal with the aforementioned challenges. We

conceive, describe, and evaluate ADAM & RAL, two stream-

based machine-learning approaches to deal with (i) concept

drifts in the stream of network measurements and (ii) limited

availability of labeled, ground-truth measurements. ADAM

relies on simple data-distribution change-detection algorithms

to dynamically adapt the learning memory of different stream-

based machine-learning models to the most recent data distri-

bution, triggering new learning steps when concept drifts are

detected. In the context of stream-based learning, the concept

of learning memory refers to the set of past measurements

which are kept by the system for the purpose of model

(re)training. All additional measurements not belonging to the

learning memory are discarded. In its simplest form, such a

learning memory is implemented as a sliding window of fixed

length Tm, which keeps the last m monitored measurements

available for further analysis. Naturally, the size m of the learn-

ing memory plays a key role, especially when the environment

evolves fast.

RAL consists of a stream-based active-learning strategy

to reduce the amount of labeled data needed for learning,

dynamically deciding on the most informative measurements

to integrate into the continuous learning scheme. The term

informative refers here to the novelty of the corresponding

measurement, as well as to its ability to improve the prediction

performance of the underlying learning model. For example,

if the system has already seen a very similar measurement

to the one under analysis, or if the model has already a

high prediction performance for the region of the input space

where the new measurement belongs to, then it is probably

2

useless to use this new measurement for learning purposes,

as there would not be any gains from it. This is the rationale

behind active learning. Active learning aims at labeling only

the most informative samples to reduce the overall training

cost. There is a long list of data-querying strategies and

algorithms to decide which data samples should be labeled [2];

among them, the most popular strategy is based on uncertainty

sampling, which uses the model-prediction uncertainty for the

corresponding sample to decide whether to query its label

or not. The higher the uncertainty of the model for a given

sample, the more interesting the label of this sample becomes

for adapting the model. RAL improves model training and

prediction performance by additionally learning from the

relevance of its previous sample-selection decisions, using a

reinforcement-learning scheme.

We evaluate the performance of the proposed approaches

on the detection of different types of network attacks and

anomalies, using real network measurements collected at the

WIDE backbone network, relying on the well-known MAW-

ILab dataset for attack labeling [3]. Results not only show

that particular stream-based machine-learning models are able

to keep up with important concept drifts in the underlying

network data streams while keeping high detection accuracy,

but also that it is possible to drastically reduce the amount of

labeled data with stream-based active-learning approaches by

relying on reinforcement-learning principles. As an additional

contribution to the community, we make RAL freely available

on GitHub as a Python package1.

This paper builds on and extends our recent work on

adaptive learning for network monitoring [4], in multiple

directions. In particular: (i) it brings a more comprehensive

overview on the state of the art in adaptive learning; (ii)

it provides an extended evaluation of ADAM for different

types of attacks, as well as a comparative analysis against

other adaptation strategies, besides evaluating non-adaptive

learning approaches; (iii) it develops a theoretical analysis

on the expected performance of RAL, in particular with

respect to the implemented reinforcement-learning policy; (iv)

it further evaluates RAL in other datasets, to show the general

advantages of the proposal; (v) last but not least, it presents

(and evaluates) the integration of both ADAM and RAL into

a single, reinforcement-based, adaptive active-learning system,

adding explicit concept-drift detection into RAL.

The remainder of this paper is structured as follows. Sec-

tion II presents an overview on the related work. Sections III

and IV introduce the proposed ADAM and RAL approaches.

In the specific case of RAL, we additionally provide a theo-

retical analysis of the expected performance to be achieved by

the reinforcement-learning loop. Section V details evaluation

results on the continuous detection of network attacks and

anomalies on real network measurements, using both ADAM

and RAL with different machine-learning models. For the

sake of completeness, evaluations also consider the analysis

of other datasets not linked to network security, as well as

the integration of both ADAM and RAL approaches within a

single system. Finally, Section VI concludes the paper.

1https://github.com/SAWassermann/RAL

II. STATE OF THE ART

The application of machine learning to networking problems

has been largely explored in the literature [5]. There are a

couple of extensive surveys on any-domain anomaly-detection

techniques [6] as well as on network-oriented anomaly de-

tection [7], [8], including machine-learning-based approaches.

We refer the interested reader to [5] for a detailed survey on

the different machine-learning techniques commonly applied

to network-traffic analysis.

We have been recently working on the application of

machine-learning models to network anomaly-detection prob-

lems [9], [10], benchmarking the performance of standard

machine-learning models for network anomaly detection [9],

further studying more complex and robust models based on en-

semble machine-learning techniques [10]. The main limitation

of these approaches as compared to our proposals here is that

they consider the offline analysis of network measurements,

in batch mode.

The specific application of stream-based machine-learning

approaches to network security and anomaly detection is by

far more limited; a relevant and representative example linked

to current research is presented in [11], where Carela et al.

evaluate stream-based traffic-classification approaches based

on Hoeffding adaptive trees [12], using MAWILab data and

the MOA machine-learning toolkit, as we do in this work.

Naturally, the data-stream machine-learning domain has

a long-standing tradition and many interesting references

are worth mentioning when considering the application and

evaluation of stream-based machine-learning models; these

cover general problems related to the learning properties for

stream-based algorithms [13], [14], the mining and evalu-

ation processes when dealing with massive datasets [15],

the identification of model-evaluation issues [16], as well as

propositions of general frameworks for data streaming [17].

Recent work presents online-learning strategies dealing with

potentially problematic environments, i.e., environments that

might not represent the true context – for instance, a person

using an account who is not the usual one logging in with

these credentials [18].

Of particular relevance for stream-based machine-learning-

model evaluation are the problems of class imbalance and

concept drift, which are extensively studied in [19]. The

problem of concept-drift detection has been largely addressed

in the literature. A very popular change detector in the stream-

learning domain is known as ADWIN (ADaptive WINdow-

ing), a dynamically adjusting window-based approach intro-

duced in [20]. In [21], Bifet et al. describe a stream-based

bagging algorithm using ADWIN for performance monitoring

to decide when to retrain a new model. Similarly, Bifet and

Gavaldà designed the Hoeffding adaptive tree (HAT) [22]

relying on ADWIN to monitor the prediction performance of

different branches, and to replace them with new ones in case

those are more accurate. Probabilistic Approximate Window

(PAW) [23] is another approach to adapt the training-sample

window: at every incoming data point, each element in the

window gets dropped with an equal probability. In [24], Gama

et al. present Drift Detection Method (DDM), a concept-drift

3

detector which monitors the error rates of machine-learning

models. They rely on the assumption that the error rate

decreases over time as long as the samples of the stream are

drawn from a stationary distribution and thus issues a drift alert

as soon as the error rate increases significantly. An extension

to DDM, Early Drift Detection Method (EDDM), has been

proposed later in [25]; instead of looking only at the error rates

themselves, EDDM considers the distances (i.e., the number of

samples) between classification errors, which allows EDDM to

work well when facing gradual concept drifts. In [26], Losing

et al. present Self Adjusting Memory (SAM), a technique

using long-term and short-term memory models (LTM and

STM), as well as ensembles, to detect concept drifts. SAM

trains some models of the ensemble on LTM and others on

STM, combining them to maximize accuracy. In general and

in most of these models, the model accuracy is widely used

to detect drifts. Another example is FLORA2 [27], in which

Widmer et al. use two sliding windows, one for training the

model, the other one to compute its accuracy; as soon as the

accuracy drops significantly, FLORA2 detects a drift.

When it comes to active learning, there is a vast literature

in the field. For example, Žliobaitė et al. present in [28],

[29] three simple approaches for this learning paradigm.

Their proposed Randomized Variable Uncertainty approach

tackles the problem of stream-based active learning, using the

model’s prediction uncertainty to decide whether to query and

tries to overcome concept drifts by randomizing the certainty

threshold used for labeling decisions. In [30], Xu et al. develop

an active-learning algorithm with two different classifiers: one

“reactive” and one “stable”. The stable classifier is trained

on all available labeled instances, while the reactive one

is trained based on a window of recent instances. In [31],

Ienco et al. present an active-learning technique based on

clustering and prediction uncertainty. In [32], Krawczyk et

al. conceive an approach relying on a modification of the

Naı̈ve Bayes classifier to update the different learners through

the queried samples. In particular, they use one-versus-one

classifiers to tackle multiclass problems and update the weights

of the different classifiers by comparing their predictions to

the ground truth. Their technique behaves similarly to RAL.

However, the major difference is that [32] uses information

about the classifiers’ prediction certainty (without considering

the corresponding weights) to adapt the minimum threshold

for querying the oracle, while we rely on the usefulness of

the decisions taken by RAL to tune the system according to

the data stream. Sinha et al. [33] propose to use adversarial

machine-learning models: if the model cannot correctly infer

that the considered unlabeled sample has not yet been labeled,

then its label is unlikely to improve the model performance.

Finally, ideas from reinforcement learning have already

infused into the active-learning domain, but mostly into pool-

based approaches. In [34], [35], authors rely on the multi-

armed bandit paradigm. In [35], Hsu et al. develop ALBL,

which uses a modified version of EXP4 [36], a weight-

updating rule, to attribute adaptive weights to different learners

based on rewards; the learner to use is then determined through

these weights and uses its uncertainty measure to select the

samples in the pool to hand to the oracle. The approach

described in [34] is similar to the one in [35], except for the

reward-computation scheme. The algorithm presented in [37],

[38] relies on the same principles as the approach we are

proposing, but tackles a different problem: Song’s goal is

to introduce an active-learning component into a contextual-

bandit problem, while we are aiming at solving an active-

learning problem by using contextual bandits.

Other recent papers dealing with active learning and re-

inforcement learning include [39]–[42]. However, most of

them consider only one of the perspectives addressed by

RAL, namely the enhancement of pool-based active learning

through reinforcement learning [40]–[42], or the application

of active learning to the streaming setup [39]. Combining

active learning with reinforcement learning in a streaming,

adaptive learning context is the most important contribution

of RAL, a very timely yet vaguely addressed problem in the

literature. Last, the idea of learning to active learn, i.e., data-

driven active learning, is developed in [43], [44]. In particular,

Konyushkova et al. [43] propose this view on pool-based active

learning: the querying decision for a sample is based on an

estimation of the accuracy improvement. In [44], Woodward

et al. use reinforcement learning in stream-based active one-

shot learning, but this work is different from RAL on multiple

aspects: (i) it tackles a different learning task, as it aims

at detecting new classes instead of improving overall clas-

sification accuracy, (ii) their scheme relies on reinforcement

learning only during the training phase and is not updated

anymore once deployed, while RAL continuously adapts its

querying policy through this learning paradigm during the

whole incoming stream, and (iii) the system heavily relies

on deep recurrent networks, too cumbersome to use in real-

time resource-constrained scenarios, unlike RAL. Huang et

al. [45] extend this work in several aspects, for instance,

reducing the number of queries and increasing the convergence

speed by adding a cross-entropy term in the loss function

when training the underlying neural network. Puzanov et al.

introduce DeROL [46], a one-shot-learning framework based

on active learning and deep reinforcement learning designed to

optimize labeling-resource allocation in expert-based systems.

III. ADAM – LEARNING WITH ADAPTIVE MEMORY

We start by introducing ADAM, relying on an ADAptive

Memory strategy. Given that we are dealing with continuous

data analysis, the approach must be able to identify and adjust

to the variation of the statistical properties of the analyzed

data, detecting sudden statistical changes, namely concept

drifts. To do so, ADAM relies on ADWIN, an approach

which maintains a window of variable size containing training

samples. The algorithm automatically grows the window when

no change is apparent, and shrinks it when the statistical

properties of the stream change. ADWIN automatically adjusts

its window size to the optimum balance point between reaction

time and small variance. ADAM uses ADWIN on top of

four stream-based machine-learning algorithms popular in the

literature, including incremental k-NN, Hoeffding adaptive

trees (HAT), adaptive random forests (ARF) [47], and SVM

through stochastic gradient descent (SGD).

4

Algorithm 1 ADWIN algorithm.

1: procedure ADWIN(ε)

2: initialize window W

3: for each n > 0 do

4: W ← W ∪ {xn} ⊲ add xn to the head of W

5: if | µ̂W0
− µ̂W1

| ≥ ε for some split of W = W0 ·W1 then

6: drop instances from the tail of W

A. Adaptation Strategy

Stream-based machine-learning models continuously adapt

to the changes of the underlying statistics describing the

current data under analysis, by periodically retraining. To deal

with evolving data, one needs to define strategies to: firstly,

detect when changes occur; secondly, decide which data to

use for a subsequent model retraining; and last, retraining or

recalibrating the model when a significant change has been

detected. There are multiple strategies to deal with concept

drift in practice. A trivial one is to periodically retrain the

learning model with the most recent historical data. Depending

on how dynamic the environment or problem under analysis

is, this retraining could be done on a monthly, weekly, or even

daily basis. When dealing with highly changing environments,

such as the case of network security, it seems appropriate

to only include a small portion of the most recent historical

data in the training set to best capture the new relationships

between inputs and outputs. This can be realized by using

sliding windows.

The most basic adaptation strategy for periodic retraining

consists of using a sliding window containing recent measure-

ments to retrain the model. At time t0, the model is trained on

the most recent data contained in a fixed-length window of size

Tm, and used to predict the label of a newly arrived sample.

From time t1 onwards, the sliding window gets new data and

triggers a retraining of the model. We refer to this approach as

FIXWIN (FIXed-length WINdowing). FIXWIN provides soft

adaptations of the learning model, as the memory Tm of the

system operates as a smoothing filter, and therefore usually

performs well under gradual or incremental drifts. However,

when abrupt changes occur, FIXWIN introduces a potentially

significant delay in the adaptation process.

A better way to deal with abrupt changes is through reactive

strategies. In a nutshell, a reactive learning strategy consists

also of a sliding window keeping the most recent historical

data for retraining, but additionally adds a change-detection

algorithm to rapidly and automatically identify concept drifts,

discarding all data belonging to the previous distribution.

ADWIN falls into this category. The ADWIN algorithm [20]

keeps a sliding window W with the most recently observed

measurements {xi, xi+1 . . . xn}, where xi is the first sample

included in the window at time n. Without loss of generality,

we assume that, at each time n, instance xn is generated

according to an unknown probability distribution Dn. Let µn
be the (unknown) expected value of xn. Let m be the length

of W , and µ̂W the (computed) average of the measurements

in W . The idea of ADWIN is straightforward: whenever

two large enough sub-windows of W exhibit distinct enough

averages, we conclude that the corresponding expected values

are different, and the older portion of the window is dropped.

Algorithm 1 briefly describes ADWIN; µ̂W0
and µ̂W1

are

the averages of the m0 and m1 instances in W0 and W1,

respectively, and ε is a threshold. It is not needed to define m0

and m1, as these are decided by the algorithm itself. ADWIN

is basically a statistical test for different distributions in W0

and W1, which checks whether the observed average in both

sub-windows differs by more than the threshold ε. For the

statistical test, the null hypothesis is the absence of change

(µn remains constant within W).

Let δ ∈ (0, 1) be a confidence value defined as input

to ADWIN, acting as an upper bound to the false positive

rate of the change detection – shrinking W , when µn was

actually constant within W . According to [20], the threshold

ε is defined based on the global error of the statistical test

(the false positive rate) and on the lengths m0 and m1 of the

corresponding sub-windows. More precisely, if we define q as

the harmonic mean of m0 and m1, and δ′ = δ/m, then:

ε =

√

1

2q
· log

4

δ′

The role of δ′ is to avoid problems with multiple hypothesis

testing, since ADWIN tests m different possibilities for W0 and

W1, and we want a global error below δ.

Following previous work on adaptive learning [21], [22],

ADAM uses ADWIN to detect drifts in the time series of the

model-prediction accuracy. More precisely, the drift detector

is fed with the performance of the ensemble model for each

sample in the stream (i.e., whether the ensemble provided

the right prediction or not). The rationale behind this is

straightforward: if the model is performing well, and the

accuracy starts dropping, then it makes sense to retrain the

model, as it is no longer accurate – meaning that the new

data is distributed according to an unseen process. On the

contrary, if the model is performing badly, and suddenly starts

performing better, then there are high chances of boosting the

performance by adapting to current data distribution. As soon

as a drift has been detected, ADAM retrains the underlying

model using only the most recent window W1.

B. Concept-Drift Detection

Concept drift happens when the statistical properties of

the analyzed dataset abruptly shift in time [48]. Different

change-detection algorithms can be applied to identify the

times when the probability distribution of a stochastic process

or time series changes. In our problem, such a detection has

to be performed in an online manner, i.e., without assuming

that the statistics of the complete time series are known

in advance. The ADWIN algorithm is by design an online

change-detection algorithm. In this paper, we consider an ad-

ditional change-detection algorithm to analyze the considered

dataset: the Page-Hinkley test (PHT) [49]. PHT is a standard

statistical test for change detection, commonly used in time-

series analysis. In a nutshell, this test is a sequential adaptation

of a simple change-detection test for an abrupt change of the

average of a Gaussian stochastic process, and it allows efficient

5

detection of changes in the usual behavior of a process. Similar

to ADWIN, the null hypothesis corresponds to an absence of

change. We refer the reader to [49] for further details on the

PHT test.

IV. RAL – STREAM LEARNING WITH ACTIVE

REINFORCEMENT

RAL relies on reinforcement-learning principles, using re-

wards and contextual-bandit algorithms [36], as well as predic-

tion uncertainty. The overall idea is summarized in Figure 1.

The intuition behind the different reward values is that we

attribute a high (positive) reward in case the system behaves

as expected, and a low (negative) one otherwise, to penalize

it. RAL obtains rewards/penalties as soon as it is asking for

ground truth. In a nutshell, it earns a positive reward ρ+

in case it queries the oracle and would have predicted the

wrong label otherwise (the system made the right decision to

ask for the ground truth: the sample is deemed informative)

and a penalty ρ− (a negative reward) when it asks the oracle

even though the underlying classification model would have

predicted the correct label (querying was unnecessary). The

rationale for using reinforcement learning is that RAL learns

not only based on the queried samples themselves, but also

from the usefulness of its decisions. The objective function

to maximize is the total reward:
∑n

i=1 ri , where ri is the i-th

reward (ρ+ or ρ−) obtained by RAL.

The conceived system additionally makes use of the pre-

diction certainty of the underlying classification model(s).

The prediction certainty is defined as the highest posterior

classification probability among all possible labels for sample

x. More formally, the prediction certainty of a model is equal

to maxŷ P(ŷ |x), with ŷ being one of all the possible labels for

x. The rationale behind this design choice is that the model’s

prediction uncertainty is an appropriate proxy for assessing the

usefulness of a data point. Combining the reward mechanism

with the model’s uncertainty allows us to tune the sample-

informativeness heuristic to better guide the query decisions.

Also inspired by the bandit literature [50], to better deal

with concept drifts in the data, we implement an ε-greedy

policy, which improves the data-space exploration; we sample

a uniform probability distribution, and if this value is below

a certain threshold ε, the system queries the oracle, ignoring

the decision of RAL’s classification models. We refer to this

as the ε-scenario. This ensures that we have a good chance

of detecting potential concept drifts: without this policy, the

system could end up being too confident about its predictions,

and thus never ask the oracle again, even though its estimations

are wrong.

Next, we present the details of a committee or multiclassifier

version of RAL, relying on multiple models. Nevertheless, it is

very easy to use RAL with a single machine-learning model.

We provide some comments on this by the end of the section.

A. RAL Algorithmic Details

The algorithm behind RAL is summarized in Algorithm 2.

Our approach is inspired by contextual bandits [36]. We rely

on a set of experts (i.e., different machine-learning models),

Algorithm 2 RAL algorithm.

1: procedure RAL(x, E, α, θ, ε, η)

2: x: sample to treat

3: E: set of learners, members of the committee

4: α: vector of decision powers of learners in E

5: θ: certainty/querying threshold

6: ε: threshold for ε-greedy

7: η: learning rate

8: decisions← {} ⊲ will contain decisions of learners

9: for e ∈ E do

10: decisions[e] ← e.askCertainty(x) < θ

11: committeeDecision ← round(
∑

e∈E α[e] · decisions[e])

12: p←U[0,1] ⊲ random number drawn from a uniform

distribution

13: if p < ε or committeeDecision = 1 then

14: y ← acquireLabel(x)

15: if committeeDecision = 1 then

16: r ← getReward(x, y)

17: α ← updateDecisionPowers(r , E, decisions, commit-

teeDecision, α, η)

18: θ ← min
{

θ

[

1 + η ×
(

1 − 2
r

ρ−

)]

, 1
}

19: function UPDATEDECISIONPOWERS(r , E, decisions,

committeeDecision, α, η)

20: for e ∈ E do

21: if decisions[e] = committeeDecision then

22: α[e] ← α[e] × exp(η × r) ⊲ EXP4

23: return α/
∑

e∈E α[e] ⊲ normalize α

24: function GETREWARD(x, y)

25: return (ρ− if ŷ(x) = y else ρ+)

referred to as a committee. Each expert gives its opinion for

the sample to consider: should the system ask the oracle

for feedback or is the expert confident enough about its

prediction? To assess a model’s prediction certainty, we rely

on a certainty threshold θ: if the model’s certainty is below θ,

the expert is too uncertain about the prediction to make and

it thus advises that RAL asks for the ground truth. The query

decision of the committee takes into account the opinions of

the experts, but also their decision power: if the weighted

majority of the experts votes against querying, RAL will rely

on the label prediction provided by the committee, used in the

form of a voting classifier. The decision power of each expert

gets updated such that the experts which agree with the entire

committee are obtaining more power in case that particular de-

cision is rewarding, i.e., informative (otherwise, these experts

get penalized). These weights are updated through the EXP4

rule [36], with a learning rate η. RAL does not update the

decision powers of the different learners in the ε-scenario: the

committee did not take the querying decision and therefore the

weights of the models should not be impacted by this querying

action. Thus, RAL is a model-free system: it does not build a

model of its environment; it primarily relies on learning from

its interactions with the data stream as opposed to planning.

The computation of the reward is carried out every time

the committee decided to query (i.e., not in the ε-scenario).

6

RAL therefore gets rewarded when it queried the oracle and

asking was informative (i.e., the voting classifier would have

predicted the wrong label). Conversely, RAL is penalized if

the system used the oracle because the committee decided

to do so, even though the underlying classifier would have

predicted the correct class. More formally, the reward function

rn of RAL for its n-th query is the following:

rn =

{

ρ+ > 0, if asking was informative

ρ− < 0, if asking was unnecessary

As an additional step, to ensure that RAL adapts in the

best possible way to the data stream, we do not only tune

the weights of the committee members based on rewards, but

also the uncertainty threshold θ, denoted in the remainder of

this section as θn to stress that it is influenced by the n − 1

samples observed so far. Again, as for the decision powers,

θn is not updated in the ε-scenario. The update rule of θn we

implemented for our tool is written as follows:

θn ← min
{

θn−1 ×
[

1 + η ×
(

1 − 2
rn

ρ−

)]

, 1
}

We now detail the reasoning behind the selection of the

update policy used by RAL. We are looking for an update

rule of the form

θn ← min {θn−1 × [1 + f (rn)] , 1}

where f (rn) = 1 − exp (a × rn). The threshold should increase

slightly when the reward is positive, conversely when the

reward is negative. More formally, the update policy should

satisfy the following properties:

1 – θn should decrease fast in case rn is negative, as

this indicates the system queries too often, thus is doing

poorly. Therefore, θn should be adapted fast to improve RAL’s

performance.

2 – θn should slightly increase when rn is positive, so that

the system does not always keep decreasing the threshold and

avoids that θn drops to 0. The model was right to ask for

more samples, and thus the threshold should be increased.

Nevertheless, as the system is currently doing well, we do not

want the threshold to be too reactive to the queries.

3 – f must have two extrema: a minimum at ρ− < 0 and a

maximum at ρ+ > 0.

4 – θn represents a probability. θn = 0 is not acceptable due

to the product form of the update policy, thus the values of θn
must be in the interval (0, 1].

5 – f (rn) must be in the interval (−1, 1] to ensure that θn
takes values corresponding to a probability. We exclude −1

from the allowed range of values to avoid that θn drops to 0.

Properties 1 and 2 lead us to choose the family of functions

f : x 7→ 1 − exp (a × x) parameterized by a. Property 5 can

be translated into an equation to determine this parameter by

imposing the range constraint:

lim
r→ρ−

f (r) = 1 − exp (a × ρ−) = −1

After solving this equation, we get a = ln 2
ρ−

. As f is strictly

increasing, and because a is nonpositive, f will have a

maximum when rn = ρ
+ (thus satisfying property 3). Note

ŷ

Oracley

x

ρ±
reward / penalty

Committee

learners

Single

learner

Committee

learners

Single

learner

ε-greedy?

query?

no

yes

Figure 1: Overall idea of the system.

that, in order to satisfy property 5, ρ+ must be chosen such

that f (ρ+) ≤ 1.

As a final step, we introduce an additional hyper parameter

to the update rule, namely the learning rate η. This rate aims

at smoothing the evolution of the threshold θn, i.e., avoiding

that θn changes too dramatically with a single query. We thus

have the following update rule:

θn ← min
{

θn−1 ×
[

1 + η ×
(

1 − 2
rn

ρ−

)]

, 1
}

We restrict the values of η to the range (0, 1). Indeed, we

still must satisfy property 5 (a value of 1 would violate this

one) and η = 0 would lead to a nonreactive system, as the

threshold would never adapt.

We acknowledge that RAL includes a non-negligible num-

ber of hyperparameters which should be well chosen in order

to obtain the best results. While we do not have any rule of

thumb on how to define exact values, the following guidelines

help RAL learn from the streaming data:

1 – The initial value of θ should be set to a high one (i.e.,

close to 1) when the number of possible labels is low, to avoid

that the model is always too certain about its prediction for

the encountered samples.

2 – ε should be higher when dealing with more dynamic

datasets, to increase the probability of accurately grasping

concept drifts; in general, we would advise using values in

the range of 1 to 5%.

3 – η should be small to avoid changing the decision powers

of the different learners, i.e., α, and θn too abruptly; we would

advise values below 0.1.

4 – There is no specific range of values for ρ± which

works better than others and these values should be picked

considering the situation in which RAL is used: if unnecessary

queries are a major issue, one should set ρ− such that its

absolute value is much higher than the one of ρ+.

To conclude, and as we said before, RAL can also easily be

used with a single classifier instead of a committee of learners.

Transforming the committee version into a single-classifier one

is straightforward. In that case, RAL becomes very lightweight

and the only element of the system that allows it to efficiently

adapt to and learn from the data stream is the variation of the

uncertainty threshold θ, by relying on the rewards.

7

B. Expected Total Reward Analysis

As the main novelty of RAL lies in the introduction of a

reinforcement-learning loop to improve querying effectiveness

and the data exploration-exploitation trade-off, we devote this

section to the study of the reward properties in RAL. We rely

on concepts from the bandit theory to understand its expected

behavior. In the general case of a multiclass classification

problem, under the assumptions that ρ+ ± ρ− ≥ 0, we prove

the following bounds for the expected total reward of RAL,

T being the number of samples in an active-learning session

(see Appendix VII for proof details):

T
(

ρ+ − ρ−
)

β ≤ E

{
T∑

n=1

rn

}

≤ T
(

ρ+ + ρ−
)

+ T
(

ρ+ − ρ−
)

β′,

where β and β′ are functional parameters characterizing the

performance of the underlying machine-learning models [51],

[52]. For instance, if the models perform poorly, β is close

to zero and β′ is close to one. Conversely, if the models are

excellent, β ≈ 1 and β′ ≈ 0. This gives some intuition into the

meaning of this result. At the beginning of an active-learning

session, models perform poorly, but at least the expected total

reward is at least zero.

Furthermore, it is more beneficial to choose the rewards

such that ρ+ + ρ− ≥ 0. In this case, the upper bound is higher

– we add a term T(ρ++ ρ−) with respect to the scenario where

the rewards are not chosen in this manner –, as well as the

lower bound – we add a term T(ρ+ − ρ−). This means that,

for a promising behavior of RAL, good decisions should be

more rewarded than bad ones are penalized. At last, results

also show that the expected total reward is significantly higher

than T ρ−, whatever the values of ρ±: RAL usually takes the

appropriate decision, and thus mostly queries when necessary.

Conversely, the upper bound is always nonnegative.

V. CONTINUOUS DETECTION OF NETWORK ATTACKS

To evaluate the performance of the proposed algorithms

and adaptation strategies, we consider the detection of diverse

types of network attacks in real network-traffic measurements

collected at the WIDE backbone network, using the well-

known MAWILab dataset for attack labeling. MAWILab is a

public collection of 15-minute network-traffic traces [3] cap-

tured every day on a backbone link between Japan and the US

since 2001. Building on this repository, the MAWILab project

uses a combination of four traditional anomaly detectors (PCA,

KL, Hough, and Gamma) to partially label the collected traffic.

The evaluations provided in this section are broad and com-

prehensive, covering the overall picture addressed by ADAM

and RAL. Given the different nature and goals of ADAM

and RAL, we rely on two different evaluation strategies, each

of them adapted to the specific challenges tackled. Next, we

describe the dataset used in the evaluations in Section V-A,

as well as the employed evaluation strategies, along with the

obtained results in Sections V-C and V-D. To better under-

stand the properties and advantages of stream-based adaptive

learning in practice, we also evaluate the performance of the

proposed models in an offline-learning scenario, and show

how this approach leads to poor performance when concept

Table I: Input features for detection of attacks.

Field Feature Description

Tot. volume
pkts num. packets

bytes num. bytes

PKT size

pkt h H(PKT)

pkt {min,avg,max,std} min/max/std, PKT

pkt p{1,2,5,...95,97,99} percentiles

IP proto

ip protocols num. diff. IP protocols

ipp h H(IPP)

ipp {min,avg,max,std} min/max/std, IPP

ipp p{1,2,5,...95,97,99} percentiles

% icmp/tcp/udp share of IP protocols

IP TTL

pkt h H(TTL)

ttl {min,avg,max,std} min/max/std, TTL

ttl p{1,2,5,...95,97,99} percentiles

IPv4/IPv6

% IPv4/IPv6 share of IPv4/IPv6 pkts.

IP src/dst num. unique IPs

top ip src/dst most used IPs

TCP/UDP ports

port src/dst num. unique ports

top port src/dst most used ports

port h H(PORT)

port {min,avg,max,std} min/max/std, PORT

port p{1,2,5,...95,97,99} percentiles

TCP flags (byte)

flags h H(TCPF)

flags {min,avg,max,std} min/max/std, TCPF

flags p{1,2,5,...95,97,99} percentiles

% SYN/ACK/PSH/... share of TCP flags

TCP WIN size

win h H(WIN)

win {min,avg,max,std} min/max/std, TCPF

win p{1,2,5,...95,97,99} percentiles

drifts occur in Section V-B. Finally, we evaluate a natural

extension of ADAM and RAL, by integrating the ADWIN

change detector within the RAL approach in Section V-E.

A. Data Description

The traffic studied in this paper spans two weeks of packet

traces collected in late 2015. From the labeled anomalies and

attacks, we specifically focus on those which are detected

simultaneously by all four MAWILab detectors. We consider

five types of attacks/anomalies: (1) DDoS attacks (DDoS),

(2) HTTP flashcrowds (mptp-la), (3) flooding attacks (ping

flood), and two different flavors of distributed network scans

(netscan) using (4) UDP and (5) TCP-ACK probing traffic. We

train different models to (binary) detect each of these attack

types separately. To perform the analysis in a stream-based

manner, we consider a slotted, time-based approach: we split

the traffic traces in consecutive time slots of ∆T seconds each,

and compute a set of features describing the traffic in each

of these slots. In addition, each slot i is assigned a label li ,

consisting of a 5-dimensional binary vector which indicates

at each position j if anomaly of type j = 1..5 is present or

not in the current time slot. We compute a large number of

features describing a time slot, using traditional packet-level

measurements including traffic throughput, packet sizes, IP

addresses and ports, transport protocols, flags, etc. The total set

accounts for 245 features, which are computed for every time

slot i. Besides using traditional features such as min/avg/max

values of some of the input measurements, we also consider

the empirical distribution of some of them, sampling it at many

8

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

(a) CART model. (b) NN model. (c) NB model.

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

(d) RF model. (e) SVM model. (f) k-NN model.

Figure 2: Detection performance (ROC curves) achieved by different models for (offline) detection of network attacks.

different percentiles. This provides much richer information,

as the complete distribution is taken into account. We also

compute the empirical entropy H(·) of these distributions,

reflecting the feature dispersion. Table I describes the full set

of 245 features.

Naturally, the length of a time slot ∆T influences the

computation of the proposed features, and therefore the per-

formance of the detection models. While the analysis of such

an impact is out of the scope of this paper – the analysis

of streaming networking data under the presence of concept

drifts, independently of the input features’ definition –, we

have tried different values for ∆T and adopted ∆T = 5 seconds

for the computation of features, which provides a good trade-

off between low temporal resolution and model performance.

B. Offline Training and Online Performance Degradation

To understand the limitations of offline-learning approaches

and the advantages of stream-based ones, we begin the anal-

ysis by treating the detection problem as an offline-training

problem. We consider six standard machine-learning models

previously used in the literature for the offline analysis,

including: (i) decision trees (CART), (ii) naı̈ve Bayes (NB),

(iii) multi-layer neural networks (NN), (iv) support vector

machines (SVM), (v) random forest (RF), and (vi) nearest

neighbors (k-NN). We test the detection capabilities of the

six supervised approaches by computing the true and false

positive rates (TPR/FPR) for each of the attack types, using as

input the full set of 245 features. Figure 2 depicts the receiver-

operating-characteristic (ROC) curves obtained with each de-

tector, for the proposed attack classes. To reduce over-fitting,

all presented results correspond to 10-fold cross-validation

(CV). We use standard Java Weka machine-learning libraries

for the analysis, including parameter calibration (grid-based

search), model training, and validation. All the attack-detection

problems presented next are treated as binary classification

tasks; as a consequence, when we refer to the term detection

accuracy, we shall always refer to the recall of the attack class,

and not to the global accuracy of the model.

Figure 2 provides the comparative results obtained for the

selected supervised detectors. Besides the NB and the k-

NN models, the tested approaches provide all highly accurate

results for the five types of attacks. In general, detection

performance is worse for DDoS attacks for all the evaluated

models, suggesting that its fingerprint in the considered set of

features is less marked than for the other attacks. Both the NN

and RF models achieve the best performance, detecting around

80% of the attacks without false alarms. The proposed models

are very accurate to detect the different types of attacks. The

NN and the RF models are the best ones, detecting more than

90% of the attacks with a false alarm rate below 1%. These

initial results suggest that offline approaches are in principle

highly accurate; however, these results correspond to 10-fold

cross-validation, using the full dataset. In practice, one would

normally train the models with some time-bounded dataset,

and then apply the resulting detectors to the subsequently in-

coming measurements. To better understand how well it could

work in a real deployment, Figure 3 reports the performance

of some of the aforementioned models, when trained over the

first day of data, and tested on the following days.

Figure 3(a) considers the performance of the CART model

– similar results are observed for the other models, for all

the five attack types. While detection accuracy remains high

during the first couple of days, there is a major performance

degradation over time when models are not retrained. The

9

1 2 3 4 5 6 7 8 9 10
day

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

1 2 3 4 5 6 7 8 9 10
day

0

10

30

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

RF
SVM
CART
NN

(a) CART model. (b) Detection of DDoS attacks.

Figure 3: Performance drift for the offline trained models along

time. Training is done on the first day of data.

same is observed for other models in Figure 3(b), where

detection performance for DDoS attacks is reported – we

consider the DDoS attack, as it is the most difficult one to

detect in the dataset. This simple example serves as basis

to explain the paramount relevance of adaptive learning for

network security, particularly in practice, where machine-

learning based detectors are generally mistrusted by network

operators.

C. ADAM Evaluation Strategy and Performance

We now proceed to the evaluation of the four implemented

learning algorithms (incremental k-NN, HAT, ARF, and SGD)

and adaptation strategies in ADAM. We firstly study the sta-

tistical changes on the input data over the complete evaluation

period by detecting the concept drifts. Then, we evaluate the

different adaptive learning algorithms using ADWIN, and, for

the sake of completeness, complement the analysis when using

ADAM with the FIXWIN approach.

To evaluate the performance of stream-based algorithms,

the standard approach in the literature is to benchmark them

against their corresponding offline, batch implementations (cf.

Figure 2). We use as baseline the results obtained for the

matching offline algorithms, including k-NN, decision tree,

random forest, and SVM, subtracting the batch results from

the corresponding stream-learning results.

A commonly used evaluation scheme in the data-stream-

mining domain is the well-known prequential approach. Each

instance is first used to test a model, and then to update it.

Prequential evaluation can be used to measure the accuracy

of a model since the start of the evaluation, by keeping in

memory the complete history of instances and evaluating the

model on each new instance, but it is generally applied using

sliding windows – as we do in ADAM –, which forgets

previously seen instances in the model-update process and

focuses on those instances in the current sliding window or

learning memory. As opposed to more traditional k-fold cross-

validation, which is generally used in the evaluation of offline

machine-learning models based on k shuffles of the complete

dataset, prequential cross-validation works on a single stream

of data using only one model: consequently, its assessment of

the stream-based model tends to be weaker.

To avoid this weakness, we evaluate ADAM following a

new strategy to evaluate stream-based algorithms [53], using

1 675 1350 2025 2700

sample #

0

2

4

6

8

10

12

14

d
e
te

c
te

d
 c

h
a
n
g
e
s

Figure 4: PHT detection; dashed lines indicate changes.

prequential k-fold cross-validation. This strategy is basically

an adaptation of k-fold cross-validation to the streaming

setting, and assumes we have k different models derived from

the algorithm we want to evaluate, running in parallel. Each

time a new sample arrives, it is used for testing one of the

k models selected randomly, and is then used for training by

all the other models. As evaluation metric, we take the attack-

detection accuracy (ACC) – i.e., the recall for the attack class.

For completeness, we also consider the area under the ROC

curve (AUC) as evaluation metric, on its prequential version.

The machine-learning community often uses the AUC statis-

tic for model comparison, which is simple and informative,

and provides more reliable comparisons when dealing with

imbalanced data. To explain the AUC, let us consider a 2-

class classification model f that first estimates a probability

of a sample x belonging to the class +, denoted by f (x), then

uses this probability to make a decision. If x+ is a random

sample of the class + and x− another random sample of the

class −, the AUC is the probability that f (x+) > f (x−). The

higher the AUC, the better the discrimination of the model.

The AUC also reveals how good are the recall and precision of

a model for a specific target class: higher AUC values reflect

higher TPR values and lower FPR values. Similar to 2, the

AUC values correspond to the ROC curves for the attack class.

To calculate the AUC in a continuous fashion, one needs to

sort a given dataset by class probability and iterate through

each observation. Because the sorted order of observations

defines the resulting value of AUC, adding a new observation

to the dataset forces the procedure to be repeated. As such,

AUC cannot be directly computed on data streams, given the

associated time and memory requirements. In [54], authors

propose an efficient incremental algorithm that uses a sorted

tree structure with a sliding window to compute the AUC using

constant time and memory.

We use the MOA machine-learning library [55] to perform

the analysis, including both the hyperparameter calibration

(using a grid-search procedure) and the model training and

evaluation. MOA is specifically designed for stream-based

machine-learning approaches. Finally, to limit redundancy, we

evaluate ADAM using ADWIN through prequential k-fold

cross-validation, and ADAM using FIXWIN through AUC

prequential evaluation. Nevertheless, drawn conclusions are

the same as those obtained by running the full benchmark

with all models and both evaluation strategies.

10

DDoS.

1 675 1350 2025 2700
100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

Mptp-la.

1 675 1350 2025 2700
100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

Ping flood.

1 675 1350 2025 2700
100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

Netscan UDP.

1 675 1350 2025 2700
100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

1 675 1350 2025 2700
100

50

0

40

Netscan ACK.

1 675 1350 2025 2700
sample #

100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

(a) k-NN.

1 675 1350 2025 2700
sample #

100

50

0

40

(b) HAT.

1 675 1350 2025 2700
sample #

100

50

0

40

(c) ARF.

1 675 1350 2025 2700
sample #

100

50

0

40

(d) SGD.

Figure 5: Prequential 10-fold cross-validation accuracy evaluation. Diagrams show prequential 10-fold CV results for each

algorithm for each attack type. Concept drifts detected by the Page-Hinkley test are marked with dashed lines.

1) Concept-Drift Detection: We first study the variation of

the statistical properties of the considered dataset, in particular

detecting concept drifts with the Page-Hinkley test. Figure 4

depicts the cumulative number of changes observed in the

dataset, as well as the times when those changes are detected.

The test detects 14 abrupt changes during the total mea-

surement time span. The frequency of changes significantly

increases in the last third of the dataset, with more than 10

changes detected in the last four days. Concept drifts occur

from modifications of the underlying characteristics of the

prediction target. Concept drifts can be used to explain sudden

shifts in the performance of algorithms as depicted in Figure 4.

2) Performance Evaluation – ADWIN: We evaluate the

performance of ADAM using ADWIN on top of the learning

algorithms in five binary-classification scenarios, one for each

attack type, resulting in five sets of results for each tested

algorithm. Figure 5 reports the performance results for each

attack type, considering detection accuracy as performance

metric – i.e., recall for the attack class – and using the batch-

algorithm accuracy as baseline. The prequential 10-fold-CV

performance evaluation shows that both the ARF and SGD

models rapidly converge to the batch-based accuracy results,

with minimum performance variations under concept drifts,

and with a slightly better performance for the SGD model,

this one even outperforming the batch-based performance.

On the other hand, both the k-NN and HAT models do not

show any apparent convergence and results tend to oscillate

around the batch-algorithm baseline. In the case of HAT, we

can appreciate the correlation between the detected concept

drifts and the performance variations of the model. Interest-

11

1 675 1350 2025 2700
-100

-50

0

40

P
re

q
-

B
at

ch
 [%

]

Recall
Precision

1 675 1350 2025 2700
-100

-50

0

40

Recall
Precision

1 675 1350 2025 2700
-100

-50

0

40

Recall
Precision

1 675 1350 2025 2700
-100

-50

0

40

Recall
Precision

1 675 1350 2025 2700
-100

-50

0

40

Recall
Precision

(a) DDoS. (b) Mptp-la. (c) Ping flood. (d) Netscan UDP. (e) Netscan ACK.

Figure 6: Prequential 10-fold cross-validation recall (detection accuracy) and precision evaluation. Diagrams show prequential

10-fold CV results for the best algorithm (SGD) for each attack type.

DDoS.

270

1080

1890

2700

1
675

1350
2025

2700

P
re
q
A
U
C
-B
a
tc
h
A
U
C

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Mptp-la.

270

1080

1890

2700

1
675

1350
2025

2700

P
re
q
A
U
C
-B
a
tc
h
A
U
C

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Ping flood.

270

1080

1890

2700

1
675

1350
2025

2700

P
re
q
A
U
C
-B
a
tc
h
A
U
C

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Netscan UDP.

270

1080

1890

2700

1
675

1350
2025

2700

P
re
q
A
U
C
-B
a
tc
h
A
U
C

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

270

1080

1890

2700

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Netscan ACK.

w
in

dow

siz
e

270

1080

1890

2700
sample #

1
675

1350
2025

2700

P
re

q
A

U
C

-B
a
tc

h
A

U
C

0.6

0.4

0.2

0.0

0.2

0.4

(a) k-NN.

w
in

dow

siz
e

270

1080

1890

2700sample #

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

(b) HAT.

w
in

dow

siz
e

270

1080

1890

2700sample #

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

(c) ARF.

w
in

dow

siz
e

270

1080

1890

2700sample #

1
675

1350
2025

2700

0.6

0.4

0.2

0.0

0.2

0.4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

(d) SGD.

Figure 7: Prequential AUC evaluation. Diagrams show the dependency of the prequential AUC results on the evaluation-window

size, for each attack type. Concept drifts are marked with dashed lines.

ingly, the HAT model is the one achieving the highest accuracy

of the four models – up to an improvement of 40 percentage

points with respect to the baseline –, but cannot maintain

such a performance constantly in time, with significant deteri-

oration. This scenario shows the delicate challenge to handle

trade-off between model performance, learning frequency, and

forgetting of past measurements.

To complement the evaluation, Figure 6 re-evaluates the

best performing model (i.e., SGD), on the five attack types,

additionally evaluating the precision of the model for the attack

12

dataset ε η initial θ budget ρ+ ρ−

MAWI 2.5% 0.01 0.9 0.05 1 −1

Woodcover 5% 0.02 0.9 0.01 1 −1

Table II: RAL hyperparameters, selected by grid search.

class. As before, values are normalized to the batch/offline

performance (cf. Figure 2(e)). Recall results match those

presented in Figure 5 for SGD, confirming a sustained high

detection accuracy over time. In addition, the sustained high

precision for all attack types also confirms the low false-

alarm rates achieved by the streaming model, observed in

Figure 2(e). As we show next in Figure 7, the area under

the ROC curve (AUC), both SGD and ARF maintain a high

detection accuracy and low false-alarm rate, with a consis-

tent and sustained-over-time AUC matching the one achieved

offline (cf. Figure 2).

3) Performance Evaluation - FIXWIN: We now take the

FIXWIN strategy as basis for the analysis, using prequential-

AUC evaluation. We evaluate different sliding-window sizes,

by setting them to a fraction of the total dataset size:

{10%,20%,...,100%}, i.e., {270,540,...,2700} samples, consid-

ering 10 independent runs. Figure 7 shows the prequential-

AUC values along time (number of samples), with the batch-

based AUC values as baseline (cf. Figure 2), for the 10 tested

window sizes. Recall that a high AUC value shows that the

underlying model achieves high detection accuracy and low

false-alarm rates. For all four models, we first observe how

increasing the window size smooths performance variations

along time. However, as observed before in the case of

ADWIN, using smaller or more fine-tuned window sizes can

translate into better performance; for example, the HAT model

achieves a performance gain of up to 40 percentage points

(with respect to the baseline) when using 10%-dataset window

size. The window size allows to track long or short-term

changes better, depending on the tuning.

As before, we see how both ARF and SGD are highly

robust to concept drifts and converge for almost all window

sizes; this also happens, to a lesser extent, for the k-NN

model, which finds convergence and robustness for window

sizes above 40% of the dataset size. The performance of

HAT also starts converging for longer window sizes, but with

an important performance degradation for some attack types,

directly implying that keeping past history under concept drifts

might negatively impact results.

D. RAL Evaluation Strategy and Performance

To showcase the performance of RAL, we evaluate and

compare it to a state-of-the-art algorithm for stream-based

active learning, as well as against a very basic random-

sampling approach (RS). We compare RAL to the Randomized

Variable Uncertainty (RVU) technique proposed in [28], [29],

as this approach also heavily relies on the uncertainty of

the underlying machine-learning models to take the querying

decisions. Besides the MAWI datasets, we also use a subset of

the widely used Forest Covertype data (https://archive.ics.uci.

edu/ml/datasets/Covertype) to showcase RAL’s generalization

properties in a wider range of application domains. This

dataset contains samples labeled with different forest cover

types, represented by cartographic variables. Different from

MAWI, where datasets have a binary label and the analysis

focuses on the accuracy for the attack class (i.e., recall), the

Woodcover dataset consists of seven different classes reflecting

the different wood cover types; therefore, accuracy evaluations

for this dataset do not correspond to a specific class, but rather

to the overall accuracy across all seven classes. As the data

is perfectly balanced among classes, results are comparable

and not biased. We use the term prediction accuracy when

referring to Woodcover results.

For each benchmarked algorithm, we proceed as follows:

first, we subdivide the datasets into three consecutive, disjoint

parts, i.e., the initial training set, the streaming set, and the

validation set. The validation set consists of the last 30% of

the dataset, the initial training set is a variable fraction of the

first samples (varying between the first 0.5%, 1%, 2%, 5%,

10%, and 15%), and the streaming set includes the remaining

samples. We train a model on the initial training set and check

its detection accuracy on the validation set – we refer to this as

the initial accuracy. Next, we run the specific active-learning

algorithm on the streaming set and let it pick the samples it

decides to learn from. To emulate a stream-learning scenario,

we retrain the model each time a new label is queried. Finally,

the reported accuracy for each algorithm corresponds to the

application of a final model, trained on the initial training set

plus the selected samples, on the validation set.

We implement the budget mechanism presented in [28] for

both RAL and RVU, based on the ratio between the number

of queries and the total number of samples observed so far;

the system can issue queries to the oracle as long as this ratio

is below a certain budget. For RS, we use a budget indicating

the exact number of samples to ask feedback for. For each

attack type, we set it to the highest average number of queried

samples by either RAL or RVU among all the tests with all

the considered initial-training-set sizes.

Similarly to ADAM’s evaluation, all tests are repeated 10

times, and we report both average detection accuracy and

standard errors. For RAL, we indicate the average number

of queries performed due to the uncertainty of the underlying

model, as well as those issued through the ε-greedy mech-

anism. For comparison purposes, we also report the average

number of queries issued by RVU. The hyperparameter values

of RAL are chosen by grid search on the corresponding train-

ing sets, within the ranges prescribed in Section IV. The used

values are indicated in Table II. RAL’s and RVU’s budgets are

set to the same value of 0.05 for all the experiments. In the case

of RVU, we set its parameters based on those recommended

in [29]. We limit the set of results in MAWI to only two attack

types, namely ping flood and UDP netscan.

Figures 8 and 9 show the obtained results in terms of

detection accuracy and number of queries, respectively, for

(a) ping-flood, (b) UDP-netscan, and (c) Woodcover datasets.

In Figure 8, the reported all-streaming accuracy (gray line)

refers to the detection accuracy obtained by the model in case

it queries all the samples seen in the stream. We apply the

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

60

65

70

75

80

85
D

et
ec

tio
n

ac
cu

ra
cy

 (
%

) Initial accuracy
RS
RVU
All-streaming accuracy
RAL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

65

70

75

80

85

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
) Initial accuracy

RS
RVU
All-streaming accuracy
RAL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

12

14

16

18

20

22

24

26

28

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

RVU
RAL
All-streaming accuracy
Initial accuracy
RS

(a) Ping flood. (b) Netscan. (c) Woodcover.

Figure 8: Detection accuracy for RAL, RVU, and RS. For each of the tested datasets, RAL outperforms both techniques.

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu

er
ie

s

Model uncertainty
ǫ-greedy

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu
er

ie
s

Model uncertainty
ǫ-greedy

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu

er
ie

s

Model uncertainty
ǫ-greedy

(a) Ping flood (RAL). (b) Netscan (RAL). (c) Woodcover (RAL).

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu

er
ie

s

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu

er
ie

s

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

qu

er
ie

s

(d) Ping flood (RVU). (e) Netscan (RVU). (f) Woodcover (RVU).

Figure 9: Number of queries issued by RAL (top) and RVU (bottom). RAL achieves better accuracy, querying fewer samples.

committee version of RAL on the detection of attacks, and the

single classifier version of RAL in the wood-covertype set. The

committee is a voting classifier composed of a k-NN model

with k = 5, a decision tree, and a random forest with 10 trees,

whereas the single classifier is a 10-tree random forest. We

use the same models for RVU and RS in the corresponding

datasets, i.e., committee for attacks and single classifier for

Woodcover, relying on the same machine-learning algorithms

as RAL. The accuracy plots show that RAL outperforms both

RVU and RS on average, in all the datasets. A striking example

is the result for the UDP-netscan detection, where RAL obtains

accuracies which are almost 10 percentage points higher than

the ones of RVU and RS for the two smallest initial-training-

set sizes. In the case of Woodcover, RAL still yields better

accuracies than both RVU and RS, even though this prediction

task seems very challenging, as accuracy values are very low.

To our surprise, RVU is often outperformed by RS. Finally, the

ping-flood detection analysis shows that the three approaches

often yield an accuracy higher than the all-streaming one,

underlining that learning from the entire data stream does not

necessarily translate into better performance. This could be

explained by the high number of concept drifts in the data.

The initial accuracy is constant for the two different MAWI

attack subsets. This is due to the fact that the first 15% of these

datasets consist of points with the same label (more precisely,

they represent an attack).

When it comes to the number of queried samples, Figure 9

shows that RAL queries, on average, significantly less often

than RVU, and especially for the detection of networks attacks

(where more concept drifts occur) – between 20% and 25%

fewer queries. A non-negligible part of these queries are due

to the model’s uncertainty, suggesting that the samples picked

by RAL are wisely chosen. The results also highlight that the

ε-greedy policy is very useful, as the additional exploration

capability helps better deal with the concept drifts in the data,

contributing to the better results showed in Figure 8. Finally,

the number of samples/labels queried by RAL represents less

than 4% of the total number of streaming samples, also

showing how much one can save in terms of required labeling

for training.

14

0 200 400 600 800 1000 1200 1400 1600 1800
observed streaming samples (time)

65

70

75

80

85

90

95

100

de
te

ct
io

n
ac

cu
ra

cy
 (

%
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

%
 q

ue
rie

d
st

re
am

in
g

sa
m

pl
es

detection accuracy
% queried samples

(a) Ping flood.

0 200 400 600 800 1000 1200 1400 1600 1800
observed streaming samples (time)

55

60

65

70

75

80

85

90

95

100

de
te

ct
io

n
ac

cu
ra

cy
 (

%
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

%
 q

ue
rie

d
st

re
am

in
g

sa
m

pl
es

detection accuracy
% queried samples

(b) UDP netscan.

Figure 10: RAL’s detection accuracy temporal convergence.

We also study the convergence of RAL’s attack-detection

performance with respect to the evolution of the streaming

samples (i.e., time), for the two MAWI attack datasets. More

precisely, we evaluate RAL on the validation set after a new

sample is queried. We set the initial training-set size to the

first 0.5% of the data: according to Figure 8, such a small

initial training-set provides the best results. Figure 10 reports

the accuracy convergence for the ping-flood and netscan

detection, along with the temporal evolution of the number

of queried samples. We observe that the detection accuracy

is not clearly converging in the two scenarios: the ping-

flood-detection performance seems to converge to 90%, while

there does not seem to be any convergence for the netscan

case. This is not surprising, considering that these datasets

present multiple concepts drifts and are very dynamic. We

investigated the reasons behind the sharp accuracy increase in

both evaluations, and found that they are highly correlated with

queries issued by the committee – not the ε-greedy scenario.

This analysis confirms that acquiring the labels for which the

models have a low confidence in their prediction is indeed a

good strategy for active learning, and in particular also for

RAL. The degradation of the detection performance is likely

due to the acquisition of noisy points in the dataset and to the

concept drifts. The significant decrease in accuracy is mostly

caused by samples queried by random exploration (ε-greedy)

and not by RAL’s committee, even though this mechanism also

0.5 1 2 5 10 15
Initial-training-set size (%)

0

20

40

60

80

100

F
ra

ct
io

n
of

 q
ue

rie
s

(%
)

-

+

Figure 11: Proportion of obtained rewards vs. obtained penal-

ties by RAL – wood-covertype dataset.

often provides performance boost by forcing RAL to explore

the data space.

Finally, Figure 11 reports the fraction of positive and

negative rewards obtained by the reinforcement-learning loop,

in this case for the woodcover set. Results show that, for each

different initial-training-set size, the fraction of useful queries

is above 60%, further confirming the expected theoretical

results regarding the total reward, cf. Section IV-B.

Based on these results, one could wonder whether the per-

formance gain by RAL is worth the complexity of the system.

Even though the accuracy gain might not be very significant,

RAL’s querying strategy has additional advantages over the

two other techniques. For instance, RS does not consider the

uncertainty of the model nor the usefulness of the queries,

meaning that there is a risk to miss interesting samples. Indeed,

querying the ground truth when the model is uncertain helps

discover under-explored regions where to learn from, and RAL

is additionally guided by its reward mechanism. In the specific

case of the MAWI dataset, RS would probably miss interesting

attack samples, while RAL has a higher chance of querying

the ground truth for these data samples and better learn how to

detect attacks. When it comes to RVU, another advantage of

RAL over that algorithm, besides its better performance shown

above, is that the querying decisions are also influenced by

the informativeness of all past queries, not only by their sheer

execution; RVU does not take that information into account at

all, and thus it risks querying unnecessary samples too often.

This is especially problematic if querying is very expensive,

or if the oracle has only limited budget/availability.

E. Integrating ADAM & RAL

To conclude the study, we evaluate whether extending RAL

with explicit concept-drift detection, as ADAM, could provide

further improvements in terms of performance and adaptabil-

ity. Inspired by ADAM and based on previous work [21],

[22], we use ADWIN to detect shifts in the reward signal

of RAL, which is a good proxy for detection of concept drifts

in the input data. The reasoning behind this is simple: in case

RAL’s querying behavior starts to deteriorate by accumulating

penalties, i.e., a series of ρ−, we need to retrain the underlying

models with only the most recent data to eliminate the outdated

data points from the training set; conversely, if RAL starts

to perform well by accumulating a series of ρ+, we might

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

60

65

70

75

80

85
D

et
ec

tio
n

ac
cu

ra
cy

 (
%

) RAL
RAL-CD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

65

70

75

80

85

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
) RAL

RAL-CD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

12

14

16

18

20

22

24

26

28

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

) RAL
RAL-CD

(a) Ping flood. (b) UDP netscan. (c) Woodcover.

Figure 12: Detection-accuracy comparison between RAL and RAL with explicit Concept-Drift detection (RAL-CD).

improve and strengthen this behavior by removing older data.

We rely on the scikit-multiflow library [56] to implement

ADWIN into RAL. We refer to this approach as RAL-CD

– RAL with explicit Concept-Drift detection.

We evaluate RAL-CD by proceeding in the same way as

for the evaluation of RAL. In particular, we compare RAL-

CD against RAL on the same three datasets. Figure 12 reports

the obtained results. The number of concept drifts detected

by ADWIN in RAL is generally very low: in fact, in most

of the repetitions, ADWIN detected only one change in the

reward pattern for the whole MAWI streams, and almost

no changes when it comes to the Woodcover dataset. RAL-

CD’s detection accuracy is slightly worse than that of RAL.

Intuitively, this shows that the former version of RAL, i.e.,

without any explicit drift detection, already selects the best

samples that yield high accuracy. Results reveal that using

smaller training sets with RAL-CD yields worse performance

than with RAL. As an overall conclusion, the outcomes of

this evaluation show that the drift detector does not improve

RAL’s predictive performance, underlining that the samples

selected by RAL are already wisely chosen. However, we

hypothesize that RAL-CD might actually prove useful in the

case of longer and even more dynamic streams, with more

pronounced drifts: learning an accurate model on both pre-

and post-drift data might not be feasible, and removing the

pre-drift data could bring a distinctive advantage to RAL. We

are currently considering a more comprehensive evaluation of

RAL-CD on other datasets.

VI. CONCLUDING REMARKS

Dynamic and adaptive-memory-based learning seems to

be a promising learning strategy to adapt to very dynamic

environments, where concept drifts occur often. This is a

common scenario when dealing with online network-traffic-

monitoring applications. We have introduced and evaluated

ADAM and RAL, two stream-based machine-learning ap-

proaches to tackle important challenges when dealing with

data streams. We have shown that ADAM allows to track

transient changes and concept drifts along time. Indeed, using

ADAM, adaptive learning algorithms can continuously achieve

high detection accuracy over dynamic network data streams,

when dynamically adapting their learning pace and memory

to changes in the underlying statistics of the samples. We have

confirmed that both adaptive random forests and SVM through

stochastic gradient descent are better suited for the studied

problem, especially in terms of robustness to concept drifts and

convergence of results. We have also introduced RAL, a novel

Reinforced stream-based Active-Learning approach to tackle

the challenges of stream-based active learning, i.e., selecting

the most valuable sequentially incoming samples to reduce the

amount of learning data to label, using reinforcement-learning

principles. RAL does not only learn from the data stream, but

also from the relevance of its own querying decisions. RAL

provides a completely different exploration-exploitation trade-

off than existing algorithms. Evaluations have shown that RAL

provides very promising results, outperforming state-of-the-art

techniques, providing higher accuracies with less ground truth.

As an additional contribution, we make RAL freely available

on GitHub.

REFERENCES

[1] G. Li et al., “Detecting cyberattacks in industrial control systems using online

learning algorithms,” in Neurocomputing, vol. 364, pp. 338–348, 2019.

[2] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison,

Tech. Rep., 2010.

[3] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab : Combining

Diverse Anomaly Detectors for Automated Anomaly Labeling and Performance

Benchmarking,” in 6th ACM CoNEXT Conference, 2010.

[4] S. Wassermann, T. Cuvelier, P. Mulinka, and P. Casas, “ADAM & RAL: Adaptive

Memory Learning and Reinforcement Active Learning for Network Monitoring,”

in 15th International Conference on Network and Service Management (CNSM),

2019.

[5] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. E. Solano,

and O. M. C. Rendon, “A Comprehensive Survey on Machine Learning for

Networking: Evolution, Applications and Research Opportunities,” Journal of

Internet Services and Applications, vol. 9, no. 1, pp. 16:1–16:99, 2018.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, jul 2009.

[7] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly

detection techniques,” Journal of Network and Computer Applications, vol. 60,

no. C, pp. 19–31, 2016.

[8] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection methods in

networks,” in Computer Network and Multimedia Technology CNMT, 2009.

[9] J. Vanerio and P. Casas, “Ensemble-learning approaches for network security and

anomaly detection,” in ACM SIGCOMM Big-DAMA Workshop, 2017.

[10] P. Casas, J. Vanerio, and K. Fukuda, “Gml learning, a generic machine learning

model for network measurements analysis,” in 13th International Conference on

Network and Service Management (CNSM), 2017.

[11] V. Carela-Español, P. Barlet-Ros, A. Bifet, and K. Fukuda, “A streaming flow-

based technique for traffic classification applied to 12+ 1 years of internet traffic,”

Telecommunication Systems, vol. 63, no. 2, pp. 191–204, 2016.

[12] P. Domingos and G. Hulten, “Mining High-Speed Data Streams,” in ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2000.

[13] P. M. Domingos and G. Hulten, “Catching up with the data: Research issues

in mining data streams.” in Workshop on Research Issues in Data Mining and

Knowledge Discovery DMKD, 2001.

[14] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-time

stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp. 42–47, 2005.

[15] G. Hulten, P. Domingos, and L. Spencer, Mining massive data streams. University

of Washington, 2005.

16

[16] J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of stream learning

algorithms,” in 15th ACM SIGKDD Conference, 2009.

[17] ——, “On evaluating stream learning algorithms,” Machine learning, vol. 90, no. 3,

pp. 317–346, 2013.

[18] D. Bouneffouf, “Online learning with Corrupted context: Corrupted Contextual

Bandits,” arXiv preprint arXiv:2006.15194, 2020.

[19] T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from streaming data with

concept drift and imbalance: an overview,” Progress in Artificial Intelligence,

vol. 1, no. 1, pp. 89–101, 2012.

[20] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive

windowing,” in Proceedings of the 2007 SIAM Conference, 2007.

[21] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Improving adaptive bagging

methods for evolving data streams,” in Advances in Machine Learning, First Asian

Conference on Machine Learning ACML, 2009.

[22] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,” in

Advances in Intelligent Data Analysis VIII, 8th International Symposium on

Intelligent Data Analysis IDA, 2009.

[23] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream classifi-

cation via probabilistic adaptive windows,” in 28th Annual ACM Symposium on

Applied Computing, SAC, 2013.

[24] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,”

in Advances in Artificial Intelligence – SBIA, 2004.

[25] M. Baena-Garc, J. del Campo Ávila, A. Bifet, R. Gavald, and R. Morales-Bueno,

“Early Drift Detection Method,” in Fourth International Workshop on Knowledge

Discovery from Data Streams, 2006.

[26] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self adjusting memory

for heterogeneous concept drift,” in IEEE 16th International Conference on Data

Mining (ICDM), 2016.

[27] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift and Hidden

Contexts,” in Machine Learning, vol. 23, no. 1, pp. 69–101, 1996.

[28] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning with evolving

streaming data,” in Machine Learning and Knowledge Discovery in Databases.

Springer Berlin Heidelberg, 2011, pp. 597–612.

[29] ——, “Active learning with drifting streaming data,” in IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 1, pp. 27–39, January 2014.

[30] W. Xu, F. Zhao, and Z. Lu, “Active learning over evolving data streams using paired

ensemble framework,” in 2016 Eighth International Conference on Advanced

Computational Intelligence (ICACI), February 2016, pp. 180–185.

[31] D. Ienco, A. Bifet, I. Žliobaitė, and B. Pfahringer, “Clustering based active learning

for evolving data streams,” in Discovery Science, 2013, pp. 79–93.

[32] B. Krawczyk, “Active and adaptive ensemble learning for online activity recogni-

tion from data streams,” in Knowledge-Based Systems, vol. 138, pp. 69–78, 2017.

[33] S. Sinha, S. Ebrahimi, and T. Darrell. “Variational adversarial active learning,” in

IEEE International Conference on Computer Vision, 2019.

[34] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active learning algorithms,”

J. Mach. Learn. Res., vol. 5, pp. 255–291, dec 2004.

[35] W.-N. Hsu and H.-T. Lin, “Active learning by learning,” in Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAI’15. AAAI

Press, 2015, pp. 2659–2665.

[36] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The nonstochastic

multiarmed bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp.

48–77, 2002.

[37] L. Song, “Stream-based online active learning in a contextual multi-armed bandit

framework,” arXiv preprint arXiv:1607.03182, 2016.

[38] L. Song and J. Xu, “A contextual bandit approach for stream-based active learning,”

arXiv preprint arXiv:1701.06725, 2017.

[39] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P. Lillicrap, “One-shot

learning with memory-augmented neural networks,” CoRR, vol. abs/1605.06065,

2016.

[40] P. Bachman, A. Sordoni, and A. Trischler, “Learning algorithms for active learn-

ing,” in Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 301–310.

[41] M. Fang, Y. Li, and T. Cohn, “Learning how to active learn: A deep reinforcement

learning approach,” in Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September

9-11, 2017, 2017, pp. 595–605.

[42] K. Pang, M. Dong, Y. Wu, and T. M. Hospedales, “Meta-learning transferable ac-

tive learning policies by deep reinforcement learning,” CoRR, vol. abs/1806.04798,

2018.

[43] K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from real

and synthetic data,” CoRR, vol. abs/1703.03365, 2017.

[44] M. Woodward and C. Finn, “Active one-shot learning,” CoRR, vol. abs/1702.06559,

2017.

[45] H. Huang et al., “On the improvement of reinforcement active learning with the

involvement of cross entropy to address one-shot learning problem,” PloS one

vol. 14, no. 6, 2019.

[46] A. Puzanov, S. Zhang, and K. Cohen, “Deep reinforcement one-shot learning

for artificially intelligent classification in expert aided systems,” Engineering

Applications of Artificial Intelligence, vol. 91, 2020.

[47] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger,

G. Holmes, and T. Abdessalem, “Adaptive random forests for evolving data stream

classification,” Machine Learning, vol. 106, no. 9-10, pp. 1469–1495, 2017.

[48] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on

concept drift adaptation,” ACM CSUR, vol. 46, no. 4, p. 44, 2014.

[49] E. S. PAGE, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1-2, pp.

100–115, 06 1954.

[50] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College,

Cambridge, 1989.

[51] V. Vapnik, The nature of statistical learning theory. Springer science & business

media, 2000.

[52] Y. Guermeur, “Vc theory of large margin multi-category classifiers,” Journal of

Machine Learning Research, vol. 8, no. November, pp. 2551–2594, 2007.

[53] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer, “Efficient

online evaluation of big data stream classifiers,” in Proceedings of the 21th ACM

SIGKDD Conference. ACM, 2015, pp. 59–68.

[54] D. Brzezinski and J. Stefanowski, “Prequential auc: properties of the area under

the roc curve for data streams with concept drift,” Knowledge and Information

Systems, vol. 52, no. 2, pp. 531–562, 2017.

[55] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online analysis,”

Journal of Machine Learning Research, vol. 11, no. May, pp. 1601–1604, 2010.

[56] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow: A multi-

output streaming framework,” Journal of Machine Learning Research, vol. 19, pp.

72:1–72:5, 2018.

BIOGRAPHIES

Sarah Wassermann is currently a third-year PhD
student at TU Wien, doing research in network
measurements, in particular in the field of QoE, and
machine learning. She earned her Master’s degree
in 2017 from the university of Liège (ULiège) in
Belgium, where she also obtained her Bachelor’s
degree in 2015. Her goal is to conceive intelligent
systems which make the Internet smarter and able to
face demanding users and an ever-growing volume
of heterogeneous network traffic.

Thibaut Cuvelier is a third-year PhD student at
CentraleSupélec (France), doing research at the in-
tersection of mathematical optimization and machine
learning. He earned his Master’s degree in 2015
from the university of Liège (Belgium). His cur-
rent research interests include bandit optimization,
especially combinatorial bandits, and applications of
optimization in computer networks, more precisely
in routing and related cut problems.

Pedro Casas is Senior Scientist in AI/ML for Net-
working at the AIT Austrian Institute of Technology
in Vienna. He received an Electrical Engineering
degree from Universidad de la República, Uruguay
in 2005, and a Ph.D. degree in Computer Science
from Télécom Bretagne in 2010. He was Post-
doctoral Research at the LAAS-CNRS in Toulouse
from 2010 to 2011, and Senior Researcher at the
Telecommunications Research Center Vienna (FTW)
from 2011 to 2015. His work focuses on machine-
learning-based approaches for Networking, big data

analytics and platforms, Internet network measurements, network security and
anomaly detection, as well as Internet QoE monitoring. He has published
more than 180 Networking research papers in major international conferences
and journals, received 14 awards for his work - including 7 best paper
awards. He is general chair for different actions in network measurement and
analysis, including the IEEE ComSoc ITC Special Interest Group on Network
Measurements and Analytics.

Pavol Mulinka is a PhD candidate at the CTU
Czech Technical University in Prague. He is a ma-
chine learning enthusiast, data scientist, freelance
Python programmer and former network engineer.
He is currently working as a researcher at the CTTC
Research Center in Barcelona, and as a data science
volunteer in Wikimedia Scoring team. He enjoys
riding motorcycle, rock climbing, jogging, and yoga.

17

VII. APPENDIX – RAL BOUNDS PROOF

In this section, we provide a formal proof for the bounds on

the expected total reward as presented in Section IV-B. The

specific bounds are as follows:

E

{
T∑

n=1

rn

}

≤ T
(

ρ+ + ρ−
)

+ T
(

ρ+ − ρ−
)

β′

E

{
T∑

n=1

rn

}

≥ T
(

ρ+ − ρ−
)

β

where β and β′ are parameters defined later in this appendix;

they depend on the prediction performance of the machine-

learning models.

The proof is done in three consecutive steps, going from the

simple version of a single binary classifier (Section VII-A), to

a single multiclass classifier (Section VII-B), to a multiclass

voting classifier (Section VII-C), the latter corresponding to

the committee version of RAL. These three cases all have the

same generic bound, with slightly different definitions of β

and β′.

A. Expected Reward Analysis – Single Classifier

Let us analyze the expected total reward obtained by using

RAL, i.e., E
{∑T

n=1 rn
}

, where T denotes the number of sam-

ples in the considered data stream and rn indicates the reward

obtained for the n-th sample. In the following developments,

we use these notations:

• ŷn – n-th predicted value

• p̂n – certainty of the model for the n-th prediction

• ρ± – reward and penalty obtained by RAL respectively;

the reward ρ+ must be nonnegative and the penalty ρ−

nonpositive

• VC – Vapnik-Chervonenkis dimension of the learner [51]

• θn – uncertainty threshold before having observed the n-

th sample

• errn – error rate of our classifier before having observed

the n-th sample

• errn – training error of model before having observed the

n-th sample

The expected total reward writes E
{∑T

n=1 rn
}

=

∑T
n=1 E {rn}.

Based on the classical result of [51], we have the following

bound:

fn(α) = errn +

√

1

Nn

[

VC

(

log
2Nn

VC
+ 1

)

− log
α

4

]

P (errn ≤ fn(α)) = 1 − α

where Nn denotes the training-set size for the underlying

classifier at the n-th round (before observing the n-th sample)

and α is a confidence level whose value lies in the interval

[0, 1]. We can therefore write this probabilistic bound as:

P

[

P(ŷn , yn) ≤ fn (α)
]

= 1 − α

This means that the probability of making a mistake can be

written as:

P [ŷn , yn] = P [ŷn , yn |P(ŷn , yn) ≤ fn (α)]

× P [P(ŷn , yn) ≤ fn (α)]

+ P [ŷn , yn |P(ŷn , yn) > fn (α)]

× P [P(ŷn , yn) > fn (α)]

= P [ŷn , yn |P(ŷn , yn) ≤ fn (α)] (1 − α)

+ P [ŷn , yn |P(ŷn , yn) > fn (α)] α

Its upper and lower bounds are thus:

0 + α fn (α) ≤ P [ŷn , yn] ≤ (1 − α) fn (α) + α × 1

For the next proofs, we will require bounds on the proba-

bility of the certainty of the model being less than a threshold.

Unfortunately, to the best of our knowledge, no generic result

exists for the probability distribution of these certainties, which

leads to very loose bounds:

0 ≤ P [p̂n ≤ θn] ≤ 1

For the following steps, we rely on classical results in

probability theory, namely the union bound and Fréchet’s

inequality. For two probabilistic events A and B, be they

independent or not, the following bounds hold:

P(A ∧ B) ≤ P(A) + P(B)

P(A ∧ B) ≥ max {0, P(A) + P(B) − 1}

We have that E {rn} =
∑

r ∈R r×P(rn = r) with R = {ρ+, ρ−}

being the set of all possible reward values. As RAL does not

obtain any reward in the ε-scenario, it can be ignored. There-

fore, we have the following decomposition of the expectation

and a generic upper bound:

E {rn} = ρ+

︸︷︷︸

≥0

P [p̂n ≤ θn ∧ ŷn , yn]
︸ ︷︷ ︸

≤(P[p̂n≤θn]+P[ŷn,yn])

+ ρ−

︸︷︷︸

≤0

P [p̂n ≤ θn ∧ ŷn = yn]
︸ ︷︷ ︸

≥(P[p̂n≤θn]+P[ŷn=yn]−1)

≤ P [p̂n ≤ θn]
(

ρ+ + ρ−
)

+ P [ŷn , yn] ρ
+

+ [1 − P [ŷn , yn]] ρ
− − ρ−

≤ P [p̂n ≤ θn]
(

ρ+ + ρ−
)

+ P [ŷn , yn]
(

ρ+ − ρ−
)

Finally, the upper bound on the expected total reward,

under the assumption that both (ρ+ + ρ−) and (ρ+ − ρ−) are

nonnegative, is:

E

{
T∑

n=1

rn

}

≤ T
(

ρ+ + ρ−
)

+ T
(

ρ+ − ρ−
)

[(1 − α) fn (α) + α]
︸ ︷︷ ︸

β′

If these two assumptions do not hold, a similar bound can still

be achieved:

First, suppose that ρ+ + ρ− ≥ 0 and ρ+ − ρ− ≤ 0. In this

case, the only solution is to have ρ+ = ρ− = 0, thus trivially

E{
∑T

n=1 rn} = 0.

18

Second, suppose that, conversely, ρ++ρ− ≤ 0 and ρ+−ρ− ≥ 0.

These assumptions lead to:

E

{
T∑

n=1

rn

}

≤ T
(

ρ+ − ρ−
)

[(1 − α) fn (α) + α]
︸ ︷︷ ︸

β′

Third, the case where both ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≤ 0

should not be studied further, because that would imply that

ρ+ ≤ 0, which violates the defined range of allowed values

for ρ+ (in case ρ+ = 0, we must have ρ− = 0).

As a next step, we derive a lower bound of the expected

total reward, with a very similar reasoning. First, the expected

reward can be decomposed as:

E {rn} = ρ+

︸︷︷︸

≥0

P [p̂n ≤ θn ∧ ŷn , yn]
︸ ︷︷ ︸

≥(P[p̂n≤θn]+P[ŷn,yn]−1)

+ ρ−

︸︷︷︸

≤0

P [p̂n ≤ θn ∧ ŷn = yn]
︸ ︷︷ ︸

≤(P[p̂n≤θn]+P[ŷn=yn])

≥ P [p̂n ≤ θn]
(

ρ+ + ρ−
)

+ (P [ŷn , yn] − 1)
(

ρ+ − ρ−
)

Eventually, if ρ+± ρ− ≥ 0, the expected total reward is at least

T (ρ+ − ρ−) [α fn (α) − 1], i.e., β = α fn (α) − 1. Conversely,

if ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≥ 0, the lower bound is

T (ρ+ − ρ−) [α fn (α) − 2], i.e., β = α fn (α) − 2.

B. Generalization to the Multiclass Case

The VC dimension makes no more sense when the clas-

sification problem includes multiple classes. There have been

several generalizations thereof, for instance the covering num-

ber N (p)
(

γ/4,∆γG, 2 Nn

)

[52], where ∆γG is the set of clas-

sification margins obtained by any classifier of the family G

in the known Nn data points (if a margin is larger than γ, it

is clipped to γ). errγ,n is the number of misclassifications,

where an element is misclassified if its margin is less than γ.

With a margin γ ∈ R+
0

, a real number Γ ∈ R+
0

(γ ≤ Γ), and

the previously defined notations, the following bound on the

generalization error holds:

fn (α, γ) = errγ,n +
1

Nn

+

√

2

Nn

[

log
(

2N (p)
(γ

4
,∆γG, 2 Nn

))

− log
2 Γ

α γ

]

P (errn ≤ fn (α, γ)) = 1 − α

Notation is taken directly as defined in [52].

Considering that ρ+ + ρ− ≥ 0, the upper bound of the

expected total reward can be computed as in the binary-

classification problem:

E

{
T∑

n=1

rn

}

≤ T
(

ρ+ + ρ−
)

+T
(

ρ+ − ρ−
)

[(1 − α) fn (α, γ) + α]
︸ ︷︷ ︸

β′

Similarly, the lower bound for a multiclass problem can be

expressed as:

E

{
T∑

n=1

rn

}

≥ T
(

ρ+ − ρ−
)

[α fn (α, γ) − 1]
︸ ︷︷ ︸

β

C. Committee Version

The mathematical developments for the committee version

are very similar to the single classifier ones. First of all,

the committee is still a classifier, and thus the same kind of

bound applies on the probability of misclassifying. The only

difference is that we have to take the VC dimension of the

stacked classifiers instead of the one of the single classifier.

RAL asks the oracle for a label (and obtains the corre-

sponding reward) if the weighted average of the decisions

encourages it to query. We denote by di,n the random variable

indicating whether the i-th classifier decides to query the oracle

or not, i.e., whether its certainty p̂i,n for the n-th prediction

is below the threshold θn (in case of querying, di,n = 1;

otherwise, di,n = 0). αi,n is the weight of the i-th classifier

for the n-th sample; we have previously imposed that the sum

of the weights must be one (
∑C

i=1 αi,n = 1 for each sample n).

Thus, RAL asks when:

C∑

i=1

αi,n di,n ≥
1

2

For the upper bound, the previous developments still hold:

E {rn} ≤ P

[
C∑

i=1

αi,n di,n ≥
1

2

]

(

ρ+ + ρ−
)

+P [ŷn , yn]
(

ρ+ − ρ−
)

Again, to the best of our knowledge, no generic result exists

for a probability distribution of the querying decisions; we

therefore have to resort to a very broad bound:

0 ≤ P

[
C∑

i=1

αi,n di,n ≥
1

2

]

≤ 1

Finally, the expected total reward is, if ρ+ ± ρ− ≥ 0, at most:

E

{
T∑

n=1

rn

}

≤ T
(

ρ+ + ρ−
)

+T
(

ρ+ − ρ−
)

[(1 − α) fn (α, γ) + α]
︸ ︷︷ ︸

β′

Similarly, concerning the lower bound, we obtain, for the

same reasons, the same lower bound as in the single classifier

case. Specifically, if ρ+ ± ρ− ≥ 0,

E

{
T∑

n=1

rn

}

≥ T
(

ρ+ − ρ−
)

[α fn (α, γ) − 1]
︸ ︷︷ ︸

β

