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Adaptive Audio-Based Context Recognition
Waltenegus Dargie, Member, IEEE

Abstract—Context recognition is an essential aspect of intelli-
gent systems and environments. In most cases, the recognition
of a context of interest cannot be achieved in a single step. Be-
tween measuring a physical phenomenon and the estimation or
recognition of what this phenomenon represents, there are sev-
eral intermediate stages which require a significant computation.
Understanding the resource requirements of these steps is vital to
determine the feasibility of context recognition on a given device.
In this paper, we propose an adaptive context-recognition architec-
ture that accommodates uncertain knowledge to deal with sensed
data. The architecture consists of an adaptation component that
monitors the capability and workload of a device and dynamically
adapts recognition accuracy and processing time. The architecture
is implemented for an audio-based context recognition. A detail
account of the tradeoff between recognition time and recognition
accuracy is provided.

Index Terms—Audio-signal processing, context awareness, con-
text reasoning, context recognition, context-recognition accuracy,
context-recognition time.

I. INTRODUCTION

CONTEXT-AWARENESS is an essential aspect of intel-
ligent computing systems. It deals with the collection

of raw data from various sensors which are placed in vari-
ous places and devices and the processing of these data to
extract meaningful higher level activities and social situations
(higher level contexts). The successful recognition or estima-
tion of higher level contexts enables intelligent computing
systems to perform the following functions: 1) seamlessly adapt
to a perceived change; 2) augment human perception; and
3) provide relevant services in a proactive manner.

Several smart systems and collaborative environments have
been proposed in the recent past. For example, the iBadge
[1] wearable system monitors the social and individual activ-
ities of children in a nursery school. It incorporates sensing,
processing, communication, and actuating units. The sensing
unit includes a magnetic sensor, a dual-axis accelerometer, a
temperature sensor, a humidity sensor, a pressure sensor, and
a light sensor. It includes also an ultrasound transceiver and
an RF transceiver for position and distance estimations. The
processing unit includes speech and sensor data processing.
A server side application assists a teacher by receiving and
processing location, orientation, ambient, and audio contexts
from the iBadge to determine the social and learning status
of a child. The location and orientation contexts are used to
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determine whether a child is isolated or associates with other
children. The audio context is used to determine whether a child
is sociable or aggressive.

Dargie and Tersch [2] use acoustic signals and audio digital-
signal processing to determine more that 20 different activities
in a university campus. The context-recognition process in-
volves modeling frequency-domain audio features and building
a Bayesian network. Similarly, Dargie and Hammann [3] use
Bayesian networks to estimate the whereabouts of a mobile
user. The Bayesian network models stochastic features of data
taken from various sensors (humidity, temperature, and light).

Likewise, Magee et al. [4] introduce the nonintrusive
communication-interface system called EyeKeys. It runs on an
ordinary computer with a video input from an inexpensive Uni-
versal Serial Bus camera and works without special lighting.
EyeKeys detects and tracks the person’s face using multiscale
template correlation. The symmetry between left and right eyes
is exploited to detect if the person is looking at the camera or to
the left or to the right side. The detected eye direction is used to
control applications such as spelling programs or games.

Several system architectures have been proposed to de-
velop intelligent systems and environments. The architecture
of Dargie and Tersch [2] consists of raw-data extraction,
atomic-feature extraction, atomic-scene recognition, and con-
text recognition. The architecture employs a knowledge base
to model various everyday human activities. The iBadge sys-
tem discussed earlier is built with the Sylph architecture [1],
which consists of sensor modules, a proxy core, and a service-
discovery module. Wang et al. [5] propose the semantic space
framework that consists of context wrappers, a knowledge base,
aggregators, a context-query engine, and a context reasoner.
Chen et al. [6] propose the CoBra middleware, which consists
of a knowledge base, a context-reasoning engine, a context-
acquisition module, and a policy-management module. Simi-
larly, Korpipää et al. [7] propose a distributed architecture for
context recognition and management. The architecture consists
of a context manager, a resource server, a context-recognition
service, a change-detection service, and a security service.
The context manager shields applications from the concern of
context acquisition by functioning as a central server. All the
other services post their output to it.

There is a remarkable similarity between the proposed ar-
chitectures. First of all, they all support the separation of
context acquisition from context usage. This is done by pro-
viding context widgets, context wrappers, context-acquisition
modules, and context-query engines. Second, they support the
presentation of a context at various abstraction levels—this is
the task of interpretors, aggregators, and reasoning engines.
Third, they support the dynamic binding of context sources by
introducing service-discovery mechanisms.

While these architectures identify the conceptual steps of
a context recognition, they are, however, higher level, in that
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they rarely address the associated system complexity. System
complexity is rather a crucial issue for several practical reasons.
For example, the scope and usefulness of a context of interest
depends on its timeliness and accuracy—both metrics being
application-specific. Furthermore, the workload of the intelli-
gent system, which is a dynamic aspect, influences both met-
rics, and itself depends on the available resources (such as the
energy reserve, CPU speed, communication bandwidth, active
memory, and storage). Variable system resources, in turn, di-
rectly affect the way sensed data can be obtained, processed,
and communicated. Subsequently, a context-recognition archi-
tecture should take these dynamic aspects into account.

We provide an adaptive context-recognition architecture
which has two essential aspects.

1) It takes the workload of a device into account and
adapts the accuracy and duration of a context-recognition
process.

2) It takes the capability of a device into account to select a
suitable complexity class. This enables us to recognize a
context of interest on heterogeneous devices.

The implementation of the architecture will be demonstrated
for auditory-based context recognition. In earlier reports [3],
[8], a part of the architecture (i.e., without the adaptation
component) was implemented to recognize the whereabouts of
a mobile user (rooms, corridors, or outdoor). The raw data were
obtained from temperature, humidity, and light sensors.

The rest of this paper is organized as follows. In Section II,
we present related work. In Section III, we present the con-
ceptual architecture for computing context as an abstraction
of real-world settings. In Section IV, a scenario is given for
which the architecture is implemented. In Section V, we report
the implementation details of the conceptual architecture. In
Section VI, we provide a detailed account of the adaptation
aspect of our architecture. In Section VII, we discuss our
experience and provide comparisons of our result with previous
results and close this paper with concluding remarks.

II. RELATED WORK

A. Adaptive Architecture

As far as adaptive context recognition is concerned, to
the best of our knowledge, previous contribution is limited
in this area. The adaptive context-recognition approach of
Nam et al. [9] and Young et al. [10] focus on filter fusion to sup-
port a robust face recognition under uneven illumination (image
processing). The system’s working environment is learned, and
the environmental context is identified (bright, normal, or poor
illumination). Based on the initial context, a group of classifiers
that are most likely to produce accurate output is generated for
each environmental context. A combination of the results of
multiple classifiers is determined using a t-test decision model.

Laasonen et al. [11] propose an adaptive framework for iden-
tifying the whereabouts of a mobile user from cellular-network
data. Adaptation is defined as a dynamic thread-off between
accuracy and resource consumption. The authors define three
concepts (bases, areas, and routes) on the basis of which the
complexity of a context-recognition process is estimated. Past
and present locations, as well as mobility information, are used to
reduce the resource consumption of a context-recognition task.

Stäger et al. [12] provide an empirical design process
for audio-based context recognition. The process is a result
of examining the tradeoff between power consumption and
context-recognition accuracy. Given a hardware and its nominal
power-consumption profile, the process tunes audio parameters
(sampling rate, frame size, size of feature vector, etc.) to
satisfy the power-consumption constraint. Based on this design
guideline, they developed a wearable context-aware system that
recognizes the activity of a user in a kitchen. The sources of
audio data are a microwave, a coffee maker, a hot-water nozzle,
a coffee grinder, and a water tap.

B. Acoustic Context Recognition

Most existing or proposed auditory-based context-recognition
schemes focus mainly on computational aspects, namely, on the
accuracy, processing time, and power consumption of a context-
recognition task.

Even though auditory-based context-recognition shares sev-
eral similarities with speech recognition, there are also notable
differences. For example, in speech recognition, knowledge
of human perception (tone, pitch, loudness, etc.) is useful to
disambiguate an uttered speech. This is possible because of
the following conditions: 1) the speaker is not far from the
microphone and speaks sufficiently clearly and loudly, and
2) there is no significant hindrance between the speaker and
the microphone. This is not the case in auditory-based context
recognition.

To begin with, the amplitude of the audio signal representing
a user’s surrounding is not appreciably large, since the audio
sources are usually far away from the user (microphone).
Second, the device in which the microphone is embedded can
be hidden inside a suitcase or a pocket. Third, whereas the
frequency of interest in speech recognition is well below 4 kHz,
the signal collected from a user’s surrounding may incorporate
frequencies that are up to and above 10 kHz. All these facts
should therefore be taken into account when designing an
auditory-based recognition system.

Eronen et al. [13] identify time- and frequency-domain fea-
tures, as well as stochastic features, to classify various everyday
outdoor and indoor scenes (streets, restaurants, offices, homes,
cars). They report that, by using Mel-frequency cepstral coef-
ficients (MFCCs) and hidden Markov Models (HMMs), they
were able to achieve a recognition accuracy of up to 88%. The
recognition accuracy as a function of the test-sequence length
appears to converge after about 30–60 s. Interestingly, they
report that human’s recognition accuracy of the same data set
was 82% with an average reaction time of 14 s.

Korpipää et al. [14] employ a naive Bayesian classifier and
an extensive set of audio features derived partly from the
algorithms of the MPEG-7 standard. The classification is based
mainly on audio features measured in a home scenario. With
a resolution of 1 s in segments of 5–30 s and using leave-one-
out cross validation, they achieve a recognition rate of 87% of
true positives and 95% of true negatives. The result is averaged
over nine 8-min scenarios containing 17 segments of different
lengths and nine different contexts. The reference accuracies
measured by testing training data are 88% (true positive) and
95% (true negative), suggesting that the model is capable of
covering the variability introduced in the data on purpose.

Authorized licensed use limited to: SAECHSISCHE STAATS UND LANDESBIBLIOTHEK. Downloaded on December 3, 2009 at 04:48 from IEEE Xplore.  Restrictions apply. 



DARGIE: ADAPTIVE AUDIO-BASED CONTEXT RECOGNITION 717

Reference recognition accuracy in controlled conditions is 96%
and 100%, respectively.

Ma et al. [15] also employ HMMs on MFCCs to recognize
ten auditory scenes. By varying the hidden states of the HMMs,
they achieve different recognition rates. For example, with
just three states, the classifier achieves a context-recognition
accuracy of 78%, while with 15 states, the recognition accuracy
reaches 91.5%. Remarkably, the authors observe a decline in
context recognition for higher hidden states. Smith et al. [16]
extend the work of Ma et al. [15] by introducing a belief-
revision mechanism to improve the recognition rate (92.27%)
and to increase the number of contexts that can be recognized
(namely, 12).

C. Summary of Related Work

This paper is more similar to the work of Eronen et al.,
Korpipää et al., and Stäger et al. There are, however, significant
differences. First, while they offer no reusable and extensible
system architecture, we provide one that can be used beyond
audio-based context recognition. Second, even though they
extensively investigate the impact of spectral parameters on
recognition accuracy, they do not exploit knowledge of the dy-
namic workload of a device to support adaptation (Stäger et al.,
for instance, demonstrate the influence of power consumption
on context recognition, but runtime power-aware context recog-
nition is not supported). Third, they do not take recognition time
into account, which is rather a vital aspect, as the relevance of
a piece of context is determined by its timeliness.

This paper complements these approaches by providing an
adaptation component. Depending on the capability and work-
load of a device it performs the following tasks: 1) determines
how much resource should be made available for a context-
recognition task, and 2) informs the user about the expected
processing time and accuracy.

III. ARCHITECTURE

Recognition of the social and conceptual settings in which
computing devices operate cannot be captured in a single step.
Between the measuring of audio signals and the recognition
of what these signals represent, there are normally several in-
termediate stages. These stages consume significant resources.
Defining different abstract stages enables rapid prototyping and
reuse of components. If required, this approach enables also
gradual implementation. Subsequently, we provide a concep-
tual architecture for a context recognition. Its basic differences
from existing or proposed architectures can be summarized as
follows.

1) The provision of a belief (uncertain knowledge) modeling
component.

2) The provision of an adaptation component that exploits
knowledge of the resource profile and dynamic workload
of a device when computing a context.

To better present the architecture, we separate the recognition
components from the adaptation component. The recognition
component is shown in Fig. 1, while the adaptation component
is shown in Fig. 2. The recognition part of the architecture
consists of a set of primitive context servers (PCSs), an aggre-
gator, an empirical ambient knowledge (EAK) component, and
a composer.

Fig. 1. Conceptual architecture for computing a context.

Fig. 2. Adaptation component that ensures the recognition of a context on
several devices.

A. Primitive Context Server (PCS)

A PCS abstracts from other components (such as an aggre-
gator) the details and complexities of extracting a meaningful
feature or an atomic context from a physical sensor. This
feature is not application-specific or situation-specific and can
be shared by multiple applications or situations. It refers to a
single aspect of a certain phenomenon or a real-world object.

B. Aggregator

A piece of context obtained from a single source may not
be sufficient to appropriately model a real-world situation [17].
The real world is far too complex to be captured in complete
detail in this way. Aggregation deals with the association, corre-
lation, and combination of data from single or multiple sources
to achieve a refined estimation. Subsequently, an aggregator
gathers and processes data from multiple sensors which are
spatially and temporally related. The outcome is a feature or
a set of features that is (are) meaningful for a single application
or a set of applications.

C. Empirical Ambient Knowledge (EAK)

A prior knowledge of entities (places, devices, persons, etc.)
is useful both for modeling a situation of interest and for
appropriately interpreting sensor measurements. In most cases,
this knowledge is taken as a fact however incomplete. However,
as far as dealing with physical sensors is concerned, whatever
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knowledge we have cannot be taken as fact but as an uncertain
knowledge or belief. Here are some examples of beliefs.

1) Human thermal and humidity perception varies from
season to season. A temperature ranging from 20 ◦C to
23.6 ◦C is perceived as comfortable in winter, while in
summer, the range from 22.8 ◦C to 26 ◦C is perceived as
comfortable. Likewise, a relative humidity ranging from
30% to 60% is perceived as comfortable in winter, while
in summer, the range from 40% to 60% is perceived as
comfortable.

2) In winter, a person is more sensitive to drought than in
summer. Hence, the acceptable air velocity inside a room
should be below 0.15 m/s, while in summer, it could be
up to 0.25 m/s.

The above beliefs can be modeled as uncertain knowledge
because they may hold true for most places, but they must not be
taken as fact. For these reasons, our architecture separates facts
from beliefs. The EAK associates conditional probabilities (or
fuzzy membership functions, basic probability mass functions,
etc.) to describe the degree of truthfulness of the uncertain
knowledge it stores.

D. Composer

The composer computes a higher level context (setting) by
classifying freshly acquired evidence from sensors according
to the facts and beliefs stored in the EAK.

E. Adaptation

The problem with the recognition architecture is that, in
itself, it does not guarantee equal support of all users inde-
pendent of their end devices, i.e., devices such as laptops,
mobile phones, and PDAs. It also does not take into account the
dynamic workload of a device. To address these concerns, we
have introduced an additional adaptation component that can be
plugged into the architecture. It consists of two subcomponents,
namely, the platform-performance monitor and the complexity
control. This is shown in Fig. 2.

1) Platform-Performance Monitor: A platform has a static
and a dynamic aspect. Its static aspect refers to its nominal
resource profile, maximum available power, processor speed,
memory, networking capability, storage, etc. Its dynamic aspect
refers to its present workload and remaining resources. Both as-
pects should be taken into account to perform context recogni-
tion, since the accuracy, as well as the processing time, depends
on these aspects. The platform-performance monitor provides
the complexity control with an updated information regarding
the platform’s present workload and available resources.

2) Complexity Control: Context recognition is a tradeoff
between recognition accuracy and processing time. The com-
plexity control receives from the consumers of a context
(a user or an application) an upper and lower threshold on
these two recognition metrics and allocates resources for the
recognition of the context accordingly. If a context recognition
takes a processing time below a lower threshold, it increases
the complexity level of the process to improve accuracy (i.e.,
by sacrificing more resources). If, on the other hand, a context-
recognition process exceeds the upper threshold time, it reduces
the complexity in favor of reducing the processing time below
the specified upper bound. The complexity itself is determined

by a set of parameters. The complexity control dynamically
adjusts the accuracy and processing time according to the actual
workload of the device.

In Section VI, we will give a detailed explanation of an
audio-based context recognition and the parameters that can
be tuned to adjust recognition accuracy and processing time.
Parameter tuning will be made according to the user’s require-
ment and the device’s capability and present workload.

IV. SCENARIO

We implemented the conceptual architecture for audio-
based context recognition. The implementation automates the
recognition of various human activities in two different settings.

The first setting is a university campus. At the Faculty of
Computer Science (Technical University of Dresden), a Chair
occupies several rooms and uses them for different purposes.
Some of these rooms are offices, laboratories, a conference
room, a library, and a kitchen. There are also other rooms which
are shared with other Chairs. The employees may be inter-
ested in some of these rooms for various activities including
project meetings, thesis presentation, student consultations, im-
promptu chats among each other, brief discussions with visitors,
celebration of a birthday party (graduation), etc.

Some Chairs have online room-reservation systems, but there
are times when these systems are not flexible enough. This is
because employees should reserve a room well ahead of the
intended purpose. Our aim is to complement a room-reservation
system and not to replace it. For any impromptu activity, an
employee creates a query request in order to find out which
rooms are free or occupied by less imperative activities (such as
bilateral discussions or a casual chat). The system responds to
the query by returning the names and locations of the rooms that
satisfy the request without compromising privacy, i.e., without
actually providing specific contents pertaining to the activities.

The approach can also be useful in other places. For example,
in several big companies, a significant number of employees
are mobile and hold universal keys. The keys give them access
into their company buildings anywhere in the world. A context
recognition can be useful to dynamically locate meetings and
seminars; kitchens, special occasions, unoccupied rooms, etc.
Recognition of the activities discussed earlier can also be
helpful to mobile devices to dynamically adapt to the envi-
ronments wherein they operate. For example, a mobile phone
can dynamically switch from a ringing mode to a vibration or
silence mode when an employee enters into a meeting room or
holds a presentation.

In the second setting, the activities in trains and trams are
recognized. The intention is to help and simplify the task of a
human controller. Given the size and the number of carriages
in a train, a limited number of controllers may not be able to
effectively monitor what is taking place in a passenger train.
Dynamic activity recognition will simplify this task.

For the first setting, the contexts of interest are casual talk,
party, group discussion, lecture (presentation), and quietness.1

For the second setting, the contexts of interest are fighting
(aggression), loudness (such as drunken sport fans shouting),
casual talk, and quiet.

1A quiet room is assumed to be empty.
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For the two scenarios, there are two different deployment
strategies. In the first setting, microphones are carefully placed
in different rooms, and the signals from these microphones
are processed centrally by a resource-rich computer.2 Other
devices place a higher level query request to this computer in
order to learn what is taking place in certain places or where
certain activities are taking place. In the second deployment
setting, the microphones embedded in mobile devices are used
to gather data, and the mobile devices themselves process the
data. The second deployment setting does not relay on the
existence of any established sensing infrastructure. For both
settings, however, adaptation is useful, as the processing time
and accuracy are dependent on the capability of the device as
well as its present or anticipated workload.

V. IMPLEMENTATION

This section reports the implementation details of the con-
ceptual architecture discussed in Section III for the scenario
presented in Section IV.

A. PCS

The PCS is implemented for abstracting the acquisition of
audio signals from ordinary microphones which were embed-
ded in ordinary laptop computers. The PCS can be configured
or reconfigured at any time to determine the beginning, dura-
tion, sampling rate, and resolution of the audio signal being
sampled. Once acoustic signals are sampled, it extracts time-
and frequency-domain parameters.

In order to extract suitable features, the PCS divides the
audio data stream into small time frames. This is useful to
model a nonstationary signal as quasi-stationary. There should
be a 25%–50% overlap between adjacent frames to compensate
the loss of information due to frequency leakage. Frequency
leakage occurs due to the abrupt separation of neighboring
frames; as a result of which, high-frequency components will
emerge at the edges of each frame. This should be removed by
a process called windowing, i.e., each frame is multiplied by a
window function that decays rapidly toward the edges.

The length of a frame is mostly between 10 and 50 ms, and it
influences the recognition accuracy as well as the computation
time. To extract temporal features, further processing is not
necessary. To extract spectral features, however, at least two
additional steps are necessary: frequency-leakage correction
and fast Fourier transformation (FFT). After windowing, an
FFT is applied on each frame to obtain the magnitude of the
power spectrum of each frame.

B. Aggregator

The aggregator extracts application- and domain-specific
features from the time- and frequency-domain properties of
each frame. The time-domain features include a frame’s zero-
crossing rate, bandwidth, band energy, and average energy.
The frequency-domain features include spectral centroid, spec-
tral roll-off, linear spectral energy, log-spectral energy, and

2Krysander and Frisk [18] propose an algorithm for optimal selection and
placement of sensors to meet a diagnosis requirement specification concerning
fault detectability and fault isolability.

Fig. 3. Triangular filter bank for extracting the MFCCs.

spectral flux. For us, however, the most interesting features
are the MFCCs. These are representations of the frequency
bands which are Mel-scaled to approximate the human auditory
perception more accurately than the linearly spaced frequency
bands obtained directly from the FFT. The MFCCs enable
context-recognition schemes to “perceive” their surroundings
as humans would perceive theirs.

Therefore, the main task of the aggregator is to transform the
linear-frequency spectrum obtained by the PCS into MFCCs.
This is achieved by first scaling the frequency spectrum loga-
rithmically using the so-called Mel filter bank H(k,m)

X ′(m) = ln

(
N−1∑
k=0

|X(k)| × H(k,m)

)
(1)

for m = 1, 2, . . . ,M , where M is the number of filter banks
and M � N . The Mel filter bank is a collection of triangular
filters defined by the center frequencies fc(m), given as

H(k,m)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for f(k)<fc(m−1)
f(k)−fc(m−1)

fc(m)−fc(m−1) , for fc(m−1) ≤ f(k)<fc(m)
f(k)−fc(m+1)

fc(m)−fc(m+1) , for fc(m)≤f(k)<fc(m+1)
0, for f(k)≥fc(m+1) .

(2)

The size of the triangular filter bank is variable. These filters
are equidistant in the Mel-frequency domain, and there is a 50%
overlap between adjacent filters. Fig. 3 shows 20 triangular Mel
filters.

The center frequencies of the filter bank are computed by
approximating the Mel scale with

φ = 2595 × log10

(
f

700
+ 1
)

. (3)

The center frequencies on the Mel scale are given by

c(m) = mΔφ (4)

where m = 1, 2, . . . ,M and M is the number of filter banks.
Δφ is described as

Δφ =
φmax − φmin

M + 1
(5)

where φmax is the highest frequency of the filter bank on the
Mel scale and φmin is the lowest frequency in the Mel scale.
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Finally, the MFCCs are obtained by computing the DCT of
X ′(m) using

c(l) =
M∑

m=1

X ′(m) cos
(

l
π

M

(
m − 1

2

))
(6)

for l = 1, 2, . . . ,M , where c(l) is the lth MFCC.
Finally, to reduce the effect of very low and very high MFCC

components (at both edges of the Mel spectrum), the so-called
liftering process3 is performed. Equation (7) shows a typical
liftering function.

C ′(l) =
(

1 +
L

2
× sin

πl

L

)
× C(l) (7)

where L is a constant.

C. Separation of Concern

There are two essential reasons for separating feature extrac-
tion (by aggregators) from preprocessing (by PCS).

1) Signal processing is independent of any feature, i.e.,
the outcome can be shared by multiple aggregators that
are interested in extracting different features. For exam-
ple, an aggregator can extract MPEG-7 features instead
of MFCCs for an entirely different context-recognition
assignment.

2) A significant amount of resource is consumed during sig-
nal processing—this will be demonstrated in Section VI.
Therefore, it is more efficient for the adaptation compo-
nent to deal with a single component (a PCS) instead
of two.

It must be noted, however, that there is a tradeoff be-
tween flexibility and efficiency. Obviously, combining the two
processes as a single monolithic process avoids the extra cost
of running two independent components. But then, if one is
interested in using the same lower level features for different
recognition schemes, the monolithic approach does not work.
The separation avoids repeating the preprocessing, thereby
saving significant computational resources.

D. Composer

The composer receives the most representative and inde-
pendent higher level audio features from the aggregator and
performs estimation or recognition. This is done by computing
the likelihood probabilities of individual context types in a well-
defined context space. We have experimented with various tech-
niques, including Bayesian networks and HMMs. We choose
HMM because it is most convenient to train and requires little
prior knowledge.

An HMM is a deterministic, stochastic, and finite-state ma-
chine. A Markov chain or process is a sequence of events
(called states) of which the probability of each is entirely
dependent on the event immediately preceding it. An HMM
represents stochastic sequences as Markov chains; the states
are not directly observed, but are associated with observable
symbols (or evidences), called emissions, and their occurrence
probabilities depend on the hidden states. The generation of

3The linear-frequency-domain equivalent process is bandpass filtering, while
the time-domain equivalent process is smoothing [19].

Fig. 4. Left-to-right HMM with five states.

a random sequence is the result of a random transition in the
chain. In order to model a process with an HMM, the following
elements should be available.

1) The number of states in the model N .
2) The number of observation symbols M , as well as a

probability distribution matrix B, in each of the states
describing the occurrence of observable symbols.

3) The state-transition probability matrix A.
Given the number of states in the model, N = (S1, S2,

. . . , Sn), the state-transition probability matrix, and the current
state (at time t) of the model, it is possible to predict the model’s
state at time t + 1.

The state-transition matrix is a square matrix in which each
element describes the probability of the model being in state Sj

at time t + 1 given its immediate preceding state

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N (8)

where q refers to a state. The transition probabilities between
all states build a state-transition matrix A of size N × N .

A =

⎡
⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

⎤
⎥⎥⎦ . (9)

The probability of observing the symbol Oi from a set of
symbols (O1, O2, . . . , OM ) when the state machine is in state
Sj at time t is given as follows:

bij = P (ot = Oj |qt = Si), 1 ≤ i ≤ N, 1 ≤ j ≤ M. (10)

The probability of observing a symbol in state Sj is indepen-
dent of all previous states and observed symbols. Subsequently,
the N × M observation matrix can be described as follows:

B =

⎡
⎢⎢⎣

b11 b12 · · · b1M

b21 b22 · · · b2N
...

...
. . .

...
bN1 bN2 · · · bNN

⎤
⎥⎥⎦ . (11)

To complete the description of an HMM, knowledge of the
model’s initial state is required: π = (π1, π2, . . . , πN ). The ini-
tial state of the model, the transition probability matrix, and the
observation matrix together make up an HMM, signified by λ.

λ = {A,B, π}. (12)

The topology of an HMM depends on the process model.
Fig. 4 shows the so-called “left-to-right” model which sets a
restriction on the way state transitions should be observed—at
any given time, either there will be no transition at all or
transition should occur in a forward direction only. Even
though this restriction is not applicable for audio-based context
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Fig. 5. Recognition of a context using HMMs.

recognition (for example, an audio data may reveal events
that repeat themselves), the “left-to-right” topology is useful
in modeling time dependences between a sequence of events.
For context recognition, the frame duration is normally very
short (in the range of milliseconds), and compared to this
duration, a meaningful audio scene lasts over several audio
frames. Therefore, it is possible to describe an audio scene as a
time sequence of several frames (events).

1) Training: An HMM can be trained to configure its model
parameters λ = {A,B, π} to a sequence of observed symbols
O = (o1, o2, . . . , oM ). In other words, given an initial descrip-
tion of the model parameters4 λ0 and a sequence of observation
symbols O, the model parameters should be optimized such that
the probability P (O|λ) is maximum

P (O|λ) =
∑

q

π1bq1(O1) ·
M∏

t=2

aqt−1qtbqt(Ot). (13)

This is a formidable challenge, since there is no analytic ap-
proach to tackle it. However, there are a plethora of estimation
algorithms that produce satisfactory results for most real-world
situations. We adopt the Baum–Welch algorithm and maximize
P (O|λ) locally.

2) Recognition: During the recognition process, the task of
the composer is to determine which of the HMMs (one for each
higher level context) the audio data best fit. In other words,
given an HMM, λ, and a sequence of observable symbols O,
it computes a sequence of states Q that maximize P (Q|O, λ).
P (Q|O, λ) is called the likelihood probability.

We employed the Viterbi algorithm to compute the log-
likelihood probability distribution because, as it is, P (Q|O, λ)
is very small.

3) Vector Quantization: It is not possible to directly feed the
continuous n-dimensional feature vectors (MFCC) to an HMM,
since the model is made up of discrete observation symbols
and states. Therefore, the composer maps the n-dimensional
feature vectors into a single vector or codebook. The size of the
codebook can be tuned between 64 and 256. Fig. 5 shows the

4This can be an approximation based on a prior knowledge of the context
type or an arbitrary assignment of parameter values.

TABLE I
RELATIVE TIME DISTRIBUTION OF A CONTEXT-RECOGNITION PROCESS

sequence of symbols being provided to different HMMs, each
of which computes the likelihood probability of the sequence
according to its model parameters. The context with the highest
likelihood probability is chosen to be the one that is best
represented by the audio signal.

E. EAK

The EAK manages the features extracted from the training
data set, establishes conditional dependences between the con-
texts and the features, and revises its beliefs whenever new
data sets are available. Moreover, it stores the structure and the
model parameters of the HMMs.

VI. ADAPTATION

A. Defining Complexity Classes

The accuracy and processing time of a context recognition
depends on the available resources in a device. It is possible to
tune various parameters according to the resource profile and
workload of the device. As a result, the context-recognition
accuracy and time can be adapted. Parameter tuning requires
knowledge of each parameter and its contribution to a con-
text recognition. Table I is an overview of the intermediate
stages of the auditory-based context recognition and the relative
processing time required by each stage. To produce Table I, we
recorded several audio scenes with a nominal duration of 10 s.
The audio data were sampled at the rate of 48 kHz, and the
context recognition was performed on a laptop computer with
a processor speed of 700 MHz and a random-access memory
of 256 MB; it had a 4% average workload over a period of
30 min. The frame size was 512 samples with an overlapping
percentage of 50%. Each frame had a width of 23.21 ms.

The preprocessing time includes offset-compensation, pre-
emphasis, framing, and windowing. Apparently, a large portion
of the device’s resources is consumed by signal processing (in-
cluding the FFT) and not by feature extraction or classification.
We varied the hidden states of the HMMs and the size of the
codebook but could not observe any appreciable change during
the entire processing time. This was an essential observation.
Since signal processing is done inside the PCS, the adaptation
component should deal with it.

Dealing with PCS means tuning various signal-processing
parameters. For example, if time instead of accuracy is more
important to an application, the PCS reduces the raw auditory
data by reducing the sampling rate. The minimum sampling rate
is 8 kHz. A sampling rate below this does not fulfill Shannon’s
sampling requirement and does deteriorate the recognition ac-
curacy significantly. At the same time, increasing the sampling
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TABLE II
THREE CLASSES OF RESOURCE PROFILES

rate above 22.05 kHz does not improve the recognition accu-
racy appreciably. Additional parameters that can be tuned by
the PCS are the frame size and percentage of frame overlapping.
Frame overlapping offers a greater flexibility to adjust process-
ing time and can be varied between 50% and 25%. A 25%
overlap can reduce the raw auditory data by more than 30%.

Another possibility of adapting recognition and processing
time is by defining different complexity classes (profiles). This
classes are taken as static templates into which the computation
profiles of mobile devices should fit.

The main challenge here is to define a quantitative rela-
tionship between recognition time and accuracy, on the one
hand, and resource consumption and CPU workload, on the
other hand. We performed an extensive experiment to model
relationship between these parameters. This turned out to be a
very difficult task. Instead, we applied a heuristic judgment to
define three complexity classes that represent the computational
capability of different mobile devices. We defined the three
complexity classes by assuming that, at any given time, a
mobile user may own either a laptop, a PDA, or a mobile phone.
This same assumption also enables us to model the different
workload of a single device, such as a laptop. According to the
classification, we set the upper and lower bounds on recognition
time, which can be used to appropriate computing resources for
a recognition task. The three classes of profiles are defined as
Class Low, Class Medium, and Class High.

Table II provides the description of the three complexity
classes for the context types identified in the two scenarios,
eight context types in all.

B. Upper and Lower Bounds on the Recognition Time

The time required for computing a context determines the
usefulness of the context. We used benchmarking to estimate
the upper and lower bounds of the recognition time that can
be achieved by each complexity class. A benchmarking can be
explained as follows: A device will be given a task of known
complexity, and the time required for accomplishing the task
is measured. Usually, the chosen task is similar in complexity
to the one the device should carry out afterward. If the com-
putation time is not acceptable by the application developer or
the end-user, a runtime reconfiguration (for example, reducing
the sampling rate) is made so that the complexity of the task
is reduced. This implies that the duration of the audio signal
representing the audio scene, the preprocessing, the size of
the auditory features, the size of the codebook, etc., can be
dynamically adjusted.

Table III shows the lower and upper bounds of the recogni-
tion time we computed for the three complexity classes.

TABLE III
UPPER AND LOWER BOUNDS OF A CONTEXT-RECOGNITION TIME

TABLE IV
OVERVIEW OF THE AUDITORY SIGNAL USED FOR

TRAINING AND RECOGNITION

TABLE V
EFFECT OF FRAME LENGTH ON ACCURACY

C. Accuracy

Accuracy in the context of this paper should be understood as
the number of correct decisions the context-recognition scheme
makes. This depends on the following factors:

1) the number of contending context types;
2) the degree of similarity between these contending context

types;
3) the amount of auditory data to be processed (by implica-

tion, the duration of context-recognition time).

The remaining part of this paper focuses on the third fac-
tor. To compute the accuracy of context recognition and to
attribute the result to the various recognition parameters, we
made repeated experiments. It should be noted that we used
ordinary microphones and did not pay much attention to the
position or orientation of the laptop in which the microphone
was embedded. Our intention was to appropriately represent the
way ordinary users handle their mobile devices.

Table IV describes the training scenario. The audio signals
were processed according to the three profile classes, name-
ly, the sampling rates were set to 22 050, 11 025, and 8000 Hz,
while the record length was adjusted for each context to 10, 5,
and 1 s. We used the recorded auditory signals to train and test
the HMMs. As mentioned before, during the testing phase, the
HMMs computed a likelihood probability distribution for all
the contexts of interest.

1) Frame Length: An HMM attempts to recognize a context
of interest by constructing a time sequence of audio frames
and by creating conditional dependences between these frames.
An audio frame represents the smallest unit of information.
If the frame duration is too short, an auditory event of longer
duration can be divided into many frames, represented falsely
as several events; on the contrary, if the frame is too long,
several evanescent events can be mistaken for a single long-
duration event. Table V displays the effect of frame length
on the accuracy of context recognition. As can be seen from
the table, the optimal frame duration which yields the highest
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TABLE VI
EFFECT OF FRAME OVERLAPPING ON

CONTEXT-RECOGNITION ACCURACY

TABLE VII
EFFECT OF AUDIO FEATURES ON ACCURACY

accuracy is achieved at the sampling frequency of 22 050 Hz,
namely, 23.22 ms, with the sample size of 512.

2) Overlapping: Through the windowing process (to atten-
uate the effect of high-frequency components during the abrupt
separation of frames), some information is lost at the two edges
of a frame. That is the reason why a frame overlapping is
required. In the literature (speech recognition), a 50% overlap
is recommended, but surprisingly, for context recognition, the
optimal frame overlapping was achieved at 25%.

This can be explained as follows: For speech recognition,
the spectral bandwidth is below 4 kHz, whereas for context
recognition, the bandwidth is significantly larger (ca. 10 kHz).
As a result, a 25% frame overlapping was sufficient to com-
pensate for the lost information at the edges of a frame.
Table VI summarizes recognition accuracy as a function of
frame overlapping.

3) Audio Features: The selection of the right type and
amount of audio features depends on the spectral aspect of the
audio scene being processed. For example, for audio events that
are made up of frequently changing scenes having both low-
and high-frequency components, a large number of MFCCs
may be necessary. This way, it is possible to ensure the in-
clusion of a wide range of frequencies in the extracted fea-
tures. However, merely increasing the spectral features above
a certain threshold may not have any impact on the recognition
accuracy.

Our context types involve events that have both slowly and
quickly changing scenes as well as low- and high-frequency
components. Therefore, we varied the MFCCs from 8 to 14.
The result is presented in Table VII.

As can be seen in the table, the number of MFCCs that
achieved the highest recognition accuracy is 12 (and not 14!).
Perhaps this number would be different for a different record
(of the same scenes) or had we employed a different mi-
crophone. The best way to explain this is by relating the
number of MFCCs with the number of Mel filters [see (6)].
Increasing the Mel filters directly affects the way a frame is
subdivided in the frequency domain. This subdivision may
result in fragmenting an audio scene into different subbands, as
if they were independent events. This can cause an erroneous
conclusion.

TABLE VIII
CODEBOOK SIZE VERSUS RECOGNITION ACCURACY

Apart from pure MFCCs, we experimented also with ad-
ditional time- and frequency-domain features5 to study their
combined effect on recognition accuracy.

4) Size of the Codebook: The vector quantization reduces
the infinite range of values of the feature vectors into a limited
size of code vectors. During this process, if the size of the
codebook is significantly small, then many features will be
represented by a single vector, and the quantization error will
become significant. Subsequently, information which can be
vital to the recognition of a context can get lost. On the other
hand, making the codebook size considerably large implies the
need for a large amount of training data, since only code vectors
that appear often in the HMMs during the training phase can be
correctly classified. Moreover, the duration of the recognition
time will increase significantly. Table VIII summarizes the
effect the codebook size on the context-recognition accuracy.

D. Implementing the Adaptation Components

The platform-performance monitoring component stores the
resource profile of the device in which a context recognition is
performed. Moreover, it periodically or randomly (depending
on the configuration) samples the CPU workload and considers
the past n samples to estimate device capability. Likewise,
the application that binds the recognition system specifies the
minimum desired accuracy and processing time, which is the
basis for parameter tuning. The complexity control periodically
queries the platform-monitoring component to determine how
much resource is available and whether the required accuracy
and processing time can be achieved. Once again benchmark-
ing is used for the estimation. If the desired accuracy and
processing time cannot be achieved, the control component
prompts the user to stop some running processes in favor of the
context-recognition task or to accept a reduced accuracy or an
increased processing time. Accordingly, the complexity control
component selects a complexity profile (Class High, Class
Medium, or Class Low) or adjust the preprocessing parameters.

VII. DISCUSSION

We evaluated the context-recognition accuracies of the three
complexity classes by establishing a confusion matrix for each
class. Table IX displays a confusion matrix for the complexity
Class High. Table X summarizes the result of two confusion
matrices for Classes Middle and Low. In Table IX, the rows
represent the actual context types while the columns represent
the recognized context types. At the end of each row is given
the context-recognition accuracy for each context type. The last

5Including spectral centroid, which is the balancing point of the spectral
power distribution, and a zero crossing, which is the number of times a time-
domain signal crosses the zero reference [20].
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TABLE IX
PERFORMANCE OF PROFILE CLASS HIGH

TABLE X
PERFORMANCE OF PROFILE CLASSES MIDDLE AND LOW

TABLE XI
AVERAGE RECOGNITION TIME FOR THE THREE PROFILE CLASSES

row provides the average overall accuracy that can be achieved.
The average computation time for the three classes of profiles
is summarized in Table XI.

Tables IX and X demonstrate that, while some context
types (such as “loudness”) can be recognized by all-complexity
classes with appreciable accuracy, others are not. Similarly,
other context types (such as “party,” which is starkly mistaken
for “loudness”) is recognized poorly, regardless of the class
types. Of all the parameters we tuned, the sampling rate has
a significant impact on the accuracy and time of context recog-
nition. This is not unexpected. Due to the difference in sam-
pling rate, each MFCC represents a different spectral domain.
Therefore, for each complexity class, a different codebook is
generated in which the code vectors are distributed in different
vector spaces.

The profile Class Low performs very poorly for all context
types containing predominantly spectral components above
4 kHz. One may be led to conclude that Class Low devices may
not be useful for auditory-based context recognition. However,
this is not the case. As can be seen from the tables, even Class
Low performs well in recognizing “train,” “tram,” “loudness,”
and “aggression.” This implies that the suitability of a device
for a context recognition is partly decided by the type of
contexts.

A. Comparison

The preceding sections demonstrate that the time for context
recognition and the associated accuracy depend on several
factors. While it is essential to make quantitative comparisons
between our result and the results of previous work, some
reports conceal a wealth of information, making justifiable
comparisons a difficult task.

Eronen et al. extensively experimented with different types
of recognition schemes, changing the topology of HMMs and
varying the test-sequence length of audio signals. In summary,

they are able to recognize 24 everyday context types with
an average recognition accuracy of 58% and 6 higher level
contexts with an average recognition accuracy of 82%. With
the profile Class High, ours is better by 1.24%, but this is a
rather negligible figure. Moreover, we consider eight context
types while they recognize nine.

Similarly, Korpipää et al. achieve a context-recognition ac-
curacy of 96% true positives and 100% true negatives under
controlled conditions—nine higher level contexts are consid-
ered which are in many respects similar to ours. They offer ad-
ditional insight regarding uncontrolled environments, in which
context transitions are not known beforehand and there are
disturbances and undefined phenomena. Their result shows that
the overall recognition accuracy falls to 87% true positives and
95% true negatives.

We employed ordinary microphones embedded in ordinary
laptop computers, both during the training and the test phases.
Furthermore, we recorded the audio signals without much
preparation, to imitate the way users handle their mobile
devices while moving or carrying out other more important
activities. In contrast, Eronen at al. considered various con-
figurations for their experiment: a binaural setup (Brüel &
Kjaer 4128 head and torso simulator), a stereo setup (AKG
C460B microphones), and a B-format setup (SoundField MkV
microphone). The acoustic material was recorded into a digital
multitask recorder in 16-bit and 48-kHz sampling-rate format
and a Sony (TCD-D10) digital audio tape recorder in 16-bit
and 48-kHz sampling-rate format. Likewise, the measurement
system hardware of Korpipää et al. consists of an extra small
sensor box attached to a shoulder strap of a backpack containing
a laptop. When collecting scenario data, the backpack was
carried around. The measurement system was controlled with
a cordless mouse to mark the scenario phases. The microphone
was a small omnidirectional AKG C 417/B.

Unlike Eronen et al. and Korpipää et al., our evaluation goes
beyond recognition accuracy and addresses the relationship and
the tradeoff between recognition accuracy and processing time.
We defined also three complexity classes to support adaptive
context recognition. Moreover, the adaptation aspect of our
system enables a user (or an application) to define quality
metrics for a context-recognition task. When the specified
quality metrics are not achievable because there are not enough
resources for the task, the system prompts the user to stop
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some running processes. Otherwise, it offers the user a reduced
accuracy or an increased processing time.

B. Future Work

In this paper, we used laptop computers for context recog-
nition. While we have tested and demonstrated that three
different complexity classes can be emulated with a single
device, all the three complexity classes satisfy the minimum
resource requirements to process acoustic signals that are below
10 kHz. For example, the minimum sampling rate was 8 kHz.
In the future, our aim is to deploy resource-efficient signal-
processing algorithms on wireless sensor nodes, which are
resource-constrained. The networks that can be established by
these nodes promise several applications, but the scope and
usefulness of the applications are defined and limited by the
energy consumption of the networks. At present, extracting raw
sensor data claims a large portion of the energy consumption
of wireless sensor networks. Compact and efficient signal-
processing algorithms can significantly reduce the data traffic
in the networks, either by enabling efficient sampling and data
compression or by supporting the extraction of higher level
features locally.
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