
c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

Adaptive and Sequential Gridding Procedures
for the Abstraction and the Verification of Stochastic Processes∗

Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate†

Abstract. This work is concerned with the generation of finite abstractions of general state-space processes, to
be employed in the formal verification of probabilistic properties by means of automatic techniques
such as probabilistic model checkers. The contribution employs an abstraction procedure based on
the partitioning of the state space, which generates a Markov chain as an approximation of the
original process. The work puts forward a novel adaptive and sequential gridding algorithm that
is expected to conform to the underlying dynamics of the model and thus to mitigate the curse
of dimensionality unavoidably related to the partitioning procedure. The results are also extended
to the general modeling framework known as Stochastic Hybrid Systems. While the technique is
applicable to a wide arena of probabilistic properties, with focus on the study of a particular speci-
fication (probabilistic safety or invariance, over a finite horizon) the proposed adaptive algorithm is
first benchmarked against a uniform gridding approach taken from the literature, and finally tested
on an applicative case study in Biology.

Key words. General State-Space Processes, Markov Chains, Stochastic Hybrid Systems, Abstractions, Ap-
proximations, Formal Verification, Safety and Invariance, Properties and Specifications

AMS subject classifications. 93E03, 93E25, 60J20

1. Introduction. This work studies the problem of computing probabilistic properties for
discrete time Markov processes evolving over continuous (uncountable) state spaces. We in-
terpret the analysis of a given property as the formal verification of a related specification
expressed in a probabilistic modal logic [4]. Theoretically, the connection between the com-
putation of a class of dynamical properties and the verification of related specifications in
PCTL logic has been investigated in [26] and extended in [2]. To keep the work focused, this
contribution zooms in on the fundamental problem of probabilistic invariance, or safety – and
on its related specification. This problem has been recently investigated in [3], which has
characterized this concept and put forward an algorithm to compute this quantity.

From a computational perspective, [1] has looked at the numerical evaluation of specifi-
cations discussed in [3], among which probabilistic invariance. This evaluation is possible by
developing a formal abstraction that is based on the partitioning of the state space of the
original continuous space model, which originates a discrete time, finite space Markov chain
(MC) from the original process. The approach is formal in that it allows for the computation
of explicit bounds on the error associated with the abstraction. This technique enables consid-
ering classes of probabilistic specifications [2, 1] over continuous-space models and computing
them over MC abstractions via available probabilistic model checkers [17, 18], with explicit

∗This work is supported by the European Commission STREP project MoVeS 257005, by the European Com-
mission Marie Curie grant MANTRAS 249295, by the European Commission IAPP project AMBI 324432, by the
European Commission NoE Hycon2 257462, and by the NWO VENI grant 016.103.020. A subset of the presented
material has previously appeared in [12].

†The authors are with the Delft Center for Systems & Control, TU Delft - Delft University of Technology. Delft,
The Netherlands. Emails: S.EsmaeilZadehSoudjani@TUDelft.nl, A.Abate@TUDelft.nl

1

mailto:S.EsmaeilZadehSoudjani@TUDelft.nl,\protect \kern +.1667em\relax A.Abate@TUDelft.nl

2 S. Esmaeil Zadeh Soudjani and A. Abate

bounds on the errors introduced with the abstraction procedure.

This work looks at extending the applicability of the technique developed in [1] by ad-
dressing its known bottleneck: the issue of dimensional scalability of the abstraction, which is
limited by the “curse of dimensionality” related to the partitioning procedure and subsequent
dynamic programming recursions. This new procedure is expected to adapt to the underlying
dynamics of the model, which is characterized by (a set of) stochastic kernels. In contrast to
the abstraction proposed in [1], which has leveraged a batch algorithm performing uniform
partitioning based on the quantification of a global error, this work puts forward an adaptive
and sequential procedure that exploits the knowledge of local quantities and performs the
normalization of dynamics operating on multiple spatial scales. Furthermore, this work looks
at the practical implementation of the adaptive procedure, which hinges on: the choice of the
shape of partition sets (making up the states of the MC), the execution of the refinement step
in the adaptive generation of the grid, as well as the generation of transition probabilities for
the MC over the partition sets (which involves a marginalization procedure). Additionally,
the issue of ill-conditioned dynamics (namely, widely separated dynamics operating over slow
and fast scales) is tackled by considering a further refinement of the obtained errors based on
state-space rescaling.

Owing to the explicit computation of the error bounds related to a given property, this
work provides an approach to abstraction that is effectively property-dependent. Furthermore,
given the generality of the concepts of reachability and (dually) of invariance and due to their
connections to more general properties [2], this abstraction technique allows a general approach
for the study of these properties.

Most of the reviewed literature on the subject of formal verification of stochastic processes
presents a penchant for models known as Stochastic Hybrid Systems (SHS), which are general
dynamical models with interleaved discrete, continuous, and probabilistic dynamics. Fostered
by their application in a number of diverse domains [7, 10], the study of SHS has recently
flourished and has witnessed interesting advances at the intersection of the fields of Systems
and Control [11] and of Formal Verification [4]. In this work we develop results over abstract
state spaces and tailor them to SHS at a later stage (cfr. Section 4 for the theory, and Section
6.2 for a case study).

From a different perspective and over classes of continuous time probabilistic hybrid mod-
els, [8] has formalized the notion of probabilistic reachability, [24] has put forward a computa-
tional technique based on convex optimization, and [13] has developed an approach based on
satisfiability modulo theory, to attain the verification of similar probabilistic properties. Over
models with similar semantics, [21, 25] have quantified the concept of probabilistic reacha-
bility as the solution of partial differential equations over the state-space, and put forward
approximation techniques for its computation, which also leverage the use of discrete-time
MC [22] – however, both approaches do not provide a quantification of the error made in the
approximation step, which is a distinguishing factor of this work.

The article is structured as follows. Sections 2.1 and 2.2 introduce the model and the prob-
lem statement (computation of probabilistic invariance). Section 3.1 proposes an abstraction
algorithm to relate a general state space model to a Markov chain. Furthermore, with focus
on the probabilistic invariance problem, the quantification of the error in the abstraction pro-
cedure is presented in Section 3.2, whereas Section 3.3 puts forward refinements of the error

Adaptive Gridding for Abstraction of Stochastic Processes 3

computation based on local properties and state-space rescaling. Section 4 adapts the results
to the Stochastic Hybrid Systems model framework. Section 5 deals with the algorithmic gen-
eration of the abstraction and elaborates on a number of choices leading to a sequential and
adaptive scheme. Finally, Section 6 develops two numerical studies: a benchmark compares
the adaptive and sequential approach versus the uniform procedure known from the literature
[1], and tests the scalability of the adaptive approach. Also, Section 6 presents a case study
drawn from Systems Biology – in particular Section 6.2 elucidates the results on a SHS model.
Section 7 completes the work with conclusions and extensions.

2. Preliminaries.

2.1. Model. We consider a discrete time Markov process s(k), k ∈ N∪ {0} defined over a
general state space. The model is denoted by S = (S, Ts) and characterized by the following
pair:

1. S is a continuous state-space, which we assume to be endowed with a metric and to
be Borel measurable. We denote by (S,B(S), P) the probability structure on S, with B(S)
the associated sigma algebra, and P a probability measure to be characterized shortly;

2. Ts is a conditional stochastic kernel that assigns to each point s ∈ S a probability
measure Ts(·|s), so that for any set A ∈ B(S), P (s(1) ∈ A|s(0) = s0) =

∫

A
Ts(ds|s0).

The initial condition s(0) for the model is sampled from π : B(S) → [0, 1], a probability
measure on S. Over a finite horizon [0, N], a Markov process s(k), k ∈ [0, N] evolves over
the product space Ω = (S)N+1, which is also endowed with a sigma algebra and thus allows
computing the probability of events related to trajectories – we will use again P to denote
such probability. Usually the state space is taken to be a finite-dimensional Euclidean domain,
S = R

n, n < ∞. In Section 4, we tailor this setup to a specific “hybrid” state space, thus
introducing a modeling framework known as Stochastic Hybrid Systems (see also Section 6.2
for a case study based on a SHS model).

2.2. Problem Statement. The problem of finite-horizon probabilistic invariance (alter-
natively referred to as probabilistic safety) can be formalized as follows: consider a bounded
Borel set A ∈ B(S), representing a set of safe states. Characterize and compute the proba-
bility that an execution of S, associated with an initial condition s0 ∈ S (sampled from π),
remains within set A during the finite time horizon [0, N]:

ps0(A) := P{s(k) ∈ A for all k ∈ [0, N]|s(0) = s0}.
This quantity allows to extend the result to a general initial probability distribution π as
pπ(A) := P{s(k) ∈ A for all k ∈ [0, N]} =

∫
ps0(A)π(ds0). The following theorem provides a

theoretical framework to study the probabilistic invariance problem.
Theorem 2.1 ([3]). Consider value functions Vk : S → [0, 1], k = 0, 1, ..., N, computed by

the following backward recursion:

Vk(s) = 1A(s)

∫

S

Vk+1(s̄)Ts(ds̄|s), s ∈ S,

and initialized with:

VN (s) = 1A(s) =

{

1, if s ∈ A,

0, else.

4 S. Esmaeil Zadeh Soudjani and A. Abate

Then ps0(A) = V0(s0).

This result characterizes the finite-horizon probabilistic invariance quantity as the solution
of a dynamic programming problem. However, since its explicit solution is in general not
available, the actual computation of the quantity ps0(A) requiresN numerical integrations over
the whole set A. This is usually performed with techniques based on state space discretization
[6], which leads to two major questions:

1. whether the numerical output can be precisely related to the actual solution; and
2. whether the approach is dimensionally scalable (e.g., as a function of n if S = R

n),
particularly in comparison with alternative known approaches in the literature [1].

The goal of this work is to address these two issues. In the next section we answer the
first question by introducing an abstraction of the original model via a numerical approxima-
tion, and by explicitly quantifying the error related to the computation of the finite-horizon
probabilistic invariance with the abstraction. Furthermore, by focusing on the algorithmic
implementation of the abstraction, in the remainder of this work we investigate the scala-
bility properties of the proposed approach (computational complexity, memory usage), thus
addressing the second question.

The overall approach, here presented over the problem of probabilistic invariance, can be
directly extended to more general properties expressed in PCTL logic [26], as well as over
specifications characterized as certain labeled automata [2] – both extensions can be reduced
to computations of values functions related to that in Theorem 2.1 characterizing probabilistic
invariance.

3. Model Abstraction.

3.1. Algorithmic Abstraction as a Finite-State Markov Chain. We recall a procedure
presented in [1] to approximate a model S = (S, Ts), by a finite state Markov chain (MC)
P = (P, Tp). Here P = {z1, z2, . . . , zp} is a finite set of states and Tp : P × P → [0, 1] is
a transition probability matrix, such that Tp(z, z

′) = P (z′|z) characterizes the probability
of transitioning from state z to state z′ and thus induces a conditional discrete probability
distribution over the finite space P.

Consider the bounded safe set A ∈ B(S). Algorithm 1 provides a procedure to abstract
model S by a finite state MC P. In Algorithm 1, Ξ : Ap → 2A represents a set-valued map
that associates to any point zi ∈ Ap the corresponding partition set Ai ⊂ A. Furthermore,
the map ξ : A → Ap associates to any point s ∈ A of S the corresponding discrete state in
Ap. Additionally, notice that the absorbing set φ is added to the definition of the MC P in
order to render the transition probability matrix Tp stochastic.

Remark 1. Notice that Algorithm 1 can be applied to abstract a general model by a finite
state MC, regardless of the specifics of the probabilistic invariance problem studied in this work
(that is regardless of the given safe set A), by assuming that A = S. The quantification of the
abstraction error, to be carried out in Section 3.2, will however require that the set A (thus,
as needed, the state space S) is bounded.

Given a finite-state, discrete-time Markov Chain P = (P, Tp) and considering a safe set
Ap ⊂ P, the probabilistic invariance problem evaluates the probability that a finite execution
associated with the initial condition p0 ∈ P remains within the discrete safe set Ap during the

Adaptive Gridding for Abstraction of Stochastic Processes 5

Algorithm 1 Abstraction of model S by MC P

Require: input model S, set A
1: Select a finite m-dimensional partition of set A as A = ∪m

i=1Ai (Ai are non-overlapping)
2: For each Ai, select a single representative point zi ∈ Ai, {zi} = ξ(Ai)
3: Define Ap = {zi, i = 1, ...,m} and take P = Ap ∪ {φ} as the finite state space of the MC

P (φ being a dummy variable as explained in the text)
4: Compute the transition probability matrix Tp for P as:

Tp(z, z
′) =

Ts(Ξ(z
′)|z), z′ ∈ Ap, z ∈ Ap

1−∑z̄∈Ap
Ts(Ξ(z̄)|z), z′ = φ, z ∈ Ap

1, z′ = z = φ
0, z′ ∈ Ap, z = φ

Ensure: output MC P

finite time horizon [0, N], and can be stated as follows:

pp0(Ap) := P{p(k) ∈ Ap for all k ∈ [0, N]|p(0) = p0}.

We now formulate the discrete version of Theorem 2.1.
Theorem 3.1 ([1]). Consider value functions V p

k : P → [0, 1], k = 0, 1, ..., N , computed by
the backward recursion:

V p
k (z) = 1Ap(z)

∑

z̄∈P

V p
k+1(z̄)Tp(z, z̄), z ∈ P,

and initialized with:

V p
N (z) = 1Ap(z) =

{

1, if z ∈ Ap,

0, if z = φ.

Then pp0(Ap) = V p
0 (p0).

It is of interest to provide a quantitative comparison between the discrete outcome obtained
by Theorem 3.1 and the continuous solution that results from Theorem 2.1. The following
section accomplishes this goal.

3.2. Quantification of the Abstraction Error. We first introduce a bound, inspired by [1,
Theorem 1], on the distance between evaluations of the function Vk, k = 0, 1, ..., N in Theorem
2.1. Consider a safe set A ∈ B(S). For any pair of points s, s′ ∈ A and k = 0, 1, ..., N − 1,
notice that

∣
∣Vk(s)− Vk(s

′)
∣
∣ =

∣
∣
∣
∣

∫

A

Vk+1(s̄)Ts(ds̄|s)−
∫

A

Vk+1(s̄)Ts(ds̄|s′)
∣
∣
∣
∣

(3.1)

≤
∫

A

∣
∣Ts(ds̄|s)− Ts(ds̄|s′)

∣
∣ ,

since the value functions Vk are upper-bounded by the unity. Furthermore, for k = N it holds
trivially that VN (s) = VN (s′) = 1 ⇒ |VN (s)− VN (s′)| = 0.

6 S. Esmaeil Zadeh Soudjani and A. Abate

The following Lipschitz continuity condition restricts the generality of the kernel Ts char-
acterizing the dynamics of model S.

Assumption 1. Assume that the kernel Ts admits density ts, and that the following holds
for a finite positive h:

∣
∣ts(s̄|s)− ts(s̄|s′)

∣
∣ ≤ h

∥
∥s− s′

∥
∥ , ∀s̄, s, s′ ∈ A.

Assumption 1 allows to derive the following bound on the abstraction error (notice the
emphasis of the result on the time instance k = 0).

Theorem 3.2 ([1], Theorem 2). Under Assumption 1, the invariance probability ps0(A) for
the model S initialized at s0 ∈ A satisfies:

|ps0(A) − pp0(Ap)| ≤ γδ, (3.2)

where pp0(Ap) is the invariance probability for the MC P obtained by Algorithm 1, and ini-
tialized at the discrete state p0 = ξ(s0) ∈ Ap. The constant γ is

γ = NK, where K = hL (A),

and where δ is the largest diameter of the partition sets Ai ⊂ A: δ = max{‖s− s′‖ |s, s′ ∈
Ai, i = 1, . . . ,m}, h comes from Assumption 1, and L (B) denotes the Lebesgue measure of
any set B ∈ B(S).

The result in Theorem 3.2 allows for the synthesis of finite abstractions of continuous-
space models with explicit, finite error bounds. The quality of the bounds is key in obtaining
useful abstractions (that is, we are interested in bounds that are at least smaller than the
unity). Furthermore, if a specific error is the objective of the study, then the quality of the
error directly affects the cardinality (m) of the abstraction space, as well as the computational
effort to obtain the abstraction – we shall explore this tradeoff later in this work.

In the next Section we refine the abstraction error of Theorem 3.2 in three different ways:
first, by computing a local version of the error; second, by leveraging continuity requirements
that go beyond the Lipschitz condition raised in Assumption 1, and finally by normalizing
possibly ill-conditioned dynamics operating on multiple spatial scales.

3.3. Refinement of the Abstraction Error.

3.3.1. Local Computation of Abstraction Error. We relax Assumption 1 as follows.
Assumption 2. Assume that the kernel Ts admits density ts, and that the following conti-

nuity assumption is valid:

∣
∣ts(s̄|s)− ts(s̄|s′)

∣
∣ ≤ h(i, j)

∥
∥s− s′

∥
∥ , ∀s̄ ∈ Aj ,∀s, s′ ∈ Ai,

where i, j ∈ {1, . . . ,m}, the set Ai form a partition of A (as obtained for instance in Algorithm
1), and h(·, ·) are finite and positive constants.

Clearly, the global Lipschitz constant h in Assumption 1 represents an upper bound for
the quantities h(i, j) above. Equation (3.1) can be tailored to Assumption 2, which leads to
the following result.

Adaptive Gridding for Abstraction of Stochastic Processes 7

Theorem 3.3. Suppose that the stochastic kernels of the model S satisfy Assumption 2.
Then the value functions Vk : S → [0, 1], characterizing the probabilistic invariance problem
for S over A ∈ B(S), satisfy the following Lipschitz continuity, k ∈ [0, N]:

∣
∣Vk(s)− Vk(s

′)
∣
∣ ≤ Ki

∥
∥s− s′

∥
∥ ,

∀s, s′ ∈ Ai, i ∈ {1, . . . ,m}, and where the constant Ki is given by:

Ki =

m∑

j=1

h(i, j)L (Aj).

Proof. Using Equation (3.1) together with the inequality in Assumption 2, leads directly
to the following:

∣
∣Vk(s)− Vk(s

′)
∣
∣ ≤

∫

A

∣
∣Ts(ds̄|s)− Ts(ds̄|s′)

∣
∣ =

m∑

j=1

∫

Aj

∣
∣Ts(ds̄|s)− Ts(ds̄|s′)

∣
∣

≤
m∑

j=1

h(i, j)
∥
∥s− s′

∥
∥L (Aj) = Ki

∥
∥s− s′

∥
∥ .

Notice that the bound provided in this Theorem improves that derived from Equation (3.1)
and Assumption 1, since h ≥ max{h(i, j)|i, j = 1, . . . ,m}.

The result in Theorem 3.3 can be employed to quantify the error between the value pp0(Ap)
and ps0(A), which leads to a refinement of Theorem 3.2.

Theorem 3.4. Assume that Assumption 2 holds. Then the invariance probability ps0(A) for
model S, initialized at s0 ∈ A, satisfies:

|ps0(A)− pp0(Ap)| ≤ max{γiδi|i = 1, ...,m}, (3.3)

where pp0(Ap) is the invariance probability for the MC P, initialized at the discrete state
p0 = ξ(s0) ∈ Ap, where δi is the diameter of the set Ai ⊂ A, namely

δi = max{
∥
∥s− s′

∥
∥ | s, s′ ∈ Ai},

and the constants γi are specified as γi = NKi, as per Theorem 3.3.
Proof. Let us recall that the function ξ : A → Ap maps any point s ∈ A to the correspond-

ing discrete state z ∈ Ap via a representative point ξ(s), and that Ξ : Ap → 2A associates a
continuous partition set to a discrete (representative) point in Ap. Let us define a piecewise
constant function V̂ p

k : A → [0, 1] with V̂ p
k (s) = V p

k (ξ(s)),∀s ∈ A.
Next we show that

|Vk(s)− V̂ p
k (s)| ≤ (N − k)max{Kiδi|i = 1, ...,m}. (3.4)

For k = N the inequality is trivial, since |Vk(s) − V̂ p
k (s)| = |VN (s) − V̂ p

N (s)| = 1 − 1 = 0.
Suppose now that the inequality holds for k + 1, then at time step k we have:

|Vk(s)− V̂ p
k (s)| = |Vk(s)− V̂ p

k (ξ(s))| ≤ |Vk(s)− Vk(ξ(s))|+
∣
∣
∣Vk(ξ(s))− V̂ p

k (ξ(s))
∣
∣
∣

≤ Kiδi +
∣
∣
∣Vk(ξ(s))− V̂ p

k (ξ(s))
∣
∣
∣ ,

8 S. Esmaeil Zadeh Soudjani and A. Abate

where the index i ∈ {1, . . . ,m} corresponds to the set Ai = Ξ(ξ(s)). On the other hand, by

exploiting the discrete feature of the function V̂ p
k evaluated at ξ(s) and its piecewise constant

structure, we can observe that

V̂ p
k (ξ(s)) =

∑

z∈Ap

V̂ p
k+1(z)Tp(ξ(s), z) =

∑

z∈Ap

V̂ p
k+1(z)

∫

Ξ(z)
Ts(dω|ξ(s)) =

∫

A

V̂ p
k+1(ω)Ts(dω|ξ(s)),

which results in the following inequality:

∣
∣
∣Vk(ξ(s))− V̂ p

k (ξ(s))
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫

A

Vk+1(ω)Ts(dω|ξ(s))−
∑

z∈Ap

V̂ p
k+1(z)Tp(ξ(s), z)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

A

Vk+1(ω)Ts(dω|ξ(s))−
∫

A

V̂ p
k+1(ω)Ts(dω|ξ(s))

∣
∣
∣
∣

≤
∫

A

∣
∣
∣Vk+1(ω)− V̂ p

k+1(ω)
∣
∣
∣Ts(dω|ξ(s)).

We then obtain:

|Vk(s)− V̂ p
k (s)| ≤ Kiδi +

∫

A

∣
∣
∣Vk+1(ω)− V̂ p

k+1(ω)
∣
∣
∣Ts(dω|ξ(s))

≤ Kiδi + (N − k − 1)max
i

{Kiδi}
∫

A

Ts(dω|ξ(s))
︸ ︷︷ ︸

≤1

≤ (N − k)max
i

{Kiδi}.

The results in Theorems 2.1, 3.1 and Inequality (3.4) applied at k = 0 yield the following
bound:

|ps0(A)− pp0(Ap)| = |V0(s0)− V p
0 (ξ(s0))| = |V0(s0)− V̂ p

0 (s0)|
≤ N max{Kiδi|i = 1, ...,m} = max{γiδi|i = 1, ...,m},

which concludes the proof of the statement.

Notice that often in practice the (global or local) Lipschitz constants need to be numerically
computed or over-approximated, which relates to a computational cost. This leads to propose
a simplification of Assumption 2 and an adaptation of Theorems 3.3, 3.4 accordingly. The
new requirement is computationally less demanding, however as expected the related error
bounds will be more conservative (less tight).

Assumption 3. Assume that the kernel Ts admits density ts, and that the following holds
for a choice of a finite positive h(·):

∣
∣ts(s̄|s)− ts(s̄|s′)

∣
∣ ≤ h(i)

∥
∥s− s′

∥
∥ , ∀s̄ ∈ A,∀s, s′ ∈ Ai,

where i = 1, . . . ,m and Ai form a partition of A (as obtaned for instance from Algorithm 1).
Theorem 3.5. Suppose the stochastic kernel of the model S satisfies Assumption 3. Then

the value functions Vk : S → [0, 1], characterizing the probabilistic invariance problem for the
model S over A ∈ B(S), satisfy the following Lipschitz continuity, k ∈ [0, N]:

∣
∣Vk(s)− Vk(s

′)
∣
∣ ≤ Ki

∥
∥s− s′

∥
∥ ,

Adaptive Gridding for Abstraction of Stochastic Processes 9

∀s, s′ ∈ Ai, i ∈ {1, . . . ,m}, where the constant Ki is given by:

Ki = h(i)L (A),

and where L (B) denotes the Lebesgue measure of any set B ∈ B(S).
Proof. The proof can be directly adapted from that of Theorem 3.3, in particular noticing

that |Vk(s)− Vk(s
′)| ≤

∫

A
|Ts(ds̄|s)− Ts(ds̄|s′)| ≤ h(i) ‖s− s′‖L (A).

Theorem 3.6. Under Assumption 3 the invariance probability ps0(A) for the model S, ini-
tialized at s0 ∈ A, satisfies:

|ps0(A)− pp0(Ap)| ≤ max{γiδi|i = 1, ...,m}, (3.5)

where pp0(Ap) is the invariance probability for the MC P initialized at the discrete state
p0 = ξ(s0) ∈ Ap, the constants γi = NKi, as per Theorem 3.5, and where δi is the diameter
of the set Ai ⊂ A: δi = max{‖s− s′‖ |s, s′ ∈ Ai}.

Proof. The proof can be directly adapted from that of Theorem 3.4.

3.3.2. Variable rescaling and direct computation. We are interested in the application of
the abstraction bounds on models with kernels that present ill-conditioned dynamics, that is
dynamics operating on multiple spatial scales or characterized by both slow and fast variables.
This goal will be further clarified in the light of the algorithmic procedures discussed in Section
5. We start by investigating whether a rescaling of the dynamics affects the abstracted Markov
Chain and the associated computation of the local error, according to Assumption 2 (as needed
the results can be easily tailored to the other two presented assumptions). Let us consider a
stochastic kernel endowed with a density function ts(s̄|s), and let us transform the state space
by applying a linear map s = Pr, where P is an invertible matrix.1

A generic set Ai ∈ B(S) is mapped into Ãi = {r ∈ S : s = Pr, s ∈ Ai}, which is such
that L(Ãi) = |det(P−1)|L(Ai). Furthermore, the new density function tr(r̄|r) is related to
the original one ts(s̄|s) by the equality

tr(r̄|r) = |J(r)| ts (P r̄|Pr) , (3.6)

where |J(r)| denotes absolute value of the determinant of the Jacobian

J(r) =

∣
∣
∣
∣

∂(s1, ..., sn)

∂(r1, ..., rn)

∣
∣
∣
∣
= det

∂s1
∂r1

· · · ∂s1
∂rn

...
. . .

...
∂sn
∂r1

· · · ∂sn
∂rn

 = det(P).

Suppose that the representative points zi, i = 1, . . . ,m, of the abstracted Markov Chain are
also mapped to points vi : zi = Pvi, which leads to the entries of a new transition probability
matrix Tp specified, for any j = 1, . . . ,m, by

Tp(vi,Ξ(vj)) =

∫

Ãj

tr(r̄|vi)dr̄ =

∫

Ãj

|det(P)| ts (P r̄|Pvi) dr̄ =

∫

Aj

ts(s̄|zi)ds̄ = Ts(zi,Ξ(zj)).

1We leave to the reader the extension to an affine transformation, namely s = Pr+Q, where Q is properly
sized. It is possible to verify that the properties discussed below are shift invariant, and to adapt them to the
affine case accordingly.

10 S. Esmaeil Zadeh Soudjani and A. Abate

This shows that the Markov Chains obtained from the original and from the rescaled Markov
processes are equivalent.

With focus on Assumption 2, we compute the local Lipschitz constants of the new condi-
tional distribution. Notice that the Lipschitz constant of a function is not uniquely defined,
since any finite upper bound is also a legitimate Lipschitz constant. As a result, the abstrac-
tion error depends on the method employed to compute local Lipschitz constants. A common
method for computation of the Lipschitz constant is maximization of the Euclidean norm of
the function gradient. Recall from Assumption 2 that |ts(s̄|s)− ts(s̄|s′)| ≤ h(i, j)‖s− s′‖, and
assume that the following method is used to compute h(i, j):2

h(i, j) = max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)
∥
∥
∥
∥
.

Then, in the new coordinates, we have that |tr(r̄|r) − tr(r̄|r′)| ≤ h̃(i, j)‖r − r′‖, with the
following Lipschitz constant:

h̃(i, j) = max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂tr
∂r

(r̄|r)
∥
∥
∥
∥
.

Let us relate these two Lipschitz constants using Equation (3.6) and applying the chain rule
in the computation of partial derivatives:

h̃(i, j) = max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂tr
∂r

(r̄|r)
∥
∥
∥
∥
= |det(P)| max

r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂

∂r
ts (P r̄|Pr)

∥
∥
∥
∥

= |det(P)| max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂ts
∂s

(P r̄|Pr)P

∥
∥
∥
∥
= |det(P)| max

s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥
.

Then h̃ differs from h over two terms:
• The constant term |det(P)|. This constant has no effect on the computation of the

abstraction error (cfr. terms Ki in Theorem 3.4), since L(Ãj) = |det(P−1)|L(Aj).
Without loss of generality we can then restrict the attention to matrices with deter-
minant that is equal to one.

• The matrix P within the norm. It provides a weighted sum of the partial derivatives.
We can exploit this matrix in order to balance the partial derivatives over different
directions. In particular, this scaling matrix can be useful in the presence of ill-
conditioned dynamics.

With the above discussion we have argued that the Lipschitz constant depends on the
coordinates where the distribution function is defined. Since we are interested in the value
of the Lipschitz constant as part of the approximation error formula (as per Theorem 3.4),
rescaling provides a degree of freedom in the error computation. This is discussed in the
following theorem, which emphasizes improvements of the approximation error bounds, again
focusing on Assumption 2.

2 In the following, we assume that all the optimization problems have been computed over the closure of
the corresponding optimization domain. However for the sake of notations, we simply refer to the optimization
domains as they are given.

Adaptive Gridding for Abstraction of Stochastic Processes 11

Theorem 3.7. Consider the conditional distribution ts of S, any set A ∈ B(S), a partition
∪m
i=1Ai of A, and a properly-sized, square invertible matrix P . Then for all points s, s′ ∈

Ai, s̄ ∈ Aj , it holds that

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)
∥
∥
∥
∥

max
s,s′∈Ai

∥
∥s− s′

∥
∥ ≥ (3.7)

≥ min
P

(

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥

max
s,s′∈Ai

∥
∥P−1(s − s′)

∥
∥

)

(3.8)

≥ max
s̄∈Aj

max
s,s′,ζ∈Ai

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s− s′)

∣
∣
∣
∣

(3.9)

≥ |ts(s̄|s)− ts(s̄|s′)|. (3.10)

Proof. The inequality (3.7)≥(3.10) is employed in the bound discussed in Theorem 3.4,
and is based on the maximum norm of the partial derivatives. The expression in (3.8)≥(3.10)
is based on the idea of rescaling the state space as follows: transform the inequality |tr(r̄|r)−
tr(r̄|r′)| ≤ h̃(i, j)‖r − r′‖ into

|det(P)| |ts (P r̄|Pr)− ts
(
P r̄|Pr′

)
| ≤ h̃(i, j)‖r − r′‖,

which leads to

|ts (s̄|s)− ts
(
s̄|s′
)
| ≤ h̃(i, j)

|det(P)| ‖r − r′‖ = max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥
‖P−1(s− s′)‖.

Selecting the matrix P to be equal to the identity matrix leads to the inequality (3.7)≥(3.8).
The mean value theorem for scalar fields implies the last inequality, namely (3.9)≥(3.10). Let
us finally relate (3.8) to (3.9) by using the Cauchy-Schwartz inequality:

min
P

(

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥

max
s,s′∈Ai

∥
∥P−1(s− s′)

∥
∥

)

=

= min
P

(

max
s,s′,ζ∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|ζ)P
∥
∥
∥
∥

∥
∥P−1(s− s′)

∥
∥

)

≥ max
s,s′,ζ∈Ai,s̄∈Aj

(

min
P

∥
∥
∥
∥

∂ts
∂s

(s̄|ζ)P
∥
∥
∥
∥

∥
∥P−1(s− s′)

∥
∥

)

≥ max
s,s′,ζ∈Ai,s̄∈Aj

(

min
P

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)PP−1(s− s′)

∣
∣
∣
∣

)

= max
s,s′,ζ∈Ai,s̄∈Aj

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s− s′)

∣
∣
∣
∣
.

This concludes the proof.

The above theorem does not pose any restriction on the choice of the invertible matrix
P . Notice that the bound in (3.8) is invariant under constant multiplications of matrix P : we
can then reduce the optimization domain to the set of square matrices with |det(P)| = 1. As

12 S. Esmaeil Zadeh Soudjani and A. Abate

an alternative to the above bounds, which hinge on the computation of quantities related to
the Lipschitz constant, we put forward the next result.

Corollary 3.8. Consider the conditional distribution ts of S, any set A ∈ B(S), and a
partition ∪m

i=1Ai of A. The continuous conditional distribution ts(s̄|s) satisfies the inequality

|ts(s̄|s)− ts(s̄|s′)| ≤ max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

∀s, s′ ∈ Ai,∀s̄ ∈ Aj . (3.11)

Proof. The distribution is assumed to be continuous over the closure of Ai, hence it admits
finite maximum and minimum, which leads to the following:

max
s,s′∈Ai,s̄∈Aj

|ts(s̄|s)− ts(s̄|s′)| = max
s̄∈Aj

[

max
s,s′∈Ai

|ts(s̄|s)− ts(s̄|s′)|
]

= max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

.

Notice that the quantity in (3.11) provides the optimal (lowest) upper bound over (3.7)-
(3.9), since (3.11) represents a particular instantiation of (3.10) and we have shown that
(3.10)≤(3.9).

Owing to the emphasis of this work on numerics, let us focus on the overhead associated
to the computation of the presented bounds. Assume that we are given a Cartesian partition
of the safe set A, which will be the underlying assumption for the Algorithms developed in
Section 5. This enables an analytic expression of the distance between points in (3.7)-(3.9).
Therefore the upper bounds (3.7) and (3.9) are clearly related to the same computational cost
(maximization over the variables appearing in the partial derivatives). With regards to the
bound based on (3.8), the cost is also the same if a specific matrix P is selected – on the
contrary, the optimization over this matrix increases the computational overhead. In general,
matrix P in (3.8) can be treated either as an optimization variable or, as discussed, as a
transformation matrix for improving the effect of widely separated dynamics. The additional
bound in (3.11), which does not depend on the computation of the Lipschitz constant, requires
an optimization over three variables and as such it is computationally heavier than (3.7) and
(3.9); however it can be matched to their complexity – at the expense of loosing in tightness
– by the following simplification:

max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

≤ max
s∈Ai,s̄∈Aj

ts(s̄|s)− min
s∈Ai,s̄∈Aj

ts(s̄|s). (3.12)

Finally notice that, while the quantities defined in (3.7)-(3.9) are proportional to the size of
the partition sets, that in (3.11) is not. In the following, either of the bounds (3.7)-(3.9) will
be used to construct an adaptive partition, thereafter employing the improved bound in (3.11)
as an a-posteriori analysis of the abstraction error.

Let us summarize the results in Theorem 3.7 and Corollary 3.8: we have provided four
different methods for computing a local upper bound, call it k(i, j), as |ts(s̄|s) − ts(s̄|s′)| ≤

Adaptive Gridding for Abstraction of Stochastic Processes 13

k(i, j), for any s, s′ ∈ Ai, s̄ ∈ Aj , i, j = 1, . . . ,m. The upper bound k(i, j), in whatever form
(3.7)-(3.9) or (3.11), can be directly used to quantify the abstraction errors in Theorems 3.3
and 3.4 as:

E = max
i=1,...,m

m∑

j=1

Nk(i, j)L(Aj)

. (3.13)

Notice the difference between the bound k(i, j) and the quantity h(i, j) (Lipschitz constant),
as used in Theorems 3.3 and 3.4. Similar to h(i, j), which can be relaxed to h(i) as discussed
in Assumption 3, the formulas for k(i, j) can also be relaxed: for instance, the inequality
(3.10)≤(3.9) would become

|ts(s̄|s)− ts(s̄|s′)| ≤ max
s̄∈A

max
s,s′,ζ∈Ai

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s − s′)

∣
∣
∣
∣
.

A similar adaptation can be applied over global bounds based on Assumption 1.
Let us remark that the Assumptions 2,3 based on local Lipschitz continuity not only

yield error bounds that are tighter than their global counterpart, but are also practically less
conservative. Discontinuous density functions are in fact not globally Lipschitz continuous and
thus do not satisfy Assumption 1, however they can satisfy Assumptions 2,3 if the discontinuity
points lie on the boundaries of the partition sets: this requirement can then be satisfied by a
proper selection of these sets. While we do not further focus on discontinuous kernels in the
rest of the manuscript, this discussion hints at the application of the abstraction procedure
to a wider range of models, for instance models endowed with kernels derived from data.
Of course this comes at the expense of a more elaborated (and likely slower) partitioning
procedure. Along these lines, the Lipschitz continuity assumptions over the densities can be
generalized by looking at Lipschitz continuity over the kernels instead: more precisely, in the
case of Assumption 3 we would obtain

∫

A

|ts(s̄|s)− ts(s̄|s′)|ds̄ ≤ H(i), ∀s, s′ ∈ Ai, i = 1, . . . ,m. (3.14)

The global error becomes then E = maxi=1,...,mNH(i). This assumption is practically less
conservative since it allows dealing with discontinuous conditional density functions, regardless
of the chosen partitioning procedure. In contrast to (3.13), the error bound based on (3.14)
does not explicitly depend on the Lebesgue measure of the partition sets, and then provides
a tighter upper bound for the error. On the other hand, the computation of the parameters
H(i) in (3.14), requires an increased effort: the maximization needs to be performed over two
variables (s, s′) and each function evaluation requires a numerical integration. As we shall
see in the experiments of Section 6.2, the numerical integration makes the computation much
more time consuming than the other methods developed above. In conclusion, the bound
in (3.14) provides tighter error bound, can lead to memory savings, but also to more time
consuming algorithms.

4. Application to Stochastic Hybrid Systems (SHS). In this section we tailor the pre-
sented results on error bounds for the abstraction around models endowed with a particular
state space that is “hybrid” in nature [3], namely we select

S = ∪q∈Q{q} × R
n(q)

14 S. Esmaeil Zadeh Soudjani and A. Abate

to be the disjoint union of continuous domains over a finite, discrete set of locations (or modes)
Q = {q1, q2, . . . , qm}. The continuous domains have a dimension n(q) that is mode dependent
and characterized by a bounded function n : Q → N.

Given a hybrid point s = (q, x) ∈ S and a Borel measurable set A = ∪q∈Q{q} × Aq, A ∈
B(S), the stochastic kernel Ts is further specified as follows [3]:

Ts({q̄} ×Aq̄|(q, x)) = Tq(q̄|(q, x)) ×
{

Tx(Aq̄|(q, x)), if q̄ = q,

Tr(Aq̄|(q, x), q̄), if q̄ 6= q.
(4.1)

Here Ts is made up of three distinct conditional kernels. Tq : Q × S → [0, 1] assigns to each
s ∈ S a discrete probability distribution Tq(·|s) over Q. Based on a sample of Tq, if the selected
location q̄ coincides with the current mode q, then Tx : B(Rn(·)) × S → [0, 1] assigns to each
s ∈ S a probability measure Tx(·|s) over the continuous domain associated with q ∈ Q. On
the other hand, if q̄ 6= q, then Tr : B(Rn(·))× S × Q → [0, 1] assigns to each s ∈ S and q̄ ∈ Q
a probability measure Tr(·|s, q̄) over the continuous domain associated with q̄ ∈ Q.

We shall denote such a discrete-time stochastic hybrid model S = (Q, n, Tq, Tx, Tr), and
refer the reader to [3] for technical details on its topological and measurability properties and
for an algorithmic definition of its execution. Section 6.2 develops a case study based on a
SHS model.

4.1. Abstraction and error computation. The abstraction of a SHS as a MC follows the
same lines as in Section 3.1. Consider the hybrid safe set A ∈ B(S), A = ∪q∈Q{q} ×Aq, with
Aq ∈ B(Rn(q)). For all q ∈ Q, select a finite (mq-dimensional) partition of the local set Aq as
Aq = ∪mq

i=1Aq,i (Aq,i are non-overlapping). For each Aq,i, select a single representative point
(q, zq,i) ∈ Aq,i, and redefine Ap = {(q, zq,i)|i ∈ [1,mq], q ∈ Q}. Focusing on bounds based on
the Lipschitz constant of densities, the following is an extension of Assumption 2 to the SHS
framework.

Assumption 4. Assume that the kernels Tx, Tr admit densities tx, tr respectively, and that
the following continuity assumptions are valid:

∣
∣Tq(q̄|(q, x)) − Tq(q̄|(q, x′))

∣
∣ ≤ hq(q, q̄, i)

∥
∥x− x′

∥
∥ , ∀x, x′ ∈ Aq,i,

∣
∣tx(x̄|(q, x))− tx(x̄|(q, x′))

∣
∣ ≤ hx(q, i, j)

∥
∥x− x′

∥
∥ , ∀x̄ ∈ Aq,j,∀x, x′ ∈ Aq,i,

∣
∣tr(x̄|(q, x), q̄)− tr(x̄|(q, x′), q̄)

∣
∣ ≤ hr(q, q̄, i, k)

∥
∥x− x′

∥
∥ , q̄ 6= q,∀x̄ ∈ Aq̄,k,∀x, x′ ∈ Aq,i,

where q, q̄ ∈ Q; i, j = 1, . . . ,mq; k = 1, . . . ,mq̄; and hq(·), hx(·), hr(·) are finite positive con-
stants.

Let us consider a SHS model, a (hybrid) invariant set A ∈ B(S), a finite time horizon
[0, N], a point s0 ∈ S, and an abstraction procedure over S. The error between the value
pp0(Ap) for the MC from ps0(A) for the SHS can be quantified as follows.

Theorem 4.1. Assume that Assumption 4 holds. Then the invariance probability ps0(A) for
the SHS S, initialized at s0 ∈ A, satisfies:

|ps0(A)− pp0(Ap)| ≤ max{γq,iδq,i|i = 1, ...,mq , q ∈ Q}, (4.2)

Adaptive Gridding for Abstraction of Stochastic Processes 15

where pp0(Ap) is the invariance probability for the MC P, initialized at the discrete state
p0 = ξ(s0) ∈ Ap, where δq,i is the diameter of the set Aq,i ⊂ Aq, namely

δq,i = max{
∥
∥x− x′

∥
∥ |x, x′ ∈ Aq,i},

and the constants γq,i are specified as γq,i = NKq,i, where

Kq,i =

mq∑

j=1

hx(q, i, j)L (Aq,j) +
∑

q̄∈Q

hq(q, q̄, i) +
∑

q̄ 6=q

mq̄∑

k=1

hr(q, q̄, i, k)L (Aq̄,k),

and where L (B) denotes the Lebesgue measure of any set B ∈ B(S).
Proof. Inequality (3.1) corresponds to the following:

∣
∣Vk(q, x)− Vk(q, x

′)
∣
∣ ≤

∫

Aq

∣
∣Tq(q|(q, x))tx(x̄|(q, x)) − Tq(q|(q, x′))tx(x̄|(q, x′))

∣
∣ dx̄

+
∑

q̄ 6=q

∫

Aq̄

∣
∣Tq(q̄|(q, x))tr(x̄|(q, x), q̄)− Tq(q̄|(q, x′))tr(x̄|(q, x′), q̄)

∣
∣ dx̄.

As in Theorem 3.3, the local Lipschitz continuity of the value functions is established by
Assumption 4: for all x, x′ ∈ Aq,i,

∣
∣Vk(q, x)− Vk(q, x

′)
∣
∣ ≤

∫

Aq

Tq(q|(q, x))
∣
∣tx(x̄|(q, x)) − tx(x̄|(q, x′))

∣
∣ dx̄

+

∫

Aq

tx(x̄|(q, x′))
∣
∣Tq(q|(q, x)) − Tq(q|(q, x′))

∣
∣ dx̄

+
∑

q̄ 6=q

∫

Aq̄

Tq(q̄|(q, x))
∣
∣tr(x̄|(q, x), q̄)− tr(x̄|(q, x′), q̄)

∣
∣ dx̄

+
∑

q̄ 6=q

∫

Aq̄

tr(x̄|(q, x′), q̄)
∣
∣Tq(q̄|(q, x)) − Tq(q̄|(q, x′))

∣
∣ dx̄

≤
mq∑

j=1

hx(q, i, j)L(Aq,j) + hq(q, q, i)

+
∑

q̄ 6=q

mq̄∑

k=1

hr(q, q̄, i, k)L (Aq̄,k) +
∑

q̄ 6=q

hq(q, q̄, i) = Kq,i.

The rest of the proof follows the same lines of Theorem 3.4.

5. Algorithms for Abstraction. In the previous sections we considered arbitrary partitions
of the state space and, with focus on the problem of finite-time probabilistic invariance over
a given set A, we derived bounds between the exact value ps0(A) and the approximation
pp0(Ap), based respectively on the model S and on its MC abstraction P. In this section we
focus on a few alternative techniques for the generation of the abstraction P = (P, Tp) from
S = (S, Ts). We explicitly exploit the knowledge of the (local) error to adapt the abstraction

16 S. Esmaeil Zadeh Soudjani and A. Abate

to the underlying dynamics of S, as well as to the invariance problem of interest. Since the
approach can be extended to more general specifications, expressed as formulas in a particular
probabilistic modal logic [2], the approach effectively allows for a formula-based abstraction
of stochastic models.

In order to maintain focus and keep the notations light, we present the procedures in the
case where no rescaling of the state space has been performed. The abstraction procedure
consists of two main steps (see Algorithm 1):

1. grid generation, namely the partitioning of S that yields P; and
2. marginalization of Ts, which leads to Tp.

We proceed with the analysis of these two successive items.

5.1. Grid Generation. Let us first focus on the state space partitioning, which involves
the generation of a grid. The grid can be either uniform and generated instantaneously [1], or
be variable and generated adaptively. More precisely, for the problem at hand the generation
of a uniform grid leverages the explicit knowledge of the global error of Theorem 3.2 and is
thus instantaneous. On the other hand, the adaptive partitioning requires the knowledge of
errors that are local to the existing partition sets (see Theorems 3.4 and 3.6) and proceeds
via a progressive refinement of the grid. We will thus sequentially perform adaptive gridding
either under Assumption 2 or under Assumption 3 (which give errors that are less tight) over
the existing partition sets, whereas Assumption 1 will be associated to the generation of a
uniform gridding [1]. Comparing Assumption 2 against Assumption 3, we will argue that
the first ensures tighter error bounds (which leads to smaller cardinality of the partition),
but requires error updates for possibly all the cells during each refinement step (whereas the
second will perform just local updates) and is thus computationally more complex.

Let us discuss a few details about the adaptive grid generation. Consider for the sake
of discussion an n-dimensional model. There are two main options over the shape of the
cells of a grid [23, 29]: n-dimensional simplices, or Cartesian hyper-rectangles. The first
option leads to the known Kuhn triangulation [29] and is widely used in numerical solution of
partial differential equations. The second approach generates hyper-rectangular cells aligned
with the main axes which, for our problem at hand, appears to be advantageous. Cartesian
cells in fact better accommodate the subsequent step that involves the marginalization of
probability laws, which generates the transition probability matrix Ts. Marginalization over
general convex polygons (in particular simplices) is known to be a computationally expensive
problem [28].

With focus on the refinement step, consider a single Cartesian cell. We are again presented
with two options for its further partitioning: to replace the cell with 2n smaller cells by
splitting it along its centroid; or to replace the cell with 2 smaller cells by partitioning along
one axis. The second approach is also known as variable resolution approach [23]. While
the first approach decreases the error (which depends on the cell diameter, see Theorems 3.4
and 3.6) faster than the second, it is also associated with the generation of partitions with
larger cardinality. Since we aim at economizing over the memory usage, we opt for the second
option. Based on this choice, the convergence speed of the procedure is optimized by selecting
the longest axis for the partitioning. This leads to the following result.

Proposition 5.1. For an n-dimensional model, the convergence rate of the computed error

Adaptive Gridding for Abstraction of Stochastic Processes 17

bound for a partitioning procedure based on a Cartesian grid that proceeds by splitting the

longest axis, is lower bounded by the factor
√

1− 3
4n .

Proof. Consider an n-dimensional hyper-rectangle, characterized by edges of length ai >
0, i = 1, . . . , n, which is to be split along (any) the longest axis ak = max1≤i≤n ai. The

refinement step affects its diameter δ =
√

a21 + a22 + · · ·+ a2k + · · ·+ a2n as follows

δ′ =

√

a21 + a22 + · · ·+
(ak
2

)2
+ · · ·+ a2n.

Introduce the quantity A =
(
a21 + a22 + · · ·+ a2k−1 + a2k+1 · · ·+ a2n

)
, then:

δ′

δ
=

√

A2 + (ak2)2

A2 + a2k
=

√
√
√
√
√
√

1
4 +

(
A
ak

)2

1 +
(

A
ak

)2 =

√

1
4 + x

1 + x
,

where x =
(

A
ak

)2
=
(
a1
ak

)2
+ · · · +

(
an
ak

)2
, which leads to 0 < x ≤ n − 1. Since the function

√
1

4
+x

1+x
is monotonically increasing in the interval (0, n − 1), we obtain:

δ′

δ
≤

√

1
4 + n− 1

1 + n− 1
=

√

1− 3

4n
,

which concludes the proof.

The grid generation procedures are formally presented in Algorithm 2 for the uniform error,
and in Algorithms 3 and 4 for the local ones. In the first case, the union of the partitioning
sets is supposed to include the space S. In the latter case, the initial partition can be any,
and in particular it can coincide with the state space S. Furthermore, notice the differences
in step 4:, which leads to conclude that Algorithm 3 is geared towards an abstraction with the
least number of states, whereas Algorithm 4 aims at faster generation time. More precisely,
note than when we split a cell Ai along its main axis the related local error is reduced firstly
because of the decrease in its diameter δi, and secondly due to the possible reduction in the
local Lipschitz constants h(i, j) (other local errors may also be decreased because of the update
of local Lipschitz constants). Hence, if we split a group of cells, as suggested in Algorithm 4,
we possibly obtain a larger decrease of the error bound. The actual computation of the errors
in the Algorithms can be performed based on any of the bounds in Section 3.3.

Algorithm 2 Generation of the uniform grid

Require: model S = (S, Ts) under Assumption 1; error threshold ǫ
1: pick a partition diameter δ based on bound (3.2) in Theorem 3.2 and on the threshold ǫ
2: perform partitioning of S with uniformly-packed hypercubes

Ensure: P, error E = ǫ

18 S. Esmaeil Zadeh Soudjani and A. Abate

Algorithm 3 Generation of the adaptive grid

Require: model S = (S, Ts) under Assumption 2 over initial partition; error threshold ǫ
1: set initial partition over the hybrid state space S
2: compute the error E according to (3.3) in Theorem 3.4
3: if E > ǫ then
4: refine the partition by splitting the single cell with maximum local error along its main

axis
5: go to step 2
6: end if

Ensure: P, error E ≤ ǫ

Algorithm 4 Generation of the adaptive grid

Require: model S = (S, Ts) under Assumption 3 over initial partition; error threshold ǫ
1: set initial partition over the hybrid state space S
2: compute the error E according to (3.5) in Theorem 3.6
3: if E > ǫ then
4: refine the partition by splitting all the cells with error greater than threshold ǫ along

the main axis
5: go to step 2
6: end if

Ensure: P, error E ≤ ǫ

5.2. Marginalization. The generation of a grid and the choice of representative points
for each of the resulting partition sets (let us recall that the choice of representative points
is arbitrary), fully characterizes the state space P of the MC P. The second step in the
generation of the abstraction involves the computation of the transition probability matrix
Tp. This computation necessitates the marginalization of the stochastic kernel Ts, evaluated
at the representative points, over the partition sets. While the complexity of the procedure
highly depends on the shape of the kernels Ts, we have attempted to alleviate it 1) by working
with hyper-rectangular partitions, 2) by exploiting vectorial representations of the quantities
of interest, and 3) by leveraging as much as possible the sparsity of the manipulated matrices.

The sparsity of the generated transition probability matrix (number of its non-zero entries)
depends on the kernels underlying Ts, particularly on their variance terms. Intuitively, a higher
variance relates to a less sparse matrix, since the related probability law is more “spread
out.” More interestingly, there is a tradeoff between the sparsity of the transition probability
matrix and its size, as a function of the variance terms in the underlying dynamics: indeed,
both are increased by small variance terms, which are related both to dynamics that are
spatially “concentrated” (and thus sparser), as well as to higher error bounds via the Lipschitz
constants.

It is possible to use and to tune a tolerance threshold in the marginalization step, below
which the transition probabilities are approximated with zero terms. As a last remark, notice
that in the uniform partitioning case the marginalization procedure is greatly simplified, given
the regular arrangement of the partition cells.

Adaptive Gridding for Abstraction of Stochastic Processes 19

6. Experiments. This section develops a numerical computational benchmark to compare
the presented algorithms for abstraction, in particular with focus on grid generation and
marginalization steps. Additionally, a case study selects a SHS model and reflects on the
choice of the error bounds and on the role of rescaling (cf. Section 3.3).

6.1. Computational Benchmark. Let us consider an n-dimensional linear, controlled
stochastic difference equation

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N,

where w(k), k ≥ 0, is the process noise, taken to be Normal i.i.d. with zero mean and
covariance W : w(k) ∼ N (0,W). The initial condition x(0) is independent of w(k), k ≥ 0, and
is Normal with zero mean and covariance X : x(0) ∼ N (0,X). The input u(k) ∈ R

m, k ≥ 0,
is designed according to a state feedback law minimizing the following quadratic cost function
of the state and of the input:

J = lim
N→∞

1

N
E

(
N−1∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)

)

,

with properly-sized, positive (semi-)definite weighting matrices Q � 0 and R ≻ 0. The optimal
control law for this stochastic control problem (also known as stochastic linear quadratic
regulator) is given as a stationary linear state feedback u(k) = Kx(k), where K represents

the steady-state feedback gain matrix K = −
(
R+BTPsB

)−1
BTPsA, and Ps is the solution

of the following matrix equation:

Ps = Q+ATPsA−ATPsB
(
R+BTPsB

)−1
BTPsA.

The closed loop system can be represented as

x(k + 1) = (A+BK)x(k) + w(k), k ∈ N,

which is a stochastic difference equation evolving over R
n. Given any point x ∈ R

n at any
time, the distribution at the next time can be characterized by a transition probability kernel
Tx(·|x) ∼ N ((A + BK)x,W). The computation of the Lipschitz constant of this kernel can
be adapted from [1] and involves the calculation of partial derivatives of the density.

With focus on the closed loop model, let us consider the probabilistic invariance problem
on a safe set defined as A = [−1, 1]n, namely on a hypercube pointed at the origin, and
over a time horizon [0, N]. For the cost function, we have selected the weighting matrices
Q = In×n, R = Im×m (henceforth, Il×l, l ∈ N, will denote the l-dimensional identity matrix).
The control dimension has been chosen to be m = 1 and the time horizon has been fixed to
N = 10. The state and control matrices A and B have been randomly generated for each
experiment, and A has been further scaled so that maxi=1,...,n |λi(A)| = 1, where λi(A) denotes
the i-th eigenvalue of matrix A. The variance of the initial condition has been selected to be
X = 10 In×n.

20 S. Esmaeil Zadeh Soudjani and A. Abate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s)

T
im

e
[s
ec
]

U-Ps
A-Ps
A-T

(a) n = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
2

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s)

T
im

e
[s
ec
]

U-Ps
A-Ps
A-T

(b) n = 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
2

10
4

10
6

10
8

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s)

T
im

e
[s
ec
]

U-Ps
A-Ps
A-T

(c) n = 4

Figure 6.1. Numerical benchmark. For dimensions n = 2 (a), n = 3 (b), and n = 4 (c) and for different
levels of the error threshold ǫ (horizontal axis), the plots display partition size (number of cells) generated by
adaptive (Algorithm 3, labeled A-Ps) vs. uniform gridding (Algorithm 2, labeled U-Ps), as well as time required
to generate the adaptive partitioning (Algorithm 3, labeled A-T). The results represent an average over 30
independent runs.

Adaptive Gridding for Abstraction of Stochastic Processes 21

10
2

10
3

0.5

1

1.5

2

2.5

3

Cardinality of partition (number of cells)

E
rr
or

A
U

(a) n = 2

10
2

10
3

10
4

1

2

3

4

5

6

7

8

9

Cardinality of partition (number of cells)

E
rr
or

A
U

(b) n = 3

10
2

10
3

10
4

2

4

6

8

10

12

14

16

18

20

Cardinality of partition (number of cells)

E
rr
or

A
U

(c) n = 4

Figure 6.2. Numerical benchmark. Errors obtained selecting the same number of cells (same partition
size), for dimensions n = 2 (a), n = 3 (b), n = 4 (c), for the adaptive gridding of Algorithm 3 (labeled A) vs.
the uniform gridding of Algorithm 2 (labeled U).

22 S. Esmaeil Zadeh Soudjani and A. Abate

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

10
6

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s) A3

A4

(a) n = 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

10
4

10
5

10
6

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s) A3

A4

(b) n = 4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
2

10
3

10
4

10
5

10
6

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s) A3

A4

(c) n = 5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
2

10
3

10
4

10
5

10
6

ǫ

P
ar
ti
ti
on

si
ze

(n
u
m
b
er

of
ce
ll
s) A3

A4

(d) n = 6

Figure 6.3. Numerical benchmark. Partition size (number of cells), for dimensions n = 3 (a), n = 4
(b), n = 5 (c), and n = 6 (d), generated by the adaptive gridding of Algorithm 3 (labeled A3) vs. the adaptive
gridding of Algorithm 4 (labeled A4), for different levels of error threshold ǫ.

6.1.1. Grid Generation. Let us select a noise variance W = 0.5 In×n. Figure 6.1 compares
the partition size (i.e., the number of grid cells) generated by Algorithm 3 for the adaptive
gridding, and by Algorithm 2 for the uniform one, given an (upper bound on the) abstraction
error ǫ for all the methods. The horizontal axis represents the threshold ǫ. The error is based
on, respectively, Equation (3.3) in Theorem 3.4 and Equation (3.2) in Theorem 3.2. The local
Lipschitz constants are computed based on (3.7) in Theorem 3.7. This batch of computations
is performed for dimensions n = 2, 3, 4. As expected, for the adaptive algorithm the number of
generated cells is always less than that for the uniform procedure. Furthermore, the number
of cells becomes larger for smaller threshold values ǫ.

Figure 6.1 also plots the time required to generate the grid according to Algorithm 3 for the
adaptive partitioning. The horizontal axis represents again the threshold ǫ on the error. This
batch of computations is performed for dimensions n = 2, 3, 4 and the results are averaged
over 30 runs. The discontinuities discernible in the plots are intrinsic to the implemented

Adaptive Gridding for Abstraction of Stochastic Processes 23

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

ǫ

T
im

e
[s
ec
]

A3
A4

(a) n = 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

10
1

10
2

10
3

ǫ

T
im

e
[s
ec
]

A3
A4

(b) n = 4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

10
1

10
2

ǫ

T
im

e
[s
ec
]

A3
A4

(c) n = 5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

ǫ

T
im

e
[s
ec
]

A3
A4

(d) n = 6

Figure 6.4. Numerical benchmark. Computation time, for dimensions n = 3 (a), n = 4 (b), n = 5 (c),
and n = 6 (d), required to generate the adaptive partitioning of Algorithm 3 (labeled A3) and the adaptive
gridding of Algorithm 4 (labeled A4), for different levels of error threshold ǫ. The outcomes are obtained as the
average over 30 independent runs.

refinement algorithm for the adaptive partitioning. Notice that, as expected, the time is
larger for smaller thresholds. Recall that for the uniform gridding the grid generation is a
one-shot procedure and, as such, independent of the choice of ǫ.

Figure 6.2 compares the error obtained by generating the adaptive gridding with Algorithm
3 (see Theorem 3.4) against that obtained by generating the uniform gridding of Algorithm 2
(see Theorem 3.2), given a fixed number of cells for both methods (these values are represented
on the horizontal axis). The experiments are again performed for dimensions n = 2, 3, 4. The
local Lipschitz constants are computed based on (3.7). It is easily observed that the error
associated to the uniform gridding approach is always higher than that associated to the
adaptive method. (Notice that, for the probabilistic invariance problem under study, an error
greater than one as obtained in the uniform case is not practically useful.)

Let us now select a noise variance W = In×n and benchmark the two adaptive gridding

24 S. Esmaeil Zadeh Soudjani and A. Abate

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

20

30

40

50

60

ǫ

p
er
ce
n
ta
ge

of
ti
m
e

n = 2
n = 3
n = 4
n = 5
n = 6

Figure 6.5. Time spent on the griding procedure (according to Algorithm 3) as a percentage of the total
time needed for grid generation and marginalization. The figure presents the results for various dimensions
(n = 2, . . . , 6) as a function of threshold ǫ for the error. The required data are obtained by running averages
over 100 independent runs.

approaches. Figure 6.3 compares the number of cells generated by the adaptive gridding
of Algorithm 3 vs. the adaptive gridding of Algorithm 4. This batch of experiments is
performed for dimensions n = 3, 4, 5, 6. Similarly, Figure 6.4 compares the run time required
for generating the adaptive partitioning of Algorithm 3 and the adaptive gridding of Algorithm
4. The outcomes of this batch of experiments are averages over 30 runs. Figure 6.3 confirms
that, since the continuity bounds related to Assumption 3 are less tight, Algorithm 4 ends
up requiring a larger number of cells, given any threshold ǫ. However (cfr. Figure 6.4),
Algorithm 4 works faster than Algorithm 3 in the partition refinement step, since it requires
a local error update for the partitions with error greater than the given threshold, whereas
Algorithm 3 requires in the worst case a global update of the error of each cell based on the
largest obtained error. Thus, for smaller accuracy threshold ǫ and larger dimensions (and
large number of generated cells) the method based on Algorithm 4 ends being the faster
(Figure 6.4). Algorithm 3 can alternatively be made faster by substituting its refinement step
(4:) with that of Algorithm 4 (notice that this, however, will not mitigate the possible global
update of the error).

6.1.2. Marginalization. The time requirements for the marginalization procedure are re-
capitulated by the data on Figure 6.5. These figures are are obtained by taking the average
over 100 independent runs, and display the marginalization time in relative terms versus the
time required for the partitioning procedure, which has been discussed in the previous section.
More specifically, we have focused on the adaptive gridding obtained according to Algorithm
3, and compared the time spent generating the grid to that needed in performing the marginal-
ization step. The data display that the marginalization step requires more time, relative to
the partitioning procedure, as the error level ǫ decreases (that is, as the abstraction precision
increases). This trend is consistent regardless of the model size (n).

Adaptive Gridding for Abstraction of Stochastic Processes 25

Parameter ka = kd kr γr kp γp
Value 0.001 0.0078 0.0039 bγr, b = 11 0.0007

Table 6.1
Parameters for the case study, taken from [9], and expressed in [s−1].

6.2. Case Study. This Section applies the abstraction approach developed in this work
to the study of a probabilistic invariance problem over a template chemical reaction network.
We introduce a model for eukaryotic gene regulation. The stoichiometry (set of chemical
reactions) underlying the system is the following:

(1) D
ka−→ D⋆ D⋆ kd−→ D

(2) D⋆ kr−→ M +D⋆ M
kp−→ P +M

(3) M
γr−→ ∅ P

γp−→ ∅
(6.1)

The reactants represent respectively the number of an inactive and active gene (D and D⋆

respectively), of m-RNA (M), and of a protein (P). There are three kinds of reactions: (1)
conversion (between inactive and active state of the gene), (2) catalytic production (transcrip-
tion of m-RNA and translation into a protein), and (3) degradation (of m-RNA and protein).
The reaction and degradation rates (appearing above the arrows) are directly taken from [9]
and summarized in Table 6.1.

The dynamics of chemically reacting environments can be described by the general Chem-
ical Master Equation (CME) [15], which has seldom an analytical solution and is usually quite
hard to integrate. Alternatively, species dynamics in time are studied via the Stochastic Sim-
ulation Algorithm (SSA) [14, 15], a computational scheme that has recently attracted much
research [5, 27]. Among the various approaches employed to approximate the SSA and thus
expedite its running time, the works in [16, 19] have investigated a technique based on the use
of second-order approximations, which assigns probabilistic dynamics (stochastic differential
equations) to species concentrations. We leverage this latter approach below.

6.2.1. Global Stochastic Approximation. Let us introduce the following state-space vec-
tor:

x =
[
D D⋆ M P

]T
,

describing the concentration of the reactants present in (6.1). Since the new variables are
indeed concentrations, they are non-negative reals, rather than natural numbers as in (6.1).
We can associate to this state continuous dynamics in time, which can be characterized by a
stochastic differential equation of the form [16, 19]

dx = f(x)dt+ σ(x)dW.

Time is discretized with constant sampling interval ∆, according to a Euler-Maruyama, first-
order scheme [20], obtaining:

x(k + 1) = x(k) + f(x(k))∆ + σ(x(k))
√
∆W (k),

26 S. Esmaeil Zadeh Soudjani and A. Abate

where f(x) = Ax and

A =

−ka kd 0 0
ka −kd 0 0
0 kr −γr 0
0 0 kp −γp

,

and

σ(x) =

√
kaD + kdD⋆ 0 0

−√
kaD + kdD⋆ 0 0

0
√
krD⋆ + γrM 0

0 0
√

kpM + γpP

.

The noise term is given by W (k) = [W1(k),W2(k),W3(k)]
T , where Wi(k), i = 1, 2, 3 and

k ∈ N∪ {0}, are independent standard Normal random variables, which are also independent
of the initial condition of the process. The steady-state values for the dynamics are directly
computed as in [19]:

• Pss = 65 [nM],
• Mss =

γp
kp
Pss = 1.0606 [nM],

• Dss = D⋆
ss =

γr
kr
Mss =

γr
kr

γp
kp
Pss =

γp
bkr

Pss = 0.5303 [nM].

Notice that, given the parameters choice in Table 6.1, the steady-state concentrations
assume values that span different dimensions. This will later motivate the use of state-space
rescaling.

Since the dynamics of D and D⋆ are coupled, it is possible to eliminate either of the
variables – here we remove D. The equality ka = kd leads to the following discrete-time
probabilistic dynamical system:

x1(k + 1) = (1− 2kd∆)x1(k) + 2kd∆D⋆
ss +

√

2kd∆D⋆
ssW1(k)

x2(k + 1) = kr∆x1(k) + (1− γr∆)x2(k) +
√

kr∆x1(k) + γr∆x2(k)W2(k)

x3(k + 1) = kp∆x2(k) + (1− γp∆)x3(k) +
√

kp∆x2(k) + γp∆x3(k)W3(k),

(6.2)

where we have denoted
[
x1 x2 x3

]T
=
[
D⋆ M P

]T
.

Based on the recursive expression in (6.2), the associated conditional probability density
function can be defined as:

tx(x̄|x) = tx(x̄1|x1)tx(x̄2|x1, x2)tx(x̄3|x2, x3), (6.3)

where

tx(x̄1|x1) ∼ N (µ1(x1), σ
2
1),

tx(x̄2|x1, x2) ∼ N (µ2(x1, x2), σ
2
2(x1, x2)),

tx(x̄3|x2, x3) ∼ N (µ3(x2, x3), σ
2
3(x2, x3)),

Adaptive Gridding for Abstraction of Stochastic Processes 27

and

µ1(x1) = (1− 2kd∆)x1 + 2kd∆D⋆
ss, σ2

1 = 2kd∆D⋆
ss,

µ2(x1, x2) = kr∆x1 + (1− γr∆)x2, σ2
2(x1, x2) = kr∆x1 + γr∆x2,

µ3(x2, x3) = kp∆x2 + (1− γp∆)x3, σ2
3(x2, x3) = kp∆x2 + γp∆x3.

It can be observed that, due to differences in variables and parameters ranges, the domain of
the density function in (6.3) is compact along the first two variables, while being stretched
along the third one. Such an asymmetric shape of the probability density calls for the use of
a rescaling by coordinate transformation. The quantities in (6.2)-(6.3) characterize the model
of reference for the remainder of the case study.

Probabilistic Invariance for Global Stochastic Approximation. In order to introduce a proba-
bilistic invariance problem for the model of interest, we select a hyper-box around the above
steady state values for the variables x1, x2, x3. We plan to assess the probabilistic invariance
of the process therein, over a finite time horizon. The hyper-box is parameterized by the
quantities r1, r2, and r3:

∣
∣
∣
∣

x1 −D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ r1,

∣
∣
∣
∣

x2 −Mss

Mss

∣
∣
∣
∣
≤ r2,

∣
∣
∣
∣

x3 − Pss

Pss

∣
∣
∣
∣
≤ r3.

This box is set to show 10% variations around the steady state values, i.e. ri = 0.1, i = 1, 2, 3.
Let us define the abstraction errors computed based on global and local version of (3.13)

under Assumptions 1 and 2, respectively. More precisely, let Ei, i = 1, 2, 3, represent the
abstraction error using upper bounds (3.7)-(3.9), respectively. Furthermore, let us consider
the upper boundsE4, E5 obtained via (3.11), (3.14). In order to provide a comparison for these
different bounds, two sets of experiments have been set up. Both employ uniform Cartesian
gridding based on hyper-rectangular partition sets. In the first set of experiments the edges
of the partition sets have been selected to be proportional to the length of the edges of the
safe set, whereas in the second set of experiments the partition sets have been chosen to be
close to cubic cells.

The upper bounds in (3.7)-(3.9) are tailored to Cartesian partitions as follows. Suppose
the uniform grid is made up of partition sets characterized by a vector δ containing its edges.
The grid size δ equals to the Euclidean norm of δ. Assuming that P is a diagonal matrix,
whose elements are proportional to the entries of δ, the upper bounds expressed in (3.7)-(3.9)
are simplified as follows for the local form (Assumption 2):

k1(i, j) = δmaxs∈Ai,s̄∈Aj

∥
∥∂ts

∂s
(s̄|s)

∥
∥ ,

k2(i, j) =
∥
∥P−1δ

∥
∥maxs∈Ai,s̄∈Aj

∥
∥∂ts

∂s
(s̄|s)P

∥
∥ ,

k3(i, j) = maxs∈Ai,s̄∈Aj

∣
∣∂ts
∂s

(s̄|s)
∣
∣ δ;

(6.4)

and as follows for the global form (Assumption 1):

k1 = δmaxs,s̄∈A
∥
∥∂ts

∂s
(s̄|s)

∥
∥ ,

k2 =
∥
∥P−1δ

∥
∥maxs,s̄∈A

∥
∥∂ts

∂s
(s̄|s)P

∥
∥ ,

k3 = maxs,s̄∈A
∣
∣∂ts
∂s

(s̄|s)
∣
∣ δ.

(6.5)

28 S. Esmaeil Zadeh Soudjani and A. Abate

Error bound E1 E2 E3 E4 E5

Inequality used for bound (3.7) (3.8) (3.9) (3.11) (3.14)

Global form (Assumption 1) 7095.1 1376.5 799.3 230.9 13.6

Local form (Assumption 2) 1577.3 283.4 167.3 48.6 13.5

Number of optimizations (local form) 4096 4096 4096 8192 64

Computation time 3 (m) 3 (m) 3 (m) 6 (m) 17.9 (h)
Table 6.2

Global stochastic approximation: error comparison for the first set of experiments, using a uniform grid
with partition sets that are proportional to the length of the edges of the safe set. The computational overhead
for the bounds in local form is also reported.

In order to elucidate the outcomes in Tables 6.2 and following, let us discuss the com-
putational overhead related to the different bounds. For the bounds (3.7)-(3.9), the number
of optimizations in the local form of (6.4) and in the global form of (6.5) are m2 and one,
respectively. The computation of abstraction error (3.11) in local form can be simplified by
using (3.12). Both (3.11) and (3.12) have the same complexity order as the first three upper
bounds. Finally, the computation of E5 based on the local and global form of (3.14) requires
respectively m optimizations and a single one, however it also needs an integration step: this
will lead to higher computational times compared to the errors E1 − E4.

The time horizon N has been set to be equal to 10 for both experiments. The first set of
runs (edges of the partition sets are proportional to the length of the edges of the safe set) is
performed with the following specifications:

• length of edges of the (three dimensional) safe set: (0.1061, 0.2121, 13);
• length of edges of the partition cells: δ = (0.0265, 0.0530, 3.25);
• resulting number of bins per dimension: (4, 4, 4);
• resulting total number of cells: m = 43 = 64;
• resulting partitions diameter: δ = 3.2505.

Table 6.2 summarizes abstraction errors for this set of parameters. The number of optimization
steps, as well as the optimization time, has been reported as a measure of the complexity in
the error computation.

The second set of runs (partition sets are close to cubic cells) is performed with the
following parameters:

• length of edges of the (three dimensional) safe set: (0.1061, 0.2121, 13);
• length of edges of the partition cells: δ = (0.1061, 0.2101, 0.3171);
• resulting number of bins per dimension: (1, 1, 41);
• resulting total number of cells: m = 41;
• resulting partitions size: δ = 0.3949.

Table 6.3 summarizes abstraction errors for this second set of parameters. Note that in this
second case we have used a lower number of cells, and at the same time obtained lower
abstraction errors and a shorter run times. This is due to the underlying ill-conditioned
dynamics and to a safe set that is stretched along one axis. This outcome shows the importance
of rescaling and of the selection of cubic partition cells for the uniform grid.

Adaptive Gridding for Abstraction of Stochastic Processes 29

Error bound E1 E2 E3 E4 E5

Global form (Assumption 1) 864.3 402 300 219.2 13.6

Local form (Assumption 2) 90.3 42.4 33.5 24.1 7.8

Number of optimizations (local form) 1681 1681 1681 3362 41

Computation time 1.5 (m) 1.5 (m) 1.5 (m) 3 (m) 16.7 (h)
Table 6.3

Global stochastic approximation: error comparison for the second set of experiments, using a uniform grid
with partition sets that are chosen to be cubic. The computational overhead for the bounds in local form is also
reported.

For both batches of experiments we have considered relatively coarse partitions in order
to clearly highlight differences in the computed error bounds. As such, the errors are not
practically useful since, being larger than 1, they cannot be used in the approximation of
probabilistic quantities. Of course, since they monotonically converge to zero as the partition
size δ goes to zero, the error bounds can be simply reduced by considering finer partitions, at
the expense of longer optimization times.

We now test the adaptive partitioning approach under rescaling. The direct implementa-
tion of Algorithms 3 and 4 leads to some computational issues: if the algorithms are initialized
over a uniform grid as in the first setup above, they proceed splitting the partitions along the
longest edge in order to try obtaining cubic-shaped cells. On the other hand, if initialization
of the algorithm is set over cubic partition cells, the system dynamics along the shortest di-
rection tend to be lost. To cope these difficulties we have performed a rescaling of the state
space, so that all the dynamics evolve in a comparable range. More precisely, consider the
affine map x = Py +Q with matrices

P =

r1 0 0
0 r2 0
0 0 r3

 , Q =

D⋆
ss

Mss

Pss

 ,

which projects the safe set A to the cube [−1, 1]3. The dynamics in the new state space
become:

y1(k + 1) = (1− 2kd∆)y1(k) +
1
r1

√
2kd∆D⋆

ssW1(k)

y2(k + 1) = r1
r2
γr∆y1(k) + (1− γr∆)y2(k) +

1
r2

√
kr∆r1y1 + γr∆r2y2 + 2γr∆MssW2(k)

y3(k + 1) = r2
r3
γp∆y2(k) + (1− γp∆)y3(k) +

1
r3

√
kp∆r2y2 + γp∆r3y3 + 2γp∆PssW3(k).

Over the new coordinates we have implemented Algorithm 3, which hinges on Assumption
2. As an outcome of this Algorithm, Figures 6.6(a), 6.6(b), and 6.6(c) present the three level
sets px0

(A) = 0.0015, px0
(A) = 0.0013, and px0

(A) = 0.0011 respectively, for any x0 ∈ A
(these figures are in accord with the uniform results obtained above). The obtained number
of cells is 15236 for an error E1 = 7.68 (based on (3.7)), which is as expected lower than that
in Tables 6.2 and 6.3. An a-posteriori computation of the error bound based on (3.11) results
in the quantity E4 = 1.94.

30 S. Esmaeil Zadeh Soudjani and A. Abate

Figure 6.6. Level set px0
(A) = 0.0015, px0

(A) = 0.0013, and px0
(A) = 0.0011 for original (non-hybrid)

model, performed after rescaling under affine mapping, and with an adaptive approach based on Algorithm 3.

Adaptive Gridding for Abstraction of Stochastic Processes 31

6.2.2. Stochastic Hybrid Approximation. We next present a simplification of the prob-
abilistic dynamics in (6.2)-(6.3) as a stochastic hybrid model, as defined in Section 4. Recall
that the conditional density of x1 is normal as

tx(x̄1|x1) ∼ N (µ1(x1), σ
2
1),

where the mean is an affine function exclusively of the conditional variable x1, and the variance
is a constant, namely:

µ1(x1) = (1− 2kd∆)x1 + 2kd∆D⋆
ss, σ2

1 = 2kd∆D⋆
ss.

As such, the conditional density tx is independent of x2, x3. This suggests performing a
simplification of the dynamics over the sole variable x1. Let us introduce two sets that
partition R, the domain of x1:

q1 = {x1 ≤ D⋆
ss}, q2 = {x1 > D⋆

ss}.

The first set q1 indicates that the concentration of active genes is lower than its steady-state
(we call this the “inactive” mode), whereas the second set q2 refers to a concentration of
active genes that is higher than its steady-state (this is named the “active” mode). These
two occurrences make up the discrete modes as Q = {q1, q2}. Let us additionally select two
generic points, one for each of the two modes l1 ∈ q1, l2 ∈ q2. We associate to both modes the
continuous domain R

2, as needed for the dynamics of the two variables x2, x3.

We characterize the discrete probability matrix for the transitions between modes, namely
Tq(qj|(qi, x)), x = (x2, x3), as follows:

Tq(q1|(qi, x)) = P{x1 ≤ D⋆
ss|qi} = Φ

(
D⋆

ss − µi(li)

σi

)

. (6.6)

We explicitly obtain:

Tq(q1|(q1, x)) = Φ

(
D⋆

ss − µ1(l1)

σ1

)

= Φ((1− 2kd∆)(D⋆
ss − l1)/σ1)

.
= p1,

Tq(q1|(q2, x)) = Φ

(
D⋆

ss − µ2(l2)

σ2

)

= Φ((1− 2kd∆)(D⋆
ss − l2)/σ2)

.
= p2,

Tq(q2|(q1, x)) = P{x1 > D⋆
ss|q1} = 1− p1,

Tq(q2|(q2, x)) = P{x1 > D⋆
ss|q2} = 1− p2.

Notice that the probabilities in above equations (see in particular the second equality in (6.6))
depend on the arbitrary choice of the points li ∈ qi, i = 1, 2. We select such points l1, l2 so
that the variable x1 has the same conditional expectation before and after the introduction
of the partition sets q1, q2. More precisely, with reference to equations (6.2)-(6.3), given a
x1 ∈ R, for any x̄1 ∈ R,

E{x̄1|x1} = µ(x1) = (1− 2kd∆)x1 + 2kd∆D⋆
ss,

32 S. Esmaeil Zadeh Soudjani and A. Abate

whereas for any q̄ ∈ Q, and given the selected li ∈ qi,

E{q̄|q1} = E{q̄|l1} = p1l1 + (1− p1)l2,

E{q̄|q2} = E{q̄|l2} = p2l1 + (1− p2)l2.

This leads to the following two equations, which are nonlinear since p1, p2 are nonlinear func-
tions of l1, l2: {

p1l1 + (1− p1)l2 = (1− 2kd∆)l1 + 2kd∆D⋆
ss

p2l1 + (1− p2)l2 = (1− 2kd∆)l2 + 2kd∆D⋆
ss

Applying the following variable transformation:

{
ℓ1 = (1− 2kd∆)(D⋆

ss − l1)/σ
ℓ2 = (1− 2kd∆)(D⋆

ss − l2)/σ,

we obtain

ℓ1Φ(ℓ1) + ℓ2(1−Φ(ℓ1)) = (1− 2kd∆)ℓ1

ℓ1Φ(ℓ2) + ℓ2(1−Φ(ℓ2)) = (1− 2kd∆)ℓ2.

This set of nonlinear equations has a trivial solution ℓ1 = ℓ2 = 0, which is not interesting. Its
second solution can be computed by the following recursive scheme:

ℓk+1
1

ℓk+1
2

 = (1− 2kd∆)

Φ(ℓk1) 1− Φ(ℓk1)

Φ(ℓk2) 1− Φ(ℓk2)

−1

ℓk1

ℓk2

 ,

which, for the above nominal values, leads to the quantities ℓ1 = 3.0902, ℓ2 = −3.0902.
These correspond to the points l1 = 0.4295, l2 = 0.6311, and finally to the probabilities
p1 = 0.9990, p2 = 0.0010. These values fully characterize the discrete kernel Tq. Further, the
continuous kernels Tx = Tr can be directly derived, as done for (6.2)-(6.3), from the following
system of stochastic difference equations:

{
x2(k + 1) = kr∆q(k) + (1− γr∆)x2(k) +

√

kr∆q(k) + γr∆x2(k)W2(k)

x3(k + 1) = kp∆x2(k) + (1− γp∆)x3(k) +
√

kp∆x2(k) + γp∆x3(k)W3(k).

Probabilistic Invariance for Stochastic Hybrid Approximation. We implement a uniform grid-
ding with partition cells that are proportional to the edges of the safe set. Note that the
safe set in the hybrid state space is made up of two identical sets Aq1 , Aq2 for modes q1, q2,
respectively. As discussed before, both sets coincide over R

2 and are defined as rectangles
spanning a 10% variation from the steady state values of the variables x2, x3. The analysis
run is performed with the following parameters, defined for each of the two modes q1, q2:

• length of edges of the (two dimensional) safe set: (0.2121, 13);
• length of edges of the partition cells: δ = (0.0424, 2.60);
• resulting number of bins per dimension: (5, 5);
• resulting total number of cells: 2× 52 = 50;
• resulting partition size δ = 2.6003.

Adaptive Gridding for Abstraction of Stochastic Processes 33

Error bound E1 E2 E3 E4 E5

Global form (Assumption 1) 3352 1420.1 1003.8 364.7 15.59

Local form (Assumption 2) 614.89 250.18 178.95 66.04 15.58

Computation time (sec.) 37 38 42 89 478
Table 6.4

Stochastic hybrid approximation: error comparison for the first set of experiments, based on a uniform
grid. The computational overhead for the bounds in local form is also reported.

Error bound E1 E2 E3 E4 E5

Global form (Assumption 1) 558.67 236.68 167.30 111.56 15.59

Local form (Assumption 2) 53.67 28.58 20.69 20.04 8.36

Computation time (hours) 5.84 6.42 8.93 15.98 16.73
Table 6.5

Stochastic hybrid approximation: error comparison for the second set of experiments, which again use a
uniform grid but with higher precision. The computational overhead for the bounds in local form is also reported.

Notice that the safe set and the partition sets are mode invariant. Let us denote the safe
set by A and its partition by ∪m

i=1Ai. Since the probability distribution Tq does not depend
on the state x, we have that kq(q, q̄, i) = 0. Furthermore, since tr(x̄|(q, x), q̄) = tx(x̄|(q, x)),
then kr(q, q̄, i, j) = kx(q, i, j) ≥ |tx(x̄|(q, x)) − tx(x̄|(q, x′))|, for any x, x′ ∈ Ai, x̄ ∈ Aj. These
observations simplify local error computations to:

Eq,i = 2N
m∑

j=1

kx(q, i, j)L(Aj), q ∈ {q1, q2}, i = 1, 2, ..., n.

The local form of the abstraction error is max{Eq,i|q ∈ {q1, q2}, i = 1, 2, ..., n}, while its global
form is E = 2NL(A)kx. The upper bound kx(q, i, j) is computable as done for the non-hybrid
case. The computation of E5 is simplified to E5 = maxq,i 2NH(q, i) where

∫

A

|tx(x̄|(q, x))− tx(x̄|(q, x′))|dx̄ ≤ H(q, i), ∀x, x′ ∈ Ai, q ∈ {q1, q2}.

Table 6.4 reports the abstraction error for the chosen set of parameters. For the bounds in the
global form, two maximization problems (one per mode) need to be solved. The optimization
time for the local error computations is also reported in the table.

Again with the uniform discretization approach, let us increase number of bins per dimen-
sion (from 5) to 30 and compute a more accurate approximation for the safety problem. The
resulting total number of cells is thus 2× 302 = 1800, which is dimensionally higher than the
previous instance, as well as than the experiments in the global case presented in Tables 6.2
and 6.3). This of course comes at a computational cost (cfr. with optimization time in Table
6.4). The output of the safety invariance problem is presented in Figures 6.7(a) and 6.7(c).

As a second step, we have implemented Algorithm 3 to generate an adaptive grid. The
associated errors have been computed based on local Lipschitz constants of the distribution,
using the error quantification of Theorem 4.1. Notice that the reset kernel does not depend

34 S. Esmaeil Zadeh Soudjani and A. Abate

1 1.05 1.1 1.15

60

62

64

66

68

70

x
2

x 3

q
1

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

(a) Uniform grid for mode q1

1 1.05 1.1 1.15

60

62

64

66

68

70

x
2

x 3

q
1

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

(b) Adaptive grid for mode q1

1 1.05 1.1 1.15

60

62

64

66

68

70

x
2

x 3

q
2

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(c) Uniform grid for mode q2

1 1.05 1.1 1.15

60

62

64

66

68

70

x
2

x 3

q
2

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(d) Adaptive grid for mode q2

Figure 6.7. Visualization of the quantity px0
(A) (probabilistic invariance), over the grid points of the two

discrete modes of the stochastic hybrid model. On the left, outcomes obtained using uniform grids, whereas on
the right, outcomes obtained using adaptive grids.

on the next mode and coincides with tx, which does not imply hr(q, q̄, i, k) = hx(q, i, k) in
general. Consequently, the adaptive grid is in general mode dependent. Figures 6.7(b) and
6.7(d) present the adaptive grid together with the invariance probability for points over the
state space of the stochastic hybrid system. The grid has been generated for an error E1

(based on (3.7)) equal to 14.47 and has resulted in a total of 3504 cells. The run time has
amounted to 87 seconds. An a-posteriori analysis of the adaptive grid, based on (3.14), insures
an improved abstraction error equal to E5 = 5.21.

7. Conclusions. The contribution has put forward an abstraction procedure based on
a partitioning of the state space, and discussed an adaptive gridding generation technique
exploiting local formula-based error computation and state-space rescaling. By conforming
to the underlying dynamics of the model, the method alleviates the “curse of dimensionality”
that is in general related to partitioning procedures. While the focus of the work has been
on the study of probabilistic safety over a finite horizon, the technique can be employed in

Adaptive Gridding for Abstraction of Stochastic Processes 35

the formal abstraction and verification of stochastic models over more general probabilistic
properties, by means of model checkers.

The authors are interested in extending the results towards more general dynamics, and
in the development of a software tool based on the presented theoretical results.

REFERENCES

[1] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini, Approximate model checking of stochastic
hybrid systems, European Journal of Control, 6 (2010), pp. 624–641.

[2] A. Abate, J.-P. Katoen, and A. Mereacre, Quantitative automata model checking of autonomous
stochastic hybrid systems, in ACM Proceedings of the 14th International Conference on Hybrid Sys-
tems: Computation and Control, Chicago, IL, April 2011, pp. 83–92.

[3] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, Probabilistic reachability and safety for controlled
discrete time stochastic hybrid systems, Automatica, 44 (2008), pp. 2724–2734.

[4] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[5] D. Barnes and D. Chu, Introduction to Modelling for Biosciences, Springer Verlag, 2010.
[6] D.P. Bertsekas, Convergence of discretization procedures in dynamic programming, IEEE Transactions

on Automatic Control, 20 (1975), pp. 415–419.
[7] H.A.P. Blom and J. Lygeros (Eds.), Stochastic Hybrid Systems: Theory and Safety Critical Ap-

plications, no. 337 in Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin
Heidelberg, 2006.

[8] M.L. Bujorianu and J. Lygeros, Reachability questions in piecewise deterministic Markov processes,
in Hybrid Systems: Computation and Control, O. Maler and A. Pnueli, eds., no. 2623 in Lecture
Notes in Computer Sciences, Springer Verlag, 2003, pp. 126–140.

[9] R. Bundschuh, F. Hayot, and C. Jayaprakash, The role of dimerization in noise reduction of simple
genetic networks, Journal of Theoretical Biology, 220 (2003), pp. 261–269.

[10] C.G. Cassandras and J. Lygeros (Eds.), Stochastic Hybrid Systems, no. 24 in Control Engineering,
CRC Press, Boca Raton, 2006.

[11] M.H.A. Davis, Markov Models and Optimization, Chapman & Hall/CRC Press, London, 1993.
[12] S. Esmaeil Zadeh Soudjani and A. Abate, Adaptive gridding for abstraction and verification of

stochastic hybrid systems, in Proceedings of the 8th International Conference on Quantitative Evalu-
ation of Systems, Aachen, DE, September 2011, pp. 59–69.

[13] M. Fränzle, H. Hermanns, and T. Teige, Stochastic satisfiability modulo theory: A novel technique for
the analysis of probabilistic hybrid systems, in Hybrid Systems: Computation and Control, M. Egerst-
edt and B. Misra, eds., no. 4981 in Lecture Notes in Computer Sciences, Springer Verlag, Berlin
Heidelberg, 2008, pp. 172–186.

[14] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions, Journal of Computational Physics, 22 (1976), pp. 403–434.

[15] , Exact stochastic simulation of coupled chemical reactions, Journal of Physical Chemistry, 81 (1977),
pp. 2340–2361.

[16] , The chemical Langevin equation, Journal of Chemical Physics, 113 (2000), pp. 297–306.
[17] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, PRISM: A tool for automatic verification

of probabilistic systems, in Tools and Algorithms for the Construction and Analysis of Systems,
H. Hermanns and J. Palsberg, eds., vol. 3920 of Lecture Notes in Computer Science, Springer Verlag,
Berlin Heidelberg, 2006, pp. 441–444.

[18] J.-P. Katoen, M. Khattri, and I. S. Zapreev, A Markov reward model checker, in IEEE Proceedings
of the International Conference on Quantitative Evaluation of Systems, Los Alamos, CA, USA, 2005,
pp. 243–244.

[19] R. Khanin and D. Higham, Chemical Master Equation and Langevin regimes for a gene transcription
model, in Computational Methods in Systems Biology, M. Calder and S. Gilmore, eds., vol. 4695 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2007, pp. 1–14.

[20] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer Verlag,

36 S. Esmaeil Zadeh Soudjani and A. Abate

1992.
[21] K. Koutsoukos and D. Riley, Computational methods for reachability analysis of stochastic hybrid

systems, in Hybrid Systems: Computation and Control, J. Hespanha and A. Tiwari, eds., no. 3927 in
Lecture Notes in Computer Sciences, Springer-Verlag, Berlin, 2006, pp. 377–391.

[22] H. J. Kushner and P.G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous
Time, Springer-Verlag, New York, 2001.

[23] R. Munos and A. Moore, Variable resolution discretization in optimal control, Machine Learning, 49
(2002), pp. 291–323.

[24] S. Prajna, A. Jadbabaie, and G.J. Pappas, A framework for worst-case and stochastic safety verifi-
cation using barrier certificates, IEEE Transactions on Automatic Control, 52 (2007), pp. 1415–1428.

[25] M. Prandini and J. Hu, Stochastic reachability: Theory and numerical approximation, in Stochastic
hybrid systems, C.G. Cassandras and J. Lygeros, eds., Automation and Control Engineering Series
24, Taylor & Francis Group/CRC Press, 2006, pp. 107–138.

[26] F. Ramponi, D. Chatterjee, S. Summers, and J. Lygeros, On the connections between PCTL and
dynamic programming, in ACM Proceedings of the 13th International Conference on Hybrid Systems:
Computation and Control, April 2010, pp. 253–262.

[27] M. Rathinam, L. R. Petzold, Y. Cao, and D.T. Gillespie, Stiffness in stochastic chemically reacting
systems: The implicit tau-leaping method, Journal of Chemical Physics, 119 (2003), pp. 12784–12794.

[28] P. Somerville, Numerical computation of multivariate normal and multivariate-t over convex regions,
Journal of Computational and Graphical Statistics, 7 (1998), pp. 529–544.

[29] C. Traxler, An algorithm for adaptive mesh refinement in n dimensions, Computing, 59 (1997), pp. 115–
137.

