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Abstract

The goal of image stitching is to create natural-looking

mosaics free of artifacts that may occur due to relative

camera motion, illumination changes, and optical aberra-

tions. In this paper, we propose a novel stitching method,

that uses a smooth stitching field over the entire target im-

age, while accounting for all the local transformation vari-

ations. Computing the warp is fully automated and uses

a combination of local homography and global similar-

ity transformations, both of which are estimated with re-

spect to the target. We mitigate the perspective distortion

in the non-overlapping regions by linearizing the homog-

raphy and slowly changing it to the global similarity. The

proposed method is easily generalized to multiple images,

and allows one to automatically obtain the best perspec-

tive in the panorama. It is also more robust to parameter

selection, and hence more automated compared with state-

of-the-art methods. The benefits of the proposed approach

are demonstrated using a variety of challenging cases.

1. Introduction

Algorithms for aligning and stitching images into seam-

less photo-mosaics are among the oldest and most widely

used in computer vision [11]. The holy grail of image stitch-

ing is to seamlessly blend overlapping images, even in the

presence of parallax, lens distortion, and scene illumina-

tion, to provide a mosaic without any artifacts that looks

as natural as possible. Evidently, there is some subjectivity

in interpreting how natural a panorama or a mosaic looks.

Furthermore, the stitching techniques must be able to ex-

trapolate well to the regions of the panorama where there is

information only from a single image.

Early methods focused on obtaining global 2D transfor-

mations to align one image with the other [11]. However,

assuming a single global transformation such as a homogra-

phy, will be incorrect except under special conditions, and

this will lead to misalignments and ghosting effects. Ar-

guably, most of the problems in 2D image stitching happen

because it is impossible to estimate the stitching field accu-

rately due to the complex interaction between the 3D scene

and the camera parameters, both of which are unavailable.

However, several assumptions can be posed on the stitching

field during image alignment [12, 9, 4, 2] and tolerance to

parallax can also be imposed [13].

We propose a new method that incorporates several tech-

niques to make the panorama look more natural. To miti-

gate perspective distortion that occurs in As-Projective-As-

Possible (APAP) [12] stitching, we linearize the homogra-

phy in the regions that do not overlap with any other image.

We then automatically estimate a global similarity trans-

form using a subset of corresponding points in the over-

lapping regions. Finally, we interpolate smoothly between

the homography and the global similarity in the overlap-

ping regions, and similarly extrapolate using the linearized

homography (affine) and the global similarity transform

in the non-overlapping regions. The smooth combination

of two stitching fields (homography/linearized homography

and global similarity) help us achieve: (a) a fully continu-

ous and smooth stitching field with no bending artifacts, (b)

improved perspective in the non-overlapping regions using

a global similarity transform, (c) full benefits of the state-

of-the-art alignment accuracy offered by APAP.

2. Related Work

A description of fundamental concepts in image stitch-

ing and the many associated transformations is available in

[11]. Some special cases where cylindrical and spherical

image stitching algorithms can be used are also discussed.

For example, the cylindrical model can be used when the

camera is known to be level and rotating around its verti-

cal axis. Parallax error could be minimized with this as-

sumption, but ghosting occurs when it is violated. A sim-

ple extension for computing a single global homography is

introduced in [7] by separating a single scene into a distant

plane and a ground plane. A weight map is used to smoothly

combine two homographic transformations over the target

image, but this technique is limited to scenes without local

perspective variation.
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Figure 1: Illustration of proposed algorithm. (a) Original images, (b) Warp after applying moving DLT with Gaussian weight-

ing. (c) Extrapolation of non-overlapping areas using homography linearization and Student’s t-weighting, (d) Proposed final

warps after integrating global similarity transformation, and (e) Final stitched image.

One of the first approaches that estimates a smooth

stitching field is the smoothly varying affine (SVA) stitch-

ing proposed in Lin et al. [9]. A global affine transform

is estimated, which is then relaxed to form a smoothly

varying affine stitching field, using an EM style formula-

tion. It is flexible enough to handle parallax while retain-

ing the extrapolation and occlusion handling properties of

parametric transforms. Although it can handle local varia-

tions well, it fails to impose global projectivity. This draw-

back is alleviated by the APAP approach proposed in [12],

which estimates a smoothly varying projective stitching

field and hence provides excellent alignment accuracy. A

simple moving Direct Linear Transformation (DLT) method

is used to estimate the local parameters, by providing higher

weights to closer feature points and lower weights to the far-

ther ones.

Since APAP extrapolates the projective transform in the

non-overlapping regions, it introduces severe perspective

distortions in regions far from the boundary. The authors

in [4], propose the shape-preserving half-projective (SPHP)

warp to preserve shapes in the non-overlapping areas. They

analyze the projective transform along a rotated co-ordinate

axis [5] and propose an approach to gradually change the

warp from projective to similarity, as we move from the

overlapping to the non-overlapping regions. The stitch-

ing provides for shape preservation, but does not guarantee

against parallax. Although the combination of SPHP and

APAP can be claimed to the state-of-the-art approach, it is

sensitive to parameter selection. Furthermore, if the over-

lapping areas have multiple distinct planes, deriving a single

global similarity transformation from the global homogra-

phy may not be sufficient. This may lead to undesirable and

unnatural visual effects in the mosaic.

Carroll et al. [3] proposed a novel method to manipu-

late the perspective of a single image employing the user’s

annotations of planar regions, the straight lines, and asso-

ciated vanishing points. This method can synthesize a new

image from images with different perspectives. Kopf et al.

[8] proposed a method to obtain an image with more plau-

sible visual effects by post-processing a panorama availing

user’s annotations on unnatural regions. However, both the

above methods cannot perform perspective preserving im-

age stitching automatically.

3. Proposed Algorithm

We will provide a detailed presentation of the proposed

algorithm. We first describe the moving DLT method to es-

timate the local homography, and proceed to propose an ap-

proach to linearize it in the non-overlapping regions. Then,

we explain the computation of a global similarity transfor-

mation between the reference and the target images. Since

many similarity transformations are possible, we automat-

ically choose the one with the lowest rotation angle as the

best candidate. Finally, the details of the proposed warp,

which is constructed by combining the homography or its

linearized version across the whole image with the global

similarity, are presented.

3.1. Local Homography Model

Let the target and the reference images be denoted by I
and image I ′. Given a pair of matching points p = [x y]T

and p′ = [x′ y′]T , between I and I ′, the homographic trans-



formation p′ = h(p) can be represented as

hx(p) =
h1x+ h2y + h3

h7x+ h8y + h9
, (1)

hy(p) =
h4x+ h5y + h6

h7x+ h8y + h9
. (2)

In homogeneous coordinates p̂ = [x y 1]T , and p̂′ =
[x′ y′ 1]T , it can be represented up to a scaling using the

homography matrix H ∈ R
3×3 as

p̂′ ∼ Hp̂. (3)

The columns of H are given by h1 = [h1 h4 h7]
T , h2 =

[h2 h5 h8]
T , and h3 = [h3 h6 h9]

T . Taking a cross product

on both sides of (3), we obtain

03×1 = p̂′ ×Hp̂ (4)

which can be re-written as follows

03×1 =





03×1 −p̂T y′p̂T

p̂T 03×1 −xp̂T

−yp̂T x′p̂T 03×1









h1

h2

h3



 . (5)

We will denote the 9× 1 vector in (5) as h. Since only two

rows of the 3× 9 matrix in (5) are linearly independent, for

a set of N matching points {p̂i}
N
i=1, and {p̂′

i}
N
i=1, we can

estimate h using

h = argmin
h

N
∑

i=1

∥

∥

∥

∥

[

ai,1
ai,2

]

h

∥

∥

∥

∥

2

= argmin
h

‖Ah‖2, (6)

where ai,1 and ai,2 correspond to the two rows of the matrix

in (5). We will also incorporate the constraint ‖h‖2 = 1
since the homographic transformation has only 8 degrees of

freedom.

In [12], authors introduced moving DLT framework to

estimate local homography by including locality-enforcing

weights in the objective of (6). The local homography at the

location pj is estimated as

hj = argmin
hj

N
∑

i=1

ωi,j

∥

∥

∥

∥

[

ai,1
ai,2

]

h

∥

∥

∥

∥

2

(7)

which can be writtenas hj = argmin
h

‖WjAh‖2, where

Wj = diag([ω1,j ω1,j . . . ωN,j ωN,j ]). In [12], the

weights are generated using the offsetted Gaussian which

assumes high value for pixels in the neighborhood of pj

and equal values for those that are very far, i.e., ωi,j =
max(exp(−‖pi − pj‖

2/σ2), γ). The parameter γ ∈ [0 1]
is the offset used to prevent numerical issues. Note that the

local homography can be computed only in the regions of

the target image that overlap with the reference image.

For each pixel in the non-overlapping regions, the trans-

formation is computed as a weighted linear combination of

the local homographies in the overlapping regions. Here it

becomes important to choose a proper offset to avoid ex-

trapolation artifacts. This is demonstrated in Figure 1(b),

where setting γ = 0 leads to “wavy” effects due to the

isotropic nature of Gaussian weighting, whereas choosing

a proper offset leads to a good result. Even in this case, the

perspective distortion in the non-overlapping area is appar-

ent with APAP, as noted in [4] as well.

In our proposed method, we use the moving DLT without

offset in overlapping area to estimate the local homography,

and extrapolate to the non-overlapping area using homog-

raphy linearization, as described in the following section.

This reduces the perspective distortion, and our proposed

weighting scheme for extrapolation is less dependent on the

choice of the parameters.

3.2. Homography Linearization

The extrapolation of homographic transformation in the

non-overlapping areas produces extreme and unnatural scal-

ing effects, as seen in Figure 1(b). The reason for this effect

can be understood by considering the 1-D perspective trans-

form, x′ = ax+b
cx+d

. If we estimate the parameters {a, b, c, d}
using a set of corresponding points, outside the range of the

available corresponding points as well, the relationship be-

tween x and x′ will be non-linear. This translates to severe

perspective distortion in 2-D. However, this distortion can

be minimized by linearizing the transformation.

With images, the linearization of homography at any

point q in the neighborhood of the anchor point p can be

understood by considering the Taylor series of the homo-

graphic transformation h(q), where h : R2 → R
2

h(q) = h(p) + Jh(p)(q− p) + o(‖q− p‖), (8)

where Jh(p) is the Jacobian of the homography h at the

point p. The first two terms in (8) provide the best lineariza-

tion for h(q). Since, if h is differentiable at p, Jh(p) is in-

vertible, the linearization of homography is an affine trans-

formation. However, it is not straightforward to compute

linearization at an arbitrary point q in the non-overlapping

region as in the case of 1−D data, since the boundary

between the overlapping and the non-overlapping regions

could contain multiple points and we would not know where

the Jacobian has to be computed. Therefore, we consider

anchor points in the boundary for linearization and compute

a weighted average of the transformations.

For a set of R anchor points {pi}
R
i=1 at the boundary

with possibly different local homographies, the weighted

combination of linearizations is given as

hL(q) =

R
∑

i=1

αi (h(pi) + Jh(pi)(q− pi)) . (9)



We assume αi to be a function of ‖q − pi‖, and in par-

ticular we consider the Gaussian weighting where αi =
exp(−‖q − pi‖

2/σ2), or the Student’s t-weighting where

αi =
(

1 + ‖q−pi‖
2

ν

)

−(ν+1)
2

. Student’s t-weighting is more

robust since that tail of the distribution decays slowly com-

pared to Gaussian and hence when q is far from anchor

points, all the anchor points are given similar weighting.

However, if Gaussian weighting is chosen, the tail should

be made flat at the offset parameter γ to avoid “wavy” ef-

fects.

The stitching result using our extrapolation method is

shown in Figure 1(c). Using the linearized homography

to extrapolate the non-overlapping area has less perspective

distortions than the result using APAP. The result is simi-

lar to the stitching result using dual-homography warping

[7]. However, with our method, there is no need to esti-

mate two homographies of distant plane and ground plane.

Our method can adapt to the more complicated scenes and

is a generalized method in comparison of dual-homography

method. It does not need the parameter γ that should be

determined on a case-by-case basis [12], hence being less

dependent on parameter choices.

3.3. Global Similarity Transformation

In previous section, we introduced a method to linearize

the homography and hence reduce the perspective distor-

tion in the overlapping areas. In the following sections,

we will propose approaches to further reduce the distortions

and hence make the panorama look natural. The idea is to

use a similarity transformation in the non-overlapping areas

in the target image, since it will not introduce any perspec-

tive distortions.

If the global similarity transformation approximates the

camera motion between the the target and the reference im-

ages, the estimated similarity transform can be used to com-

pensate for the camera motion. However, finding a global

similarity transformation using all point matches may result

in non-optimal solution particularly when the overlapping

areas contain distinct image planes. The problem is appar-

ent in Figure 2, which shows the stitching result of SPHP.

Note that SPHP uses the global homography transformation

to uniquely determine the global similarity, which may not

approximate the camera motion well.

Given that there are multiple planes in the scene and an

image projection plane at the focal length of the cameras,

every plane in the scene has an intersection angle with the

image projection plane, and each plane in the scene cor-

responds to a local homography transformation. The ho-

mography transformation corresponding to the plane that

is most parallel (smallest intersection angle) to image pro-

jection plane can be used to derive the optimal similarity

transformation that represents the camera motion.

Figure 2: Stitching result for Temple image dataset using

SPHP [4].

We propose an approach to compute an optimal similar-

ity transformation between the reference and the target im-

ages by segmenting the corresponding points in the follow-

ing manner. After obtaining the feature point matches, we

first remove the outliers using RANSAC [6] with threshold

εg . Then, we use RANSAC with a threshold εl to find a ho-

mography of the plane with largest inliers, where εl < εg ,

and we remove the inliers. This is repeated until the num-

ber of inliers is small than η. Each group of matched in-

lier points is used to calculate an individual similarity trans-

formation. Then, the rotation angles corresponding to the

transformations are examined and the one with the smallest

rotation angle is chosen.

Figure 3 shows an example of the grouping results. The

green and yellow circles on the figure belong to two differ-

ent groups of point correspondences. The red circles do not

belong to any group. In this example, the group with yellow

points generate the optimal global similarity transformation

with the least rotation angle.

Figure 3: Grouping feature points for computing the opti-

mal global similarity transform.

3.4. Integration of Global Similarity Transforma
tion

After the global similarity transformation is calculated,

it is used to adjust warps of target image in order to miti-

gate the perspective distortions in the overall panorama. If

we only adjust the transformations on the non-overlapping

area, the stitching result may have an unnatural visual ef-

fect. Hence, we gradually update the local transformations



Figure 4: Comparisons with state-of-the-art image stitching techniques on the Temple image dataset.

of entire target image to the global similarity transformation

using the following equation:

Ĥ
(t)
i = µhH

(t)
i + µsS. (10)

Here, H
(t)
i is ith local homography, Ĥ

(t)
i is updated local

transformation, S is the global similarity transformation. µh

and µs are weighting coefficients. The superscript (t) refers

to the target image and the superscript (r) denotes the refer-

ence image. We also constrain µh + µs = 1, where µh and

µs are between 0 and 1. They are computed as,

µh(i) = 〈
−−−−→
κmp(i),−−−−→κmκM 〉/ |−−−−→κmκM | , (11)



µs(i) = 1− µh(i), (12)

where κ is the projected point of warped target image on the
−−→orot direction. or and ot are the center points of the refer-

ence image and the warped target image. κm and κM are

the points with smallest and largest value of 〈
−−−→
orp(i),

−−→orot〉
respectively. Here, p(i) is the location of the ith location in

the final panorama.

Updating the warps of target image with global similar-

ity transformation causes misalignment of overlapping ar-

eas between reference image and target image that were

previously aligned. Therefore, we need to compensate the

changes by appropriately propagating the changes from the

target image to the reference image. The local transforma-

tion of the reference image can be now obtained as

Ĥ
(r)
i = Ĥ

(t)
i (H

(t)
i )−1 (13)

Fig. 1(d) show the final warping results of reference image

and target image. The final stitching result shown in Fig.

1(e) clearly resembles a natural-looking panorama.

4. Experiments

We have conducted comparative experiments of pro-

posed algorithm on a variety of existing datasets made avail-

able by [12]. The compared methods include Microsoft Im-

age Composite Editor (ICE) [1], APAP [12], SPHP with

global homography [4], SPHP with local homographies

computed with APAP (SPHP+APAP). In our experiments,

we use the same set of parameters suggested in the respec-

tive papers. We use the code provided by the authors of

the papers to obtain the results for comparison. The corre-

sponding points are detected using SIFT [10]. For the mov-

ing DLT, we set σ as 12.5, for Student’s t, we set ν as 5,

the threshold, εg , for global RANSAC error function is set

as 0.1, the threshold, εl, for the local RANSAC error func-

tion is fixed at 0.001, and the threshold for inlier number,

κ, is fixed at 50. The proposed method typically takes from

20 to 30 seconds with a 2.7GHz CPU and 16GB RAM to

stitch two images with 800 × 600 resolution. To keep the

paper concise, we show provide results only for Temple and

Railtracks datasets, but more results are available in the sup-

plementary material.

The results for the Temple dataset are provided in Figure

4. Each row is a result of different methods. The results are

in the following order: ICE, APAP, SPHP, SPHP+APAP,

and our method. Two areas of each results have been high-

lighted. Red boxes show parallax error in overlapping ar-

eas, and blue boxes show the perspective distortion in non-

overlapping areas. The result of ICE look good visually.

The perspective is preserved but there is some misalign-

ment on the ground region. The APAP results on the sec-

ond row, as discussed in the previous section, show good

alignment on the overlapping areas, but the perspective dis-

tortion on non-overlapping area is non-negligible, for the

reasons discussed before. The third row shows the results

of SPHP method. As described in SPHP paper, it pays more

attention to mitigating the perspective distortion but not the

alignment accuracy. The result shows the shape is preserved

but parallax errors exist. To alleviate the parallax errors, au-

thors of SPHP suggest combining SPHP with APAP. The re-

sults in the next row show the parallax errors are improved.

However in both SPHP and SPHP+APAP, the buildings on

the right side are not parallel to temples. This is because the

similarity transformation is derived from the global homog-

raphy and hence may not be optimal. This is particularly

true, if there are multiple distinct planes in the overlapping

areas, just like in the image. This can be corrected only if

the rotation angle of the camera is known. The results in the

last row show that our method mitigates the perspective dis-

tortion and can also successfully handle the parallax issue.

Figure 5 compares the results for the Railtracks dataset.

We can still see parallax error in ICE/SPHP and perspec-

tive issues in APAP. Without manually correcting for the

rotation angle, the results from SPHP and SPHP+APAP do

not look natural. The proposed method maintains alignment

accuracy and shows robustness in this challenging exam-

ple. The panorama examples that follow demonstrate the

performance of our proposed method with multiple images.

The image dataset in Figure 6 consist of a truck, a round-

about, and an arced ground surface. The images in Figure

7 includes skylines, buildings, trees, and a swimming pool.

Our method works well in both datasets, maintaining the

integrity of image contents, and providing a natural look to

the panorama. There are no visible parallax errors and per-

spective distortions.

5. Conclusion

In this work, we have presented a novel stitching method

that uses a smooth stitching field derived from local homog-

raphy or its linearized version and a global similarity trans-

formation. Results show that our approach provides a more

natural panorama with no visible parallax in the overlapping

regions and mitigates the perspective distortion issue in the

non-overlapping regions. Furthermore, it is less dependent

on the choice of the parameters and computes the appropri-

ate global similarity transform automatically. Experimen-

tal comparisons to existing methods show that the proposed

method yields the best stitch compared to the state-of-the-

art methods. Future research developments will include

compensating for parallax when large motion exists, which

can be performed by integrating seam-cut methods into this

framework. This will make our approach a one-stop solu-

tion that addresses all major problems in image stitching.



Figure 5: Comparisons with state-of-the-art image stitching techniques on the Railtracks image dataset.



Figure 6: Panorama of roundabout images.

Figure 7: Panorama of skyline images.
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