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Abstract. Component interfaces, as advanced by the Common Compo-
nent Architecture (CCA), enable easy access to complex software pack-
ages for high-performance scientific computing. A recent focus has been
incorporating support for computational quality of service (CQoS), or
the automatic composition, substitution, and dynamic reconfiguration
of component applications. Several leading quantum chemistry packages
have achieved interoperability by adopting CCA components. Running
these computations on diverse computing platforms requires selection
among many algorithmic and hardware configuration parameters; typ-
ical educated guesses or trial and error can result in unexpectedly low
performance. Motivated by the need for faster runtimes and increased
productivity for chemists, we present a flexible CQoS approach for quan-
tum chemistry that uses a generic CQoS database component to create a
training database with timing results and metadata for a range of calcu-
lations. The database then interacts with a chemistry CQoS component
and other infrastructure to facilitate adaptive application composition
for new calculations.

1 Introduction

As computational science progresses toward ever more realistic multiphysics ap-
plications, no single research group can effectively select or tune all components
of a given application, and no solution strategy can seamlessly span the entire
spectrum of configurations efficiently. Common component interfaces, along with
programming language interoperability and dynamic composability, are key fea-
tures of component technology that enable easy access to suites of independently
developed algorithms and implementations. By means of the Common Compo-
nent Architecture (CCA) [1,2], such capabilities are now making inroads in sci-
entific computing. The challenge then becomes how to make the best choices for
reliability, accuracy, and performance, both when initially composing and con-
figuring a component application, and when dynamically adapting to respond
to continuous changes in component requirements and execution environments.
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Computational quantum chemistry is a mature domain of scientific comput-
ing populated by numerous software packages offering a range of theoretical
methods with a variety of implementation approaches. These packages provide
a vast array of tools to be employed by practitioners who are often not develop-
ers or knowledgeable about the implementation details of these packages. The
existence of certain methods as well as their performance on various types of
hardware varies greatly within these packages, and the optimal configuration of
these calculations is often a matter of trial and error, at least until a great deal
of experience is accumulated with each package. For example, as the number
of cores increases on commodity processors, memory bandwidth limitations will
likely limit the number of cores that can be used effectively per socket to signifi-
cantly fewer than the number available. Furthermore, predicting runtime can be
useful for planning and queue management when running unfamiliar job types.

The challenges of efficiently employing and configuring quantum chemistry
packages, faced also in combustion, fusion, and accelerator modeling [3], moti-
vate the design and implementation of generic support for computational quality

of service (CQoS) [4], or the automatic composition, substitution, and dynamic
reconfiguration of components to suit a particular computational purpose and
environment. CQoS embodies the familiar concept of quality of service in net-
working as well as the ability to specify and manage characteristics of the appli-
cation in a way that adapts to the changing (computational) environment. CQoS
expands on traditional QoS ideas by considering application-specific metrics, or
metadata, which enable the annotation and characterization of component per-
formance. Before automating the selection of component instances, however, one
must be able to collect and analyze performance information and related meta-
data. The two main facets of CQoS tools, therefore, are measurement and analy-
sis infrastructure and control infrastructure for dynamic component replacement
and domain-specific decision making. This paper focuses on the performance and
metadata management and analysis support in CQoS infrastructure.

We present in this paper recent work by members of the CCA Forum and the
Quantum Chemistry Science Application Partnership (QCSAP) [5], which in-
cludes developers of several leading high-performance quantum chemistry codes
(GAMESS [6], MPQC [7], and NWChem [8]), to utilize the new CQoS infras-
tructure to guide adaptive runtime composition and performance optimization of
component-based parallel quantum chemistry applications. Parallel application
configuration has driven the initial development and integration of CQoS infras-
tructure in the QCSAP, laying the groundwork for more sophisticated analysis
to configure algorithmic parameters for particular molecular targets, calculation
approaches, and hardware environments.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work; Section 3 highlights key features of the Common Com-
ponent Architecture and its use in high-performance quantum chemistry. Sec-
tion 4 introduces our CQoS approach for quantum chemistry, and Section 5 re-
ports on some preliminary experiments. Section 6 provides concluding remarks
and discussion of future work.
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2 Related Work

Adaptive software architecture is an area of emerging research, as evidenced by
numerous recent projects and related work [9–21]. Many approaches to address-
ing different aspects of adaptive execution are represented in these projects, from
compiler-based techniques to performance model-based engineering approaches
and development of new adaptive numerical algorithms.

Unlike these efforts, our approach specifically targets large-scale parallel com-
putations and support of interoperability among scientific packages. In designing
our CQoS database interfaces and middleware components, we rely on the ex-
isting high-performance infrastructure provided by the CCA, in which multiple
component implementations conforming to the same external interface standard
are interoperable, and the runtime system ensures that the overhead of compo-
nent substitution is negligible.

A large number of tools for performance analysis exist, including TAU [22],
Prophesy [23], and SvPablo [24]. Each tool defines its own performance data rep-
resentation and storage, from custom ASCII representations or XML to SQL,
DB2, or Oracle databases. Efforts are under way to define common data rep-
resentations for performance data; however, we expect that the standardization
will take some time and it will be longer before tools implement mappings from
their native formats to the standard one. Thus, we have focused on defining inter-

faces for querying and manipulating the data, which can then be implemented as
components mapping to different representations. To our knowledge, the research
discussed in this paper is the first attempt to provide language-independent com-
ponent interfaces and corresponding implementations for performance database
manipulation, specifically targeting parallel scientific applications. This approach
supports multiple underlying representations and does not preclude the use of
non-component performance analysis tools.

A rich set of performance tools [25–27], including PerfExplorer [28], aim to
improve the execution behavior of a program based on information on its current
or previous runtime behavior. The tools, however, use low-level compiler-based
techniques or are restricted to specific parallel computer systems or application
domains. In contrast, we integrate PerfExplorer into the CCA infrastructure to
support adaptation in generic parallel scientific applications.

3 Common Component Architecture and Quantum

Chemistry

CCA Overview. This work leverages the component standard for scientific
computing under development by the CCA Forum. Component technology (see,
e.g., [29]), which is now widely used in mainstream computing but has only re-
cently begun to make inroads in high-performance computing (HPC), extends
the benefits of object-oriented design by providing coding methodologies and
supporting infrastructure to improve software’s extensibility, maintainability,
and reliability.
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Fig. 1. Left: CCA component approach for a quantum chemistry application. Right:

Isoprene HF/6-311G(2df,2pd) parallel speedup in MPQC-based CCA simulations of
molecular geometry; the plot shows nearly linear speedup on 1 through 64 proces-
sors both when using MPQC alone and when using external numerical optimization
components in TAO.

The CCA Forum is addressing productivity challenges of diverse scientific re-
search teams by developing tools for plug-and-play composition of applications
in parallel and distributed computing. The core of this work is a component
model and reference implementation [2] tailored to the needs of high-end sci-
entific computing. Key features are language-neutral specification of common
component interfaces, interoperability for software written in programming lan-
guages important to scientific computing, and dynamic composability, all with
minimal runtime overhead.

The specification of the Common Component Architecture defines the rights,
responsibilities, and relationships among the various elements of the model.
Briefly, the elements of the CCA model are as follows:

– Components are units of software functionality that can be composed to-
gether to form applications. Components encapsulate much of the complexity
of the software inside a black box and expose only well-defined interfaces.

– Ports are the interfaces through which components interact. Components
may provide ports, meaning that they implement the functionality expressed
in a port (called provides ports), or they may use ports, meaning that they
make calls on a port provided by another component (called uses ports).

– Frameworks manage CCA components as they are assembled into applica-
tions and executed. The framework is responsible for connecting uses and
provides ports.

Quantum Chemistry Components. The QCSAP has adopted a component
architecture based on the CCA. Both coarse-grain componentization (where a
component encompasses a task such as energy, gradient, or Hessian evaluation)
and fine-grain componentization (where a component computes only integrals)
are incorporated [30,31]. The left-hand side of Figure 1 illustrates how common
component interfaces for molecules, models, basis sets, and integral evaluation
facilitate the sharing of code among these three chemistry teams.
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The component approach also enables the chemistry teams to leverage ex-
ternal capabilities in the wider scientific community. For example, as shown in
the right-hand side of Figure 1, chemists have achieved scalable performance in
MPQC-based CCA simulations for molecular shape determination using parallel
components from the Toolkit for Advanced Optimization (TAO) [30].

4 CQoS Infrastructure and Its Application in

High-Performance Quantum Chemistry

Scientific computations often require the specification of many options and pa-
rameters. Quantum chemical options, for instance, include the basic selection of
methods, expansion basis, and convergence criteria, as well as low level details
such as hardware configuration and algorithmic parameters. The initial focus
of CQoS tools is parallel application configuration to effectively exploit high-
performance architectures. The difficulty of configuring parallel computations is
compounded by the proliferation of multicore processors, resulting in three lev-
els of processing elements (nodes, processors/sockets, and processor cores), and
the variety of hardware environments, ranging from networks of workstations for
development to massively parallel machines for production runs.

A key aspect of CQoS research is generating and collecting meaningful data
for storage in a database and subsequent analysis by performance tools. Full
automation of the processes of collecting and managing performance data and
metadata, building a performance model, and conducting detailed evaluation is
beyond the scope of this paper. We focus on coarse-grain computations, where we
select several major parameters that can affect the performance of scientific codes
and then use the performance data to enable adaptive application configuration.

While motivated by adaptivity in different problems (quantum chemistry,
combustion, fusion, and accelerator simulations), we believe that the infrastruc-

ture for analyzing and characterizing the problems and determining and invoking
solution strategies will indeed be similar for such large-scale scientific simula-
tions. We introduce nonfunctional properties and application-specific informa-
tion, or metadata, into performance analysis and decision-making. Metadata
include algorithm or application parameters, such as problem size and physi-
cal constants, compiler optimization options, and execution information, such
as hardware and operating system information. Ideally, for each application
execution, the metadata should provide enough information to be able to re-
peat the run. The metadata can help classify performance measurements and
provide clues for tuning performance. CQoS infrastructure, therefore, includes
database components that manage performance data and associated metadata,
comparator components that support query and extraction of data, and analysis
components that conduct performance analysis to suggest adaptation strate-
gies. Figure 2 illustrates the utilization of the CQoS components (described in
more detail in Sections 4.2 and 4.3) in an adaptive quantum chemistry applica-
tion. Thanks to our uniform quantum chemistry interfaces, the capabilities for
automated adaptive configuration shown in Figure 2 are available to all three
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Fig. 2. Components and parameter tuning flow in a CQoS-enabled quantum chemistry
application.

QCSAP quantum chemistry codes (GAMESS, MPQC, and NWChem), as well
as any other applications that adopt these interfaces in the future.

As shown in Figure 2, our CQoS approach to automating parallel application
configuration involves three phases: collection of performance data in a training
database, performance analysis, and adaptive application composition based on
this information. The training data for quantum chemistry contains timing re-
sults for calculations spanning a range of molecular characteristics and hardware
configurations. The intermediate chemistry CQoS component bridges domain-
specific chemistry components and generic CQoS tools. It uses the general CQoS
database component interfaces to store and query performance and associated
metadata, which in this case consist of the application’s parallel configuration
parameters. Once this database is populated on a target machine, users can re-
quest an appropriate configuration for a new molecule and calculation type from
the chemistry CQoS component. Furthermore, we have defined comparator com-
ponents that serve as filters when searching for appropriate parameter settings in
the database. An analysis component based on PerfExplorer [28] provides offline
performance analysis to identify sources of parallel inefficiency and determine
appropriate parameters for a given configuration. The remainder of this section
discusses these phases in more detail.

4.1 Training Data Collection for Scientific Components

The granularity of a component can significantly affect the usefulness of the per-
formance data collected. Without detailed data, such as time spent in I/O or
communication, the component-level performance data from a coarse-grain com-
ponentized computation may not provide insights into why the component does
not scale well under some circumstances. This situation may create difficulties
in developing adaptive CQoS strategies.
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Generating and collecting meaningful data for subsequent analysis by perfor-
mance tools is not as straightforward as one might expect, however, and the task
is especially challenging for high-performance scientific applications like quan-
tum chemistry. Many parameters in quantum chemistry computations can affect
the efficiency and accuracy of a computation; moreover, it is not always obvious
how to quantify some of these parameters. The complexity of modern HPC ar-
chitectures only exacerbates the difficulty of finding appropriate parameters to
achieve the best results (or tradeoff between accuracy and efficiency).

In order to acquire more detailed performance data for CQoS research, some
supporting tools have been developed that facilitate data collection and man-
agement [32]. In addition, CCA-compliant TAU-based performance monitoring
components [33] can be employed to collect performance data for computational
components.

4.2 Database Components and Their Usage in Data Training

Fig. 3. UML diagram of CQoS
database component interfaces
and methods.

The database component interface design
is intended to support the management
and analysis of performance and application
metadata, so that the mapping of a problem
to a solution that can potentially yield the
best performance can be accomplished stat-
ically or at runtime. The UML diagram in
Figure 3 shows the main interfaces and some
of their methods.

We introduce two types of components
for storing and querying CQoS performance
data and metadata. The database compo-
nent provides general-purpose interfaces for
storing and accessing data in a physical
database. The comparator interfaces com-
pare and/or match properties of two prob-
lems under user-specified conditions.

Comparator Components. Three sets of
interfaces are associated with a comparator
component: Parameter, ParameterSet, and
Comparator. A Parameter captures a sin-
gle property of a problem, for example, the
count of a specific atom type in a molecule.
A Parameter, which is described by its name, data type, and value, is associated
with a table in the physical database. The Parameter interfaces also support
comparisons against another peer parameter under user-specified conditions. A
ParameterSet represents a group of related parameters, for example, a set of
parameters that characterizes a molecule or a set of scalar or Boolean linear
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system properties. Using the ParameterSet interfaces, users can create and man-
age parameter set members. When selecting a solution method, time-dependent
problem or system properties are described as one or more ParameterSets. The
user or an automated adaptive heuristic can then match the formatted parame-
ter sets to a database to determine the best solution method or configuration. A
Comparator defines the rules to compare two sets of parameters. For instance, a
Comparator can determine the closeness of two sets of parameters (i.e., whether
they are within ǫ of each other).

Database Components. There are two classes of interfaces associated with a
database component, DB and Outcome. The application connects to a database
component by using the DB port, which handles (potentially remote) database
connections, queries, and storage and retrieval of parameters and parameter sets.
The DB interface also supports the query of experimental runs having parameter
sets that satisfy user-specified conditions (e.g., limiting the parameter set to a
range of values). The Outcome interface supports transformation of database
results returned from a DB query to user-readable format, as well as access to
the individual data elements.

During the training phase of the CQoS process for quantum chemistry, per-
formance statistics and application metadata for selected problem instances are
added into the database. This training data can then be used for future perfor-
mance analysis and solution method matches, as further discussed in Section 4.3.
Before the execution of an application, application-specific Comparator imple-
mentations help match the initial problem properties and system states against
historical information to find a good initial solution method. During runtime,
time-dependent application and system characteristics are captured in metadata
parameter sets. At runtime the Comparator implementation can dynamically
match the metadata against a lightweight runtime database to determine the
best-known method corresponding to the current application state.

4.3 Performance Analysis

We incorporated PerfExplorer [28] into CQoS infrastructure to support per-
formance analysis and decison-making for runtime adaptivity. PerfExplorer, a
framework for parallel performance data mining and knowledge discovery in the
TAU performance system, was developed to facilitate analysis on large collec-
tions of experimental performance data. The framework architecture enables
the development and integration of data-mining operations that can be ap-
plied to parallel performance profiles. The data repository for PerfExplorer is
PerfDMF [34], a performance data management framework that integrates and
interfaces to many common database management systems, including the CQoS
training database. PerfExplorer is designed to make the process of analyzing
large numbers of parallel performance profiles manageable. Dimension reduction
methods such as clustering and correlation allow meaningful analysis of large
data sets. PerfExplorer does not directly implement these techniques; rather,
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Fig. 4. PerfExplorer classifier construction.

it is integrated with existing analysis toolkits (e.g., Weka [35]) and provides
for extensions using those toolkits. One such extension is to use classification
capabilities in the Weka data-mining package to construct a runtime parameter
recommendation system. Classification systems are a type of machine learning in
which training data is input into a decision tree or space partitioning algorithm
to construct a classifier. Classifiers belong a particular class of machine learning
known as supervised learning, in which vetted training data with pre-selected
attributes and known class types are used to train the classifier. In contrast, for
exploratory, unsupervised learning methods such as clustering, class identifica-
tions are not known ahead of time. With a trained classifier, new test data can
be identified as belonging to one of the identified classes. Classifiers can also be
used to perform numerical prediction.

Figure 4 shows how a classifier for runtime recommendation is constructed
and used. Training data for analysis is generated by executing the application
multiple times, varying key parameters that have an effect on the total runtime.
After the performance data and associated metadata for a set of training runs
have been stored in the performance database, PerfExplorer loads the data and
classifies it. A classifier is constructed using a simple Python script interface
in which the application developer specifies independent application parameters
and the dependent parameter, or class. Within the Python script, the classifi-
cation method is also selected. Supported methods include alternating decision
trees, support vector machines, and multilayer perceptrons (neural networks).
Unique tuples of each combination of parameter values are found, and the best
performing execution for each unique tuple is selected to represent that class.
Optionally, Principle Components Analysis can be used to reduce the param-
eters to those that have the most influence over the variance in the data set.
All classification is performed offline, as it can be a time intensive process. The
results of the classification are stored in the form of a serialized Java object. This
process can be performed either through PerfExplorer’s GUI, the command line
interface, or by using a CCA component wrapping PerfExplorer.
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Fig. 5. Component wiring diagram for quantum chemistry showing usage of CQoS
database components.

For production application runs, the classifier is loaded into a CCA compo-
nent. The best parameter setting (class) is obtained by querying the classifier
with the current values of the application-specific metadata. These values are
matched to the classification properties to find the best class selection for the
parameters. The runtime overhead of this step is minimal because it does not
require access to the performance data database.

4.4 Adaptive Application Composition and Configuration

In application domains in which multiple software packages implement standard
interfaces, we are able to capitalize on the CCA component approach and pro-
vide a single domain-specific CQoS component that manages interaction between
generic CQoS infrastructure and various domain-specific implementations (in
this case, GAMESS, MPQC, and NWChem), thereby reducing and simplifying
the CQoS management code required in the domain-specific packages themselves.
In Figure 5 a snapshot from the GUI of the Ccaffeine framework [36] illustrates
the composition of a QCSAP quantum chemistry package (MPQC) and generic
CQoS infrastructure components through a chemistry-specific CQoS component.
The left-hand side of the figure shows the palette that contains available tem-
plate components. In the wiring diagram on the right-hand side, a chemistry
application instantiates both chemistry and CQoS components and connects so-
called uses ports, as introduced in Section 3, and provides ports between related
components.
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The training driver component, Driver, manages chemistry model objects
(e.g., MPQCFactory in Figure 5), acquires metadata from the model objects,
and serializes interactions with the chemistry CQoS component, CQoS. During
the training phase (see Section 4.2), the Driver populates a CCA type map,
or dictionary, with metadata obtained from MPQCFactory describing algorith-
mic parameterization, hardware configuration, and application performance. For
each training run, this metadata container is passed, along with a molecule de-
scriptor class, to the chemistry CQoS interfaces, CQoS. The CQoS derives the
metadata and handles the actual calls to the database component, MyDB, to
store the metadata in the CQoS database.

For production runs, the CQoS passes metadata that describes a new cal-
culation to the comparator component, MyComparator, to map the data to an
application configuration that can potentially yield the best performance. Ad-
ditionally, the CQoS infrastructure components can leverage the classification
capabilities provided within the TAU package to obtain recommended config-
urations for calculations. The proposed production calculations are related to
training calculations based on similarities in molecular properties and the re-
sulting work load. Performance metrics associated with the training runs allow
the TAU classifiers to recommend parameters, such as hardware configuration
or algorithmic parameters, which aim to achieve properties such as good al-
gorithmic performance (e.g., minimum iterations to solution), minimal time to
solution, or maximum parallel efficiency. Once the TAU classifier has been con-
structed using training performance data and metadata, we do not need to build
it again as the execution proceeds. Therefore the cost of training the classifier
can be amortized by using it in many application runs.

The CQoS infrastructure can be used either for dynamic reconfiguration of an
application during execution to respond to changing computing environments or
for selection of initial parameters, with the goal of detemining how to maximize
performance before the application runs. For runtime adaptation, the driver code
checkpoints, collects the metadata describing the current computing state, and
passes it to the TAU classifier. After the classifier suggests an optimal configu-
ration, the driver can resume the execution by replacing with the recommended
parameters. The period for checkpointing can be variable depending on the com-
puting resource demand and program semantics. In an application where good
initial parameter settings are essential for overall performance, we can use the
CQoS infrastructure to determine appropriate initial parameter values based on
the training or historical data. We expect that the predicted values will perform
better than random values or at least as well as the values adopted by other
researchers when performing experiments. We have partially evaluated this ap-
proach in experiments presented in the next section.

5 Experimental Results

As discussed in Section 1, computational chemistry applications rely on numer-
ous software packages offering a range of theoretical methods and implementa-
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tions. Our CQoS approach aims to automatically adapt these packages under
these challenging situations, simplifying the tasks for end users.

5.1 MPQC

As an initial demonstration of the previously described CQoS architecture, the
MPQC model was connected to the chemistry CQoS infrastructure and used to
generate a small training data set. Hartree Fock energies were computed for five
molecular structures obtained from the G2 neutral test set, which is commonly
used for benchmarking. The five molecules selected were sulfur dioxide, disilane,
vinyl chloride, acetic acid, and pyridine. For each molecule, the Hartree Fock
energy was calculated using two selected basis sets, cc-pVTZ and aug-cc-pVQZ,
with node counts ranging from 1 to 32 (as powers of 2) on the Catalyst cluster
at Sandia Livermore (2-way Pentium 4 nodes with an Infiniband interconnec-
tion network). For these smaller calculations that cannot support high parallel
efficiency at large scales, these node counts span from 100% parallel efficiency
at low node counts to severe degradation of efficiency at larger node counts.

To demonstrate the potential for efficiency savings in this software environ-
ment, a Hartree Fock energy for the nitromethane molecule using the cc-pVTZ
basis was chosen as a sample target calculation. We employed a very simple
node count selection algorithm: selecting the training calculation with the near-
est basis function count as the target calculation and then choosing the highest
node count with parallel efficiency greater than 90% for that training calculation.
Using this simplistic algorithm, the nitromethane target calculation achieves a
parallel efficiency of 84%, which is 8% greater parallel efficiency than the next
larger power of 2 node count. While these small sample calculations will not
support efficient execution at large scales of parallelism, increasing the problem
size only pushes these effects to larger node counts; the shapes of the efficiency
curves and the potential efficiency gains using CQoS approaches will remain.
With current environmental and energy efficiency concerns and yearly power
budgets for modern HPC installations running into the millions of dollars, it
seems clear that CQoS approaches should be a part of HPC efforts.

5.2 GAMESS

GAMESS, another application that computes Hartree Fock energies, has many
options for solving the properties of the wavefunctions. There are two imple-
mentations for the energy solution, conventional and direct. The conventional
implementation was written first but can be too resource intensive in terms
of disk space and file I/O requirements on some systems. The direct version
was developed to avoid storing intermediate integrals on disk, thus requiring
some redundant computations, and in serial executions, is typically two to three
times slower than the conventional. However, in parallel environments at higher
processor counts, the direct method outperforms the conventional method due
to excessive parallel and I/O overhead. The actual point where it makes sense
to change methods depends on the wavefunction solution method, the input
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bz(114) np(180) AT(321)

bz-dimer(228) np-dimer(360) GC(316)

C60(840)

Fig. 6. Test cases: Benzene (bz) and its dimer, Naphthalene (np) and its dimer,
Adenine-Thymine DNA base pair (AT), Guanine-Cytosine DNA base pair (GC), Buck-
minsterfullerene (C60). In parentheses are the numbers of basis functions when using
cc-pVDZ basis.

molecule or atom, the basis set, and the hardware. In addition, at one stage of
the algorithm, a second-order Møller-Plesset correction (MP2 [37]) can be used
to take into account the so-called “electron correlation.” The MP2 method con-
sumes more memory and disk space. With regard to the GAMESS application,
one goal of the recommender system is to suggest whether to use the direct or
conventional method, given the other parameter selections.

The initial set of molecules used for performance analysis is shown in Fig-
ure 6. Indicated numbers of basis functions (in parentheses) roughly correlate
with resource demand of the corresponding computations: the greater the num-
ber of basis functions, the more demanding the computation is expected to be.
The choice of molecules was based on their importance in chemistry and biol-
ogy as well as on characteristic types of chemical interactions they represent;
also, computations of molecules of a similar size (that is, with similar number
of atoms and basis functions) are routine in contemporary quantum chemistry.
The benzene and naphthalene molecules (labeled “bz” and “np” on the figure)
represent fundamental aromatic systems. Their dimers (labeled “bz-dimer” and
“np-dimer”) represent models for π-π interactions believed to determine DNA
stacking, protein folding, and other phenomena of great importance for bio-
chemistry and chemistry. The pairs of DNA bases (labeled “AT” and “GC”)
are examples of hydrogen bonding; the interaction between the bases defines the
double-helix structure of DNA. Finally, a molecule of buckminsterfullerene (la-
beled C60) is taken as a representative of a large, highly symmetrical chemical
structure, characteristic of carbon nanomaterials.

Hartree Fock energy was computed for each of these molecules, with and
without MP2 correction, with various basis sets, and with varying numbers of
nodes (up to 16) and processes per node (up to 8). The runs were computed on
Bassi, an IBM p575 POWER5 system at the National Energy Research Scientific
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Computing Center (NERSC). Bassi has 111 compute nodes with 8 processors and
32 GB of memory per node. This training data was used to construct a classifier
in order to recommend whether to use the conventional or direct method to
compute the energy. The independent parameters used to construct the classifier
are shown in Table 1. There were 561 potential training instances, of which 150 of
the best performing unique tuples were selected as the training set. The method
(conventional or direct) used to generate the best performing tuple was used
as the class for each training instance. A multilayer perceptron classifier was
constructed using these instances.

Table 1. Parameters used for classifier construction.

Property Training Values Anthracene

# Cartesian Atomic Orbitals 120, 190, 240, 335, 340, 380, 470, 830 640
# Occupied Orbitals 21, 34, 42, 68 47
# Processes per Node 2, 4, 8 8
# Nodes 1, 2, 4, 8, 16 1,2,4,8,16
Second-order Møller-Plesset disabled (MP0), enabled (MP2) MP0, MP2

An eighth molecule, anthracene, was used to test the classifier. The test
values for the parameters are also shown in Table 1. When used at runtime,
the classifier recommended using the conventional method for the 1, 2, and 4
node runs (8, 16, and 32 processes, respectively), and using the direct method
for the 8 and 16 node runs (64 and 128 processes). The empirical results from
anthracene are shown in Figure 7. The classifier was correct in classifying 9 out
of 10 instances − the 4 node direct MP2 run outperformed the conventional
MP2 run, but only barely (300 seconds compared to 306 seconds). In all of the
other configurations, the recommender correctly identified the method to use in
order to achieve the fastest time to completion.

6 Conclusion and Future Work

This paper introduced a CQoS approach for quantum chemistry that lever-
ages the CCA component environment to address new challenges being faced
by applications teams when dynamically composing and configuring codes in
high-performance computing environments. We have built prototype database
components for managing performance data and associated metadata for high-
performance component applications. These components are part of a larger
CQoS infrastructure, which has the goal of enabling automated component se-
lection and configuration of component-based scientific codes to respond to con-
tinuous changes in component requirements and their execution environments.
We integrated performance analysis capabilities of PerfExplorer into the gen-
eral CQoS infrastructure to classify performance and meta-information and then
suggested appropriate configurations for new problem instances. The usage of
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Fig. 7. Anthracene empirical results: Number of nodes vs. wall-clock time. Times are
in seconds; less time indicates faster performance.

the CQoS infrastructure components in quantum chemistry applications demon-
strates our initial success in adaptive parallel application configuration.

Our next steps in the quantum chemistry-specific part of this research in-
clude predicting, in addition to the runtime, the accuracy of the computations
(with respect to energy or other properties). We will employ other classes of
widely-used quantum chemical methods, starting with density functional theory
and coupled clusters approaches. We will also incorporate new metadata fields
whose values will be collected along with performance data, for example, param-
eters representing molecular symmetry. Furthermore, we plan to venture into the
(rather unexplored) area of quantification of similarity between molecules. More
generally, future work includes enhancing the CQoS infrastructure to support so-
phisticated analysis for (re)configuring algorithmic parameters and component
instances during runtime, developing application-specific performance models,
and incorporating the training CQoS phase into empirical experiment design.

We are also employing the new CQoS infrastructure to facilitate dynamic
adaptivity of long-running simulations in other application domains, including
parallel mesh partitioning in combustion and efficient solution of large-scale lin-
ear systems in fusion and accelerator models [3]. Our long-term goals are to
define a comprehensive architecture for enabling CQoS in scientific simulations,
consisting of general-purpose performance monitoring, analysis, and database
middleware components, which can then be combined with easy-to-write domain-
specific components for defining quality metrics and adaptation strategies.
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